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REALDPO: REAL OR NOT REAL, THAT IS THE PREF-
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Figure 1: Can we align video generative models using real data as preference data without a
reward model? (a) Comparison between using the reward model to score synthetic data for pref-
erence learning and our RealDPO method, which uses high-quality real data as win samples. Our
method avoids the limitations of the reward model and the associated hacking issues. (b) Com-
parison between the video generated by the pretrained model and the real video for the same scene.
The three scores on the right represent the scores given by the reward model from VisionReward (Xu
et al., 2024a), the human action metric from VBench (Huang et al., 2024a;b), and human preference,
respectively. It can be observed that while the existing reward model and VBench can evaluate se-
mantic correctness, they are limited in assessing human motion quality. (c) Three model-generated
examples from the same prompt, each with different initial noise, exhibit poor limb interaction,
making it challenging for human annotators to identify which sample should be chosen as the win
sample for reward model training.

ABSTRACT

Video generative models have recently achieved notable advancements in synthe-
sis quality. However, generating complex motions remains a critical challenge,
as existing models often struggle to produce natural, smooth, and contextually
consistent movements. This gap between generated and real-world motions lim-
its their practical applicability. To address this issue, we introduce RealDPO,
a novel alignment paradigm that leverages real-world data as positive samples
for preference learning, enabling more accurate motion synthesis. Unlike tradi-
tional supervised fine-tuning (SFT), which offers limited corrective feedback, Re-
alDPO employs Direct Preference Optimization (DPO) with a tailored loss func-
tion to enhance motion realism. By contrasting real-world videos with erroneous
model outputs, RealDPO enables iterative self-correction, progressively refining
motion quality. To support post-training in complex motion synthesis, we propose
RealAction-5K, a curated dataset of high-quality videos capturing human daily
activities with rich and precise motion details. Extensive experiments demonstrate
that RealDPO significantly improves video quality, text alignment, and motion re-
alism compared to state-of-the-art models and existing preference optimization
techniques.
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Reference Frame

"The video showcases a sincere moment between two young friends against a dark green tiled wall. The individual on the left, wearing a 
black cap and a black T-shirt with "Dylan" written across it, and the friend on the right, in a white T-shirt and a black backward cap, both 
move towards each other. They share a warm embrace, their faces lit up with genuine smiles. The scene is a candid capture of friendship 
and affection, with the dark green tiles providing a simple yet effective backdrop that highlights their interaction."

SF
T

Re
al

D
PO

Figure 2: RealDPO vs SFT. A qualitative comparison between RealDPO and supervised fine-tuning
(SFT). RealDPO demonstrates more natural motion generation. For more details regarding the com-
parison, please refer to the supplementary material.

1 INTRODUCTION

With the advancement in computational power and the availability of large-scale data, video gener-
ation models (Yang et al., 2024b; Guo et al., 2023; Blattmann et al., 2023; Li et al., 2024; Lin et al.,
2024; Wang et al., 2024b; Xing et al., 2024; Zhang et al., 2023) have made significant progress,
producing more realistic and diverse visual content. However, when it comes to generating complex
motions, existing models still face considerable challenges in creating motion sequences that adhere
to appear natural and smooth, and align with contextual consistency. This issue becomes especially
prominent in the generation of human-centric daily activity motions. As shown in Fig. 1(b), even
the results generated by the state-of-the-art DiT-based model CogVideoX-5B (Yang et al., 2024b)
exhibit unnatural and unrealistic movements, failing to meet human preferences for natural, smooth,
and contextually appropriate actions. This prompts us to further explore how to improve the realism
and rationality of complex motion generation, particularly in the domain of human motion synthesis.

A straightforward solution is to collect a set of high-quality, real-world data specifically for su-
pervised fine-tuning (SFT). However, relying exclusively on this dataset for SFT training presents
certain limitations. During optimization, the model interprets the provided data as the sole correct
reference, lacking awareness of where the original model’s errors stem from. This narrow focus
may result in overfitting and suboptimal performance in Fig. 2. A more effective strategy would
be letting the model learn from its own mistakes. By utilizing the difference between real samples
(positive data) and generative samples (negative data), we can explicitly highlight the model’s er-
rors and guide it to correct its behavior. This approach enables the model to progressively align
its outputs with the desired actions represented by the positive samples, fostering continuous im-
provement through self-reflection. This idea aligns perfectly with Direct Preference Optimization
(DPO) (Rafailov et al., 2023), a reinforcement learning technique used in training large language
models, which leverages pair-wise win-lose data to guide the learning process.

In video generation, recent studies (Liu et al., 2024; Wang et al., 2024c; Xu et al., 2024a;
Yuan et al., 2024; Zhang et al., 2024a) have explored training fine-grained reward models using
human-annotated preference datasets, primarily through three ways: reward-weighted regression
(RWR) (Wang et al., 2024c), direct preference optimization (DPO) (Liu et al., 2024), and gradient
feedback (GF) (Yuan et al., 2024). However, these methods face some critical challenges when
directly applied to action-centric video generation: (1) Reward Hacking: Video reward model is
susceptible to reward hacking, where during the optimization process, human evaluations indicate
a decline in video quality, yet the reward model continues to assign high scores. (2) Scalability
Issue: Online approaches require decoding latent to pixel space, limiting their scalability for high-
resolution video generation. (3) Bias Propagation: Multi-dimensional reward models may lose the
ability to assess specific key metrics due to linear combinations of evaluation criteria. As shown in
Fig. 1(b), the reward model cannot provide an accurate evaluation for complex motion. These limi-
tations highlight the need for a more robust approach tailored to complex motion video generation,
motivating our extension beyond traditional DPO frameworks.

2
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To address these challenges, we propose RealDPO, a novel training pipeline for generating action-
centric activity videos, as shown in Fig. 1(a). Unlike prior methods that rely on model-sampled
pairwise comparisons, RealDPO leverages real-world video data as win samples, overcoming the
Real Data Deficiency issue where only using synthetic data for preference learning fails to address
the distribution errors inherent in the pre-trained generative model. More importantly, this approach
significantly enhances the model’s learning upper bound, enabling more accurate video generation.
Without real video guidance, as shown in Fig. 1(c), all samples generated by pre-trained model
exhibit poor limb interaction, making it hard for human annotators to identify the preferred win
sample. Additionally, since RealDPO directly uses real data to guide the preference learning, it
eliminates the need for an external reward function, thereby avoid reward hacking and bias propaga-
tion issues. Moreover, our naturally paired win-lose samples eliminate the need for decoding latent
to pixel space during training, drastically reducing computational overhead. Inspired by Diffusion-
DPO (Wallace et al., 2024), we design a tailored DPO loss specifically for the training objective
of diffusion-based transformer architectures, enabling effective preference alignment. To support
this training, we introduce RealAction-5K, a compact yet high-quality video dataset capturing di-
verse human daily actions. The dataset adheres to the principle of “less is more”, emphasizing that
RealDPO requires fewer high-quality samples in synergy with model-generated negative samples,
whereas traditional supervised fine-tuning (SFT) methods typically requires more data to achieve
better performance. Experiments demonstrate that RealDPO significantly improves video quality,
text alignment, and action fidelity across diverse human action scenarios compared to pretrained
baselines and other preference alignment methods. Our contributions are summarized as follows:

• We propose RealDPO, a novel training pipeline for action-centric video generation that
leverages real-world data as preference signals to contrastively reveal and correct the
model’s inherent mistakes, addressing the limitations of existing reward models and pref-
erence alignment methods.

• We design a tailored DPO loss for our video generation training objective, enabling ef-
ficient and effective preference alignment without the scalability and bias issues of prior
approaches.

• We introduce RealAction-5K, a compact yet high-quality curated dataset focused on hu-
man daily actions, specifically crafted to advance preference learning for video generation
models and broader applications.

2 RELATED WORK

Diffusion-Based Video Generation. In recent years, diffusion-based video generation models have
emerged continuously, primarily generating videos through user-provided text or image prompts.
These models are broadly categorized into two architectures: U-Net and Diffusion Transformers
(DiT). U-Net-based approaches (Blattmann et al., 2023; Wang et al., 2023; Chen et al., 2024; Guo
et al., 2023) build upon the multi-stage down-sampling and up-sampling framework of image diffu-
sion models, incorporating temporal attention layers to ensure temporal consistency. However, these
methods face limitations in motion dynamics and content richness. Recently, Diffusion Transformer-
based methods (Yang et al., 2024b; Li et al., 2024; Lin et al., 2024) have made significant improve-
ments by combining 3D-VAE with diffusion transformers, using 3D full-attention layers to jointly
learn spatial-temporal correlations, and enhance text encoders to handle complex prompts. These
advancements have led to substantial improvements in fidelity, consistency, and scalability for longer
video generation.

Reinforce Learning in Image/Video Generation. In large language models (LLMs), reward mod-
els are commonly used in Reinforcement Learning Human Feedback (RLHF), enabling LLMs to
respond more naturally and generate more coherent text. Recently, there have been a series of stud-
ies(Xu et al., 2024b; Black et al., 2023; Wallace et al., 2024; Lee et al., 2023; Liang et al., 2024; Yang
et al., 2024a; Clark et al., 2023; Fan et al., 2024) in image generation that incorporate human pref-
erences into model evaluation and model alignment training, mainly focusing on improving the aes-
thetic quality of images. In video generation, the exploration so far is still quite limited. Most related
works(Yuan et al., 2024; Wu et al., 2024; Wang et al., 2024c; Liu et al., 2024; Zhang et al., 2024a;
Liu et al., 2025) are mainly focusing on using reward models trained on human-annotated synthetic
data for preference learning on model-generated data. However, these methods have some limita-

3
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(c) Video Caption Word Distribution (d) Action Content Distribution (e) Prompt Length Distribution
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Figure 3: Overview of the RealAction-5K Dataset. (a) Samples of RealAction-5K Dataset (b)
Data Collection and Processing Pipeline (c) Video Caption Word Distribution (d) Action Content
Distribution (e) Prompt Length Distribution

tions. For example, training reward models may suffer from hacking issues, and multi-dimensional
reward models might show reduced evaluation ability in specific domains. Additionally, relying
entirely on synthetic data for preference learning could hinder the model’s potential. Therefore, we
propose a novel approach that transcends the limitations of reward models by incorporating real data
for preference-aligned learning.

3 PRELIMINARIES

3.1 DENOISING PROCESS AS MULTI-STEP MDP

According to the definition in the Yang et al. (2024a), the denoising process in diffusion models
can be formulated as a multi-step Markov Decision Process (MDP). Here, we provide a further
explanation of state representations st, probability transition P , and policy functions π, establishing
a correspondence between video diffusion models and the MDP framework. This mapping enables a
reinforcement learning perspective on the sampling process in video diffusion models. The detailed
notation correspondence between the diffusion model and the MDP is as follows:

st ≜ (c, t,xt) P (st+1 | st,at) ≜ (δc, δt+1, δxt−1
)

at ≜ xt−1 π(at | st) ≜ pθ(xt−1 | c, t,xt)

ρ0(s0) ≜ (p(c), δ0,N (0, I))

r(st,at) ≜ r((c, t,xt),xt−1)

(1)

where δx represents the Dirac delta distribution, and t denotes the denoising timesteps. Leveraging
this mapping, we can employ RL techniques to fine-tune diffusion models by maximizing returns.
However, this approach requires a proficient reward model capable of adequately rewarding the
noisy images. The task becomes exceptionally challenging, particularly when t is large, and xt

closely resembles Gaussian noise, even for an experienced expert.
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Figure 4: The RealDPO Framework. We use real data as the win samples in DPO, and illustrate
the data pipeline on the left hand side. We present the RealDPO loss, and reference model update
strategy on the right hand side.

3.2 DPO FOR DIFFUSION MDP

Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a preference-based fine-tuning
method that directly optimizes a model using human preference data, without requiring an explicit
reward model. This approach is particularly advantageous as it avoids the complexities and poten-
tial biases introduced by learned reward models, making the optimization process more stable and
interpretable. Given a dataset of preference-labeled pairs {(x, yw, yl)}, where x is the input prompt,
yw is the preferred (win) output, and yl is the less preferred (lose) output, DPO aims to maximize
the likelihood ratio between the preferred and non-preferred samples while maintaining closeness to
the pretrained model. The optimization objective can be formulated as:

LDPO(θ)=−E
c,xw,xl

[
log σ

(
β log

pθ(x
w|c)

pref(x
w|c))

− β log
pθ(x

l|c)
pref(x

l|c)

)]
(2)

where: pθ(xw|c) is the likelihood of generating win output xw given input c under the fine-tuned
model, pref(x

w|c) is the likelihood under the reference (pretrained) model. β is a temperature pa-
rameter that controls the sharpness of preference optimization. σ(·) is the sigmoid function ensuring
a proper probability score.

According to the derivation in reference (Wallace et al., 2024), the training objective of Diffusion-
DPO is defined as:
L(θ) = −E(xw

0 ,xl
0)∼D,t∼U(0,T ),xw

t ∼q(xw
t |xw

0 ),xl
t∼q(xl

t|xl
0)
log σ (−βTω(λt) (

∥ϵw − ϵθ(x
w
t , t)∥22 − ∥ϵw − ϵref(x

w
t , t)∥22 −

(
∥ϵl − ϵθ(x

l
t, t)∥22 − ∥ϵl − ϵref(x

l
t, t)∥22

))) (3)

where xw
t = αtx

w
0 + σtϵ

w, ϵw ∼ N (0, I) is a draw from q (xw
t | xw

0 ). λt = α2
t /σ

2
t is the signal-

to-noise ratio. ω(λt) is a weighting function, usually kept constant.

4 THE REALDPO PARADIGM

In this section, we introduce our fine-tuning pipeline RealDPO to align video diffusion models with
our constructed preferences data, as shown in Fig. 4. Firstly, we introduce our proposed dataset,
RealAction, and the pipeline for constructing preference data in Sec.4.1. Then, in Sec.4.2, we
present the win-lose sampling approach used for DPO fine-tuning training. Finally, in Sec.4.3, we
delve into the alignment training process for the video generation model using preference data.

4.1 REALACTION: PREFERENCE DATA COLLECTION

Preference data is essential for reinforcement learning. To acquire it, we designed a robust data
processing pipeline that efficiently collects, filters, and processes data, ensuring its high quality,
diversity, and representativeness.
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Collect raw video based on keywords. Our dataset construction begins with selecting relevant
topics to collect raw video data, ensuring diversity and real-world representativeness. As shown
in Fig. 3(d), we designed daily activity themes across over ten scenarios, such as sports, eating,
drinking, walking, and gathered high-quality video clips using these keywords. This step captures
diverse actions, participants, and backgrounds, establishing a strong foundation for preference-based
training.

Use VideoLLM to filter low-quality videos. After collecting the raw videos, we use a video LLM,
Qwen2-VL (Wang et al., 2024a) , to filter out rough or irrelevant videos. We provide some instruc-
tions for Qwen2-VL to identify and discard videos that do not meet quality standards or are not
aligned with the selected topic. Through this filtering process, low-quality content is significantly
reduced, ensuring that only clear and meaningful videos proceed to next processing stages.

Manual inspection ensures the accuracy. We let human annotators carefully examine the videos
to confirm whether they accurately represent the intended theme, have correct actions, and do not
contain misleading or irrelevant content. This additional validation step further refines the dataset,
ensuring it aligns with preference-based training goals.

Generate detailed descriptions for videos. We employ a video understanding model, LLaVA-
Video (Zhang et al., 2024b), to generate accurate descriptive captions for each video. These descrip-
tions accurately reflect the actions, participants, and appearance. These captions serve as valuable
metadata, later used for sampling negative samples. The word cloud composed of high-frequency
words in the description caption of these videos is shown in Fig. 3(c). And the length distribution of
captions in our constructed dataset is shown in the Fig 3(e).

4.2 WIN-LOSE SAMPLING FOR DPO TRAINING

After obtaining real data, we take the real video Xw from RealAction as win sample. The latent
after compression through the VAE encoder is Xw

0 . We design a Timestep Selector that randomly
generates a timestep k for each round of positive and negative sampling. We add k steps of random
noise to Xw

0 , obtaining Xw
k . Then, together with the caption embedding etext, we input this into the

DiT transformer to get the predicted noise ϵ̂wk . Finally, we input ϵ̂wk to Positive Sample Velocity to
obtain the predicted latent x̂w0 , which is prepared for the subsequent DPO loss.

ϵ̂wk = θ
(
xwk , e

text
)
, x̂w0 = ψ (ϵ̂wk ) , (4)

where θ is the training DiT model, ψ is the process of positive sample velocity.

For negative samples, in order to ensure diversity, we first randomly generate three init noises ϵa, ϵb,
ϵc. These are then combined with the positive sample’s caption embedding etext and we input them
together into the DiT, where we sample the full timesteps to obtain three negative samples xl,a0 , xl,b0 ,
xl,c0 . This step is done offline, and we only need to store the latent of the negative samples. During
training optimization, similar to the positive samples, we add k steps of random noise to these three
samples to obtain xl,ak , xl,bk , xl,ck . Then, together with caption embedding etext, we input these into
the DiT transformer to get the predicted noise ϵ̂l,ak , ϵ̂l,bk , ϵ̂

l,c
k . Finally, we input predicted noise to

Negative Sample Velocity to obtain the predicted latents for the negative samples x̂l,a0 , x̂l,b0 , x̂l,c0 .

ϵ̂l,∗k = θ
(
xl,∗k , etext

)
, x̂l,∗0 = ψ

(
ϵ̂l,∗k

)
, (5)

where ∗ is set of {a, b, c}, ψ is the process of negative sample velocity.

It’s important to note that the first sampling of the negative samples is done offline, while the second
sampling for both positive and negative samples involves only one step, saving a significant amount
of time during training.

4.3 PREFERENCE LEARNING FOR VIDEO GENERATION

After positive and negative samples are prepared, we can use this preference data for DPO training.
Due to the constraints of the reference model in DPO training, similarly, we also resample the win-
lose samples through the reference model to obtain x̃w0 and x̃l,a0 . Here, we take the first negative

6
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Table 1: Quantitative Comparison on RealAction-TestBench by User Study. We provided users
with a five dimensional evaluation, namely Overall Quality, Visual Alignment, Text Alignment,
Motion Quality and Human Quality, to compare our model with the pre-trained baseline (Yang
et al., 2024b), supervised fine-tuning(SFT), LiFT (Wang et al., 2024c), VideoAlign (Liu et al., 2025).
Testers are required to rank the results generated by these models, and we converted the rankings
into win rates.

Method Overall Visual Text Motion Human
Quality Alignment Alignment Quality Quality

Baseline (Yang et al., 2024b) 65.56 72.22 71.89 65.56 66.00
SFT 58.22 65.22 68.44 59.11 60.33
LiFT (Wang et al., 2024c) 67.34 73.44 64.33 65.00 67.33
VideoAlign (Liu et al., 2025) 61.00 68.11 68.78 57.22 59.78
RealDPO (Ours) 73.33 77.44 77.00 71.00 72.89

"The video begins with a man wearing a white shirt and blue tie, sitting at an outdoor table. He holds a cup of coffee in one hand, taking a sip, 
while his other hand is occupied with writing notes on a notepad. The table also holds a smartphone and a pair of sunglasses, suggesting a busy 
day ahead. The setting is an urban street scene with brick walls and parked cars in the background, providing a realistic and bustling 
atmosphere. The scene captures a moment of focus and productivity amidst the daily hustle."

First Frame Before  Alignment After  Alignment

First Frame

"The video begins in a sunny park with lush green grass and trees swaying gently in the breeze. A young blonde girl, dressed in a light pink 
sweater and floral shorts, stands with a joyful smile. Holding a small treat in her hand, she lifts it slightly to engage the attentive golden 
retriever sitting before her. The dog's golden fur gleams under the sunlight as it excitedly raises a paw, reaching out to shake hands with the 
girl."

Before  Alignment After  Alignment

Figure 5: Qualitative Results. We visualize the effect of before and after applying RealDPO. See
the supplementary for videos.

sample x̃l,a0 as an example to explain the loss. According to the training objective of CogVideoX-
5B (Yang et al., 2024b), we rewrite Eq. 3 as follows:

LDPO(θ) = −E
[
log σ

(
−βTω(λt)

(
∥xw

0 − x̂w
0 ∥22 − ∥xw

0 − x̃w
0 ∥22

−
(
∥xl

0 − x̂l
0∥22 − ∥xl

0 − x̃l
0∥22

)))]
,

(6)

where xw0 /x
l
0 are the original win/lose sample, x̂w0 /x̂l0 are the predicted latents for the win/lose sam-

ple by the training model, x̃w0 /x̃l0 are the predicted latents for the win/lose sample by the reference
model. The role of the reference model is to constrain the training process of the training model,
preventing over-optimization or deviation from the desired objectives.

To enhance alignment of the model with human preferences, we gradually improve the capability of
the preference model and perform multiple rounds of resampling, ensuring that the training process
iteratively refines its predictions and better captures the desired outcomes. In practice, every t train-
ing steps, the reference model needs to be updated using the exponential moving average (EMA)
algorithm.

θtref ← ωθtref + (1− ω)θt, (7)

where θtref is the parameters of the reference model, θt denotes the parameters of the training model,
and ω is the decay coefficient of EMA, set to 0.996 in our experiments.
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Table 2: Quantitative Comparison on VBench-I2V and RealAction-TestBench using MLLM.
We evaluate performance via Visual Alignment (VA), Text Alignment (TA), Motion Quality (MQ),
and Human Quality (HQ), which are consistent with the sensory perceptions of humans in user
study. We use open-source Qwen2-VL (Wang et al., 2024a) supporting video understanding. We
provide a detailed instruction template for evaluating video generation quality using MLLM in the
appendix.

Method VBench-I2V RealAction-Test Bench
VA ↑ TA ↑ MQ ↑ HQ ↑ VA ↑ TA ↑ MQ ↑ HQ ↑

Baseline (Yang et al., 2024b) 97.78% 97.71% 89.86% 90.34% 96.11% 99.22% 90.22% 91.89%
SFT 97.15% 98.26% 90.03% 89.38% 93.89% 98.89% 90.78% 92.89%
LiFT (Wang et al., 2024c) 97.54% 97.91% 89.25% 90.24% 97.54% 97.89% 92.00% 91.67%
VideoAlign (Liu et al., 2025) 97.99% 97.66% 89.54% 90.84% 96.44% 98.89% 92.00% 92.89%
RealDPO (Ours) 97.99% 97.74% 89.46% 90.10% 96.67% 99.22% 91.67% 94.11%

Table 3: Quantitative Comparisons with baselines and reward-based methods via VBench-
I2V (Huang et al., 2024a;b), on RealAction-TestBench.

Model I2V Subject Background Motion Dynamic Aesthetic Imaging
Subject Consistency Consistency Smoothness Degree Quality Quality

C
og

vi
de

oX
-5

B Baseline (Yang et al., 2024b) 96.10 90.43 94.01 98.15 55.56 59.63 67.01
SFT 96.47 89.50 93.18 98.06 66.67 59.69 67.06
LiFT (Wang et al., 2024c) 96.50 92.34 94.46 98.20 38.89 60.51 68.40
VideoAlign (Liu et al., 2025) 96.55 92.23 94.29 98.37 50.00 60.21 67.66
RealDPO (Ours) 96.58 91.68 94.47 98.31 55.56 61.37 68.05

5 EXPERIMENTS

We present the main experiments and discussions in this section. Please refer to the supplementary
material for implementation details on the models and evaluation metrics.

5.1 QUANTITATIVE COMPARISONS

Quantitative Comparison by User Study. Tab. 1 showcases the evaluation results on the
RealAction-TestBench test set, where testers were invited to rank the generated outputs of the pre-
trained baseline (Yang et al., 2024b), supervised fine-tuning (SFT), LiFT (Wang et al., 2024c),
VideoAlign (Liu et al., 2025), and our RealDPO. The evaluation covers five dimensions: Overall
Quality, Visual Alignment, Text Alignment, Motion Quality, and Human Quality. The scores for
each model across these dimensions were calculated and summarized. As shown in Tab. 1, our
RealDPO demonstrates significant improvements over baseline and SFT in multiple dimensions,
indicating that our proposed data effectively enhance the capabilities of RealDPO in action-centric
scenarios. Additionally, compared to other preference alignment algorithms utilizing reward mod-
els, such as LiFT (based on Reward Weighted Regression) and VideoAlign (a naive DPO variant
using synthetic data), our approach of leveraging real data as win samples and synthetic data as lose
samples also proves its effectiveness.

Quantitative Comparison Using MLLM. To enhance the diversity of evaluation, we employ
MLLM capable of video understanding tasks to assess the results generated by the models in a
question-answer format across multiple dimensions. In Tab. 2, we selected Qwen2-VL (Wang et al.,
2024a) as an evaluation tool, to align the assessment dimensions with user study: Visual Alignment
(VA), Text Alignment (TA), Motion Quality (MQ), and Human Quality (HQ) on VBench-I2V test
benchmark (Huang et al., 2024b) and RealAction-TestBench. For each dimension, we designed sev-
eral questions, and a ”yes” response from the large models indicates a passing score. The scores for
all questions within each dimension were aggregated to calculate the total score. Experimental re-
sults show that, based on the evaluation by video-language understanding models, our model shows
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The video captures a moment in an open field where a man, dressed in a grey t-shirt 
and navy blue shorts, is standing with his hand outstretched towards a black dog with 
a white chest. The man, wearing tan boots, is smiling as the dog eagerly raises one 
paw to meet his hand in a friendly shake. The dog's tail wags, indicating its excitement 
and happiness. The field is dotted with patches of grass, and the sky above is overcast, 
creating a serene backdrop for this interaction. The natural light highlights the 
connection between the man and the dog as they share a moment of companionship.
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The video captures the exhilarating action of a kite surfer riding the waves. The 
individual, clad in a wetsuit, is seen expertly maneuvering a surfboard across the 
choppy sea surface. With a firm grip on the kite's control bar, they harness the power 
of the wind to glide effortlessly over the water. The surfer's stance is dynamic, with 
knees bent and body leaning back slightly, demonstrating balance and control. As 
they cut through the waves, water sprays up around the board, creating a dramatic 
effect against the backdrop of the ocean's vast expanse. The scene is a testament to 
the surfer's skill and the thrilling sport of kite surfing.

Figure 6: Qualitative Comparison.We recommend readers refer to our appendix files to view more
visualizations.

competitive results, consistent with human evaluation results, further validating the effectiveness of
our RealDPO.

Quantitative Comparison Using VBench-I2V Metric. Meanwhile, in video generation,
VBench (Huang et al., 2024a;b) is widely recognized as an authoritative evaluation framework.
Leveraging VBench-I2V’s automated metrics designed for Image-to-Video (I2V) evaluations in
VBench++ (Huang et al., 2024b), we assessed the quality of our test set, revealing that RealDPO
achieves competitive performance across multiple general metrics.

5.2 QUALITATIVE COMPARISONS

In Fig. 5, we present the visual comparison results before and after RealDPO alignment. We observe
that RealDPO is highly effective in enhancing the naturalness and smoothness of the actions, as
well as their consistency with the textual instructions. In Fig. 6, we present the visual comparison
results of our method against other alignment approaches, such as LiFT (Wang et al., 2024c) and
VideoAlign (Liu et al., 2025). It can be observed that the videos generated by RealDPO are more
stable and less prone to unnatural actions or visual collapse. For instance, in the example on the left,
SFT exhibits a collapse of the character’s limbs, and the coordination of the dog’s four legs appears
unnatural. The results of LiFT are slightly better, but LiFT fails to complete the handshake action
between the protagonist and the dog, resulting in poor alignment with the text. In contrast, our results
demonstrate higher visual quality, with action details highly consistent with the textual instructions
and no visual collapse. In the example on the right, the text describes the surfer’s posture as “with
knees bent and body leaning back slightly”. SFT shows visual collapse, misaligned actions, and
poor consistency in character appearance. VideoAlign performs slightly better, but the generated
posture and actions are not highly aligned with the text. In comparison, our results exhibit higher
image quality, more accurate action details, and overall superior performance.

6 CONCLUSION

In this paper, we propose RealDPO, a novel and data-efficient framework for preference align-
ment in video generation, leveraging real-world data as win samples to address challenges in gen-
erating complex motions like human actions. By designing a tailored DPO loss and building on
diffusion-based transformer architectures, we establish a robust real-data-driven alignment frame-
work. To support this, we introduce RealAction-5K, a compact yet high-quality dataset for human
daily actions. Extensive experiments show that RealDPO significantly improves visual alignment,
text alignment, motion quality, and overall video quality, outperforming traditional fine-tuning and
other alignment methods. Our work advances the upper bound of preference alignment and provides
a scalable solution for complex motion video generation. We will explore extending RealDPO to
broader domains in the future.
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Ethics statement. Our RealAction-5K dataset was curated from publicly available video sources
with appropriate licenses. To address privacy concerns, all personally identifiable information was
meticulously anonymized, and the dataset will be released strictly for non-commercial research
purposes to mitigate the risk of misuse. All necessary legal and ethical guidelines concerning data
provenance and usage were adhered to throughout the project. Additionally, the effectiveness of
our RealDPO paradigm is inherently limited by the architectural constraints of the underlying video
generative model. We emphasize the need for responsible use, particularly when generating human
figures, to prevent potential misuse.

Reproducibility statement. To ensure the reproducibility of our work, we have made significant
efforts to document our methodology and resources comprehensively. The core of our approach, the
RealDPO alignment paradigm, including its tailored loss function, is described in detail within the
paper. Furthermore, we provide a complete account of the data collection and processing pipeline
for the RealAction-5K dataset. This dataset was meticulously curated by manually sourcing high-
quality videos from https://pexels.com. The process involved a combination of targeted
scraping and manual downloading, followed by rigorous manual screening and clipping to ensure
each video clip depicts a single, coherent action that can be accurately described in text, thereby
guaranteeing high quality and clarity.
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APPENDIX

This supplementary material provides more qualitative results, details of the evaluation, experi-
mental results, pseudo-code of RealDPO. Section A elaborates on additional visual comparisons of
generated videos, including comparisons with pre-trained models, supervised fine-tuning, and other
alignment methods. Section B details the evaluation process, covering the design of user studies,
evaluation using LLMs, evaluation using the VBench-I2V metric, as well as interfaces, instructions,
and an introduction to automated evaluation metrics. Section C presents the pseudo-code of our core
algorithm, RealDPO.

A MORE QUALITATIVE RESULTS

Due to space limitations in the main text, this section presents additional visual comparisons, in-
cluding comparisons with pre-trained models, supervised fine-tuning, and other alignment methods.
The results demonstrate that our approach achieves superior performance across a wider range of
samples, with enhanced visual-text alignment, text alignment, motion quality, character quality, and
overall quality. These findings further validate the effectiveness of the RealDPO framework. This
provides new insights and methodologies for future multi-modal generation tasks.

A.1 COMPARISON WITH PRE-TRAINED MODEL

Pre-trained base models are typically trained on large-scale datasets and exhibit strong generalization
capabilities. However, they may underperform on specific tasks, particularly those requiring fine-
grained alignment, such as the generation of videos with complex motion as discussed in our work.
RealDPO, by incorporating guidance from real-world data through Direct Preference Optimization
(DPO), excels at capturing intricate details in tasks, especially in image-text alignment. As shown in
Fig. 7, compared to pre-trained models, RealDPO demonstrates significantly improved consistency
in visual-text alignment and notable enhancements in the details of characters and motions.

A.2 COMPARISON WITH SUPERVISED FINE-TUNING

Supervised fine-tuning relies on annotated data and can achieve strong performance on specific
tasks. However, its effectiveness is constrained by the quality and quantity of the available anno-
tations. In contrast, RealDPO leverages a diverse set of negative samples and real-world data as
positive samples to form multiple preference pairs. This approach enables the model to learn from
its own mistakes and align more closely with real-world samples, achieving robust alignment even
without extensive labeled data. In particular, as shown in Fig. 8, in terms of motion quality and char-
acter quality, RealDPO generates images that are more natural, with smoother motions and richer
character details.

A.3 COMPARISON WITH OTHER ALIGNMENT METHOD

Other reward model based alignment methods, such as LiFT and VideoAlign, may perform well
on specific tasks. However, in complex scenarios, the reward models often fail to provide effective
feedback, leading to misguidance in preference alignment training. In contrast, RealDPO introduces
real-world samples as positive examples and pairs them with multiple negative samples generated
by the model, naturally forming contrastive pairs. By guiding the model with positive samples, Re-
alDPO enables the model to learn from its mistakes and align more closely with the correct samples,
thereby better handling complex cross-modal alignment tasks. As shown in Figure 9, compared to
existing alignment methods, RealDPO demonstrates greater stability in visual-text alignment and
text alignment, generating images and text that are more semantically consistent, with superior mo-
tion quality.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

"The video begins with a person in grey shorts standing in a lush backyard, their hand outstretched towards a playful spotted puppy. The puppy, 
with its ears perked up and tongue out, eagerly raises one paw to meet the person's hand in a friendly gesture. The puppy's eyes are focused 
on the person's hand, and its tail wags with excitement. The backyard is filled with vibrant green grass and a wooden fence, creating a warm 
and inviting atmosphere for this interaction. The natural light from the setting sun casts a golden hue over the scene, highlighting the connection 
between the person and the puppy as they share a moment of joy and companionship."

First Frame Before  Alignment After  Alignment

First Frame

"The video features a blonde skateboarder, dressed in a black jacket and shorts, standing in the middle of a road that stretches into the 
distance. They have one foot on the skateboard, ready to push off and begin skating. The road is bordered by snow-covered hills under a 
twilight sky, giving a sense of solitude and adventure. The anticipation of the skateboarder's impending journey is palpable."

Before  Alignment After  Alignment

Figure 7: Qualitative Results. Comparison with pre-trained model.

Reference Frame

"The video captures a woman with her hair tied back, wearing a sleeveless top and jeans, standing in a bedroom. She is in the process of 
making a bed, holding up a white pillow with both hands, seemingly about to place it on the bed. The bedroom has a calm and tidy 
appearance, with a large window allowing natural light to brighten the room. The focus is on the woman's task, highlighting the routine 
activity of homemaking."
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Reference Frame

"The video captured a couple enjoying a moment on the beach. The man is wearing a gray T-shirt and shorts, and the woman is wearing a 
white striped sun skirt, they are embracing When they embrace on the damp beach, gentle waves beat against their feet, creating a playful 
and romantic atmosphere. The cloudy sky and distant hills added a dramatic backdrop to their leisurely stroll, highlighting the connection 
between the two and the beauty of the natural environment."
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Figure 8: Qualitative Results. Comparison with supervised fine-tuning.
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The video begins with a woman with curly blonde hair, wearing a beige cardigan and 
a black top, sitting indoors. She is holding a chocolate-covered ice cream bar and is 
offering it to a young child with blonde hair, who is wearing a striped shirt. The child 
is taking a bite from the ice cream bar. The setting is a bright and airy room with 
natural light illuminating the scene, creating a warm and joyful atmosphere. The focus 
is on the interaction between the woman and the child, capturing a moment of shared 
enjoyment.
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The video opens with a pair of hands carefully cutting a small fruit tart on a dark 
wooden board. The tart has a golden, crisp crust, topped with fluffy whipped cream 
and fresh strawberry slices. Holding it steady, the person gently presses the knife 
through, preparing to slice it open. More tarts rest nearby, along with a wooden 
cutting board decorated with scattered blue flowers. The soft, natural lighting gives 
the scene a warm and inviting feel..

Figure 9: Qualitative Results. comparison with other Alignment Method.

B DETAILS OF THE EVALUATION

B.1 IMPLEMENTATION DETAILS

Models and Settings. We conduct all experiments on 8 Nvidia H100 GPUs, with a total batch
size of 8 for training. For our I2V baseline generation model, we adopt CogVideoX-5B (Yang
et al., 2024b), which uses diffusion transformer structure. We fine-tune the parameters of all its
transformer blocks on the DeepSpeed framework. The learning rate is set to 1e-5, and all the models
are trained for 10 epochs.

Evaluation Metric. We evaluate the performance of our aligned model through three aspects:
user study, automatic LLM-based evaluation, and the assessment metrics of VBench (Huang et al.,
2024a). We selected 18 test cases, including test texts and reference images, which constitute the
RealAction-TestBench. For the user study, we invited 10 testers to evaluate our model against other
baselines across multiple dimensions. For LLM-based evaluation, we designed a question template
to guide the model in making decisions. As for VBench, we utilized the I2V evaluation metrics
provided by VBench to perform our evaluation.

B.2 EVALUATION BY USER STUDY

To ensure a fair and comprehensive evaluation of our model, we conducted a user study to collect
subjective feedback on the generated results. Participants were presented with a scoring interface
(as shown in Fig. 10) and asked to rate the generated videos based on several key criteria, including
Visual Alignment, Text Alignment, Motion Quality and Human Quality and Overall Quality. The
interface is designed to be intuitive and user-friendly, allowing participants to provide accurate and
unbiased scores. Each video was evaluated by multiple users, and the final scores were averaged to
ensure reliability.

B.3 EVALUATION USING LLMS

In addition to human evaluation, we leveraged large language models (LLMs) to assess the quality of
the generated videos. We designed a structured instruction template to guide the LLMs in evaluating
video generation quality. The template includes detailed prompts for assessing various aspects of
the videos, such as adherence to textual descriptions, visual coherence, and overall aesthetic appeal.
By utilizing LLMs, we were able to obtain scalable and consistent evaluations that complement the
human user study. The results from the LLM-based evaluation align closely with the user study
findings, further validating the effectiveness of our approach
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B.4 EVALUATION USING VBENCH-I2V METRIC

To provide a more objective and fine-grained assessment of our model’s performance, we select
seven theme-related and human-perception-aligned representative dimensions of video quality from
VBench-I2V Huang et al. (2024a;b) as the final evaluation metrics: I2V Subject, Subject Consis-
tency, Background Consistency, Motion Smoothness, Dynamic Degree, Aesthetic Quality, and Imag-
ing Quality.

Figure 10: User Study Scoring Interface for users to give socre.
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Instruction Template for Evaluating Video Generation Quality Using LLMs (part1)

As a video understanding expert, you will be required to evaluate the quality of model-
generated videos from four different perspectives, covering the following daily human
activities. The specific evaluation angles will be divided into Visual Alignment, Text
Alignment, Motion Quality, and Human Quality. Under each dimension, the model needs to
determine the quality of the generated content based on the answers to five questions. Each
question is scored out of 10 points. The scoring rule is 0 points for the worst and 10 points
for the best. The final score is the sum of the scores for all questions under that dimension.

Visual Alignment
This mainly assesses the consistency of the visual representation of the characters in the
generated video with the provided first frame image of the characters and environment, with
a score range of 0 to 10. Please answer five questions as follow:
Question 1: What is the consistency score of the character’s appearance (such as clothing,
hairstyle, skin color) in the generated video?
Question 2: What is the consistency score of the environment in the generated video (such
as background, lighting, scene setup)? Question 3: What is the score for the character’s
proportional changes in the generated video conforming to physical laws?
Question 4: What is the fidelity score of the characters or environment in the video (low
scores should be given if there are shape distortions or color abnormalities)?
Question 5: What is the consistency score of the characters and environment over time (low
scores should be given if there are sudden disappearances or changes)?

Answer 1:
Answer 2:
Answer 3:
Answer 4:
Answer 5:
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Instruction Template for Evaluating Video Generation Quality Using LLMs (part2)

As a video understanding expert, you will be required to evaluate the quality of model-
generated videos from four different perspectives, covering the following daily human
activities. The specific evaluation angles will be divided into Visual Alignment, Text
Alignment, Motion Quality, and Human Quality. Under each dimension, the model needs to
determine the quality of the generated content based on the answers to five questions. Each
question is scored out of 10 points. The scoring rule is 0 points for the worst and 10 points
for the best. The final score is the sum of the scores for all questions under that dimension.

Text Alignment
This assesses the consistency between the actions of the characters in the generated video
and the input text description or target behavior category, with a score range of 0 to 10.
Please answer five questions as follow:
Question 1: What is the consistency score between the character’s actions in the generated
video and the input text description or target behavior category?
Question 2: What is the consistency score between the key actions in the video (such as
running, hugging, playing an instrument) and the text description?
Question 3: What is the score for avoiding actions or distracting elements in the video that
are unrelated to the text description?
Question 4: What is the accuracy score of the video in conveying the emotions or intentions
described in the text?
Question 5: What is the score for the video supplementing reasonable details not explicitly
mentioned in the text description?

Answer 1:
Answer 2:
Answer 3:
Answer 4:
Answer 5:
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Instruction Template for Evaluating Video Generation Quality Using LLMs (part3)

As a video understanding expert, you will be required to evaluate the quality of model-
generated videos from four different perspectives, covering the following daily human
activities. The specific evaluation angles will be divided into Visual Alignment, Text
Alignment, Motion Quality, and Human Quality. Under each dimension, the model needs to
determine the quality of the generated content based on the answers to five questions. Each
question is scored out of 10 points. The scoring rule is 0 points for the worst and 10 points
for the best. The final score is the sum of the scores for all questions under that dimension.

Motion Quality
This assesses the smoothness, naturalness, and reasonableness of the character’s movements
in the generated video, with a score range of 0 to 10. Please answer five questions as follow:
Question 1: What is the smoothness score of the character’s movements in the generated
video (high scores for no stuttering)?
Question 2: What is the score for the details of the character’s movements (such as limb
movements, gestures) conforming to physical laws?
Question 3: What is the naturalness score of the temporal dynamics of the character’s
movements (such as speed, rhythm)?
Question 4: What is the coordination score between the character’s movements and other
elements in the scene (such as objects, background)?
Question 5: What is the score for avoiding obvious distortions or unreasonable phenomena
in the character’s movements (such as limb twisting, incoherent actions)?

Answer 1:
Answer 2:
Answer 3:
Answer 4:
Answer 5:
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Instruction Template for Evaluating Video Generation Quality Using LLMs (part4)

As a video understanding expert, you will be required to evaluate the quality of model-
generated videos from four different perspectives, covering the following daily human
activities. The specific evaluation angles will be divided into Visual Alignment, Text
Alignment, Motion Quality, and Human Quality. Under each dimension, the model needs to
determine the quality of the generated content based on the answers to five questions. Each
question is scored out of 10 points. The scoring rule is 0 points for the worst and 10 points
for the best. The final score is the sum of the scores for all questions under that dimension.

Human Quality
This assesses the quality of the generated characters in the video, with a score range of 0 to
10.
Please answer five questions as follow:
Question 1: What is the score for the reasonableness of limb distortions in the generated
characters (e.g., unnatural joint bends)?
Question 2: What is the score for the reasonableness of the number of limbs in the characters
(e.g., extra or missing limbs)?
Question 3: What is the naturalness score of the facial expressions or body movements of
the characters in line with human behavioral characteristics?
Question 4: What is the reasonableness score of the interactions between the characters and
other objects in the scene (e.g., tools, animals, other people)?
Question 5: What is the fluency score of the characters’ behavior in the generated video?

Answer 1:
Answer 2:
Answer 3:
Answer 4:
Answer 5:
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C PSEUDO-CODE OF REALDPO

def RealDPO_Loss(model, ref_model, x_w, x_l, c, beta):
"""
Computes the RealDPO loss for aligning model predictions with

preferred and non-preferred samples.

Args:
model: Diffusion Transformer model.
ref_model: Frozen reference model used for comparison.
x_w: Preferred real video latents (aligned with the desired

output).
x_l: Non-preferred video-generated video latents (not aligned

with the desired output).
c: Conditioning input (e.g., text embeddings, image embeddings).
beta: Regularization parameter controlling the strength of the

alignment.

Returns:
realdpo_loss: The computed RealDPO loss value.

"""
# Sample random timesteps and noise for diffusion process
timestep_k = torch.rand(len(x_w))
noise = torch.randn_like(x_w)

# Create noisy versions of preferred and non-preferred latents
noisy_x_w = (1 - timestep_k) * x_w + timestep_k * noise
noisy_x_l = (1 - timestep_k) * x_l + timestep_k * noise

# Predict latents using the model and reference model
latent_w_pred = model(noisy_x_w, c, timestep_k)
latent_l_pred = model(noisy_x_l, c, timestep_k)
latent_ref_w_pred = ref_model(noisy_x_w, c, timestep_k)
latent_ref_l_pred = ref_model(noisy_x_l, c, timestep_k)

# Compute prediction errors for preferred and non-preferred latents
model_w_loss = (x_w - latent_w_pred).norm().pow(2)
ref_w_loss = (x_w - latent_ref_w_pred).norm().pow(2)
model_l_loss = (x_l - latent_l_pred).norm().pow(2)
ref_l_loss = (x_l - latent_ref_l_pred).norm().pow(2)

# Compute alignment differences
w_loss_diff = model_w_loss - ref_w_loss
l_loss_diff = model_l_loss - ref_l_loss

# Compute the RealDPO loss
alignment_term = -0.5 * beta * (w_loss_diff - l_loss_diff)
realdpo_loss = -1 * torch.log(torch.sigmoid(alignment_term))

return realdpo_loss
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D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we used GPT-4, a large language model from OpenAI, exclu-
sively as a writing assistance tool. Its use was confined to the Introduction and Methods sections,
where it served to aid in polishing the text. Specifically, the model was prompted to help restruc-
ture sentences for improved clarity and flow, ensure consistent academic tone, and simplify complex
technical descriptions. All fundamental ideas, research hypotheses, methodological designs, exper-
imental data, analysis, conclusions, and the final intellectual content are solely the product of the
authors’ work. The LLM generated no original content or ideas and was not used for data analysis
or interpretation. The authors carefully reviewed, edited, and verified all AI-generated text to ensure
it accurately reflected their research and adhered to the highest standards of academic integrity.
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