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ABSTRACT

A reliable uncertainty estimation method is the foundation of many modern out-
of-distribution (OOD) detectors, which are critical for safe deployments of deep
learning models in the open world. In this work, we propose TULiP, a theoretically-
driven post-hoc uncertainty estimator for OOD detection. Our approach considers
a hypothetical perturbation applied to the network before convergence. Based on
linearized training dynamics, we bound the effect of such perturbation, resulting in
an uncertainty score computable by perturbing model parameters. Ultimately, our
approach computes uncertainty from a set of sampled predictions, thus not limited
to classification problems. We visualize our bound on synthetic regression and
classification datasets. Furthermore, we demonstrate the effectiveness of TULiP
using large-scale OOD detection benchmarks for image classification. Our method
exhibits state-of-the-art performance, particularly for near-distribution samples.

1 INTRODUCTION

An important safety component for deep neural networks (NNs) in real-world environments is
the awareness of their uncertainty upon receiving unknown or corrupted inputs. Such capability
enables systems to fall back to conservative decision-making or defer to human judgments when
faced with unfamiliar scenarios, which is imperative in safety-critical domains, such as autonomous
driving (Atakishiyev et al., 2024) and medical applications (Esteva et al., 2017). The problem is often
framed as Out-Of-Distribution (OOD) detection, which has witnessed significant growth in recent
years (Yang et al., 2024).

Theoretically, this issue directly relates to quantifying epistemic uncertainty (Hora, 1996), which
measures the lack of knowledge in a fitted model due to insufficient training data. The training process
is typically modelled as a Bayesian optimization process (Wang & Yeung, 2020) with approximations
for practical use (Gal & Ghahramani, 2016; Daxberger et al., 2021). More generally, epistemic
uncertainty could be formalized by the variance of a trained ensemble of networks ϕ(x;θ):

VarθInit
[ϕ(x;θTrain)] , (1)

where θTrain are parameters trained by some learning algorithm from random initialization θInit.
Intuitively, higher prediction variance corresponds to inputs x further from training set (OOD), as
there lack enough training data to eliminate model disagreements via training, hence epistemic.

Many works redesign the network or training process to be uncertainty-aware (DeVries & Taylor,
2018; Huang & Li, 2021). However, these are often impractical due to heavy computational costs,
especially for large datasets. Instead, post-hoc methods (Liang et al., 2018; Liu et al., 2020; Hendrycks
et al., 2022; Djurisic et al., 2023) are generally preferred. These approaches can be easily integrated
into pre-trained models without interfering with the trained backbones, significantly enhancing their
versatility (Yang et al., 2022). Nevertheless, they often lack a direct theoretical link to the training
process, which weakens their theoretical foundation and necessitates extensive empirical validation.

Therefore, it is desirable to develop a post-hoc OOD method with direct theoretical justifications
regarding the training process. Recent analysis of NN optimizations reveals that gradient descent
can be seen as its first-order approximations (Jacot et al., 2018; Lee et al., 2019), termed lazy
training, under specific conditions (Geiger et al., 2020). This enabled direct (but costly) computation
of equation 1, as well as rigorous analysis (Kobayashi et al., 2022) and methods (He et al., 2020) on
model uncertainty, even beyond the lazy regime (Chen et al., 2020).
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Inspired by this series of work, we present TULiP (Test-time Uncertainty by Linearized fluctuations
via weight Perturbation), a post-hoc uncertainty estimator for OOD detection. Our method considers
hypothetical fluctuations of the lazy training dynamics, which can be bounded under certain assump-
tions and efficiently estimated via weight perturbation. In practice, we found our method works well
even beyond the ideal regime. Our contribution is threefold:

(i) We provide a simple, versatile theoretical framework for analyzing epistemic uncertainty at
inference time in the lazy regime, which is empirically verified;

(ii) Based on our theory, we propose TULiP, an efficient and effective post-hoc OOD detector
that does not require access to original training data;

(iii) We test TULiP extensively using OpenOOD (Zhang et al., 2023), a large, transparent,
and unified OOD benchmark for image classifications. We show that TULiP consistently
improves previous state-of-the-art methods across various settings.

The outline is as follows. Sec. 2 provides a summary of related works, Sec. 3 presents theoretical
derivations, and Sec. 4 bridges theory to the implementation of TULiP. Sec. 5 reports the effectiveness
of TULiP via empirical studies.

2 RELATED WORKS

Uncertainty Quantification (UQ) As being discussed in Sec. 1, theoretically-driven methods often
estimates epistemic uncertainty from a Bayesian perspective. This includes, notably, Variational
Inference (Blundell et al., 2015a). Gal & Ghahramani (2016) connects Bayesian inference and the
usage of Dropout layers, led their method, Monte Carlo (MC) Dropout, widely adopted in practice
due to its simplicity and effectiveness. Moreover, Daxberger et al. (2021) approximates the posterior
via Taylor approximation and Lakshminarayanan et al. (2017) directly used independently trained
deep models as an ensemble.

Post-hoc OOD Detectors For post-hoc methods, the baseline method using maximum softmax
probability (MSP) was first introduced by Hendrycks & Gimpel (2017). ODIN (Liang et al., 2018)
applies input preprocessing on top of temperature scaling (Guo et al., 2017a) to enhance MSP. Liu
et al. (2020) proposes a simple score based on energy function (EBO). Hendrycks et al. (2022) uses
maximum logits (MLS) for efficient detection on large datasets. GEN (Liu et al., 2023) adopts
the generalization of Shannon Entropy, while ASH (Djurisic et al., 2023) prunes away samples’
activation at later layers and simplifies the rest. Some methods also access the training set for
additional information, as MDS (Lee et al., 2018b) used Mahalanobis distance with class-conditional
Gaussian distributions, and ViM (Wang et al., 2022b) computes the norm of the feature residual on
the principal subspace for OOD detection.

Due to the nature of post-hoc setting, most methods such as EBO, ODIN and MLS compute OOD
score solely from trained models, overlooking the training process. In contrast, as previously stated,
inspired by the more theoretically-aligned UQ methods, TULiP addresses the problem with regard
to the training process from a theoretical aspect. In practice, TULiP works by a series of carefully
constructed weight perturbations, ultimately yielding a set of model predictions, which can be seen
as surrogates to posterior samples for OOD detections. Our contribution is orthogonal to methods
working with logits and predictive probabilities, such as GEN, as they can work on top of TULiP
outputs. In such an aspect, TULiP shares the similar plug-and-play versatility as seen in recent works,
such as ReAct (Sun et al., 2021) and RankFeat (Song et al., 2022).

3 THEORETICAL FRAMEWORK

3.1 PRELIMINARIES: LINEARIZED TRAINING DYNAMICS

Jacot et al. (2018) introduced the Neural Tangent Kernel with linearization of neural networks. More
importantly, they have shown that under an infinite width (lazy) limit, network parameters and hence
the gradients barely change across the whole training process, justifying the linearization of the
training process. Lee et al. (2019) extends the result by examining them in the parameter space, with
a formal result equalizing linearized networks and empirical ones under mild assumptions.
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Let fTrue(x;θ) : Rd → Ro be a neural network parameterized by parameters θ. The Jacobian
(gradient) evaluated at x is written as ∇θfTrue(x) ∈ Ro×|θ|, where |θ| is the cardinality of θ, i.e.,
the number of parameters in the network.

Let f(x;θ) denote the network linearized at θ∗:
f(x;θ) := fInit(x) + ∇θfTrue(x)|θ=θ∗ (θ − θ∗), (2)

where fInit(x) is the initial network function. Typically, the network is linearized at initialization
θ∗ = θInit. Here, we treat it as a linear approximation to the true training dynamics. For our
convenience, we will interchangeably use∇θf(x) as ∇θfTrue(x)|θ=θ∗ .

We consider the training data x within an empirical dataset X . For a twice-differentiable loss
function ℓ(f(x); y(x)) with target y(x), we write it’s gradient w.r.t. f(x) as ℓ′(f(x); y(x)) (or
simply ℓ′(f(x))). Then, following Lee et al. (2019), f is trained on X following the gradient flow:

∂tft(x) = −ηEx′ [Θ(x,x′)ℓ′(ft(x
′); y(x′))] , (3)

where Ex′ is the expectation w.r.t. the empirical distribution for x′ ∈ X , η is the learning rate and
ft denotes the network f at time t ∈ [0, T ]. Given inputs x,x′, The Neural Tangent Kernel (NTK)
Θ(x,x′) ∈ Ro×o defined as Θ(x,x′) := ∇θf(x)∇θf(x

′)⊤ governs the linearized training equa-
tion 3. Under the lazy limit, the NTK Θ(x,x′) stays constant across the training process and hence
is independent of t. Hereon, we assume the unique existence of the solution to equation 3.

Notations Let z ∈ Rd be an arbitrary test point. Let ∥ · ∥ denote the Euclidean norm and induced
2-norm for vectors and matrices. Let ∥ · ∥F denote the matrix Frobenius norm. We also denote
∥·∥X := Ex

[
∥ · ∥2

]1/2
the data-dependent norm through out the following descriptions. Finally, let

f(z) ≲ g(z) indicate f(z) ≤ Kg(z) +M , up to some constant K,M independent of z.

3.2 MODELING UNCERTAINTY

Under our problem setting, neither the distribution of initialized models nor the training process is
accessible, which renders a significant difficulty for the direct computation of the uncertainty shown
in equation 1. Instead, we choose to intuitively model it by considering a perturbation applied towards
the network function f(x), at a time t = ts before the training terminates at t = T . This perturbation
prior to convergence is hypothetical, as it is inaccessible in our post-hoc setting, and we will only use
it to establish our theoretical framework.

Formally, consider a perturbation to fts at t = ts as f̂ts(x) = fts(x)+∆f(x). After the perturbation,
the perturbed network f̂(x) will be trained following the same dynamics as equation 3:

∂tf̂t(x) = −ηEx′ [Θ(x,x′)ℓ′(f̂t(x
′); y(x′))], (4)

until termination time T .

Under such a perturb-then-train process, we model the epistemic uncertainty as the difference
between converged networks, reads ∥fT (z) − f̂T (z)∥. It measures the fluctuation of the training
process, capturing the sensitivity of training w.r.t. noise. Indeed, by applying a perturbation at
t = 0, we essentially perturb fInit, which can be seen as a sampling process from some model
prior (Appendix A.7). Therefore, f̂T (z) can be interpreted as samples from the trained ensemble as
in equation 1, where their variance reflects epistemic uncertainty.

However, as stated above, in practice we only know the trained network fT at t = T . It would be
impractical to recover the full training trajectory, apply the perturbation at t = ts and then retrain the
network. Therefore, in the following, we will come up with a bound of ∥fT (z)− f̂T (z)∥ given the
strength of the perturbation ∆f , which can be evaluated at z without actually retrain the network.
Thus, the perturbation is hypothetical, as it has never been applied in our practice.

We first present this bound, then we examine a method to estimate the bound without explicit access
to training data.

3.3 BOUNDING LINEARIZED TRAINING FLUCTUATIONS

We shall introduce the following assumptions:

3
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A1. (Boundedness) For t ∈ [0, T ], f(x), ∇θf(x), ℓ and ℓ′ stay bounded, uniformly on x.

A2. (Smoothness) Gradient ℓ′ of loss function ℓ is Lipschitz continuous: ∀x ∈ X; ∥ℓ′(ŷ; y(x))−
ℓ′(ŷ′; y(x))∥ ≤ L∥ŷ − ŷ′∥.

A3. (Perturbation) The perturbation ∆f can be uniformly bounded by a constant α, that is, for all x
(not limited to the support of training data), i.e., ∀x ∈ Rd; ∥∆f(x)∥ ≤ α.

A4. (Convergence) Finally, for the original network trained via equation 3 and the perturbed network
trained via equation 4, we assume near-perfect convergence on the training set x at termination
time t = T , i.e., ∃β ∈ R,∀x ∈ X; ∥fT (x)− f̂T (x)∥ ≤ β.

Under reasonable conditions, it has been shown both empirically (Zhang et al., 2017) and theoret-
ically (Du et al., 2019) that overparameterized NNs trained via SGD is able to achieve near-zero
training loss on almost arbitrary training sets. To nice loss functions as ℓ(y;y′) = 0 implies y = y′,
this implies A4.

Jacot et al. (2018) connected lazy NNs trained with mean square error (MSE) loss and kernel ridge
regression. Essentially, it hints that under such a setup, an NN embeds datapoints x into gradients
∇θf(x). Indeed, for a general class of loss functions, it is possible to show that:
Theorem 3.1. Under assumptions A1-A4, for a network f trained with equation 3 and a perturbed
network f̂ trained with equation 4, the perturbation applied at time ts = T −∆T bounded by α, we
have

∥fT (z)− f̂T (z)∥ ≤ inf
x∈X

C∥∇θf(z)−∇θf(x)∥F + 2α+ β, (5)

where C =
αηΘ̄

1/2
X

λmax

(
e(T−ts)Lλmax − 1

)
, Θ̄1/2

X := ∥∇θf(x)∥X is average gradient norm over
training data, and λmax := 1√

N
∥G∥ for a generalized Gram matrix Gi,j := ∥Θ(xi, xj)∥ of dataset

X = {x1, x2, . . . , xN}.

Proof. With an arbitrarily chosen pivot point x∗ from the training set, it is possible to bound
∥f(z)− f(x∗)∥ and ∥f̂(z)− f̂(x∗)∥ by bounding the fluctuations on the training set. The theorem
then follows from assumption A4. Please check Sec. A.3 for details.

We see that the bound on the training fluctuation is dominated by the distance from test point z to the
training set X in the “embedding space” of gradients. Expanding it with ∥A∥F =

(
Tr(AA⊤)

)1/2
(detailed in Sec A.3), we can observe its connection with the NTK Θ:

inf
x∈X
∥∇θf(z)−∇θf(x)∥F = inf

x∈X

[
Tr (Θ(z, z) + Θ(x,x)− 2Θ(z,x))

]1/2
. (6)

3.4 ESTIMATING THE BOUND WITHOUT TRAINING DATA

However, given no access to training data, the term ∇θf(x) is intractable. Moreover, even with full
access, computing the minimum of equation 6 requires significant computational effort. A typical
training dataset often contains millions of data points. Besides, given the size of the network, storing
the full gradient for a single data point may already require significant memory.

Fortunately, we might be able to recover some information about the training dataset x from the
parameters θT and θts , given them being trained on the dataset via lazy gradient descent:
Lemma 3.2. We assume the lazy regime for the training process, i.e., the NTK, Θ(z,x), does not
depend on the parameter t ∈ [tts , T ]. Under assumption A1, with the model parameters θT trained
from θts with equation 3 over the training set x and ts < T , we have:

∥∇θfT (z)(θT − θts)∥ ≤ K · Tr (Ex [|ΘT (z,x)|]) , (7)

for some K independent of z. |ΘT (z,x)| is defined as the unique symmetric positive semi-definite
solution of |ΘT (z,x)|2 = ΘT (z,x)

⊤ΘT (z,x). It is an extension of absolute values to matrices.

Proof. We prove the lemma under the weakly lazy regime, i.e., we allow the weak dependency of Θt

on t. The consequence follows from the Hölder’s inequality. Please check Sec. A.4 for details.
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We further introduce an assumption on the closeness between the test point z and the dataset X , such
that equation 6 can be bounded by

inf
x∈X

Tr (Θ(z, z)+Θ(x,x)−2Θ(z,x)) ≤ Tr (Θ(z, z)+Ex [Θ(x,x)]−2Ex [|Θ(z,x)|]) . (8)

Intuitively, if across all x ∈ X , Tr (Θ(z,x)) only attains a small negative value within a limited
subset of x, and supx∈X Tr (Θ(z,x)) is largely positive (z is close to x in the sense of Θ), equation 8
holds. Fig. 1 d) provides empirical justifications for this closeness assumption.

With the closeness assumption, we can then derive a bound on equation 5 using Lemma 3.2:
Proposition 3.3. Given z and x satisfies equation 8, equation 5 can be further upper-bounded by:

∥fT (z)−f̂T (z)∥ ≲
[
Tr (Θ(z, z) + Ex[Θ(x,x)])− 2K ∥∇θfT (z) (θT−θts)∥

]1/2
, (9)

for some K independent from z (that may differ from the one in Lemma 3.2).

Given test point z and parameters θT ,θts , equation 9 provides a tractable bound for equation 5.

Network Ensemble We close this section by the fact that

Tr(Var∆f [f̂T (z)]) ≤ E∆f [∥f̂T (z)− fT (z)∥2], (10)

which can be then bounded by equation 9. As we stated before, f̂T (z) can be seen as samples from
the trained ensemble as in equation 1. In practice, it is often beneficial to obtain such samples. In the
next section, we will present a heuristic method to estimate f̂T (z) by matching variances.

4 IMPLEMENTATION

In this section, we present the key implementation strategies that enhance the practical effectiveness
of our method, TULiP, summarized in Alg. 1. We elaborate on its design in the following subsections
by referring to lines in Alg. 1.

In contrast to the linearized network f(x;θ), let femp
t (x;θ) denote a network trained empirically.

Intuitively, trajectories of ft(x;θ) and femp
t (x;θ) is similar when θ∗ = θInit with a small learning-

rate (Lee et al., 2019; Geiger et al., 2020). Under a post-hoc setting, as only converged models are
available, we take ts = 0 and substutite θts with E [θ0] = 0 (or other mean specified by initialization
schemes) in our implementation.

We first introduce how we estimate equation 9 using femp
T at t = T . Then, we introduce the

construction of surrogate posterior samples that greatly enhance our method.

4.1 LAYER-WISE SCALING (LINE 2 - 6)

Lazy training often fails to capture the full characteristics of practically trained neural networks (Se-
leznova & Kutyniok, 2022). In our experiments, we have observed significant changes in the empirical
NTK throughout the training process. Therefore, to better capture a full picture of the whole training
trajectory with only femp

T , we propose to use a reweighted empirical NTK to approximate the kernel
Θ used for linearization in equation 3 and beyond:

∇θf
emp
T (z)Γ2∇θf

emp
T (x)⊤ ≈ Θ(z,x), (11)

where Γ is a diagonal matrix of size |θ| × |θ| that shares the same value for parameters within the
same layer. Similarly,∇θf

emp
T (z)Γ ≈ ∇θf(z).

This reweighting is applied as a layer-wise scaling over the empirical NTK evaluated at convergence.
Given layer l with parameters θl, we scale them as

Γl := (1/
√
|θl|) · I, (12)

where Γl is the diagonal entries in Γ corresponds to θl. We note that such scaling is highly heuristical,
and we adopted it for its simplicity (further discussed in Appendix C.2). For converged networks,
such scaling could potentially recover an earlier network state, which is more representative of
the training trajectory as the majority of training has been done in this stage (in the sense of raw
performance, e.g., accuracy). We demonstrate this effect empirically in Fig. 1.

In practice, to apply layer-wise scaling, we can simply multiply Γ to the perturbations introduced
below.

5
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Algorithm 1 TULiP for Classifiers. ◦: Elementwise product
Input: Input z ∈ Rd, trained parameters θT , network femp(z;θ)
Parameter: Perturbation strength ϵ, δ; Parameter λ; Number of posterior samples M
Output: Uncertainty score U

1: θts ← 0
2: for all Layer l of femp do ▷ Layer-wise scaling
3: θl ← parameters of layer l from θT
4: Γl ← 1(1/

√
|θl|) ▷ Vector of length |θl|

5: end for
6: Γ← Concatenate(Γl)
7: for i = 1, . . . ,M do
8: Sample vi ∈ R|θ| from N (0, ϵ2I)

9: f̃raw
i (z)← femp(z;θT + Γ ◦ vi)

10: end for
11: Θ̃Tr(z, z)← 1

M

∑
i ∥f̃raw

i (z)− femp(z;θT )∥2 ▷ Estimation of TrΘ(z, z)

12: D ← ∥femp(z;θT + ϵδΓ ◦ (θT − θts))− femp(z;θT )∥
13: S ← Θ̃Tr(z, z)− λD ▷ Estimation of equation 9 up to Ex[Θ(x,x)] and square root

14: γ ←
√

max(S, 0)/Θ̃Tr(z, z)

15: for i = 1, . . . ,M do ▷ Surrogate posterior samples
16: f̃i(z)← (1− γ)femp(z;θT ) + γf̃raw

i (z)

17: end for
18: U ← Hy(

1
M

∑
i softmax(f̃i(z)))

4.2 ESTIMATION OF JACOBIAN (LINE 7 - 13)

Estimating gradients explicitly is both time and memory-consuming, especially for networks with
large output dimensions. Fortunately, for Jacobian-vector products as in equation 9, we may use a
first-order approximation to avoid computing the gradients with a backward pass:

lim
δ→0

1

δ

(
femp(z;θT + δΓθ̃)− femp(z;θT )

)
≈ ∇θfT (z)θ̃. (13)

We use it in line 12 of Alg. 1 to estimate ∥∇θfT (z) (θT − θts) ∥ with D up to multiplications.

For TrΘ(z, z), we could estimate its value with Hutchinson’s Trace Estimator (Avron & Toledo,
2011) (line 7-11).
Proposition 4.1. Suppose that femp is γ-smooth w.r.t. θ, i.e.,

∥∇θf
emp(z;θ)−∇θf

emp(z;θ′)∥F ≤ γ∥θ − θ′∥.
Let v be a random variable such that Ev[v] = 0,Ev[vv

⊤] = ϵ2I and Ev[∥v∥k] ≤ Ckϵ
k for

k = 3, 4, where Ck is a constant depending on k and the dimension of v. Then, under A1, it holds
that

lim
ϵ→0

1

ϵ2
Ev

[
∥femp(z;θT + Γv)− femp(z;θT )∥2

]
= Tr

(
∇θf

emp(z;θT )Γ
2∇θf

emp(z;θT )
⊤) .
(14)

Note that the multi-dimensional normal distribution with mean zero and variance-covariance matrix
ϵ2I agrees to the condition of v. Proposition 4.1 and the approximation equation 11 ensures that
TrΘ(z, z) is approximated by ϵ−2Ev[∥femp(z;θT + Γv)− femp(z;θT )∥2] with a small ϵ.

Proof. Please check Sec. A.5 for details.

From above, z-relavent terms in equation 9 can be approximated while avoiding explicit computation
of ∇θf(z). Specifically, in line 13, S provides an estimation of the upper-bound equation 9 up to
Ex[Θ(x,x)], square root and multiplicative constants. Here, the hyper-parameter λ acts as a proxy
to the constant K in Lemma 3.2. Such approximation is implemented by perturbations to θ, thus
compatible with mini-batching, enabling fast computation with O(M) forward passes.
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Figure 1: a) b) c) Empirical justifications for the layer-wise scaling scheme. We trained a ResNet-18
on CIFAR-10 dataset with SGD-momentum for 400 epochs. a) Average magnitude of Jacobian
entries for different conv layers (solid) vs. time vs. validation accuracy (dashed). Layers with
more parameters (lower) train slower compared to layers with fewer parameters (upper). b) The
ratio between Jacobian norm at t = Epoch 20 and T = Epoch 400 vs. our scaling equation 11. A
proportional relationship (dashed) supports such scaling in recovering an early NTK critical to training.
c) Such relationship disappears at t = Epoch 200. d) Verification for equation 8 (detailed setups in
Sec. 5). ID Dataset: ImageNet-1K. OOD Datasets: ImageNet-C, ImageNet-R, SSB-Hard (Vaze et al.,
2022), iNaturalist (Van Horn et al., 2018), Textures (Cimpoi et al., 2014).

4.3 SURROGATE NETWORK ENSEMBLE (LINE 14 - 18)

As stated in Sec. 3, the bound in equation 5 or 9 is insufficient to capture a full picture – for example,
a well-trained classifier can be certain that a test data belongs to neither class, in a sense that an
evaluation of equation 9 yields a small value, but their prediction (i.e., it belongs to neither classes)
f̂T (z) indicates OOD input. Informally yet intuitively, f̂T (z) can also be seen as predictions of
models sampled from some model posterior.

To this end, we propose to approximate f̂T (z) by constructing f̃(z), via the process described in
line 14-18 of Alg. 1. In short, we squeeze the perturbed predictions f̃raw

i (z), producing f̃(z), so
that their variance matches equation 10, which is an upper bound of the variance of true perturbed
predictions Tr(Var∆f

[f̂T (z)]).

From line 16, it is possible to show

Tr(Vari[f̃i(z)]) ≈ γ2 · Tr(Vari[f̃raw
i (z)]) = S, (15)

for a positive S and small ϵ such that Ei[f̃
raw
i (z)] ≈ femp(z;θT ). Note that γ is given in line 14 of

Alg. 1, and S is an estimation of equation 9 as stated in the previous subsection. Sec. A.6 provides
additional derivations to clarify their relationships.

For classification problems, after obtaining f̃(z), it is then able to combine the epistemic uncertainty
and model prediction. One common approach is the Information Entropy H (Shannon, 1948) of
the mean prediction: Hy[f̃(z)] := −

∑o
y=1 E[σ(f̃(z))]y logE[σ(f̃(z))]y, where σ is the softmax

operation producing the class probabilities and [·]y takes the y-th component from a vector. Other
methods, such as GEN (Liu et al., 2023), can also be naturally incorporated to TULiP by replacing
line 18 in Alg. 1.

Yet, significant simplifications have been made for computational clarity. For example, Ex[Θ(x,x)]
has been omitted as it is intractable and irrelevant to z. Empirically we have found that our method is
effective despite such simplifications, which will be demonstrated in the next section. We choose to
simplify this for clarity, avoiding the introduction of new hyper-parameters to TULiP.

Alg. 1 summarizes TULiP, our proposed uncertainty estimator for OOD detection. Although Alg. 1
gives TULiP for classification, it naturally generalizes to non-classification problems as TULiP
constructs surrogate posterior samples.
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Figure 2: Verification of Thm. 3.1 with synthetic data. From left to right, a): Regression on Splines.
Light shade: the bound equation 5, heavy shade: Ground-truth ensemble (equation 1), black dots:
training data. b) c): Binary classification on Two-Moons. The brighter colour indicates larger values
across the input space. b): Prediction variance of 20 simulated runs, c): Evaluation of equation 5.

5 EXPERIMENTS

5.1 EMPIRICAL VALIDATION FOR SECTION 3

Synthetic Datasets We begin this section by validating the original bound presented in equation 5.
Two types of artificial datasets have been considered: namely Splines for regression and Two-Moons
for classification problems. A 3-layer infinite-wide feed-forward neural network is used and we
solved the lazy training dynamics over the dataset using the neural-tangents library (Novak et al.,
2020). For Splines, we used MSE loss and computed the exact Gaussian ensemble (Lee et al., 2019).
For Two-Moons, we used binary cross-entropy loss and numerically simulated the lazy gradient
descent for 20 runs. Results are shown in Fig. 2. It suggests that our bound equation 5 based on
training fluctuations is able to capture the true epistemic uncertainty as in equation 1, justifies further
developments of our method.

Closeness Condition We proceed by presenting empirical justifications for equation 8 in Fig. 1
d). We used a ResNet18 (He et al., 2016) pre-trained on ImageNet-1K (Russakovsky et al., 2015),
computed equation 8 by 256 samples from the ID dataset (ImageNet-1K) and 128 samples per OOD
dataset. The scaled empirical NTK as in equation 11 is used in this experiment. Clearly, we see
that equation 8 is satisfied by a large margin under this practical setting.

5.2 OUT-OF-DISTRIBUTION DETECTION

In this subsection, we demonstrate the effectiveness of our method for OOD detection in real-world
scenarios by comparing TULiP with state-of-the-art OOD detectors.

Experiment Setup We evaluate the performance of TULiP with OOD detection tasks based on
manually defined ID-OOD dataset pairs (Zhang et al., 2023). For TULiP, we use M = 10 surrogate
posterior samples with ϵ = 2.0, δ = 2 and λ =

√
o where o is the number of output dimensions.

Only weights in the convolutional and fully connected layers are being perturbed, while biases are
ignored. Following Zhang et al. (2023), we conduct a hyper-parameter search on a small validation
set whenever possible, within a reasonable range of ϵ ∈ {0.1, 0.5, 1.5, 2.0}, δ ∈ {2, 5, 8} and
λ ∈ {

√
o, 3
√
o}. We explain our choice for hyper-parameters in Sec. B.2. We consider two OOD

scenarios, namely Semantic-Shift OOD (SS-OOD) and Covariate-Shift OOD (CS-OOD) (Yang et al.,
2024). The fundamental difference between them is that SS-OOD considers distributional shift on
both input x and label y, often with unseen classes. CS-OOD considers distributional shift solely on
input x. Recently, Yang et al. (2021) raised concerns regarding the negligible covariate shifts between
ID and OOD data with same labels. Our setup does not contradict with this work as overlapping
classes have been removed from our SS-OOD experiments, following (Yang et al., 2022). Instead,
we believe the CS-OOD setting is also significant for practical use. For instance, one may wish to
distinguish real-world images from AI-generated ones (Zhang et al., 2024), or identify images that
are severely contaminated due to environmental factors or sensor malfunctions (Baek et al., 2024).
We present details of all datasets in Sec. B.1 and provide additional experimental results as well as
details of reported results in Sec. C.
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Table 1: Results on OpenOOD benchmark, averaged from 3 runs. The top results for each category
are marked in bold, with the second-best result in underlined. We include baseline results from Zhang
et al. (2023), and reproduced the results for MC-Dropout (MCD). A dagger symbol † indicates direct
access to training data or processes. Results are averaged separately for near / far-OOD sets.

CIFAR-10 CIFAR-100 ImageNet-200 ImageNet-1K
Method FPR@95 ↓ AUROC ↑ FPR@95 ↓ AUROC ↑ FPR@95 ↓ AUROC ↑ FPR@95 ↓ AUROC ↑

MCD † 53.54/31.43 87.68/91.00 54.73/59.08 80.42/77.58 55.25/35.48 83.30/90.20 65.68/51.45 76.02/85.23
MDS † 49.90/32.22 84.20/89.72 83.53/72.26 58.69/69.39 79.11/61.66 61.93/74.72 85.45/62.92 55.44/74.25
ViM † 44.84/25.05 88.68/93.48 62.63/50.74 74.98/81.70 59.19/27.20 78.68/91.26 71.35/24.67 72.08/92.68

ODIN 76.19/57.62 82.87/87.96 57.91/58.86 79.90/79.28 66.76/34.23 80.27/91.71 72.50/43.96 74.75/89.47
EBO 61.34/41.69 87.58/91.21 55.62/56.59 80.91/79.77 60.24/34.86 82.50/90.86 68.56/38.39 75.89/89.47
MLS 61.32/41.68 87.52/91.10 55.47/56.73 81.05/79.67 59.76/34.03 82.90/91.11 51.35/63.60 76.46/89.57
ASH 86.78/79.03 75.27/78.49 65.71/59.20 78.20/80.58 64.89/27.29 82.38/93.90 63.32/19.49 78.17/95.74
GEN 53.67/47.03 88.20/91.35 54.42/56.71 81.31/79.68 55.20/32.10 83.68/91.36 65.32/35.61 76.85/89.76
TULiP 33.80/24.43 89.67/92.55 55.07/58.17 81.29/79.63 54.51/33.94 83.84/91.03 64.96/48.01 77.52/88.03
TULiP+GEN 35.67/23.51 90.04/93.33 54.63/55.48 81.14/80.55 57.04/34.26 82.87/90.63 62.97/36.90 77.62/89.53

Baseline Methods We consider various baselines for comparison, including the MC-Dropout
(MCD), post-hoc OOD methods without training data ODIN, EBO, MLS, ASH and GEN; and finally,
MDS and ViM with access to training data. Please refer to Sec. 2 for a brief introduction.

Semantic Shift OOD We report the performance of TULiP on OpenOOD v1.5 benchmark (Zhang
et al., 2023) in Table 1. Following their setup, we use the same pre-trained ResNet-18 (He et al.,
2016) for CIFAR-10 & 100 (Krizhevsky, 2009) and ImageNet-200 (Zhang et al., 2023) ID datasets,
and ResNet-50 for ImageNet-1K (Russakovsky et al., 2015). OOD data range across a collection
of diverse image datasets (Cimpoi et al., 2014; Vaze et al., 2022; Van Horn et al., 2018; Bitterwolf
et al., 2023; Le & Yang, 2015; Zhou et al., 2018; Kuznetsova et al., 2020), categorized into near and
far OOD sets (Yang et al., 2022), where near is more similar to ID and therefore more difficult to
distinguish. We also included a variant of TULiP+GEN as we substitute line 18 of Alg. 1 by GEN
with γ = 0.3 and M = 100 to better demonstrate the effect of incorporating existing methods with
TULiP. TULiP achieves remarkable performance in near-OOD settings with either top-1 or top-2
AUROC scores across all datasets. Indeed, as suggested by equation 8, better performance on near-ID
scenarios is expected. On the far-OOD side, TULiP also performs consistently well. We note that
methods significantly outperform TULiP on far-OOD either access the training dataset (ViM and
MDS) or completely lack theoretical explanation (ASH). In ImageNet-1K (ResNet-50) AUROC,
despite being outperformed by ASH, TULiP still outperforms other baselines by a large margin, with
a slightly higher FPR. ASH is effective when the representation is redundant, as simplifying them
does not significantly impact ID accuracy (Djurisic et al., 2023). ResNet-50, compared to ResNet-18
used otherwise, is more likely to have redundant representations due to its increased expressive
power. In such cases, particularly in near-OOD scenarios, one may expect high performance for
ASH when pruning parameters are appropriately tuned. On the other hand, TULiP demonstrates
relatively consistent and high performance across all datasets. This indicates that properly evaluating
uncertainty is fundamentally important, and our method achieves this goal to a considerable extent.
Notably, ASH failed when using a different set of weights on ImageNet-1K (Appendix C.3). In
contrast, TULiP, without access to training information, performs consistently well with theoretical
foundations.

Covariate Shift OOD We test TULiP on the covariate shift setting with Blurred ImageNet,
ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-R (Hendrycks et al., 2021) and ImageNet-
ES (Baek et al., 2024) as OOD data. A description of these datasets can be found in Sec. B.1. For this
experiment, the ImageNet validation set with blur is used for the hyper-parameter grid search. Table 2
reports the results. TULiP achieves top performance on ImageNet-C except for methods that require
training data (MCD, MDS, ViM). This usually leads to longer evaluation time. For instance, ViM
takes more than 30 minutes just to extract ID information using a recent GPU machine. In contrast,
a typical full evaluation of TULiP on test split takes 3× less time. On the other hand, ImageNet-R
contains images that are less similar to ImageNet-1K (i.e. further from ID). When tuned on a near
validation set like Blur-ImageNet, TULiP tends to favour near OOD by trading off the far ones. This
is consistent with Table 1 and equation 8. Such phenomena are further demonstrated in Fig. 4.
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Figure 4: Results by varying ϵ and λ on ImageNet-200 ID. The value of λ in either the horizontal
axis or legend should be read as, e.g., λ = 1.5
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Table 2: CS OOD results by averaging 3 runs. Re-
sults are in AUROC (higher is better).

Method Blur ImNet-C ImNet-R ImNet-ES

MCD † 69.90 77.06 80.52 79.98
MDS † 55.02 70.94 69.62 49.66
ViM † 73.88 83.93 87.92 82.54

ODIN 79.43 77.48 85.35 81.94
EBO 74.41 81.21 87.05 84.41
MLS 74.23 81.06 86.72 84.17
ASH 78.42 82.18 85.24 84.22
TULiP 85.34 82.91 82.07 85.91

Network Architecture Choice To verify TULiP
across different network architectures, we conduct
experiments with various networks on semantic-shift
OOD with ImageNet-1K. The pre-trained models and
weights are collected directly from torchvision (main-
tainers & contributors, 2016), and we only consider
methods that work without additional modifications
for compatibility. Results are shown in Fig. 3. TULiP
relies on assumptions of the training process, which
could be potentially violated by different training pro-
tocols and architectures. Nevertheless, TULiP still
outperforms baseline methods consistently across the
board, comparable to Table 1. Such results further suggest the effectiveness and versatility of TULiP.
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TULiP

MLS

MbNet VGG RegNet
60
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Figure 3: ImageNet-1K OpenOOD benchmarks
on different network architectures: MobileNet V3
Large (MbNet) (Howard et al., 2019), VGG 16 (Si-
monyan & Zisserman, 2015), RegNet Y 16GF (Ra-
dosavovic et al., 2020).

Ablation Study and Hyper-parameters We con-
duct experiments on semantic-shifted ImageNet-
200 to analyze the effect of hyper-parameters. Re-
sults are shown in Fig. 4, where we observe a
trade-off in near and far OOD performance. It is
also clear from the results that λ and Lemma 3.2
boosts the performance and hyper-parameter sta-
bility (mainly to ϵ) of TULiP. In practice, ϵ con-
trols the overall strength of weight perturbation
and, hence, the most important hyper-parameter of
TULiP. Our method failed to achieve consistent per-
formance across various datasets without layer-wise
scaling, potentially due to its increased vulnerabil-
ity to hyper-parameters and training setups. Please
refer to Sec. C for more details.

6 CONCLUSION

In this study, we present TULiP, an uncertainty estimator for OOD detection. Our method is driven
by the fluctuations under linearized training dynamics and excels in practical experiments. However,
there are some limitations and future works remaining. Theoretically, our framework only considers
functional perturbation. The perturbation on the NTK is also important (Kobayashi et al., 2022)
and could be integrated into the estimator in the future. Furthermore, the layer-wise scaling scheme
deserves more exploration as being discussed in Appendix C.2. Empirically, TULiP does not achieve
state-of-the-art performance when the OOD data is far from ID (far-OOD). Such tradeoff in Fig. 4
hints at the inconsistency of best hyper-parameters for different setups. Future works may improve
upon these aspects, covering a wider range of OOD data by examining the network parameters and
refining weight perturbations. As shown in Appendix C.4, It is also beneficial to further develop
TULiP for networks other than convolutional ones, such as transformers. In a broader aspect,
exploring TULiP in other learning paradigms, such as Active Learning (Wang et al., 2022a) or
Reinforcement Learning (Szepesvari, 2010) will be valuable.
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7 REPRODUCIBILITY STATEMENT

We list our theoretical assumptions at the start of section 3.3, and all proofs thereafter in Appendix
A. We provide a thorough overview of our experimental setup in section 5. A more detailed
description of OOD configurations and additional results are presented in sections B and C of the
Appendix, respectively. In the source codes provided in the supplementary materials, we include
our implementation of the algorithm and the scripts to produce all visualizations. Additionally,
we list the steps required to reproduce the OpenOOD results and provide a yaml file with all the
hyper-parameters for the reported performance in this paper.
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and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/p
aper/2019/file/0d1a9651497a38d8b1c3871c84528bd4-Paper.pdf.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018b. URL https://proceedings.neurip
s.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc
2-Paper.pdf.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=H1VGkIxRZ.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 21464–21475. Curran Associates, Inc., 2020.
URL https://proceedings.neurips.cc/paper_files/paper/2020/file/f
5496252609c43eb8a3d147ab9b9c006-Paper.pdf.

Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
out-of-distribution detection. In 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 23946–23955, 2023. doi: 10.1109/CVPR52729.2023.02293.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/h
ousenumbers/nips2011_housenumbers.pdf.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In
International Conference on Learning Representations, 2020. URL https://github.com/g
oogle/neural-tangents.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing net-
work design spaces. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10425–10433, 2020. doi: 10.1109/CVPR42600.2020.01044.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf
https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z
https://proceedings.neurips.cc/paper_files/paper/2019/file/0d1a9651497a38d8b1c3871c84528bd4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0d1a9651497a38d8b1c3871c84528bd4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://openreview.net/forum?id=H1VGkIxRZ
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f5496252609c43eb8a3d147ab9b9c006-Paper.pdf
https://github.com/pytorch/vision
https://github.com/pytorch/vision
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://github.com/google/neural-tangents
https://github.com/google/neural-tangents


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252,
2015. doi: 10.1007/s11263-015-0816-y.

Mariia Seleznova and Gitta Kutyniok. Analyzing finite neural networks: Can we trust neural tangent
kernel theory? In Joan Bruna, Jan Hesthaven, and Lenka Zdeborova (eds.), Proceedings of the
2nd Mathematical and Scientific Machine Learning Conference, volume 145 of Proceedings of
Machine Learning Research, pp. 868–895. PMLR, 16–19 Aug 2022. URL https://procee
dings.mlr.press/v145/seleznova22a.html.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015. URL http:
//arxiv.org/abs/1409.1556.

Yue Song, Nicu Sebe, and Wei Wang. Rankfeat: Rank-1 feature removal for out-of-distribution
detection. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems, volume 35, pp. 17885–17898. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/fi
le/71c9eb0913e6c7fda3afd69c914b1a0c-Paper-Conference.pdf.

Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 144–157. Curran Associates, Inc., 2021.
URL https://proceedings.neurips.cc/paper_files/paper/2021/file/0
1894d6f048493d2cacde3c579c315a3-Paper.pdf.

Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan and Claypool Publishers, 2010.
ISBN 1608454924.

Jayaraman Thiagarajan, Rushil Anirudh, Vivek Sivaraman Narayanaswamy, and Timo Bremer. Single
model uncertainty estimation via stochastic data centering. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 8662–8674. Curran Associates, Inc., 2022. URL https://proceedings.ne
urips.cc/paper_files/paper/2022/file/392d0d05e2f514063e6ce6f8b37
0834c-Paper-Conference.pdf.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8769–8778, 2018.
doi: 10.1109/CVPR.2018.00914.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=5hLP5JY9S2d.

Vasilis Vryniotis. How to train state-of-the-art models using torchvision’s latest primitives, 2021.
https://pytorch.org/blog/how-to-train-state-of-the-art-models-u
sing-torchvision-latest-primitives/ [Accessed: 1st Oct., 2024].

Hao Wang and Dit-Yan Yeung. A survey on bayesian deep learning. ACM Comput. Surv., 53(5), sep
2020. ISSN 0360-0300. doi: 10.1145/3409383. URL https://doi.org/10.1145/3409
383.

Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew J Margenot, and Jingrui He.
Deep active learning by leveraging training dynamics. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 25171–25184. Curran Associates, Inc., 2022a. URL https://proceedings.
neurips.cc/paper_files/paper/2022/file/a102dd5931da01e1b40205490
513304c-Paper-Conference.pdf.

15

https://proceedings.mlr.press/v145/seleznova22a.html
https://proceedings.mlr.press/v145/seleznova22a.html
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper_files/paper/2022/file/71c9eb0913e6c7fda3afd69c914b1a0c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/71c9eb0913e6c7fda3afd69c914b1a0c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/01894d6f048493d2cacde3c579c315a3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/01894d6f048493d2cacde3c579c315a3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/392d0d05e2f514063e6ce6f8b370834c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/392d0d05e2f514063e6ce6f8b370834c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/392d0d05e2f514063e6ce6f8b370834c-Paper-Conference.pdf
https://openreview.net/forum?id=5hLP5JY9S2d
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
https://doi.org/10.1145/3409383
https://doi.org/10.1145/3409383
https://proceedings.neurips.cc/paper_files/paper/2022/file/a102dd5931da01e1b40205490513304c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a102dd5931da01e1b40205490513304c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a102dd5931da01e1b40205490513304c-Paper-Conference.pdf


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4921–4930, June 2022b.

Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, and
Ziwei Liu. Semantically coherent out-of-distribution detection. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 8281–8289, 2021. doi: 10.1109/ICCV48922.2021.0
0819.

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, WENXUAN PENG,
Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan
Hendrycks, Yixuan Li, and Ziwei Liu. OpenOOD: Benchmarking generalized out-of-distribution
detection. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022. URL https://openreview.net/forum?id=gT6j4_tskUt.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. International Journal of Computer Vision, 2024.

Chenshuang Zhang, Fei Pan, Junmo Kim, In So Kweon, and Chengzhi Mao. Imagenet-d: Bench-
marking neural network robustness on diffusion synthetic object. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21752–21762, 2024.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai
Li. Openood v1.5: Enhanced benchmark for out-of-distribution detection, 2023. URL https:
//arxiv.org/abs/2306.09301.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(6):1452–1464, 2018. doi: 10.1109/TPAMI.2017.2723009.

A PROOFS

A.1 BASIC NOTATIONS

For a network f(x) : Rd → Ro maps inputs x of dimension d to outputs f(x) of dimension o,
parameterized by θ with |θ| trainable parameters, the gradient / Jacobian matrix ∇θf(x) is a o× |θ|
matrix.

The NTK Θ(z,x) := ∇θf(z)∇θf(x)
⊤ is a o× o matrix.

ℓ′(ft(x)) is the gradient of loss function w.r.t. network output ft(x) at training time t. It is, for
convenience, a o× 1 column-vector.

The following lemma will be useful thereafter, which is an application of Hölder’s inequality.
Lemma A.1. Let F : x → Rm×n, g : x → Rn. Consider 2-norms ∥ · ∥ (i.e., euclidean and its
induced matrix 2-norm). For p, q ∈ [1,∞] that 1

p + 1
q = 1, we have

∥Ex[F (x)g(x)]∥
≤ Ex[∥F (x)g(x)∥]
≤ Ex [∥F (x)∥ · ∥g(x)∥]

≤ Ex [∥F (x)∥p]1/p · Ex [∥g(x)∥q]1/q .

When q =∞, we have Ex [∥g(x)∥q]1/q := supx ∥g(x)∥.
For convenience, given any random variable, vector or matrix A dependent of x, we denote:

∥A∥(q)X := Ex [∥A∥q]1/q , (16)
which by itself is a valid norm. We omit superscript (q) if q = 2.
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A.2 ASSUMPTIONS

We recall the assumptions here, which are originally shown in Sec. 3. For network f(x,θ), dataset
X with no parallel datapoints and a twice-differentiable loss function ℓ, we assume the followings:

A1. (Boundedness) For t ∈ [0, T ], f(x), ∇θf(x), ℓ and ℓ′ stay bounded, uniformly on x.
A2. (Smoothness) Gradient ℓ′ of loss function ℓ is Lipschitz continuous: ∀x ∈ X; ∥ℓ′(ŷ; y(x))−

ℓ′(ŷ′; y(x))∥ ≤ L∥ŷ − ŷ′∥.
A3. (Perturbation) The perturbation ∆f can be uniformly bounded by a constant α, that is, for all x

(not limited to the support of training data), i.e., ∀x ∈ Rd; ∥∆f(x)∥ ≤ α.
A4. (Convergence) Finally, for the original network trained via equation 3 and the perturbed network

trained via equation 4, we assume near-perfect convergence on the training set x at termination
time t = T , i.e., ∃β ∈ R,∀x ∈ X; ∥fT (x)− f̂T (x)∥ ≤ β.

A.3 PROOF OF THEOREM 3.1

Theorem A.2. (Theorem 3.1) Under assumptions A1-A4, for a network f trained with equation 3
and a perturbed network f̂ trained with equation 4, the perturbation applied at time ts = T −∆T
bounded by α, we have

∥fT (z)− f̂T (z)∥ ≤ inf
x∈X

C∥∇θf(z)−∇θf(x)∥F + 2α+ β, (17)

where C =
αηΘ̄

1/2
X

λmax

(
e(T−ts)Lλmax − 1

)
, Θ̄1/2

X := ∥∇θf(x)∥X is the average gradient norm over
training data, and λmax := 1√

N
∥G∥ for a generalized Gram matrix Gi,j := ∥Θ(xi, xj)∥ of dataset

X = {x1, x2, . . . , xN}.

Proof. Let us first examine the fluctuations in the training set. From the Lipschitz continuity of ℓ′,∥∥∥ℓ′(ft(x))− ℓ′(f̂t(x))
∥∥∥
X
≤ L∥f(x)− f̂(x)∥X . (18)

Thus, by the linearized dynamics we have

∂t

∥∥∥ft(x)− f̂t(x)
∥∥∥
X

≤
∥∥∥∂t (ft(x)− f̂t(x)

)∥∥∥
X

(19)

=
∥∥∥Ex′

[
Θ(x,x′)

(
ℓ′(ft(x

′))− ℓ′(f̂t(x
′))

)]∥∥∥
X

=Ex

[∥∥∥Ex′

[
Θ(x,x′)

(
ℓ′(ft(x

′))− ℓ′(f̂t(x
′))

)]∥∥∥2]1/2
≤Ex

[
∥Θ(x,x′)∥2X

∥∥∥ℓ′(ft(x′))− ℓ′(f̂t(x
′))

∥∥∥2
X

]1/2
≤Ex,x′

[
∥Θ(x,x′)∥2

]1/2 ∥∥∥ℓ′(ft(x))− ℓ′(f̂t(x))
∥∥∥
X

≤Lλmax

∥∥∥ft(x)− f̂t(x)
∥∥∥
X
, (20)

where in equation 19 we have used the triangle inequality to put ∂t inside the norm. λmax is defined
as 1√

N
∥G∥ for a generalized Gram-matrix Gij := ∥Θ(xi, xj)∥ of dataset X = {x1, x2, . . . , xN},

measures the fitness (or alignment) of the kernel Θ w.r.t. the training data.

From equation 20, we can apply the Grönwall’s inequality to obtain∥∥∥ft(x)− f̂t(x)
∥∥∥
X

≤
∥∥∥fts(x)− f̂ts(x)

∥∥∥
X
e(t−ts)Lλmax

≤ αe(t−ts)Lλmax . (21)
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We now prove Theorem 3.1 by generalizing equation 21 to given test data.

For a test point z ∈ Rd, choose a pivot point x∗ ∈ X from the training set. Then for the network
function f evaluated at x∗ and z, we have the followings:

∣∣∣∂t ∥∥∥(ft(z)− ft (x
∗))−

(
f̂t(z)− f̂t (x

∗)
)∥∥∥∣∣∣

≤
∥∥∥∂t [(ft(z)− ft (x

∗))−
(
f̂t(z)− f̂t (x

∗)
)]∥∥∥

=η
∥∥∥Ex

[
(Θ(z,x)−Θ(x∗,x)) ·

(
ℓ′(ft(x))− ℓ′(f̂t(x))

)]∥∥∥ (22)

Denote ∥∥∥(ft(z)− ft (x
∗))−

(
f̂t(z)− f̂t (x

∗)
)∥∥∥

as ∆ft(z), and let Θdiff
x∗ (z,x) := (Θ(z,x)−Θ(x∗,x)). Integrate equation 22 with t, we have

|∆fT (z)−∆fts(z)|

≤ η

∫ T

ts

∥∥∥Ex

[
Θdiff

x∗ (z,x)
(
ℓ′(ft(x))− ℓ′(f̂t(x))

)]∥∥∥ dt
≤ η

∫ T

ts

∥∥Θdiff
x∗ (z,x)

∥∥
X

∥∥∥ℓ′(ft(x))− ℓ′(f̂t(x))
∥∥∥
X
dt

≤ ηL
∥∥Θdiff

x∗ (z,x)
∥∥
X

∫ T

ts

∥∥∥ft(x)− f̂t(x)
∥∥∥
X
dt (23)

We start with the term before the integral. To begin, rewrite it as:

∥Θ(z,x)−Θ(x∗,x)∥X
=
∥∥(∇θf(z)−∇θf(x

∗))∇θf(x)
⊤∥∥

X

≤Ex

[
∥∇θf(z)−∇θf(x

∗)∥2 · ∥∇θf(x)∥2
]1/2

= ∥∇θf(z)−∇θf(x
∗)∥ · ∥∇θf(x)∥X

≤∥∇θf(z)−∇θf(x
∗)∥F · Θ̄

1/2
X , (24)

where Θ̄
1/2
X := ∥∇θf(x)∥X is independent from z.

Remark. equation 24 used a computationally friendly Frobenius norm to bound the spectral norm
in the line right above it. This is the main motivation to use a

√
o scaling for hyper-parameter λ, as

∥A∥2 ≤ ∥A∥F ≤
√
o∥A∥2 given A is full-rank o× |θ| and o < |θ|.

Bring equation 24 and equation 21 back to equation 23 we have

|∆fT (z)−∆fts(z)|

≤ ∥∇θf(z)−∇θf(x
∗)∥F

αηΘ̄
1/2
X

λmax

(
e(T−ts)Lλmax − 1

)
. (25)

Finally, we bound the difference between fT (z) and f̂T (z) via the triangle inequality.

First, observe that from A3,

∆fts(z) =
∥∥∥(fts(z)− fts (x

∗))−
(
f̂ts(z)− f̂ts (x

∗)
)∥∥∥

≤
∥∥∥fts(z)− f̂ts(z)

∥∥∥+
∥∥∥f̂ts(x∗)− fts(x

∗)
∥∥∥

≤ 2α, (26)
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so that

∆fT (z) ≤ |∆fT (z)−∆fts(z)|+ |∆fts(z)|

≤ ∥∇θf(z)−∇θf(x
∗)∥F

αηΘ̄
1/2
X

λmax

(
e(T−ts)Lλmax − 1

)
+ 2α. (27)

Thus, given the convergence assumption ∥fT (x∗)− f̂T (x
∗)∥ ≤ β (A4),∥∥∥fT (z)− f̂T (z)

∥∥∥
=
∥∥∥(fT (z)− fT (x

∗)
)
−
(
f̂T (z)− f̂T (x

∗)
)
−
(
f̂T (x

∗)− fT (x
∗)
)∥∥∥

≤ ∆fT (z) + β. (28)

To proceed, recall that x∗ is chosen arbitrarily. This concludes the proof.

Note for equation 6: Let A := ∇θf(z) − ∇θf(x). Then, we have Tr
(
AA⊤) =

Tr (Θ(z, z) + Θ(x,x)−Θ(z,x)−Θ(x, z)). Note that Θ(x, z) = Θ(z,x)⊤ and therefore we
may substitute them inside the trace. Thereafter, using ∥A∥F =

(
Tr(AA⊤)

)1/2
, we can obtain equa-

tion 6.

A.4 PROOF OF LEMMA 3.2

We prove the lemma under the weakly lazy regime, i.e., we allow the weak dependency of Θt on t.
Let us define |ΘT (z,x)| as the unique symmetric positive semi-definite solution of |ΘT (z,x)|2 =
ΘT (z,x)

⊤ΘT (z,x), which is an extension of absolute values to matrices.
Lemma A.3. (Extension of Lemma 3.2) We assume the lazy learning regime, i.e., there exists δ > 0
such that supx,x′ ∥|ΘT (x,x

′)| − |Θt(x,x
′)|∥ ≤ δ holds for all ts ≤ t ≤ T . Under assumption A1,

with the model parameters θT trained from θts with equation 3 over the training set x and ts < T ,
we have:

∥∇θfT (z)(θT − θts)∥ ≤ C(TrEx[|ΘT (z,x)|] + oδ) +
√
δ∥θT − θts∥ (29)

where C is a positive constant independent of z.

Lemma 3.2 is obtained by setting δ = 0.

Proof. The mean value theorem for integrals guarantees that there exists τ ∈ [ts, T ] such that

θT − θts = −
∫ T

ts

ηEx [∇θfτ (x)ℓ
′(fτ (x))] dt. (30)

Then, Hölder’s inequality leads to

∥∇θfτ (z)(θT − θts)∥ =

∥∥∥∥∥Ex

[
∇θfτ (z)∇θfτ (x)

⊤η

∫ T

ts

ℓ′(fτ (x))dt

]∥∥∥∥∥
≤∥Θτ (z,x)∥(1)X ·

∥∥∥∥∥η
∫ T

ts

ℓ′(fτ (x))dt

∥∥∥∥∥
(∞)

X︸ ︷︷ ︸
independent of z

. (31)

The lazy learning assumption leads that

∥Θτ (z,x)∥(1)X ≤ Ex

[
Tr

(
Θτ (z,x)

⊤Θτ (z,x)
)1/2]

≤ Ex [Tr (|Θτ (z,x)|)]
≤ Ex [Tr (|ΘT (z,x)|)] + oδ

= Tr (Ex [|ΘT (z,x)|]) + oδ.
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Again the lazy learning assumption for |ΘT (z, z)| = ΘT (z, z) ensures that

∥∇θfτ (z)(θT − θts)∥
2
= (θT − θts)

TΘτ (z, z)(θT − θts)

≥ (θT − θts)
T (ΘT (z, z)− δI)(θT − θts)

= ∥∇θfT (z)(θT − θts)∥
2 − δ∥θT − θts∥2.

Hence, we have
∥∇θfT (z)(θT − θts)∥ ≤

√
∥∇θfτ (z)(θT − θts)∥2 + δ∥θT − θts∥2

≤ ∥∇θfτ (z)(θT − θts)∥+
√
δ∥θT − θts∥.

Substituting the above inequalities into equation 31, we obtain the conclusion of the lemma.

A.5 PROOF OF PROPOSITION 4.1

Proposition A.4. (Proposition 4.1) Suppose that femp is γ-smooth w.r.t. θ, i.e.,
∥∇θf

emp(z;θ)−∇θf
emp(z;θ′)∥F ≤ γ∥θ − θ′∥.

Let v be a random variable such that Ev[v] = 0,Ev[vv
⊤] = ϵ2I and Ev[∥v∥k] ≤ Ckϵ

k for
k = 3, 4, where Ck is a constant depending on k and the dimension of v. Then, under A1, it holds
that

lim
ϵ→0

1

ϵ2
Ev

[
∥femp(z;θT + Γv)− femp(z;θT )∥2

]
= Tr

(
∇θf

emp(z;θT )Γ
2∇θf

emp(z;θT )
⊤) .
(32)

Proof. For each component femp
i , i = 1, . . . , o, the mean value theorem leads that there exists

ti ∈ [0, 1] such that
|femp

i (z;θT + Γv)− femp
i (z;θT )−∇θf

emp
i (z;θT )

⊤Γv|
= |∇θf

emp
i (z;θT + tiΓv)

⊤Γv −∇θf
emp
i (z;θT )

⊤Γv|
≤ γ∥Γ∥2∥v∥2.

For real numbers ai, bi, i = 1, . . . , o, suppose |ai − bi| ≤ c. Then, we have∣∣∣∣∑
i

a2i −
∑
i

b2i

∣∣∣∣ = ∣∣∣∣2∑
i

bi(ai − bi) +
∑
i

(ai − bi)
2

∣∣∣∣ ≤ 2c
∑
i

|bi|+ oc2.

Using the above inequality, we obtain∣∣∣∣Ev

[
∥femp(z;θT + Γv)− femp(z;θT )∥2

]
− Ev

[
v⊤Γ∇θf

emp(z;θT )
⊤∇θf

emp(z;θT )Γv
] ∣∣∣∣

≤ 2γ∥Γ∥2Ev[
∑
i

|v⊤Γ∇θf
emp
i (z;θT )|∥v∥2] + oγ2∥Γ∥4Ev[∥v∥4]

≤ 2
√
oγ∥Γ∥3∥∇θf

emp(z;θT )∥FEv[∥v∥3] + oγ2∥Γ∥4Ev[∥v∥4]. (33)
Note the cyclic trick for the trace ensures that

Ev

[
v⊤Γ∇θf

emp(z;θT )
⊤∇θf

emp(z;θT )Γv
]

= Ev

[
Tr

(
Γ∇θf

emp(z;θT )
⊤∇θf

emp(z;θT )Γvv
⊤)]

= Tr
(
Γ∇θf

emp(z;θT )
⊤∇θf

emp(z;θT )ΓEv

[
vv⊤])

= Tr
(
Γ∇θf

emp(z;θT )
⊤∇θf

emp(z;θT )Γ · ϵ2I
)

(34)

= ϵ2Tr
(
∇θf

emp(z;θT )Γ
2∇θf

emp(z;θT )
⊤) . (35)

In equation 34 we applied the condition that Ev[vv
⊤] = ϵ2I . We note that this is a slightly modified

version of the well-known Hutchinson’s Trace Estimator. We refer the readers to the existing analysis
of such estimators (Avron & Toledo, 2011) for more details. As a result, we obtain∣∣∣∣limϵ→0

1

ϵ2
Ev

[
∥femp(z;θT + Γv)− femp(z;θT )∥2

]
− Tr

(
∇θf

emp(z;θT )Γ
2∇θf

emp(z;θT )
⊤
)∣∣∣∣

≤ lim
ϵ→0

2
√
oγ∥Γ∥3∥∇θf

emp(z;θT )∥FC3ϵ+ oγ2∥Γ∥4C4ϵ
2

= 0.

The above equality means the conclusion of the proposition.
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A.6 ADDITIONAL DERIVATIONS FOR SECTION 4.3

Under the distribution of v we have

Ev[f
emp(z;θT + Γv)] = f emp(z;θT ) + Ev[∇θf

emp(z;θT )
TΓv]︸ ︷︷ ︸

=0 from Ev[v]=0

+O(E[v2])

= f emp(z;θT ) +O(ϵ2),

which indicates that Ev[f
emp(z;θT + Γv)] ≈ f emp(z;θT ) when ϵ is small.

We continue by the computation of TrVar[f̃ raw(z)]:

TrVarv[f̃
raw(z)] = Ev[∥f emp(z;θT + Γv)− Ev[f

emp(z;θT + Γv)]∥2]
= Ev[∥f emp(z;θT + Γv)− f emp(z;θT ) +O(ϵ2)∥2]
= Ev[∥f emp(z;θT + Γv)− f emp(z;θT )∥2] +O(ϵ4)

≈ ϵ2TrΘ(z, z) +O(ϵ4).

Let Θ̃Tr(z, z) be an approximation of ϵ2 TrΘ(z, z), which is being computed empirically in line 11
of Alg. 1.

Thus, γ2TrVarv[f̃
raw(z)] reads:

γ2TrVarv[f̃
raw(z)] =

[Θ̃Tr(z, z)− λD]+

Θ̃Tr(z, z)
TrVarv[f̃

raw(z)]

≈ [Θ̃Tr(z, z)− λD]+

Θ̃Tr(z, z)
(Θ̃Tr(z, z) +O(ϵ4))

≈ [ϵ2 TrΘ(z, z)− λD]+ +O(ϵ4)

where [ · ]+ denotes max(·, 0).
For D, from approximation equation 13 we have

D =
∥∥∥femp(z;θT + ϵδΓ(θT − θts))− femp(z;θT )

∥∥∥
≈ϵδ ∥∇θfT (z)(θT − θts)∥ .

As a result, we have

γ2TrVar[f̃ raw(z)] ≈
[
ϵ2 TrΘ(z, z)− ϵδ ∥∇θfT (z)(θT − θts)∥

]
+
.

Recall that equation 10 indicates that

Tr(Var∆f [f̂T (z)]) ≤ E∆f [∥f̂T (z)− fT (z)∥2],

and Prop. 4.1 shows that

∥fT (z)−f̂T (z)∥ ≲
[
Tr(Θ(z, z) + Ex[Θ(x,x)]︸ ︷︷ ︸

Independent of z

)− 2K ∥∇θfT (z) (θT−θts)∥
]1/2

.

A.7 PERTURB-THEN-TRAIN AND EQUATION 1

Jacot et al. (2018) consider neural networks in an infinite-width limit with specified initialization
scheme, which we have referred as the lazy limit in Section 3. Under such limit, the linearized
network equation 2 is justified as the empirical NTK (at initialization) converges to a specific
deterministic kernel Θ, where the distribution of a neural network f(x;θ)’s initialization functional
fInit(x) converges to a Gaussian Process (NNGP) (Lee et al., 2018a). In equation 2, it is equivalent
to a deterministic (fixed) ∇θfTrue(x)|θ=θ∗ and a stochastic fInit following the NNGP.
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Using the model defined in equation 2 and the training process described in equation 3, equation 1
effectively becomes:

VarfInit∼µNNGP
[fT (x; θ|Init = fInit)], (36)

where fT (x; θ|Init = fInit) indicates a network trained via equation 3 by time T , with fInit as
initialization.

When we set ts = 0 (the initialization time), the perturbation ∆f will be applied to fInit. Therefore,
given a fixed initialization f0 to perturb, Theorem 3.1 gives an upper-bound over a perturbation of the
initialization functional:

Var∆f [fT (x; θ|Init = f0 +∆f)], (37)
since f̂T is supposed to be trained from initialization f0+∆f , we have f̂T = fT (x; θ|Init = f0+∆f),
hence the above.

Comparing it to equation 36, we see that the difference between them is the distribution of the initial-
ization functional fInit. In equation 36, fInit distributes according to the NNGP; while in equation 37,
it is centered around f0 with a stochastic perturbation ∆f . Intuitively, by using theorem 3.1, we
approximate the predictive variance trained from the NNGP prior with the predictive variance trained
from a random perturbed initialization f0 +∆f . Figure 2 visualizes such an approximation.

B DETAILS OF EXPERIMENTAL SETUP

B.1 DATASET DESCRIPTIONS

An overview of all considered datasets is provided below. ID and OOD dataset setups are summarized
in Table 3. Please refer to Zhang et al. (2023) for more details.

B.1.1 ID DATASETS

CIFAR-10 The CIFAR-10 training set (Krizhevsky, 2009) consists 60000 32× 32 colored images,
containing 10 classes of airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. The
test set originally contained 10000 images from the same classes, where we separated 1000 validation
images and 9000 test images from the original test set following Zhang et al. (2023). The dataset and
each split are even in classes.

CIFAR-100 CIFAR-100 (Krizhevsky, 2009) contains 60000 32× 32 images sampled from 100
classes, covering a wider range of images beyond CIFAR-10. Similar to CIFAR-10, 1000 images are
taken out from the ID test set, forming a validation set.

ImageNet-1K ImageNet-1K (Deng et al., 2009), also known as ILSVRC 2012, spans 1000 object
classes and contains 1,281,167 training images, 50,000 validation images and 100,000 test images,
each of size 224 × 224. In the OpenOOD setup, 45,000 validation images are used as ID test and
5,000 as ID validation.

ImageNet-200 ImageNet-200 (Zhang et al., 2023) is a 200-class subset of ImageNet-1K compiled
in OpenOOD version 1.5, with 10,000 224× 224 validation images.

B.1.2 SEMANTIC-SHIFT OOD DATASETS

Tiny-ImageNet Tiny-ImageNet (Le & Yang, 2015) has 100,000 images divided up into 200 classes,
each with 500 training images, 50 validating images, and 50 test images. Compared to ImageNet-200,
every image in Tiny-ImageNet is downsized to a 64×64 coloured image.

MNIST Modified National Institute of Standards and Technology database (Lecun et al., 1998)
contains 60,000 training and 10,000 test images of handwritten digits. Each image is anti-aliased,
normalized and centered to fit into a 28x28 pixel bounding box.

SVHN Street View House Number (Netzer et al., 2011) dataset contains house numbers that are
captured on Google Street View, consisting of 73257 digits for training, and 26032 digits for testing.
In our setup, we used the MNIST-like 32-by-32 format, centered around a single character.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Textures Describable Textures Dataset (Cimpoi et al., 2014) is a set of 47 categories of textures,
collected from Google and Flickr via relevant search queries. It has 5640 images, 120 images for
each category, where the sizes range between 300x300 and 640x640.

Places365 Places365 (Zhou et al., 2018) is a scene recognition dataset. The standard version is
composed of 1.8 million train and 36000 validation images from 365 scene classes.

NINCO No ImageNet Class Objects (Bitterwolf et al., 2023) consists of 5879 samples from 64
OOD classes. These OOD classes were selected to have no categorical overlap with any classes of
ImageNet-1K. Each sample was inspected individually by the authors to not contain ID objects.

SSB-Hard Semantic Shift Benchmark-Hard (Vaze et al., 2022) split contains 49,000 images across
980 categories of ImageNet-21K () that has a short total semantic distance.

iNaturalist The iNaturalist dataset (Van Horn et al., 2018) has 579,184 training and 95,986 valida-
tion images from 5,089 different species of plants and animals.

OpenImage-O OpenImage-O (Kuznetsova et al., 2020) is image-by-image filtered from the test set
of OpenImage-V3, which has been collected from Flickr without a predefined list of class names or
tags. In the OpenOOD setup, 1,763 images are picked out as validation OOD.

B.1.3 COVARIATE-SHIFT OOD DATASETS

Blur-ImageNet This blurred ImageNet dataset contains ImageNet images with a Gaussian blur of
σ = 2. The same splits are used as in the above description in the ImageNet-1K section.

ImageNet-C ImageNet-C (Hendrycks & Dietterich, 2019) has 15 synthetic corruption types (such
as noise, blur, pixelate) on the standard ImageNet-1K, each with 5 severities. In OpenOOD, 10,000
images are randomly sampled uniformly across the 75 combinations to form the test set.

ImageNet-R ImageNet-R (Hendrycks et al., 2021) contains 30,000 images of different renditions
of 200 ImageNet classes, such as art, graphics, patterns, toys, and video games.

ImageNet-ES ImageNet-ES (Baek et al., 2024) consists of 202,000 photos of images from Tiny-
ImageNet. Each image is displayed on screen with high fidelity and photographed in a controlled
environment with different parameter settings. We only used the 64,000 photos in the test set.

B.2 HYPER-PARAMETERS

During our preliminary experiments, we found that the setup given in the main text (λ =
√
o,

ϵ = 2, δ = 2) works consistently well across datasets. In this preliminary stage, we have only
considered smaller datasets such as MNIST, CIFAR-10, SVHN, etc., as well as ImageNet-blur.
During future developments, larger δ and λ show better performance on large-scale datasets, as we
have included them in the hyper-parameter searching range of TULiP, whenever a validation set is
available. We further extended the range of ϵ to improve the performance of TULiP for different
network architectures and training setups.

In practice, when handling hyper-parameters, we found it beneficial to first search an optimal value for
ϵ, the most important parameter of TULiP as pointed out in Sec. 5, while fixing λ and δ as suggested.
It controls the overall strength of weight perturbation and may depends on network architecture and
training scheme. If one’s computational resource allows for further exploration, optimal values of
λ and δ can be searched for better performance. If a validation set is not available, one may either
use the suggested value or investigate network outputs after weight perturbation. When the network
output become senseless after perturbation (e.g., a prediction close to random-guessing), it often
indicates that ϵ is too large.

B.2.1 GRID SEARCH

Table 4 lists the hyper-parameter search range for all considered methods on the validation set.
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Table 3: ID, OOD and OOD-val dataset setups.

ID Dataset near-OOD far-OOD near/far-OOD Validation Cov-Shift OOD

CIFAR-10

MNIST

Tiny-ImageNetCIFAR-100 SVHN
Tiny-ImageNet Textures

Places365

CIFAR-100

MNIST

Tiny-ImageNetCIFAR-10 SVHN
Tiny-ImageNet Textures

Places365

iNaturalist

OpenImage-O

Blur-ImageNet
ImageNet-1K SSB-Hard Textures ImageNet-C
ImageNet-200 NINCO OpenImage-O ImageNet-R

ImageNet-ES

Table 4: Hyper-parameter (available at evaluation time) search ranges.

Method Hyper-parameters

MC-Dropout N/A
MDS N/A
MLS N/A
EBO Temperature: {1}
ViM Dimension: {256, 1000}
ASH Percentile: {65, 70, 75, 80, 85, 90, 95}

ODIN Temperature: {1, 10, 100, 1000}
Noise: {0.0014, 0.0028}

TULiP δ: {2, 5, 8}, λ: {1, 3} ·
√
o

ϵ: {0.1, 0.5, 1.5, 2.0}

B.2.2
√
o SCALING OF λ

In practice, when the number of network output dimensions o varies, we found that a
√
o scaling

of λ works more consistently. This might be due to our choice of using the computational-friendly
Frobenius norm in Theorem 3.1 instead of a tighter spectrum norm. It is further explained in the
proof listed in Sec. A.3.

B.2.3 HARDWARE

Each of our experiments is conducted on a single-node machine using an NVIDIA A6000 GPU.

C ADDITIONAL EXPERIMENT RESULTS

C.1 DETAILED RESULTS

Following Zhang et al. (2023), we used the provided pre-trained weights from 3 training runs for the
results reported for CIFAR-10, CIFAR-100 and ImageNet-200 ID datasets. For ImageNet-1K ID, 3
evaluation (OOD) runs on a single training run is reported. Results for each individual run, as well as
each individual dataset, are listed in Table 5.

C.2 EFFECT OF LAYER-WISE SCALING

Layer-wise scaling is an essential component of TULiP. In this experiment, we conduct semantic-shift
OOD detection on ImageNet-1K without layer-wise scaling. In particular, for networks with L layers
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Table 5: Detailed breakdown of TULiP’s Semantic-shift OOD performance on individual datasets.

Run 1 Run 2 Run 3
ID dataset OOD dataset FPR95↓ AUROC ↑ FPR95↓ AUROC ↑ FPR95↓ AUROC ↑

CIFAR-10

CIFAR-100 36.11 88.86 37.56 88.56 36.52 88.81
Tiny-ImageNet 30.67 90.75 31.42 90.23 30.53 90.83
Near OOD 33.39 89.81 34.49 89.39 33.53 89.82
MNIST 13.83 96.80 14.76 96.44 17.07 95.16
SVHN 23.02 91.75 21.30 93.06 20.59 93.17
Textures 30.96 89.98 30.49 90.60 28.12 91.44
Places365 29.31 91.49 31.11 90.69 32.68 90.09
Far OOD 24.28 92.50 24.41 92.70 24.61 92.46

CIFAR-100

CIFAR-10 60.93 79.24 58.80 79.35 60.92 78.90
Tiny-ImageNet 48.96 83.66 50.01 83.50 50.80 83.08
Near OOD 54.94 81.45 54.41 81.43 55.86 80.99
MNIST 57.83 79.36 47.88 84.45 53.82 80.74
SVHN 58.82 79.49 58.68 80.42 63.07 77.94
Textures 61.48 78.65 60.67 78.10 64.20 76.82
Places365 56.41 80.21 57.51 79.66 57.68 79.69
Far OOD 58.64 79.43 56.18 80.66 59.69 78.80

ImageNet-200

SSB-hard 65.87 80.86 66.20 80.89 65.39 80.91
NINCO 43.94 86.68 42.48 86.85 43.14 86.84
Near OOD 54.91 83.77 54.34 83.87 54.27 83.88
iNaturalist 22.52 93.80 22.94 93.45 24.80 93.21
Textures 45.00 89.53 43.20 89.80 44.02 89.67
OpenImage-O 34.64 89.98 33.99 89.94 34.34 89.92
Far OOD 34.06 91.10 33.38 91.06 34.39 90.93

ImageNet-1K

SSB-hard 74.09 73.16 73.99 73.37 74.12 73.14
NINCO 55.92 81.83 55.75 81.82 55.89 81.81
Near OOD 65.00 77.50 64.87 77.59 65.01 77.48
iNaturalist 37.89 91.01 38.08 90.98 37.94 91.01
Textures 59.02 85.34 59.15 85.29 59.01 85.34
OpenImage-O 47.10 87.77 46.87 87.76 47.08 87.76
Far OOD 48.00 88.04 48.03 88.01 48.01 88.04
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Figure 5: Visualization of the effect of layer-wise scaling (solid, orange) vs. without layer-wise
scaling (dotted, blue). The vertical axis indicates the Spearman rank correlation between the direct
calculation of empirical NTK in training Tr

(
∇θf

emp
t (x)∇θf

emp
t (x′)⊤

)
and scaled NTK after

training Tr
(
∇θf

emp
T (x)Γ2∇θf

emp
T (x′)⊤

)
, for T = epoch 400 and t spanning the horizontal axis.

The network is a ResNet-18 variant trained on CIFAR-10 for 400 epochs with SGD momentum 0.9,
and x,x′ are sampled from the training set for 4096 pairs. For solid orange curve Γ = (1/

√
|θl|) · I

(scaled) and for dotted blue curve Γ ∝ I (unscaled). It indicates that the proposed layer-wise scaling
scheme helps recovering an earlier network state, as the scaled NTK is more similar to the early
empirical NTKs.

Table 6: OOD detection results (AUROC ↑) for TULiP without layer-wise scaling (w/o LW). TULiP
results are copied from Table 1.

Method CIFAR-10 CIFAR-100 ImNet-200 ImNet-1K ImNet-Blur ImNet-C ImNet-R

TULiP 89.67/92.55 81.29/79.63 83.84/91.03 77.52/88.03 85.54 82.91 82.07
w/o LW 90.68/92.81 80.47/77.90 81.54/86.75 76.32/84.99 76.86 83.76 85.30

and parameters of layer l denoted as θl, the scaling matrix Γ has been set to (L−1
∑

l 1/
√
|θl|) · I ,

i.e., an averaged scaling Γ ∝ I is used for the entire network, identical across layers, effectively
disables layer-wise scaling while maintaining a similar magnitude for perturbations.

Table 6 compares the results of this experiment and the one reported in Table 1 and 2. It shows the
effect of layer-wise scaling on TULiP. Intuitively, it helps to find an NTK that is more representative
of the training process, reducing the gap between the linearized training trajectory and the true
training trajectory. Such effect is further demonstrated in Figure 5. From an empirical aspect, our
scaling is often approximately proportional to the magnitude of individual parameters within the
layer (cf. Fig. 1 a) of the main paper). In this sense, a larger perturbation may significantly interfere
with the network performance, thus producing unpredictable results. Our Layer-wise scaling scheme
also reduces such vulnerability by applying smaller perturbations to layers with smaller weights.
Nevertheless, TULiP without layer-wise scaling still outperforms TULiP in some datasets, suggesting
future work for an in-depth analysis.

C.3 V2 WEIGHTS ON IMAGENET-1K

Recently, researchers have been finding the possibilities to extend the performance of existing models
such as ResNet-50 on various datasets. For example, torchvision (maintainers & contributors, 2016)
released a new version (V2) of a ResNet-50 trained on ImageNet-1K with recent advances in practical
NN training, increasing the Top-1 accuracy by 4.7% (Vryniotis, 2021). The previous version (V1) is
used in OpenOOD v1.5 for ImageNet-1K ID and ResNet-50 backbone (Zhang et al., 2023).

Somewhat surprisingly, the performance of all OOD detectors are severely undermined when using
the new V2 weights. We summarize our empirical findings in Table 7. Upon further inspection, we
have empirically found that in general, V2 weight is larger than V1, especially the γ, β parameters
in BatchNorm layers (Ioffe & Szegedy, 2015) have been increased around 10×. This results in
a significantly larger ∥∇θf(x)∥. As a consequence, the network is more vulnerable to weight
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Table 7: ImageNet-1K OOD AUROC score using the V2 weights from torchvision.

MLS ODIN ViM ASH TULiP (Ours)

SSB-Hard 65.53 69.03 57.93 40.52 67.57
NINCO 72.96 70.81 72.42 31.39 74.90
Near OOD 69.24 69.92 65.17 35.96 71.23
iNaturalist 80.34 67.19 92.32 28.64 81.62
Textures 71.42 62.95 95.04 34.97 70.20
OpenImage-O 77.66 68.22 89.89 26.13 79.02
Far OOD 76.47 66.12 92.42 29.91 76.95

Table 8: Semantic Shift-OOD on ImageNet-1K with ViT-B-16 model. Baseline results cited
from Zhang et al. (2023).

ImageNet-1K
Method FPR@95 ↓ AUROC ↑
ViM† 73.73/29.18 77.03/92.84
MDS† 66.12/29.97 79.04/92.60

EBO 93.19/85.35 62.41/78.98
MLS 92.25/79.23 68.30/83.54
ASH 94.43/96.77 53.21/51.56
GEN 70.78/32.23 76.30/91.35
TULiP 84.73/52.23 73.63/87.98

perturbations and thus favors a much smaller ϵ. In particular, the results in Table 7 were produced
with a perturb power of ϵ = 0.1 (chosen with respect to the validation set). Such phenomena further
demonstrate the significant effect of ϵ to TULiP. It hints at an important future research direction that
aims to tackle such sensitivity.

C.4 POST-HOC METHODS AND VISION TRANSFORMERS (VIT)

In this subsection, following Zhang et al. (2023), we report the results of a direct implementation of
TULiP on ViT-B-16 (Dosovitskiy et al., 2021) in Table 8. The same setup as in Semantic-Shift OOD
experiments has been used except for the network architecture. Thanks to their superior performance,
transformer-based models have become one of the mainstream models in the vision literature ever
since they have been adopted to the field. Interestingly, as shown in Table 8, almost all post-hoc
methods without training data access degrade their performance compared to their convolution-based
performance in Table 1, despite the increased expression power of ViT. Those results suggest that
one may need specific tuning to make post-hoc methods perform better on transformer models. For
TULiP, one of the specific tunings could be to introduce architectural knowledge of transformers, in
order to obtain a more accurate approximation.

C.5 ADDITIONAL EXPERIMENT FOR OUTLIER REJECTION

Following established protocols (Krishnan & Tickoo, 2020; Thiagarajan et al., 2022), we conduct
OOD detection experiments with ImageNet-1K as inliers and images with Gaussian blur of intensity
5 from ImageNet-C (Hendrycks & Dietterich, 2019) as outliers. For TULiP, we used the hyper-
parameters suggested in Sec. 5 as there are no validation sets in this experiment.

Additional Baselines Thiagarajan et al. (2022) proposed ∆-UQ, a method for Uncertainty Quan-
tification that utilizes training data as anchors to create network ensembles, where each instance
uses a different anchor. SVI (Blundell et al., 2015b), stands for stochastic variational inference, is
a Bayesian UQ method utilizing variational inference. Temperature Scaling (Guo et al., 2017b) is
a simple post-hoc UQ method that scales the logits before the softmax layer to estimate prediction
uncertainty.
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Table 9: Outlier rejection results with ImageNet-C Gaussian Blur intensity 5. Baseline results are
copied from (Thiagarajan et al., 2022). † represents training data access.

Method AUROC ↑ AUPR-in/out ↑
(Lakshminarayanan et al., 2017) Deep Ensembles † 95.49 95.31 / 95.64

(Gal & Ghahramani, 2016) MC Dropout † 96.38 96.16 / 96.67
(Blundell et al., 2015b) SVI † 96.40 95.97 / 96.83

(Thiagarajan et al., 2022) ∆-UQ † 97.49 97.56 / 97.47

(He et al., 2016) ResNet-50 93.36 92.82 / 93.71
(Guo et al., 2017b) Temperature Scaling 93.71 93.21 / 94.01

(ours) TULiP 96.40 96.58 / 96.32

Table 10: Wall-clock time of our SS-OOD experiments, contains a serial sequence of inference on ID
(top row) and all corresponding OOD datasets (near and far).

Method Forward passes CIFAR-10 ImageNet-200 ImageNet-1K

EBO 1 44.32s 112.37s 3m 12.60s

TULiP O(M), M = 10
96.30s 190.41s 10m 59.24s
(2.17x) (1.69x) (3.42x)

In Table 9, we report our results with baseline results copied from Thiagarajan et al. (2022). It is
worth noting that in this experiment, TULiP, despite being a post-hoc method, outperforms many
UQ methods that would require significantly more computational resources (e.g., Deep Ensembles,
MC Dropout, etc.). It is on par with SVI and being outperformed by ∆-UQ, which is a much heavier
method that relies on network architecture modifications before training (thus requires training the
network from stretch) and domain-specific data augmentations.

C.6 TIME COMPLEXITY OF TULIP

As listed in Algorithm 1, TULiP requires O(M) forward passes to evaluate a minibatch of test data.
Compared to single-pass methods, such limitation renders TULiP ineffective despite its performance
as shown in Sec. 5, since forwarding a network could be expensive as networks grow in size.
Nevertheless, TULiP is not O(M) times slower than single-pass methods as forward evaluation is
not the sole bottleneck of inferencing. Table 10 compares the wall-clock inference time of TULiP
and EBO (a single-pass method) in our SS-OOD setting.
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