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ABSTRACT

A reliable uncertainty estimation method is the foundation of many modern out-
of-distribution (OOD) detectors, which are critical for safe deployments of deep
learning models in the open world. In this work, we propose TULIP, a theoretically-
driven post-hoc uncertainty estimator for OOD detection. Our approach considers
a hypothetical perturbation applied to the network before convergence. Based on
linearized training dynamics, we bound the effect of such perturbation, resulting in
an uncertainty score computable by perturbing model parameters. Ultimately, our
approach computes uncertainty from a set of sampled predictions, thus not limited
to classification problems. We visualize our bound on synthetic regression and
classification datasets. Furthermore, we demonstrate the effectiveness of TULiP
using large-scale OOD detection benchmarks for image classification. Our method
exhibits state-of-the-art performance, particularly for near-distribution samples.

1 INTRODUCTION

An important safety component for deep neural networks (NNs) in real-world environments is
the awareness of their uncertainty upon receiving unknown or corrupted inputs. Such capability
enables systems to fall back to conservative decision-making or defer to human judgments when
faced with unfamiliar scenarios, which is imperative in safety-critical domains, such as autonomous
driving (Atakishiyev et al.,2024) and medical applications (Esteva et al.,|2017). The problem is often
framed as Out-Of-Distribution (OOD) detection, which has witnessed significant growth in recent
years (Yang et al.| 2024)).

Theoretically, this issue directly relates to quantifying epistemic uncertainty (Hora, [1996), which
measures the lack of knowledge in a fitted model due to insufficient training data. The training process
is typically modelled as a Bayesian optimization process (Wang & Yeung}, 2020) with approximations
for practical use (Gal & Ghahramani, [2016; [Daxberger et al., 2021). More generally, epistemic
uncertainty could be formalized by the variance of a trained ensemble of networks ¢(; 0):

Varglnit [¢($7 OTrain)} 5 (1)

where O1y,i, are parameters trained by some learning algorithm from random initialization @py;;.
Intuitively, higher prediction variance corresponds to inputs x further from training set (OOD), as
there lack enough training data to eliminate model disagreements via training, hence epistemic.

Many works redesign the network or training process to be uncertainty-aware (DeVries & Taylor,
2018;Huang & Lil [2021). However, these are often impractical due to heavy computational costs,
especially for large datasets. Instead, post-hoc methods (Liang et al.|2018;|Liu et al., | 2020; [Hendrycks
et al., [2022; Djurisic et al., [2023)) are generally preferred. These approaches can be easily integrated
into pre-trained models without interfering with the trained backbones, significantly enhancing their
versatility (Yang et al.l 2022). Nevertheless, they often lack a direct theoretical link to the training
process, which weakens their theoretical foundation and necessitates extensive empirical validation.

Therefore, it is desirable to develop a post-hoc OOD method with direct theoretical justifications
regarding the training process. Recent analysis of NN optimizations reveals that gradient descent
can be seen as its first-order approximations (Jacot et al., 2018}, [Lee et al., 2019), termed lazy
training, under specific conditions (Geiger et al.,2020). This enabled direct (but costly) computation
of equation m as well as rigorous analysis (Kobayashi et al.,[2022) and methods (He et al.| | 2020) on
model uncertainty, even beyond the lazy regime (Chen et al., [2020).
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Inspired by this series of work, we present TULiP (Test-time Uncertainty by Linearized fluctuations
via weight Perturbation), a post-hoc uncertainty estimator for OOD detection. Our method considers
hypothetical fluctuations of the lazy training dynamics, which can be bounded under certain assump-
tions and efficiently estimated via weight perturbation. In practice, we found our method works well
even beyond the ideal regime. Our contribution is threefold:

(i) We provide a simple, versatile theoretical framework for analyzing epistemic uncertainty at
inference time in the lazy regime, which is empirically verified;

(i) Based on our theory, we propose TULIP, an efficient and effective post-hoc OOD detector
that does not require access to original training data;

(iii) We test TULIP extensively using OpenOOD (Zhang et al.l 2023), a large, transparent,
and unified OOD benchmark for image classifications. We show that TULiP consistently
improves previous state-of-the-art methods across various settings.

The outline is as follows. Sec.[2]provides a summary of related works, Sec. 3] presents theoretical
derivations, and Sec.d]bridges theory to the implementation of TULIP. Sec. [5|reports the effectiveness
of TULIP via empirical studies.

2 RELATED WORKS

Uncertainty Quantification (UQ) As being discussed in Sec.[l} theoretically-driven methods often
estimates epistemic uncertainty from a Bayesian perspective. This includes, notably, Variational
Inference (Blundell et al.| [2015a). |Gal & Ghahramani| (2016)) connects Bayesian inference and the
usage of Dropout layers, led their method, Monte Carlo (MC) Dropout, widely adopted in practice
due to its simplicity and effectiveness. Moreover, Daxberger et al.| (2021)) approximates the posterior
via Taylor approximation and |Lakshminarayanan et al.|(2017)) directly used independently trained
deep models as an ensemble.

Post-hoc OOD Detectors For post-hoc methods, the baseline method using maximum softmax
probability (MSP) was first introduced by |[Hendrycks & Gimpel| (2017). ODIN (Liang et al.,2018)
applies input preprocessing on top of temperature scaling (Guo et al.,|2017a) to enhance MSP. |Liu
et al.| (2020) proposes a simple score based on energy function (EBO). Hendrycks et al.|(2022) uses
maximum logits (MLS) for efficient detection on large datasets. GEN (Liu et al., [2023)) adopts
the generalization of Shannon Entropy, while ASH (Djurisic et al., [2023) prunes away samples’
activation at later layers and simplifies the rest. Some methods also access the training set for
additional information, as MDS (Lee et al.,[2018b) used Mahalanobis distance with class-conditional
Gaussian distributions, and ViM (Wang et al., [2022b) computes the norm of the feature residual on
the principal subspace for OOD detection.

Due to the nature of post-hoc setting, most methods such as EBO, ODIN and MLS compute OOD
score solely from trained models, overlooking the training process. In contrast, as previously stated,
inspired by the more theoretically-aligned UQ methods, TULiP addresses the problem with regard
to the training process from a theoretical aspect. In practice, TULiP works by a series of carefully
constructed weight perturbations, ultimately yielding a set of model predictions, which can be seen
as surrogates to posterior samples for OOD detections. Our contribution is orthogonal to methods
working with logits and predictive probabilities, such as GEN, as they can work on top of TULiP
outputs. In such an aspect, TULIP shares the similar plug-and-play versatility as seen in recent works,
such as ReAct (Sun et al.| 2021) and RankFeat (Song et al., 2022).

3 THEORETICAL FRAMEWORK

3.1 PRELIMINARIES: LINEARIZED TRAINING DYNAMICS

Jacot et al.| (2018)) introduced the Neural Tangent Kernel with linearization of neural networks. More
importantly, they have shown that under an infinite width (lazy) limit, network parameters and hence
the gradients barely change across the whole training process, justifying the linearization of the
training process. [Lee et al.|(2019)) extends the result by examining them in the parameter space, with
a formal result equalizing linearized networks and empirical ones under mild assumptions.
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Let frrue(x;0) : R? — R° be a neural network parameterized by parameters 6. The Jacobian
(gradient) evaluated at @ is written as Vg fryue(x) € RO* 16 where |@| is the cardinality of 0, i.e.,
the number of parameters in the network.

Let f(ax;0) denote the network linearized at 60*:
f(x;0) := fmit(x) + Vo frrue(T)|g_g- (0 — 07), 2)
where fi,it () is the initial network function. Typically, the network is linearized at initialization

0% = Or,;;. Here, we treat it as a linear approximation to the true training dynamics. For our
convenience, we will interchangeably use Vg f(x) as Vg frrue(€)]g_g- -

We consider the training data o within an empirical dataset X. For a twice-differentiable loss
function £(f(x);y(x)) with target y(x), we write it’s gradient w.r.t. f(x) as ¢'(f(x);y(x)) (or
simply ¢'(f(x))). Then, following Lee et al.|(2019), f is trained on X following the gradient flow:

Ofe(x) = —nBa [O(, )0 (fi(z); y(x'))] (©)
where . is the expectation w.r.t. the empirical distribution for ' € X, n is the learning rate and
f+ denotes the network f at time ¢ € [0, T']. Given inputs x, ', The Neural Tangent Kernel (NTK)
O(z,x') € Ro*° defined as O(z, ') := Vo f(x)Vef(z')" governs the linearized training equa-
tion Under the lazy limit, the NTK O(x, «’) stays constant across the training process and hence
is independent of ¢. Hereon, we assume the unique existence of the solution to equation [3]

Notations Let z € R? be an arbitrary test point. Let || - || denote the Euclidean norm and induced
2-norm for vectors and matrices. Let || - || denote the matrix Frobenius norm. We also denote
Il x :==Ea [l - 1] "2 the data-dependent norm through out the following descriptions. Finally, let
f(z) < g(2) indicate f(z) < Kg(z) + M, up to some constant K, M independent of z.

3.2 MODELING UNCERTAINTY

Under our problem setting, neither the distribution of initialized models nor the training process is
accessible, which renders a significant difficulty for the direct computation of the uncertainty shown
in equation [T} Instead, we choose to intuitively model it by considering a perturbation applied towards
the network function f(x), at a time ¢ = ¢4 before the training terminates at ¢ = 7". This perturbation
prior to convergence is hypothetical, as it is inaccessible in our post-hoc setting, and we will only use
it to establish our theoretical framework.

Formally, consider a perturbation to f;_ att = t, as f;, () = f;. (z)+Af(x). After the perturbation,
the perturbed network f(x) will be trained following the same dynamics as equation|3

Ofi(x) = —nEa [O(z, ) (fr(x); y ()], @
until termination time 7.

Under such a perturb-then-train process, we model the epistemic uncertainty as the difference
between converged networks, reads || f(z) — fr(z)]||. It measures the fluctuation of the training
process, capturing the sensitivity of training w.r.t. noise. Indeed, by applying a perturbation at
t = 0, we essentially perturb fi,;;, which can be seen as a sampling process from some model
prior (Appendix . Therefore, fT(z) can be interpreted as samples from the trained ensemble as
in equation [I] where their variance reflects epistemic uncertainty.

However, as stated above, in practice we only know the trained network fr att = T'. It would be
impractical to recover the full training trajectory, apply the perturbation at ¢ = ¢, and then retrain the

network. Therefore, in the following, we will come up with a bound of || f(z) — fr(z)]| given the
strength of the perturbation A f, which can be evaluated at z without actually retrain the network.
Thus, the perturbation is hypothetical, as it has never been applied in our practice.

We first present this bound, then we examine a method to estimate the bound without explicit access
to training data.

3.3 BOUNDING LINEARIZED TRAINING FLUCTUATIONS

We shall introduce the following assumptions:
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Al. (Boundedness) Fort € [0,T7], f(z), Vo f(x), £ and ¢’ stay bounded, uniformly on .

A2. (Smoothness) Gradient ¢ of loss function ¢ is Lipschitz continuous: Va € X; ||/(§;y(x)) —
(@ y()| < Lllg =l

A3. (Perturbation) The perturbation A f can be uniformly bounded by a constant «, that is, for all
(not limited to the support of training data), i.e., Vo € R?; ||Af(z)| < a.

A4. (Convergence) Finally, for the original network trained via equation [3]and the perturbed network
trained via equation[d] we assume near-perfect convergence on the training set  at termination

time t = T, i.e., 38 € R,Vz € X; || fr(z) — fr(x)|| < B.

Under reasonable conditions, it has been shown both empirically (Zhang et al.,2017) and theoret-
ically (Du et al.| 2019) that overparameterized NNs trained via SGD is able to achieve near-zero
training loss on almost arbitrary training sets. To nice loss functions as £(y; y') = 0 implies y = v/,
this implies A4.

Jacot et al.|(2018)) connected lazy NNs trained with mean square error (MSE) loss and kernel ridge
regression. Essentially, it hints that under such a setup, an NN embeds datapoints « into gradients
Ve f(x). Indeed, for a general class of loss functions, it is possible to show that:

Theorem 3.1. Under assumptions Al-A4, for a network f trained with equation|3|and a perturbed

network f trained with equation{d} the perturbation applied at time ty = T — AT bounded by «, we
have

[f7(2) = fr(2)ll < inf C|Vef(2) = Vo (@)|r + 20 + 5, ®)

~1/2 _
where C' = % (eT=t)EAmas — 1), @;/2 = ||Vaf(x)| y is average gradient norm over
training data, and \p,qq = ﬁHGHfOra generalized Gram matrix G; ; = ||©(x;, ;)| of dataset

X:{l'l,l'g,...,.’ﬂj\[}.

Proof. With an arbitrarily chosen pivot point * from the training set, it is possible to bound

|/(z) — f(z*)| and || f(z) — f(z*)| by bounding the fluctuations on the training set. The theorem
then follows from assumption A4. Please check Sec. [A.3|for details. O

We see that the bound on the training fluctuation is dominated by the distance from test point z to the
training set X in the “embedding space” of gradients. Expanding it with || A[|p = (Tr(AAT)) 1/2
(detailed in Sec|A.3)), we can observe its connection with the NTK O:

1/2

Jof IVe /(=) ~ VoS (@)lp = inf [Tr(O(z,2) + 6(x, ) ~26(=,))] ©

3.4 ESTIMATING THE BOUND WITHOUT TRAINING DATA

However, given no access to training data, the term Vg f () is intractable. Moreover, even with full
access, computing the minimum of equation [6|requires significant computational effort. A typical
training dataset often contains millions of data points. Besides, given the size of the network, storing
the full gradient for a single data point may already require significant memory.

Fortunately, we might be able to recover some information about the training dataset  from the
parameters 87 and 6;_, given them being trained on the dataset via lazy gradient descent:

Lemma 3.2. We assume the lazy regime for the training process, i.e., the NTK, ©(z, x), does not
depend on the parameter t € [t;_, T|. Under assumption Al, with the model parameters Ot trained
Sfrom 0, with equationover the training set x and t; < T, we have:

Vo fr(2)(0r — 6., )] < K - Tr (Eg [|O7(2, 2)[]) , ©)

Sfor some K independent of z. |Or(z,x)| is defined as the unique symmetric positive semi-definite
solution of |O7(z,x)|* = Or(z, )T Or(z, ). It is an extension of absolute values to matrices.

Proof. We prove the lemma under the weakly lazy regime, i.e., we allow the weak dependency of ©;
on t. The consequence follows from the Holder’s inequality. Please check Sec. for details. [J
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We further introduce an assumption on the closeness between the test point z and the dataset X, such
that equation [6] can be bounded by

inngr (O(2z,2)+0(z,x)—20(z,x)) < Tr (0O(z, 2) +E, [O(x, x)]| - 2E, [|O(z,2)|]). (8)

EAS

Intuitively, if across all z € X, Tr (O(z, x)) only attains a small negative value within a limited

subset of x, and sup,c x Tr (©(z, x)) is largely positive (z is close to  in the sense of ©), equation

holds. Fig.[T]d) provides empirical justifications for this closeness assumption.

With the closeness assumption, we can then derive a bound on equation [5|using Lemma[3.2}

Proposition 3.3. Given z and x satisfies equation[8| equation[|can be further upper-bounded by:

; 1/2

Ifz(2)~ fr(2)]| < [Tr (6(z, 2) + Eo[O(x, z)]) — 2K ||Vo fr(2) (076, ]"*,  ©)

for some K independent from z (that may differ from the one in Lemma3.2)). O

Given test point z and parameters 07, 6;_, equation[9|provides a tractable bound for equation 5

Network Ensemble We close this section by the fact that
Tr(Varas[fr(2)]) < Easlllfr(2) — fr(2)]%], (10)

which can be then bounded by equation@ As we stated before, fT(z) can be seen as samples from
the trained ensemble as in equation |1} In practice, it is often beneficial to obtain such samples. In the

next section, we will present a heuristic method to estimate fT (z) by matching variances.

4 IMPLEMENTATION

In this section, we present the key implementation strategies that enhance the practical effectiveness
of our method, TULiP, summarized in Alg.[I] We elaborate on its design in the following subsections
by referring to lines in Alg.[I]

In contrast to the linearized network f(x; ), let f""?(x; @) denote a network trained empirically.
Intuitively, trajectories of f;(x; @) and f;,"?(x; 6) is similar when 8* = Oy,,;; with a small learning-
rate (Lee et al.| 20195 |Geiger et al., 2020). Under a post-hoc setting, as only converged models are
available, we take ¢s = 0 and substutite 6;_ with [E [fy] = 0 (or other mean specified by initialization
schemes) in our implementation.

We first introduce how we estimate equation E] using f7"? at t = T. Then, we introduce the

construction of surrogate posterior samples that greatly enhance our method.

4.1 LAYER-WISE SCALING (LINE 2 - 6)

Lazy training often fails to capture the full characteristics of practically trained neural networks (Se+
leznova & Kutyniok} [2022)). In our experiments, we have observed significant changes in the empirical
NTK throughout the training process. Therefore, to better capture a full picture of the whole training
trajectory with only f7"'”, we propose to use a reweighted empirical NTK to approximate the kernel
© used for linearization in equation [3]and beyond:

Vofi " (2)T*Ve fr™ ()" ~ O(2,), (1)
where T is a diagonal matrix of size |@| x |@| that shares the same value for parameters within the
same layer. Similarly, Vo f7"" (2)T ~ Vg f(2).

This reweighting is applied as a layer-wise scaling over the empirical NTK evaluated at convergence.
Given layer [ with parameters 8;, we scale them as

L= (1/v16l) - T, (12)
where I'; is the diagonal entries in I" corresponds to 8;. We note that such scaling is highly heuristical,
and we adopted it for its simplicity (further discussed in Appendix[C.2). For converged networks,
such scaling could potentially recover an earlier network state, which is more representative of
the training trajectory as the majority of training has been done in this stage (in the sense of raw
performance, e.g., accuracy). We demonstrate this effect empirically in Fig. [I]

In practice, to apply layer-wise scaling, we can simply multiply I" to the perturbations introduced
below.
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Algorithm 1 TULIP for Classifiers. o: Elementwise product

Input: Input z € RY, trained parameters @7, network P (z; 6)

Parameter: Perturbation strength ¢, §; Parameter A; Number of posterior samples M
Output: Uncertainty score U

1: Bts ~—0

2: for all Layer [ of f¢"P do > Layer-wise scaling
3 0, < parameters of layer [ from @

4: Ty« 1(1/4/161]) > Vector of length |6;]
5: end for

6: I' < Concatenate(I';)

7. fori=1,..., M do

8:  Sample v; € RI®l from N(0, €I)

9: frow(z) « foP(z;0r + T ovy)

10: end for ~

11: Ore(z,2) « 37 2, 17 (z) — fo"P(2;07) |2 > Estimation of Tr ©(z, 2)
12: D |[fP(2 07 + 0T o (B7 — 6,,)) — F (267

13: S« O (z,2) — AD > Estimation of equation|9|up to E,[O(x, )] and square root
14: 5 - /max(8,0)/Or.(z, 2)

15: fori=1,..., M do > Surrogate posterior samples
16:  fi(z) < (L =) (% 0r) + 7" (2)

17: end for

18: U« Hy(4 >, softmax(f;(2)))

4.2 ESTIMATION OF JACOBIAN (LINE 7 - 13)

Estimating gradients explicitly is both time and memory-consuming, especially for networks with
large output dimensions. Fortunately, for Jacobian-vector products as in equation [0} we may use a
first-order approximation to avoid computing the gradients with a backward pass:

1 , ~ ~
lim ( FOP(2; 07 + 6T0) — o7 (2 0T)) ~ Vo fr(z)6. (13)
—
We use it in line 12 of Alg.[I|to estimate ||V fr(z) (67 — 6;,) || with D up to multiplications.
For Tr ©(z, z), we could estimate its value with Hutchinson’s Trace Estimator (Avron & Toledo,
2011) (line 7-11).
Proposition 4.1. Suppose that P is y-smooth w.r.t. 0, i.e.,
VoS (2:0) = Vo[ (2;0")[r < 7|16 — 6.
Let v be a random variable such that E,[v] = 0,E,[vv'] = ¢2I and E,[||v|*] < Cie* for
k = 3,4, where CY is a constant depending on k and the dimension of v. Then, under Al, it holds
that
1
lin% —Ey [I1£eP (2307 + T'v) — [P (z; 0T)||2] =Tr (Vo [ (z; 07TV [P (z; GT)T) .
e—0 €
(14)

Note that the multi-dimensional normal distribution with mean zero and variance-covariance matrix
€21 agrees to the condition of v. Proposition and the approximation equation ensures that
Tr O(z, z) is approximated by € 2E [|| f¢™P(z; 01 + T'v) — f¢"P(z; 07)||?] with a small e.

Proof. Please check Sec. [A.3]for details. O

From above, z-relavent terms in equation [9]can be approximated while avoiding explicit computation
of Vg f(z). Specifically, in line 13, S provides an estimation of the upper-bound equation E]up to
Ex[©(x, x)], square root and multiplicative constants. Here, the hyper-parameter A acts as a proxy
to the constant K in Lemma[3.2] Such approximation is implemented by perturbations to 6, thus
compatible with mini-batching, enabling fast computation with O (M) forward passes.
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Figure 1: a) b) ¢) Empirical justifications for the layer-wise scaling scheme. We trained a ResNet-18
on CIFAR-10 dataset with SGD-momentum for 400 epochs. a) Average magnitude of Jacobian
entries for different conv layers (solid) vs. time vs. validation accuracy (dashed). Layers with
more parameters (lower) train slower compared to layers with fewer parameters (upper). b) The
ratio between Jacobian norm at ¢ = Epoch 20 and T" = Epoch 400 vs. our scaling equation[T1] A
proportional relationship (dashed) supports such scaling in recovering an early NTK critical to training.
©) Such relationship disappears at t = Epoch 200. d) Verification for equation 8] (detailed setups in
Sec.[3). ID Dataset: ImageNet-1K. OOD Datasets: ImageNet-C, ImageNet-R, SSB-Hard (Vaze et al.|
2022), iNaturalist (Van Horn et al., 2018)), Textures (Cimpoi et al.,[2014).

4.3 SURROGATE NETWORK ENSEMBLE (LINE 14 - 18)

As stated in Sec. [3] the bound in equation 5| or[0]is insufficient to capture a full picture — for example,
a well-trained classifier can be certain that a test data belongs to neither class, in a sense that an
evaluation of equation[J]yields a small value, but their prediction (i.e., it belongs to neither classes)
fr(z) indicates OOD input. Informally yet intuitively, f7(z) can also be seen as predictions of
models sampled from some model posterior.

To this end, we propose to approximate fr(z) by constructing f(z), via the process described in
line 14-18 of Alg.|1| In short, we squeeze the perturbed predictions f7*(z), producing f(z), so
that their variance matches equation [T0] which is an upper bound of the variance of true perturbed
predictions Tr(Vara, [fr(2)]).

From line 16, it is possible to show
Tr(Var; [fi(2)]) & 7° - Te(Var;[f{* (2)]) = S, (15)

for a positive S and small e such that E;[f7%(2)] ~ f¢™(z; ). Note that ~ is given in line 14 of
Alg.[I] and S is an estimation of equation[J]as stated in the previous subsection. Sec.[A-6|provides
additional derivations to clarify their relationships.

For classification problems, after obtaining f (z), it is then able to combine the epistemic uncertainty
and model prediction. One common approach is the Information Entropy H (Shannon, |1948)) of
the mean prediction: H,[f(2)] := — 22:1 Elo(f(2))], log E[o(f(2))],, where o is the softmax
operation producing the class probabilities and [-], takes the y-th component from a vector. Other
methods, such as GEN (Liu et al.| |2023)), can also be naturally incorporated to TULiP by replacing

line 18 in Alg.[T}

Yet, significant simplifications have been made for computational clarity. For example, E,[O(x, x)]
has been omitted as it is intractable and irrelevant to z. Empirically we have found that our method is
effective despite such simplifications, which will be demonstrated in the next section. We choose to
simplify this for clarity, avoiding the introduction of new hyper-parameters to TULiP.

Alg.[T|summarizes TULIP, our proposed uncertainty estimator for OOD detection. Although Alg.[I]
gives TULIP for classification, it naturally generalizes to non-classification problems as TULiP
constructs surrogate posterior samples.
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Figure 2: Verification of Thm. |3.1{with synthetic data. From left to right, a): Regression on Splines.
Light shade: the bound equation |5} heavy shade: Ground-truth ensemble (equation [T, black dots:
training data. b) ¢): Binary classification on Two-Moons. The brighter colour indicates larger values
across the input space. b): Prediction variance of 20 simulated runs, ¢): Evaluation of equation@

5 EXPERIMENTS

5.1 EMPIRICAL VALIDATION FOR SECTION[3]

Synthetic Datasets We begin this section by validating the original bound presented in equation [5]
Two types of artificial datasets have been considered: namely Splines for regression and Two-Moons
for classification problems. A 3-layer infinite-wide feed-forward neural network is used and we
solved the lazy training dynamics over the dataset using the neural-tangents library
[2020). For Splines, we used MSE loss and computed the exact Gaussian ensemble 2019).
For Two-Moons, we used binary cross-entropy loss and numerically simulated the lazy gradient
descent for 20 runs. Results are shown in Fig.[2] It suggests that our bound equation [5] based on
training fluctuations is able to capture the true epistemic uncertainty as in equation|[T] justifies further
developments of our method.

Closeness Condition We proceed by presenting empirical justifications for equation [8]in Fig. [T
d). We used a ResNet18 pre-trained on ImageNet-1K (Russakovsky et al 2015
computed equation 8] by 256 samples from the ID dataset (ImageNet-1K) and 128 samples per OOD
dataset. The scaled empirical NTK as in equation [TT]is used in this experiment. Clearly, we see
that equation [8]is satisfied by a large margin under this practical setting.

5.2 OUT-OF-DISTRIBUTION DETECTION

In this subsection, we demonstrate the effectiveness of our method for OOD detection in real-world
scenarios by comparing TULiP with state-of-the-art OOD detectors.

Experiment Setup We evaluate the performance of TULiP with OOD detection tasks based on
manually defined ID-OOD dataset pairs (Zhang et al.,[2023). For TULIP, we use M = 10 surrogate
posterior samples with e = 2.0, § = 2 and A = /o where o is the number of output dimensions.
Only weights in the convolutional and fully connected layers are being perturbed, while biases are
ignored. Following [Zhang et al| (2023)), we conduct a hyper-parameter search on a small validation
set whenever possible, within a reasonable range of e € {0.1,0.5,1.5,2.0}, § € {2,5,8} and
X € {V/0,3\/0}. We explain our choice for hyper-parameters in Sec. We consider two OOD
scenarios, namely Semantic-Shift OOD (SS-OOD) and Covariate-Shift OOD (CS-OOD)
[2024). The fundamental difference between them is that SS-OOD considers distributional shift on
both input & and label y, often with unseen classes. CS-OOD considers distributional shift solely on
input «. Recently, (2021) raised concerns regarding the negligible covariate shifts between
ID and OOD data with same labels. Our setup does not contradict with this work as overlapping
classes have been removed from our SS-OOD experiments, following 2022). Instead,
we believe the CS-OOD setting is also significant for practical use. For instance, one may wish to
distinguish real-world images from Al-generated ones (Zhang et al.},[2024)), or identify images that
are severely contaminated due to environmental factors or sensor malfunctions 2024).
We present details of all datasets in Sec.|[B.T]and provide additional experimental results as well as
details of reported results in Sec. [C]
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Table 1: Results on OpenOOD benchmark, averaged from 3 runs. The top results for each category
are marked in bold, with the second-best result in underlined. We include baseline results from|Zhang
et al.| (2023)), and reproduced the results for MC-Dropout (MCD). A dagger symbol T indicates direct
access to training data or processes. Results are averaged separately for near / far-OOD sets.

CIFAR-10 CIFAR-100 ImageNet-200 ImageNet-1K
Method FPR@95| AUROCT FPR@95| AUROCtT FPR@95) AUROCT FPR@95| AUROC T
MCD t 53.54/31.43  87.68/91.00 54.73/59.08 80.42/77.58 55.25/35.48 83.30/90.20 65.68/51.45 76.02/85.23
MDS t 49.90/32.22 84.20/89.72 83.53/72.26 58.69/69.39 79.11/61.66 61.93/74.72 85.45/62.92 55.44/74.25
ViM 44.84/25.05 88.68/93.48 62.63/50.74 74.98/81.70 59.19/27.20 78.68/91.26 71.35/24.67 72.08/92.68
ODIN 76.19/57.62 82.87/87.96 57.91/58.86 79.90/79.28 66.76/34.23 80.27/91.71 72.50/43.96 74.75/89.47
EBO 61.34/41.69 87.58/91.21 55.62/56.59 80.91/79.77 60.24/34.86 82.50/90.86 68.56/38.39  75.89/89.47
MLS 61.32/41.68 87.52/91.10 55.47/56.73  81.05/79.67 59.76/34.03 82.90/91.11 51.35/63.60 76.46/89.57
ASH 86.78/79.03  75.27/78.49  65.71/59.20 78.20/80.58 64.89/27.29 82.38/93.90 63.32/19.49 78.17/95.74
GEN 53.67/47.03 88.20/91.35 54.42/56.71 81.31/79.68 55.20/32.10 83.68/91.36  65.32/35.61 76.85/89.76
TULiP 33.80/24.43  89.67/92.55 55.07/58.17 81.29/79.63 54.51/33.94 83.84/91.03 64.96/48.01 77.52/88.03

TULiP+GEN  35.67/23.51 90.04/93.33 54.63/55.48 81.14/80.55 57.04/34.26 82.87/90.63 62.97/36.90 77.62/89.53

Baseline Methods We consider various baselines for comparison, including the MC-Dropout
(MCD), post-hoc OOD methods without training data ODIN, EBO, MLS, ASH and GEN; and finally,
MDS and ViM with access to training data. Please refer to Sec. 2] for a brief introduction.

Semantic Shift OOD We report the performance of TULiP on OpenOOD v1.5 benchmark (Zhang
et al., 2023)) in Table m Following their setup, we use the same pre-trained ResNet-18 (He et al.,
2016) for CIFAR-10 & 100 (Krizhevsky, |2009) and ImageNet-200 (Zhang et al.| 2023)) ID datasets,
and ResNet-50 for ImageNet-1K (Russakovsky et al.,2015). OOD data range across a collection
of diverse image datasets (Cimpoi et al.,[2014; |Vaze et al., 2022; Van Horn et al., |2018; Bitterwolf
et al.| [2023;|Le & Yang| 2015} Zhou et al., 2018} Kuznetsova et al.}[2020), categorized into near and
far OOD sets (Yang et al.,[2022), where near is more similar to ID and therefore more difficult to
distinguish. We also included a variant of TULiP+GEN as we substitute line 18 of Alg.[T[by GEN
with v = 0.3 and M = 100 to better demonstrate the effect of incorporating existing methods with
TULIP. TULIP achieves remarkable performance in near-OOD settings with either top-1 or top-2
AUROC scores across all datasets. Indeed, as suggested by equation [§] better performance on near-ID
scenarios is expected. On the far-OOD side, TULIP also performs consistently well. We note that
methods significantly outperform TULiP on far-OOD either access the training dataset (ViM and
MDS) or completely lack theoretical explanation (ASH). In ImageNet-1K (ResNet-50) AUROC,
despite being outperformed by ASH, TULIP still outperforms other baselines by a large margin, with
a slightly higher FPR. ASH is effective when the representation is redundant, as simplifying them
does not significantly impact ID accuracy (Djurisic et al.,[2023)). ResNet-50, compared to ResNet-18
used otherwise, is more likely to have redundant representations due to its increased expressive
power. In such cases, particularly in near-OOD scenarios, one may expect high performance for
ASH when pruning parameters are appropriately tuned. On the other hand, TULiP demonstrates
relatively consistent and high performance across all datasets. This indicates that properly evaluating
uncertainty is fundamentally important, and our method achieves this goal to a considerable extent.
Notably, ASH failed when using a different set of weights on ImageNet-1K (Appendix [C.3). In
contrast, TULIP, without access to training information, performs consistently well with theoretical
foundations.

Covariate Shift OOD We test TULIP on the covariate shift setting with Blurred ImageNet,
ImageNet-C (Hendrycks & Dietterichl 2019), ImageNet-R (Hendrycks et al.,[2021)) and ImageNet-
ES (Back et al., 2024) as OOD data. A description of these datasets can be found in Sec.[B:1] For this
experiment, the ImageNet validation set with blur is used for the hyper-parameter grid search. Table 2]
reports the results. TULIP achieves top performance on ImageNet-C except for methods that require
training data (MCD, MDS, ViM). This usually leads to longer evaluation time. For instance, ViM
takes more than 30 minutes just to extract ID information using a recent GPU machine. In contrast,
a typical full evaluation of TULIP on test split takes 3 less time. On the other hand, ImageNet-R
contains images that are less similar to ImageNet-1K (i.e. further from ID). When tuned on a near
validation set like Blur-ImageNet, TULiP tends to favour near OOD by trading off the far ones. This
is consistent with Table [T]and equation[8] Such phenomena are further demonstrated in Fig. ]
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Figure 4: Results by varying € and A on ImageNet-200 ID. The value of A in either the horizontal
axis or legend should be read as, e.g., A = 1.5+/0.

Network Architecture Choice To verify TULIP Table 2: CS OOD results by averaging 3 runs. Re-
across different network architectures, we conduct sults are in AUROC (higher is better).

experiments with various networks on semantic-shift
OOD with ImageNet-1K. The pre-trained models and ~ Method ~ Blur  ImNet-C ~ ImNet-R  ImNet-ES

w;ights are collpcted directly from torchvision (m.ain-‘ MCD§ 6990  77.06 80.52 79.08
tainers & contributors, [2016), and we only consider ~ MDSt 5502 7094 69.62 49.66
methods that work without additional modifications _VMT 7388 8393 87.92 82.54
for compatibility. Results are shown in Fig.[3] TULiP ~ ODIN 7943 77.48 85.35 81.94

i ti f the traini hich  EBO 7441 8121 87.05 84.41
relies on assumptions of the training process, whic MLS 2493 8106 S6.72 8117
could be potentially violated by different training pro-  ASH 7842 82.18 85.24 84.22
tocols and architectures. Nevertheless, TULiP still _ TULP 8534 82.91 82.07 8591

outperforms baseline methods consistently across the
board, comparable to Table|l| Such results further suggest the effectiveness and versatility of TULiP.

Ablation Study and Hyper-parameters We con-

duct experiments on semantic-shifted ImageNet- 80 Near OOD Far OOD

200 to analyze the effect of hyper-parameters. Re- * 90 3

sults are shown in Fig. f] where we observe a X 77 e ’: * * *
trade-off in near and far OOD performance. Itis 8 75{# *|8071% 3
also clear from the results that A and Lemma g R

boosts the performance and hyper-parameter sta- < 957 t EEIS‘IP 707 . EBD(I)N !
bility (mainly to €¢) of TULIP. In practice, € con- 60 14 ; I T i .
trols the overall strength of weight perturbation MbNet VGG RegNet MbNet VGG RegNet

and, hence, the most important hyper-parameter of

TULIP. Our method failed to achieve consistent per- Figure 3: ImageNet-1K OpenOOD benchmarks
formance across various datasets without layer-wise on different network architectures: MobileNet V3
scaling, potentially due to its increased vulnerabil- Large (MbNet) (Howard et al.,[2019), VGG 16 (Si;
ity to hyper-parameters and training setups. Please monyan & Zisserman, 2015), RegNet Y 16GF (Ra:
refer to Sec. [Cl for more details. dosavovic et al.} 2020).

6 CONCLUSION

In this study, we present TULiP, an uncertainty estimator for OOD detection. Our method is driven
by the fluctuations under linearized training dynamics and excels in practical experiments. However,
there are some limitations and future works remaining. Theoretically, our framework only considers
functional perturbation. The perturbation on the NTK is also important (Kobayashi et al.| [2022)
and could be integrated into the estimator in the future. Furthermore, the layer-wise scaling scheme
deserves more exploration as being discussed in Appendix [C.2] Empirically, TULiP does not achieve
state-of-the-art performance when the OOD data is far from ID (far-OOD). Such tradeoff in Fig.
hints at the inconsistency of best hyper-parameters for different setups. Future works may improve
upon these aspects, covering a wider range of OOD data by examining the network parameters and
refining weight perturbations. As shown in Appendix It is also beneficial to further develop
TULIP for networks other than convolutional ones, such as transformers. In a broader aspect,
exploring TULIP in other learning paradigms, such as Active Learning (Wang et al., [2022a)) or
Reinforcement Learning (Szepesvari, [2010) will be valuable.

10



Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We list our theoretical assumptions at the start of section 3.3, and all proofs thereafter in Appendix
A. We provide a thorough overview of our experimental setup in section 5. A more detailed
description of OOD configurations and additional results are presented in sections B and C of the
Appendix, respectively. In the source codes provided in the supplementary materials, we include
our implementation of the algorithm and the scripts to produce all visualizations. Additionally,
we list the steps required to reproduce the OpenOOD results and provide a yaml file with all the
hyper-parameters for the reported performance in this paper.
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A PROOFS

A.1 BASIC NOTATIONS

For a network f(x) : R? — R° maps inputs x of dimension d to outputs f(x) of dimension o,
parameterized by @ with |0)| trainable parameters, the gradient / Jacobian matrix Vg f(x) isa o x |0
matrix.

The NTK O(z, ) := Vo f(2)Vef(x)  is a0 x o matrix.

¢ (fi(x)) is the gradient of loss function w.r.t. network output f;(x) at training time ¢. It is, for
convenience, a o X 1 column-vector.

The following lemma will be useful thereafter, which is an application of Holder’s inequality.

Lemma A.l. Let F : x — R™*", g : © — R". Consider 2-norms || - || (i.e., euclidean and its
induced matrix 2-norm). For p,q € [1, 00| that zl) + % =1, we have

1B [F(2)g()]|
< E[[|[F(z)g(z)]]

<E. [IF(2)] - [lg(@)|]
< Eq [|F(@)|”]"" - Eq [|lg(2)9]"/9.

1
When ¢ = oo, we have Eg, [||g(x)]|] /e sup,, ||lg(x)].
For convenience, given any random variable, vector or matrix A dependent of «, we denote:
1A = Eq [|| A1), (16)
which by itself is a valid norm. We omit superscript (¢) if ¢ = 2.
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A.2 ASSUMPTIONS

We recall the assumptions here, which are originally shown in Sec.[3| For network f(x, ), dataset
X with no parallel datapoints and a twice-differentiable loss function ¢, we assume the followings:

Al. (Boundedness) For ¢t € [0,T], f(x), Vo f(x), £ and ¢’ stay bounded, uniformly on x.

A2. (Smoothness) Gradient ¢’ of loss function ¢ is Lipschitz continuous: Vz € X; ||¢/(§;y(x)) —
U@ y()| < Lllg =l

A3. (Perturbation) The perturbation A f can be uniformly bounded by a constant «, that is, for all
(not limited to the support of training data), i.e., Vz € R%; ||Af(x)|| < a.

A4. (Convergence) Finally, for the original network trained via equation [3]and the perturbed network
trained via equation[d we assume near-perfect convergence on the training set & at termination

time t = T, i.e., 38 € R,Vz € X; || fr(z) — fr(x)|| < S.

A.3 PROOF OF THEOREM 3.1

Theorem A.2. (Theorem[3.1) Under assumptions Al-A4, for a network f trained with equation3]

and a perturbed network f trained with equation W} the perturbation applied at time ts =T — AT
bounded by o, we have

I£2(2) ~ Fr()] < int CIVof(z) - Vof@)le + 20+ 5. ()

an®y® ( (T—_t,)LA 51/2 ~ ~
where C = ——— (eT=t)EAmae — 1) ©/% := ||Vo f(z)||y is the average gradient norm over
training data, and X, a0 = ﬁHGHfora generalized Gram matrix G, ; = ||©(x;, z;)| of dataset

XZ{I1,ZZ?2,...,ZEN}~

Proof. Let us first examine the fluctuations in the training set. From the Lipschitz continuity of ¢/,

?(fil@) — £ (ful@))|| < LIf(@) = fl@)]x. (18)

Thus, by the linearized dynamics we have
o | ful@) ~ fu@)||
<Jo (5o i)
= || [0, 2) (¢(1u(a") — ¢ (fi(a)]|

=|

<E, [u@(w,wvni

(19)

X
1/2

E, |O(x.2) (¢(fi(@) — £ (f(a))] m

X

b 11/2
e - )|

<E,. (10 =) "

¢ (fi(@) — ¢ (ful@))|
ful@) ~ fi@)| . 20)

where in equation [[9] we have used the triangle inequality to put J; inside the norm. A, is defined
as ﬁHGH for a generalized Gram-matrix G;; := ||©(x;, x;)|| of dataset X = {z1,z2,..., 2N},
measures the fitness (or alignment) of the kernel © w.r.t. the training data.

SLAWGZE

From equation 20} we can apply the Gronwall’s inequality to obtain
| i@~ fi@)||

g ’ fts (w) - fts (w)HX e(tits)LA'mag;

< aelt=ts) LAmas 1)
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We now prove Theorem 3.1 by generalizing equation [2T]to given test data.

For a test point z € R%, choose a pivot point £* € X from the training set. Then for the network
function f evaluated at * and z, we have the followings:

- 1w - (- ) |
<o [~ £ (@) - ((z (@))]|
E, [(6(z,2) - © (2",2)) - (£ (fi(2) — ¢ (fi()))]| 22)
Denote
|(5i2) = £ (@) = (Fi(2) — fi @)

as Afi(z), and let O8 (2, x) := (O(2,z) — O (z*, x)). Integrate equation [22| with ¢, we have
|Afr(z) = Afis(2)]

< /T | [0 (2, 2) (¢/(fi(@) - £/(Fula)) ]| at
<uf loa,

<L |03 (=, z)]| / ' | fi@)  fuia)| 23)

O (fi(@) ¢ (Fula))||

We start with the term before the integral. To begin, rewrite it as:
10(z,2) — O(x", @) x
=||(Vef(2z) — Vof(®")) Vaf(z)"|

<E, [|Vof(z) - Vof(a)*- [Vos@)?]
= [Vof(2) - Vos(@)| - IVof (@)l
<||Vof(z) = Vof (@) - 037, 24)

/2. _

where ©/” := || Vo f(z)|| y is independent from z.

Remark. equation[24used a computationally friendly Frobenius norm to bound the spectral norm
in the line right above it. This is the main motivation to use a /o scaling for hyper-parameter \, as
IA]l2 < ||AllF < VollAll2 given A is full-rank o x |0| and o < |0)|.

Bring equation [24] and equation 21| back to equation 23] we have

|Afr(2) = Afi. (2)]

an®Y/?
< Vo f () = Vof(@")]lp =2 (e Amer —1)). )

)\maw
Finally, we bound the difference between fr(z) and f7(z) via the triangle inequality.

First, observe that from A3,
Afi(2) = H(ft (2) = fi. @) = (fu(2) ~ fi. @)

<[ = fu @) + || £ @) = £ (@)
< 20, (26)
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so that
Afr(z) <|Afr(z) = Afi.(2)] + |Afi.(2)]
=~1/2
<10/ (2) ~ Vo (@) jp T (o =tBhmer 1) 4 20, @7)

Thus, given the convergence assumption || fr(z*) — fr(x*)|| < B (A4),
| o) = fr(z)
= (#r2) = pr@) = (fr(z) - fr@)) = (Fr(@") = f2(a"))

~—

< Afr(z) + 6. (28)
To proceed, recall that * is chosen arbitrarily. This concludes the proof. O
Note for equation @: Let A := Vgf(z) — Vof(x). Then, we have Tr (AAT) =

Tr (O(z,2) + O(z,xz) — O(z,x) — O(x, z)). Note that O(x

’
may substitute them inside the trace. Thereafter, using || A[|p = (Tr(AAT) ) , we can obtain equa-

tion[@

z) = O(z, a:) and therefore we

A.4 PROOF OF LEMMA[3.2]

We prove the lemma under the weakly lazy regime, i.e., we allow the weak dependency of ©; on ¢.

Let us define |©1(z, )| as the unique symmetric positive semi-definite solution of |O(z, )| =
Or(z, :I:)T@T(Z, x), which is an extension of absolute values to matrices.

Lemma A.3. (Extension of Lemma“) 3.2) We assume the lazy learning regime, i.e., there exists § > 0
such that sup,, .. |||O7(x,x')| — |©(x,x')||| < J holds for all t, <t < T. Under assumption Al,
with the model parameters Or trained from 0, with equatton@over the training set x and ts < T,
we have:

Vo fr(z)(0r — 6:,)|| < C(TrE4 (|07 (2, @)|] + 05) + V6[|0r — 6, (29)

where C'is a positive constant independent of z.

Lemma [3.2]is obtained by setting 6 = 0.

Proof. The mean value theorem for integrals guarantees that there exists 7 € [ts, T such that

T
07— 0, — / VEa (Vo o (@)l (f- (@))] dt. 30)

s

Then, Holder’s inequality leads to

Vo fr(2)(0r — 6:,)

s

T
Veff(z)Vefr(w)Tn/t 5’(fr(w))dt1

. (o)
n | C(fr(x))dt

ts

<0, (z,2)|¥ - 31)

X

independent of z

The lazy learning assumption leads that
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Again the lazy learning assumption for |©r1(z, z)| = ©r(z, z) ensures that
IVofr(2)(0r = 6,.)|° = (07 — 6,,)" O (2, 2)(07 — 6,,)
> (07 —6,.)" (O1(2,2) — I)(6r — 6,,)
= Vo fr(z)(0r — 6:)II” = 5|10 — 6., |*

Hence, we have

Ve fr(2)(0r — 8.l < VIVofr(2)(0r — 6.,)| +5]6r — 6, |2
< Vo fr(2)(Or —6.,)|| + V507 — 6, .
Substituting the above inequalities into equation[3T] we obtain the conclusion of the lemma. O

A.5 PROOF OF PROPOSITION[4.]]

Proposition A.4. (Proposition.1) Suppose that f¢"? is ~y-smooth w.r.t. 6, i.e.,
Vo[ (2;0) — Vo f"" (2 0')|[r < /|0 — €.
Let v be a random variable such that Ey[v] = 0,Ey[vv'] = €2I and E,[||v|*] < Cke* for

k = 3,4, where C}, is a constant depending on k and the dimension of v. Then, under Al, it holds
that

1
lim B, [|[£77 (2 07 + Tv) = f7(2: 07)[?] = Tr (Vo (:60)TVo [ (2:67) ") .
(32)

Proof. For each component f{"™" i = 1,...,0, the mean value theorem leads that there exists
t; € [0, 1] such that
|f{"(2;00 + Tv) — [ (2:07) — Vo [{™"(2;07) ' Tv|
= |Vof{™(2;0r + 1;Tv) ' Tv — Vo f{"P(2;07) Tv|
<AIT)Z[Iv ]
For real numbers a;, b;,i = 1,. .., 0, suppose |a; — b;| < ¢. Then, we have

‘Zabef = ‘2Zbi(aibi)+2(aibi)2 §202\b,;|+002.

Using the above inequality, we obtain

K2

Ey [IIF"(2; 07 + Tv) — [ (2;07)|*] = Ey [v TVe [ (2;01) Vo [ (2;67)TV]

< 29||TIPEVY v TV fi™ (2 07)[[Iv]1%] + oy IIT*Ev[I|v]|*]

< 2V0V|[T(P([Ve £ (2; 07)[FEv[[[V*] + 09? | T *Ev [|Iv]|]- (33)
Note the cyclic trick for the trace ensures that
Ey [V TVef™(2;07) Vo f?(2;07)TV]
=Ey [Tr (TVo [ (z; 07) Vo femP(z; HT)I‘VVT)}
=Tr ([Vef“""(2;07) Vo ™ (2;07)TE, [vv'])
=Tr (TVef“"(2;07) Vo ™ (2;07)T - €1) (34)
= Tr (Vo (2;07)T* Vo [ (2;07) ). (35)

In equation [34| we applied the condition that E, [vv "] = ¢2I. We note that this is a slightly modified
version of the well-known Hutchinson’s Trace Estimator. We refer the readers to the existing analysis
of such estimators (Avron & Toledo, [2011) for more details. As a result, we obtain

1 em em em: em:
lim B [l (207 + Tv) = f (;00)|*] = Tr (VoS " (2 00)T° Vo f ™ (2:61)" )

< lim 2v/0y|[T||?|[ Vo /" (2: 67) [ Cse + 07* | T||* Cae®

=0.
The above equality means the conclusion of the proposition. O
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A.6 ADDITIONAL DERIVATIONS FOR SECTION [4.3]
Under the distribution of v we have
E[f°™P(2; 07 + V)] = fP(2;07) + Ey[Vo fP(z; 07) T'v] +O(E[v?])
=0 from E, [v]=0
= [P (z;07) + O(€%),

which indicates that E [f*™P(z; O 4+ I'v)] = f°™P(z;07) when € is small.

We continue by the computation of TrVar[ ™" (2)]:

TrVary [f™(2)] = By [|| £ (2; 01 + T'v) — By [/ (2; 61 + T'V)]||”]
= Ey[[| £ (2; 07 + T'v) — f*"P(z;01) + O(e)|]
= Ey[|| £ (2; 07 + T'v) — f*"P(2;07)]*] + O(e")

~ 2TrO(z, z) + O(e*).

Let éTr(z, z) be an approximation of €2 Tr ©(z, z), which is being computed empirically in line 11
of Alg.[T]

Thus, v2TrVar, [f**" (z)] reads:
[O1:(2,2) = AD]
Oz, z)
. [O1(z,2) —AD].
O1i(z, 2)
~ [ TrO(z,z) — AD], + O(e*)

V2 TrVar, [J (2)] = £ TrVary [/ (2)]

(B2, 2) + O(c"))

where [ - |1 denotes max(-, 0).

For D, from approximation equation[I3|we have
D = |7 (201 + eT(0r - 6,,)) — f"7 (z:0r)|
~eb Vo fr(2)(0r — 6.,)| -

As a result, we have

nyTrVar[fraw(z)] ~ [ TrO(z,2) — €0 ||Vo fr(z)(0r — ets)H]Jr :

Recall that equation [T0]indicates that
Tr(Varas[fr(2)]) < Eaglllfr(z) — fr(2)I°],
and Prop. 41| shows that

lfr(2) = fr(2)| < [Te(O(z, 2) + Eo[O(@, x)]) — 2K ||Vo fr(2) (07 -6:.)
—_——

Independent of z

”1/2_

A.7 PERTURB-THEN-TRAIN AND EQUATION]

Jacot et al.| (2018)) consider neural networks in an infinite-width limit with specified initialization
scheme, which we have referred as the lazy limit in Section E[ Under such limit, the linearized
network equation 2] is justified as the empirical NTK (at initialization) converges to a specific
deterministic kernel ©, where the distribution of a neural network f(x; 6)’s initialization functional
fmit () converges to a Gaussian Process (NNGP) (Lee et al.,2018a). In equation [2| it is equivalent
to a deterministic (fixed) Vg frrue(2)|y_y~ and a stochastic fni; following the NNGP.
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Using the model defined in equation[2]and the training process described in equation[3] equation I]
effectively becomes:

VarfmnN/LNNGP [fT($§ Q‘Init = fInit)L (36)
where fr(x;0|Init = fr,;) indicates a network trained via equation by time 7', with fi,;; as
initialization.

When we set 5 = 0 (the initialization time), the perturbation A f will be applied to fi;;. Therefore,
given a fixed initialization f; to perturb, Theorem [3.1|gives an upper-bound over a perturbation of the
initialization functional:

Varaf[fr(x; 0|nit = fo + Af)], (37

since fT is supposed to be trained from initialization fo+A f, we have fT = fr(z;0|Init = fo+Af),
hence the above.

Comparing it to equation 36} we see that the difference between them is the distribution of the initial-
ization functional fi;. In equation@ finit distributes according to the NNGP; while in equation
it is centered around fy with a stochastic perturbation A f. Intuitively, by using theorem 3.1} we
approximate the predictive variance trained from the NNGP prior with the predictive variance trained
from a random perturbed initialization fo + A f. Figure[2] visualizes such an approximation.

B DETAILS OF EXPERIMENTAL SETUP

B.1 DATASET DESCRIPTIONS

An overview of all considered datasets is provided below. ID and OOD dataset setups are summarized
in Table El Please refer to|Zhang et al.| (2023)) for more details.

B.1.1 ID DATASETS

CIFAR-10 The CIFAR-10 training set (Krizhevsky} 2009) consists 60000 32 x 32 colored images,
containing 10 classes of airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. The
test set originally contained 10000 images from the same classes, where we separated 1000 validation
images and 9000 test images from the original test set following |Zhang et al. (2023). The dataset and
each split are even in classes.

CIFAR-100 CIFAR-100 (Krizhevsky,|2009) contains 60000 32 x 32 images sampled from 100
classes, covering a wider range of images beyond CIFAR-10. Similar to CIFAR-10, 1000 images are
taken out from the ID test set, forming a validation set.

ImageNet-1K ImageNet-1K (Deng et al.,[2009), also known as ILSVRC 2012, spans 1000 object
classes and contains 1,281,167 training images, 50,000 validation images and 100,000 test images,
each of size 224 x 224. In the OpenOOD setup, 45,000 validation images are used as ID test and
5,000 as ID validation.

ImageNet-200 ImageNet-200 (Zhang et al.} 2023) is a 200-class subset of ImageNet-1K compiled
in OpenOOD version 1.5, with 10,000 224 x 224 validation images.

B.1.2 SEMANTIC-SHIFT OOD DATASETS

Tiny-ImageNet Tiny-ImageNet (Le & Yang,[2015) has 100,000 images divided up into 200 classes,
each with 500 training images, 50 validating images, and 50 test images. Compared to ImageNet-200,
every image in Tiny-ImageNet is downsized to a 64x64 coloured image.

MNIST Modified National Institute of Standards and Technology database (Lecun et al., [1998))
contains 60,000 training and 10,000 test images of handwritten digits. Each image is anti-aliased,
normalized and centered to fit into a 28x28 pixel bounding box.

SVHN Street View House Number (Netzer et al., 201 1)) dataset contains house numbers that are

captured on Google Street View, consisting of 73257 digits for training, and 26032 digits for testing.
In our setup, we used the MNIST-like 32-by-32 format, centered around a single character.
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Textures Describable Textures Dataset (Cimpoi et al.|2014) is a set of 47 categories of textures,
collected from Google and Flickr via relevant search queries. It has 5640 images, 120 images for
each category, where the sizes range between 300x300 and 640x640.

Places365 Places365 (Zhou et al., |2018)) is a scene recognition dataset. The standard version is
composed of 1.8 million train and 36000 validation images from 365 scene classes.

NINCO No ImageNet Class Objects (Bitterwolf et al., [2023) consists of 5879 samples from 64
OOD classes. These OOD classes were selected to have no categorical overlap with any classes of
ImageNet-1K. Each sample was inspected individually by the authors to not contain ID objects.

SSB-Hard Semantic Shift Benchmark-Hard (Vaze et al.l 2022) split contains 49,000 images across
980 categories of ImageNet-21K () that has a short total semantic distance.

iNaturalist The iNaturalist dataset (Van Horn et al., [2018)) has 579,184 training and 95,986 valida-
tion images from 5,089 different species of plants and animals.

Openlmage-O Openlmage-O (Kuznetsova et al., 2020) is image-by-image filtered from the test set
of OpenImage-V3, which has been collected from Flickr without a predefined list of class names or
tags. In the OpenOOD setup, 1,763 images are picked out as validation OOD.

B.1.3 COVARIATE-SHIFT OOD DATASETS

Blur-ImageNet This blurred ImageNet dataset contains ImageNet images with a Gaussian blur of
o = 2. The same splits are used as in the above description in the ImageNet-1K section.

ImageNet-C ImageNet-C (Hendrycks & Dietterich) 2019) has 15 synthetic corruption types (such
as noise, blur, pixelate) on the standard ImageNet-1K, each with 5 severities. In OpenOOD, 10,000
images are randomly sampled uniformly across the 75 combinations to form the test set.

ImageNet-R ImageNet-R (Hendrycks et al., 2021) contains 30,000 images of different renditions
of 200 ImageNet classes, such as art, graphics, patterns, toys, and video games.

ImageNet-ES ImageNet-ES (Baek et al., [2024)) consists of 202,000 photos of images from Tiny-
ImageNet. Each image is displayed on screen with high fidelity and photographed in a controlled
environment with different parameter settings. We only used the 64,000 photos in the test set.

B.2 HYPER-PARAMETERS

During our preliminary experiments, we found that the setup given in the main text (A\ = /o,
€ = 2,6 = 2) works consistently well across datasets. In this preliminary stage, we have only
considered smaller datasets such as MNIST, CIFAR-10, SVHN, etc., as well as ImageNet-blur.
During future developments, larger 4 and A show better performance on large-scale datasets, as we
have included them in the hyper-parameter searching range of TULIiP, whenever a validation set is
available. We further extended the range of € to improve the performance of TULiP for different
network architectures and training setups.

In practice, when handling hyper-parameters, we found it beneficial to first search an optimal value for
¢, the most important parameter of TULIP as pointed out in Sec.[5} while fixing A and ¢ as suggested.
It controls the overall strength of weight perturbation and may depends on network architecture and
training scheme. If one’s computational resource allows for further exploration, optimal values of
A and ¢ can be searched for better performance. If a validation set is not available, one may either
use the suggested value or investigate network outputs after weight perturbation. When the network
output become senseless after perturbation (e.g., a prediction close to random-guessing), it often
indicates that € is too large.

B.2.1 GRID SEARCH

Table []lists the hyper-parameter search range for all considered methods on the validation set.
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Table 3: ID, OOD and OOD-val dataset setups.

ID Dataset near-OOD far-OOD near/far-OOD Validation = Cov-Shift OOD
MNIST
CIFAR-100 SVHN .
CIFAR-10 Tiny-ImageNet Textures Tiny-ImageNet
Places365
MNIST
CIFAR-10 SVHN .
CIFAR-100 Tiny-ImageNet Textures Tiny-ImageNet
Places365
iNaturalist Blur-ImageNet
ImageNet-1K SSB-Hard Textures ImageNet-C

Openlmage-O

ImageNet-200 NINCO Openlmage-O ImageNet-R

ImageNet-ES

Table 4: Hyper-parameter (available at evaluation time) search ranges.

Method Hyper-parameters
MC-Dropout N/A

MDS N/A

MLS N/A

EBO Temperature: {1}

ViM Dimension: {256, 1000}

ASH Percentile: {65, 70, 75, 80, 85, 90,95}

Temperature: {1, 10, 100, 1000}
Noise: {0.0014, 0.0028}

. 5:{2,5,8}, \: {1,3} - /o
TULiP e: {0.1,0.5,1.5,2.0}

ODIN

B.2.2 /0 SCALING OF \

In practice, when the number of network output dimensions o varies, we found that a /o scaling
of A works more consistently. This might be due to our choice of using the computational-friendly
Frobenius norm in Theorem [3.1]instead of a tighter spectrum norm. It is further explained in the

proof listed in Sec.

B.2.3 HARDWARE

Each of our experiments is conducted on a single-node machine using an NVIDIA A6000 GPU.

C ADDITIONAL EXPERIMENT RESULTS

C.1 DETAILED RESULTS
Following |Zhang et al.|(2023), we used the provided pre-trained weights from 3 training runs for the
results reported for CIFAR-10, CIFAR-100 and ImageNet-200 ID datasets. For ImageNet-1K ID, 3

evaluation (OOD) runs on a single training run is reported. Results for each individual run, as well as
each individual dataset, are listed in Table[3]

C.2 EFFECT OF LAYER-WISE SCALING

Layer-wise scaling is an essential component of TULIP. In this experiment, we conduct semantic-shift
OOD detection on ImageNet-1K without layer-wise scaling. In particular, for networks with L layers
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Table 5: Detailed breakdown of TULiP’s Semantic-shift OOD performance on individual datasets.

Run 1 Run 2 Run 3
ID dataset OQOD dataset FPR95| AUROCT FPR95] AUROC1T FPR95] AUROC 1
CIFAR-100 36.11 88.86 37.56 88.56 36.52 88.81
Tiny-ImageNet ~ 30.67 90.75 3142 90.23 30.53 90.83
Near OOD 33.39 89.81 34.49 89.39 33.53 89.82
CIFAR-10 MNIST 13.83 96.80 14.76 96.44 17.07 95.16
SVHN 23.02 91.75 21.30 93.06 20.59 93.17
Textures 30.96 89.98 30.49 90.60 28.12 91.44
Places365 29.31 91.49 31.11 90.69 32.68 90.09
Far OOD 24.28 92.50 24.41 92.70 24.61 92.46
CIFAR-10 60.93 79.24 58.80 79.35 60.92 78.90
Tiny-ImageNet 48.96 83.66 50.01 83.50 50.80 83.08
Near OOD 54.94 81.45 54.41 81.43 55.86 80.99
MNIST 57.83 79.36 47.88 84.45 53.82 80.74
CIFAR-100 qypN 5882 7949 5868 8042  63.07  77.94
Textures 61.48 78.65 60.67 78.10 64.20 76.82
Places365 56.41 80.21 57.51 79.66 57.68 79.69
Far OOD 58.64 79.43 56.18 80.66 59.69 78.80
SSB-hard 65.87 80.86 66.20 80.89 65.39 80.91
NINCO 43.94 86.68 42.48 86.85 43.14 86.84
Near OOD 54.91 83.77 54.34 83.87 54.27 83.88
ImageNet-200  iNaturalist 22.52 93.80 22.94 93.45 24.80 93.21
Textures 45.00 89.53 43.20 89.80 44.02 89.67
Openlmage-O 34.64 89.98 33.99 89.94 34.34 89.92
Far OOD 34.06 91.10 33.38 91.06 34.39 90.93
SSB-hard 74.09 73.16 73.99 73.37 74.12 73.14
NINCO 55.92 81.83 55.75 81.82 55.89 81.81
Near OOD 65.00 77.50 64.87 77.59 65.01 77.48
ImageNet-1K  iNaturalist 37.89 91.01 38.08 90.98 37.94 91.01
Textures 59.02 85.34 59.15 85.29 59.01 85.34
Openlmage-O 47.10 87.77 46.87 87.76 47.08 87.76
Far OOD 48.00 88.04 48.03 88.01 48.01 88.04
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Figure 5: Visualization of the effect of layer-wise scaling (solid, orange) vs. without layer-wise
scaling (dotted, blue). The vertical axis indicates the Spearman rank correlation between the direct
calculation of empirical NTK in training Tr (Vg f;"7 (x)Ve f{""(2') ") and scaled NTK after
training Tr (Vo f7"7 (€)T?Vg f7""(x') "), for T' = epoch 400 and ¢ spanning the horizontal axis.
The network is a ResNet-18 variant trained on CIFAR-10 for 400 epochs with SGD momentum 0.9,
and @, &’ are sampled from the training set for 4096 pairs. For solid orange curve I' = (1/1/]6;]) - I
(scaled) and for dotted blue curve I' oc I (unscaled). It indicates that the proposed layer-wise scaling
scheme helps recovering an earlier network state, as the scaled NTK is more similar to the early
empirical NTKs.

Table 6: OOD detection results (AUROC 1) for TULiP without layer-wise scaling (w/o LW). TULiP
results are copied from Table E

Method CIFAR-10  CIFAR-100 ImNet-200 ImNet-1K  ImNet-Blur ImNet-C ImNet-R

TULiP  89.67/92.55 81.29/79.63 83.84/91.03 77.52/88.03 85.54 82.91 82.07
w/oLW  90.68/92.81 80.47/77.90 81.54/86.75 76.32/84.99 76.86 83.76 85.30

and parameters of layer [ denoted as 6;, the scaling matrix I" has been set to (L=, 1/1/]6,]) - I,
i.e., an averaged scaling I' oc I is used for the entire network, identical across layers, effectively
disables layer-wise scaling while maintaining a similar magnitude for perturbations.

Table [6] compares the results of this experiment and the one reported in Table[T]and 2] It shows the
effect of layer-wise scaling on TULIP. Intuitively, it helps to find an NTK that is more representative
of the training process, reducing the gap between the linearized training trajectory and the true
training trajectory. Such effect is further demonstrated in Figure[5] From an empirical aspect, our
scaling is often approximately proportional to the magnitude of individual parameters within the
layer (cf. Fig.[T]a) of the main paper). In this sense, a larger perturbation may significantly interfere
with the network performance, thus producing unpredictable results. Our Layer-wise scaling scheme
also reduces such vulnerability by applying smaller perturbations to layers with smaller weights.
Nevertheless, TULiP without layer-wise scaling still outperforms TULiP in some datasets, suggesting
future work for an in-depth analysis.

C.3 V2 WEIGHTS ON IMAGENET-1K

Recently, researchers have been finding the possibilities to extend the performance of existing models
such as ResNet-50 on various datasets. For example, torchvision (maintainers & contributors} 2016)
released a new version (V2) of a ResNet-50 trained on ImageNet-1K with recent advances in practical
NN training, increasing the Top-1 accuracy by 4.7% (Vryniotis, 2021). The previous version (V1) is
used in OpenOOD v1.5 for ImageNet-1K ID and ResNet-50 backbone (Zhang et al., 2023).

Somewhat surprisingly, the performance of all OOD detectors are severely undermined when using
the new V2 weights. We summarize our empirical findings in Table|/| Upon further inspection, we
have empirically found that in general, V2 weight is larger than V1, especially the ~y, 5 parameters
in BatchNorm layers (loffe & Szegedy, [2015) have been increased around 10x. This results in
a significantly larger ||Vof(x)||. As a consequence, the network is more vulnerable to weight
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Table 7: ImageNet-1K OOD AUROC score using the V2 weights from torchvision.

MLS ODIN ViM ASH TULIP (Ours)

SSB-Hard 65.53 69.03 5793 40.52 67.57
NINCO 7296  70.81 7242 31.39 74.90
Near OOD 69.24 6992 65.17 3596 71.23
iNaturalist 80.34 67.19 9232 28.64 81.62
Textures 7142 6295 95.04 3497 70.20
Openlmage-O  77.66 68.22 89.89 26.13 79.02
Far OOD 7647 66.12 9242 29091 76.95

Table 8: Semantic Shift-OOD on ImageNet-1K with ViT-B-16 model. Baseline results cited
from |[Zhang et al.| (2023)).

ImageNet-1K
Method FPR@95]  AUROC 1

ViM 73.73/29.18  77.03/92.84
MDS+ 66.12/29.97  79.04/92.60

EBO 93.19/85.35  62.41/78.98
MLS 92.25/79.23  68.30/83.54
ASH 94.43/96.77  53.21/51.56
GEN 70.78/32.23  76.30/91.35
TULiP  84.73/52.23  73.63/87.98

perturbations and thus favors a much smaller e. In particular, the results in Table 7] were produced
with a perturb power of € = 0.1 (chosen with respect to the validation set). Such phenomena further
demonstrate the significant effect of € to TULIP. It hints at an important future research direction that
aims to tackle such sensitivity.

C.4 POST-HOC METHODS AND VISION TRANSFORMERS (VIT)

In this subsection, following Zhang et al.|(2023)), we report the results of a direct implementation of
TULIP on ViT-B-16 (Dosovitskiy et al.,|2021) in Table@ The same setup as in Semantic-Shift OOD
experiments has been used except for the network architecture. Thanks to their superior performance,
transformer-based models have become one of the mainstream models in the vision literature ever
since they have been adopted to the field. Interestingly, as shown in Table [8] almost all post-hoc
methods without training data access degrade their performance compared to their convolution-based
performance in Table[I] despite the increased expression power of ViT. Those results suggest that
one may need specific tuning to make post-hoc methods perform better on transformer models. For
TULIP, one of the specific tunings could be to introduce architectural knowledge of transformers, in
order to obtain a more accurate approximation.

C.5 ADDITIONAL EXPERIMENT FOR OUTLIER REJECTION

Following established protocols (Krishnan & Tickoo, [2020; Thiagarajan et al.,|2022), we conduct
OOD detection experiments with ImageNet-1K as inliers and images with Gaussian blur of intensity
5 from ImageNet-C (Hendrycks & Dietterichl [2019) as outliers. For TULIiP, we used the hyper-
parameters suggested in Sec. [5]as there are no validation sets in this experiment.

Additional Baselines |Thiagarajan et al.|(2022) proposed A-UQ, a method for Uncertainty Quan-
tification that utilizes training data as anchors to create network ensembles, where each instance
uses a different anchor. SVI (Blundell et al., 2015b)), stands for stochastic variational inference, is
a Bayesian UQ method utilizing variational inference. Temperature Scaling (Guo et al.l 2017b)) is
a simple post-hoc UQ method that scales the logits before the softmax layer to estimate prediction
uncertainty.
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Table 9: Outlier rejection results with ImageNet-C Gaussian Blur intensity 5. Baseline results are
copied from (Thiagarajan et al.;,2022). T represents training data access.

Method AUROC 1T  AUPR-in/out 1
(Lakshminarayanan et al.,|2017) Deep Ensembles T 95.49 95.31/95.64
(Gal & Ghahramanil |[2016) MC Dropout T 96.38 96.16/96.67
(Blundell et al., 2015b) SVI 96.40 95.97/796.83
(Thiagarajan et al.||2022) A-UQ 97.49 97.56 / 97.47
(He et al.,[2016) ResNet-50 93.36 92.82/93.71
(Guo et al., 2017b)  Temperature Scaling 93.71 93.21/94.01
(ours) TULiP 96.40 96.58 / 96.32

Table 10: Wall-clock time of our SS-OOD experiments, contains a serial sequence of inference on ID
(top row) and all corresponding OOD datasets (near and far).

Method  Forward passes CIFAR-10 ImageNet-200 ImageNet-1K

EBO 1 44.32s 112.37s 3m 12.60s
. _ 96.30s 190.41s 10m 59.24s
TULiP - O(M), M =10 2.17x) (1.69%) (3.42x)

In Table 9] we report our results with baseline results copied from [Thiagarajan et al(2022). It is
worth noting that in this experiment, TULIP, despite being a post-hoc method, outperforms many
UQ methods that would require significantly more computational resources (e.g., Deep Ensembles,
MC Dropout, etc.). It is on par with SVI and being outperformed by A-UQ, which is a much heavier
method that relies on network architecture modifications before training (thus requires training the
network from stretch) and domain-specific data augmentations.

C.6 TiME COMPLEXITY OF TULIP

As listed in Algorithm TULIP requires O (M) forward passes to evaluate a minibatch of test data.
Compared to single-pass methods, such limitation renders TULiP ineffective despite its performance
as shown in Sec. 5] since forwarding a network could be expensive as networks grow in size.
Nevertheless, TULIP is not O(M) times slower than single-pass methods as forward evaluation is
not the sole bottleneck of inferencing. Table [I0]compares the wall-clock inference time of TULiP
and EBO (a single-pass method) in our SS-OOD setting.
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