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Abstract
Differential privacy (DP) offers strong protection against ad-
versaries with arbitrary side-information and computational
power. However, many implementations of DP mechanisms
leave themselves vulnerable to side channel attacks, such
as timing attacks. As many privacy mechanisms, such as
the exponential mechanism, do not lend themselves to easy
implementations, when sampling methods such as MCMC
or rejection sampling are used, the runtime can leak privacy.
In this work, we quantify the privacy cost due to the runtime
of a rejection sampler in terms of (𝜖, 𝛿)-DP. We also propose
three modifications to the rejection sampling algorithm, to
protect against timing attacks by making the runtime inde-
pendent of the data. We also use our techniques to develop
an adaptive rejection sampler for log-Holder densities, which
also has data-independent runtime.

CCS Concepts: • Security and privacy → Privacy pro-
tections; Usability in security and privacy; Social as-
pects of security and privacy.
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1 Introduction
As more data is collected, analyzed, and published by re-
searchers, companies, and government agencies, concerns
about the privacy of the participating individuals have be-
come more prominent [19]. While there have been many
methods of statistical disclosure control to combat this prob-
lem [15], differential privacy (DP) [10] has arisen as the
state-of-the-art framework for privacy protection. Differ-
ential privacy is based on a notion of plausible deniability,
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and requires the introduction of additional noise, beyond
sampling, into the analysis procedure. Given the output of a
DP mechanism, an adversary cannot determine with high
probability whether any particular individual participated
in the dataset [31].

Because of the formal nature of DP, implementations of the
mechanisms must be very careful to prevent unintentional
privacy leaks through side-channels. Side-channel attacks
have been a long-standing problem in computer systems, for
example the execution time, power consumption, or memory
usage of the system, are a few examples of side-channels
[16, 25]. With differential privacy, the system can be made
black-box to remove some of these side channels, but may
still be susceptible to timing attacks. PINQ [22] and Airavat
[27] were two of the earliest DP implementations, but were
shown by Haeberlen et al. [13] to be vulnerable to timing
attacks. FUZZ [13] and GUPT [24] avoid timing attacks by
working with simple queries for which the worst-case com-
putational time can be determined. This solution works for
simple DP tasks, however, there are complex DPmechanisms
for which it is nontrivial to design implementations with
data-independent runtime.

A common and powerful DPmechanism is the exponential
mechanism [21] which results in an unnormalized density
of the form exp(𝑔(𝑥)) that must be sampled from. The expo-
nential mechanism has been widely used to tackle problems
such as principal component analysis [4, 8, 17], 𝐾-means
clustering, [11], convex optimization [6, 7], robust regres-
sion [3], linear and quantile regression [26], synthetic data
[28], and Bayesian data analysis [9, 23, 30, 32].
A challenge however is that for many functions 𝑔(𝑥) en-

countered in practice, sampling from exp(𝑔(𝑥)) is challeng-
ing. In statistics and machine learning, there have been many
computational techniques proposed to produce either exact
or approximate samples from such distributions including
Markov chain Monte Carlo (MCMC), rejection sampling, ap-
proximate Bayesian computing, etc. However, there are two
sources of privacy leaks when using these computational
sampling methods: 1) when using approximate samplers,
the resulting sample does not exactly follow the target dis-
tribution, with the error in the approximation resulting in
an increased privacy risk, 2) with either an approximate or
exact sampler, if the run time of the algorithm depends on
the database, then this side-channel leaks privacy [13].

We consider the runtime of the algorithm as an additional
output of the mechanism, and require that both the official
output and the runtime jointly satisfy differential privacy.
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Contributions We quantify the privacy risk of rejec-
tion sampling as well as adaptive rejection sampling, before
considering any privacy-preserving modifications. As a re-
jection sampler results in samples with distribution equal to
the target, the only privacy concern is the runtime, which
varies for different databases. We characterize the privacy
risk of a simple rejection sampler in terms of (𝜖, 𝛿)-DP. We
also show that a simple rejection sampler does not satisfy
𝜖-DP for any finite 𝜖 unless the acceptance rate is constant
across databases. Similarly, an adaptive rejection sampler
does not satisfy 𝜖-DP unless a stringent condition holds for
the acceptance probabilities across databases.
Given the increased privacy risk due to the runtime, we

propose several variations on the rejection sampler, which
make the runtime independent of the database: 1) choose
the number of iterations to run the sampler ahead of time,
2) introduce an additive wait-time based on a worst-case
dataset, 3) use squeeze functions to add an implicit wait-
time. The third approach also leads to an adaptive rejection
sampler which can be applied to any log-Holder density.
Finally, we give examples of the exponential mechanism
which satisfy the assumptions of our methods.

1.1 Differential privacy
Given a metric space (D, 𝑑), which represents the set of
possible databases, a set of probability measures {𝑀𝐷 | 𝐷 ∈
D} on a common spaceY is called a privacy mechanism. The
space D represents the space of possible databases. When
implementing a privacy mechanism, we release one sample
from𝑀𝐷 , which satisfies some form of privacy.

Definition 1.1 ((𝜖, 𝛿)-DP:10). Given a metric space (D, 𝑑),
𝜖 > 0 and 𝛿 ≥ 0, a privacy mechanism {𝑀𝐷 } on the spaceY
satisfies (𝜖, 𝛿)-differential privacy if for all measurable sets
𝐵 ∈ Y and all 𝑑 (𝐷,𝐷 ′) ≤ 1,𝑀𝐷 (𝐵) ≤ exp(𝜖)𝑀𝐷′ (𝐵) + 𝛿.
The values 𝜖 and 𝛿 are called the privacy parameters,

which capture the privacy risk for the given mechanism.
Smaller values of 𝜖 and 𝛿 give stronger privacy guarantees.
We call (𝜖, 0)-DP “pure differential privacy,” and write 𝜖-DP.

2 Privacy risk of rejection sampling
In this section we characterize the privacy cost of a rejection
sampler. Recall that a rejection sampler results in an exact
sample from the target distribution. Thus, the only increased
privacy risk from using this algorithm is due to the runtime.

Assumption 2.1. For a rejection sampler, along with the
published accepted sample, we also assume that the runtime
is potentially available to an attacker. We assume that for
all databases and for all 𝑥 in the domain, the evaluations
𝑔𝐷 (𝑥) take the same time to evaluate. As such, the runtime
is proportional to the number of iterations in the sampler.

Theorem 2.2 gives a characterization of the privacy loss
due to rejection sampling using (𝜖, 𝛿)-DP.

Theorem 2.2. Let (D, 𝑑) be a metric space of databases,
and let 𝑇𝐷 be the runtime of a rejection sampler for data-
base 𝐷 which has acceptance probability 𝑝𝐷 . Note that 𝑇𝐷 ∼
Geom(𝑝𝐷 ). Call 𝑅 = sup𝑑 (𝐷,𝐷′) ≤1

log(1−𝑝𝐷 )
log(1−𝑝𝐷′ ) . The mechanism

that releases the runtime 𝑇𝐷 satisfies (𝜖, 𝛿)-DP
1. for all 𝜖 ≥ 0 and 𝛿 (𝜖) = (1 − 1/𝑅) exp

(
−𝜖−log(𝑅)

𝑅−1

)
, or

2. for all 0 < 𝛿 ≤ (𝑅 − 1)𝑅𝑅/(1−𝑅) and 𝜖 (𝛿) = log(1/𝑅) +
(𝑅 − 1) (log(1/𝛿) + log(1 − 1/𝑅)).

Note that in Theorem 2.2, the runtime of a rejection sam-
pler does not satisfy 𝜖-DP for any finite 𝜖 , unless the proba-
bility of acceptance is constant across databases (i.e., 𝑅 = 1).

2.1 Privacy risk of adaptive rejection sampling
We analyze the privacy risk of an idealized adaptive rejec-
tion sampler. Often adaptive rejection samplers update the
proposal in a stochastic manner, based on the target value
at previously rejected samples. In this section, we consider
the setting where the proposal is updated in a deterministic
manner, such as in Leydold et al. [20]. Unless the acceptance
probabilities converge in a strong sense, an adaptive rejection
sampler will not satisfy 𝜖-DP for any finite 𝜖 .

Proposition 2.3. Let {𝑀𝐷 | 𝐷 ∈ D} be a privacy mech-
anism which satisfies 𝜖0-DP. Let (𝑝𝐷𝑖 )∞𝑖=1 be the sequence of
acceptance probabilities for an adaptive rejection sampler for
𝑀𝐷 . Call𝑇𝐷 the runtime of the adaptive sampler for𝑀𝐷 , with
pmf 𝑃 (𝑇𝐷 = 𝑡) = 𝑝𝐷𝑡

∏𝑛
𝑖=1 (𝑝𝐷𝑖 )𝑡−1 (1−𝑝𝐷𝑖 ). Releasing a sample

from𝑀𝐷 as well as the runtime𝑇𝐷 satisfies (𝜖0+𝜖𝑇 )-DP, where
𝜖𝑇 satisfies 𝜖𝑇 ≥ log(𝑝𝐷𝑡 /𝑝𝐷

′
𝑡 )+∑𝑡−1

𝑖=1 log
(
(1 − 𝑝𝐷𝑖 )

/
(1 − 𝑝𝐷′

𝑖 )
)
,

for all 𝑡 ≥ 1 and 𝑑 (𝐷,𝐷 ′) ≤ 1.

Proposition 2.3 shows that unless the acceptance proba-
bilities are very closely related, it is not guaranteed that an
adaptive rejection sampler will satisfy 𝜖-DP for any finite 𝜖 .

3 Privacy-aware rejection samplers
The previous section showed that running a rejection sam-
pler can result in an arbitrarily high privacy loss through the
runtime. In this section we propose three modifications of
the rejection sampling algorithm to ensure data-independent
runtime. Finally, we apply our methods to develop a privacy-
aware adaptive rejection sampler.

3.1 Constant runtime, truncated rejection sampling
One way to remove the privacy leak due to the runtime is to
choose a number of iterations independent of the database.
However, an accepted sample may not be found, and the
probability of this event does depend on the database.
Of the methods we propose, the algorithm in Proposi-

tion 3.1 requires the weakest assumptions in that the only
knowledge we require is a lower bound on the acceptance
probability across the databases. However there is a small
probability that no samples are accepted in the prescribed
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number of iterations, which negatively impacts both the
privacy and the utility of the mechanism.
Proposition 3.1. Let {𝑀𝐷 | 𝐷 ∈ D} be a family of mecha-
nisms satisfying (𝜖0, 𝛿0)-DP and (𝑈𝐷 , 𝑐𝐷 ) be such that 𝜋𝐷 ≤
𝑐𝐷𝑈𝐷 where 𝜋𝐷 is an unnormalized density for𝑀𝐷 . Assume
that 𝛼0 ≤ 1/𝑐𝐷

∫
𝜋𝐷 (𝑥) 𝑑𝑥 for all 𝐷 , that is, 𝛼0 is a lower

bound on the acceptance probability in the rejection sam-
pler across all databases. Given 𝛿 > 0, run the sampler for
𝑁 =

log(1/𝛿)
log(1/(1−𝛼0)) iterations. If there is an accepted proposal,

release the first one; if not, release an arbitrary output (such
as one more draw from the proposal). Releasing the output as
well as the runtime of this algorithm satisfies (𝜖0, 𝛿0 + 𝛿)-DP.

A benefit of the algorithm in Proposition 3.1 is that it can
be vectorized and is embarrassingly parallelizable. Another
benefit is that 𝑁 grows only in the log of 1/𝛿 . Roughly, by
doubling the iterations, we can double the number of ‘zeros’
in the 𝛿 . The two major downsides are that the algorithm
must be run much longer than a simple rejection sampler,
and that it is not guaranteed that an accepted sample is found,
which also reduces the utility. If no samples are accepted,
then the output does not follow the correct distribution,
introducing error in the sampling approximation.

3.2 Additive geometric wait time
In this section, we use the memoryless property of the geo-
metric distribution to introduce an additive wait time based
on a lower bound on the acceptance probability. The result
is that the runtime of the algorithm is geometric with accep-
tance rate equal to the worst-case dataset.
The benefit of this method over the truncated rejection

sampler is that a sample from the correct distribution is guar-
anteed, and the runtime is independent of the database. The
downside is that the acceptance probability (or equivalently
the integrating constant) for the present database is required.
Theorem 3.2. Let {𝜋𝐷 | 𝐷} be normalized target densities.
Assume that for each 𝜋𝐷 , we have normalized densities𝑈𝐷 (𝑥)
as well as constants 𝑐𝐷 such that for all 𝑥 , 𝜋𝐷 (𝑥) ≤ 𝑐𝐷𝑈𝐷 (𝑥).
Let 𝑐 ≥ sup𝐷 𝑐𝐷 . Consider the following scheme:

1. Run a rejection sampler, proposing from𝑈𝐷 (𝑥) and tar-
geting 𝜋𝐷 (𝑥) until acceptance

2. Call the accepted sample 𝑋 . Also draw 𝑌 ∼ Unif(0, 1).
3. If 𝑌 < 𝑐𝐷/𝑐 return, else wait for Geom(1/𝑐) cycles.

Then 𝑋 ∼ 𝜋𝐷 , and the wait time follows Geom(1/𝑐), which
does not depend on 𝐷 .

3.3 Implicit wait-time via squeeze
We propose another method of producing an exact rejection
sampler with data-independent runtime. Algorithm 1 avoids
the need for the normalizing constant as in Theorem 3.2 by
instead using a carefully tailored squeeze function.
Theorem 3.3. Let {𝜋𝐷 | 𝐷} be (unnormalized) target densi-
ties. Assume that for each 𝜋𝐷 , we have normalized densities

Algorithm 1 Privacy-aware rejection sampling via squeeze
INPUT: 𝜋 ,𝑈 , 𝐿, 𝑐𝑈 , and 𝑐𝐿 such that 𝑐𝐿𝐿 (𝑥) ≤ 𝜋 (𝑥) ≤ 𝑐𝑈𝑈 (𝑥) for all 𝑥

1: Set anyAccepted=FALSE
2: Sample 𝑋 ∼ 𝑈 (𝑥)
3: Sample 𝑌 ∼ Unif (0, 1)
4: if 𝑌 ≤ 𝜋 (𝑋 )

𝑐𝑈 𝑈 (𝑋 ) and anyAccepted==FALSE then
5: Set 𝑋𝑠 = 𝑋

6: Set anyAccepted=TRUE
7: end if
8: if 𝑌 ≤ 𝑐𝐿𝐿 (𝑋 )

𝑐𝑈 𝑈 (𝑋 ) then
9: Return 𝑋𝑠

10: else
11: Go to 2.
12: end if

OUTPUT: 𝑋𝑠

𝑈𝐷 (𝑥) and 𝐿𝐷 (𝑥) as well as constants 𝑐𝐿,𝐷 and 𝑐𝑈 ,𝐷 such
that 𝑐𝐿,𝐷/𝑐𝑈 ,𝐷 does not depend on 𝐷 and such that for all 𝑥
𝑐𝐿,𝐷𝐿𝐷 (𝑥) ≤ 𝜋𝐷 (𝑥) ≤ 𝑐𝑈 ,𝐷𝑈𝐷 (𝑥). Then the output of Algo-
rithm 1 with 𝜋 = 𝜋𝐷 , 𝑈 = 𝑈𝐷 , 𝐿 = 𝐿𝐷 , 𝑐𝑈 = 𝑐𝑈 ,𝐷 , 𝑐𝐿 = 𝑐𝐿,𝐷
has distribution 𝜋𝐷 and runtimeGeom(𝑐𝐿,𝐷/𝑐𝑈 ,𝐷 ), which does
not depend on 𝐷 .

While the assumption of the squeeze functions in Theorem
3.3 may seem odd, it is in fact strictly weaker than knowing
the integrating constant for 𝜋𝐷 , as was required in Section
3.2, as shown in Proposition 3.4.

Proposition 3.4. Let {𝜋𝐷 | 𝐷} be normalized target densities.
Assume that for each 𝜋𝐷 , we have normalized densities𝑈𝐷 (𝑥)
and constants 𝑐𝑈 ,𝐷 such that 𝜋𝐷 (𝑥) ≤ 𝑐𝑈 ,𝐷𝑈𝐷 (𝑥). Let 𝑐 ≥
sup𝐷 𝑐𝑈 ,𝐷 . Then the squeeze function 𝐿𝐷 = 𝜋𝐷 , with constant
𝑐𝐿,𝐷 = 𝑐𝑈 ,𝐷/𝑐 satisfies the assumptions of Theorem 3.3.

3.4 Adaptive rejection sampler for log-Holder
In this section, we use the squeeze method of Section 3.3 to
develop an adaptive rejection sampler with data-independent
runtime for log-Holder densities. Our method is a modifica-
tion of the (nearly) minimax optimal sampler of Achddou
et al. [1]. Let 𝜋𝐷 (𝑥) ∝ exp(𝑔𝐷 (𝑥)) be an unnormalized target
density on a bounded convex set𝐶 , where𝑔𝐷 is (𝑠, 𝐻 )-Holder
for all datasets 𝐷 : |𝑔𝐷 (𝑥) −𝑔𝐷 (𝑦) | ≤ 𝐻 ∥𝑥 −𝑦∥𝑠 for all 𝐷 and
for all 𝑥,𝑦 ∈ 𝐶 .

Theorem 3.5. Let {𝜋𝐷 = exp(𝑔𝐷 ) | 𝐷} be unnormalized
target densities which have support on a bounded convex set
𝐶 . Suppose that for all 𝐷 , 𝑔𝐷 is (𝑠, 𝐻 )-Holder with norm ∥·∥
on 𝐶 . Then Algorithm 2 results in 𝑁 i.i.d. samples from 𝜋 and
has running time which does not depend on 𝐷 .

As in Achddou et al. [1], we canmake the adaptive sampler
much easier to implement by considering the following spe-
cial case of Algorithm 2: 1) use the ℓ∞ norm in the Holder defi-
nition, 2) set𝐶 = [0, 1]𝑑 , 3) approximate the nearest neighbor
calculation 𝑃𝑇 (𝑦) on a grid, as described in Achddou et al.
[1, Definition 4]. These modifications make the construction,
evaluation, and sampling of the proposal exp(𝑔) computa-
tionally efficient, even in high dimensions. The adapt-reject
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Algorithm 2 Privacy-aware adaptive rejection
INPUT: 𝑔 an (𝑠, 𝐻 )-Holder function on a bounded convex set𝐶 ⊂ R𝑑 for some
norm ∥ · ∥, initial evaluations {(𝑥1, 𝑔 (𝑥1)), . . . , (𝑥𝑛, 𝑔 (𝑥𝑛)) }, and a “nearest
neighbor” map 𝑃𝑇 ( ·) : 𝐶 → 𝑇 for any finite set𝑇 ⊂ 𝐶 , the number 𝑁 of i.i.d.

samples desired from 𝜋 (𝑥) ∝ exp(𝑔 (𝑥))𝐼 (𝑥 ∈ 𝐶)
1: Set prevAccepted=FALSE
2: Set numSamples=0
3: Set publishedSamples= ∅
4: Set 𝑆 = {(𝑥1, 𝑔 (𝑥1)), . . . , (𝑥𝑛, 𝑔 (𝑥𝑛)) }
5: Set𝑇 = {𝑥 | (𝑥, 𝑦) ∈ 𝑆 for some 𝑦 }
6: while numSamples< 𝑁 do
7: Define 𝑔 (𝑦) = 𝑔 (𝑃𝑇 (𝑦)) for all 𝑦 ∈ 𝐶 (only evaluations of 𝑔 from 𝑆)
8: Set 𝑟 ≥ sup𝑦∈𝐶 𝐻 ∥𝑦 − 𝑃𝑇 (𝑦) ∥𝑠

9: Sample 𝑌 ∼ exp(𝑔 (𝑦))/(
∫
𝐶
exp(𝑔 (𝑦)) 𝑑𝑦)

10: Sample𝑈 ∼ Unif (0, 1)
11: if 𝑈 ≤ exp(𝑔 (𝑌 ))/exp(𝑔 (𝑌 ) + 𝑟 ) and anyAccepted=FALSE then
12: Set 𝑋𝑠 = 𝑌

13: Set anyAccepted=TRUE
14: end if
15: if 𝑈 ≤ exp(−2𝑟 ) then
16: Publish 𝑋𝑠 and append 𝑋𝑠 to publishedSamples
17: Increment numSamples by 1
18: Set anyAccepted=FALSE
19: end if
20: Choose 𝑍 ∈ 𝐶 \𝑇 based on only𝑇 , 𝐻 and 𝑠
21: Append (𝑍,𝑔 (𝑍 )) to 𝑆
22: Append 𝑍 to𝑇
23: end while

OUTPUT: publishedSamples, which can be published in a stream

(lines 9-19) and the update steps (lines 20-22) can also be
done in batches to avoid updating the function 𝑔 too often.

Remark 3.6. There are several prior DP works on the ex-
ponential mechanism, where the utility function is assumed
to be Holder, and where Algorithm 2 can be applied. Minami
et al. [23] assume Lipschitz and concave utility functions.
Bassily et al. [6] and Bassily et al. [7] derive optimal DP
mechanisms under the assumption of Lipschitz and convex
empirical risk objective functions, as well as a bounded do-
main, which result in implementations of the exponential
mechanism. In part of their work, Ganesh and Talwar [12]
assume Lipschitz and 𝐿-smooth utility functions in the ex-
ponential mechanism. Wang et al. [29] study non-convex
empirical risk minimization problems with objectives that
are Lipschitz and𝑀-smooth.

4 Exponential mechanism sampling
In this section, we explore some some instances of the ex-
ponential mechansim that satisfy the assumptions of the
rejection samplers proposed in Section 3, and so allow for a
privacy-preserving implementation.

4.1 Strongly concave and 𝐿-smooth log-density
We consider instances of the exponential mechanism where
the utility function𝑔𝐷 is both strongly concave and𝐿-smooth.
These are the same properties that Ganesh and Talwar [12]
assume. Both Awan et al. [4] and Minami et al. [23] assume
strongly concave utility functions in the exponential mecha-
nism. Other private empirical risk minimization works also
commonly assume 𝐿-smooth and strong convexity [6, 7, 18].

Under the strongly concave and 𝐿-smooth assumptions,
we are able to derive upper and lower bounds for the target,
which satisfy the requirements of Theorem 3.3.

Lemma 4.1. Let 𝑀 (𝑥) ∝ exp(𝑔(𝑥)) be the target density,
where 𝑔 : R𝑑 → R is twice-differentiable, 𝛼-strongly concave,
and 𝐿-smooth. Call 𝑥∗ := argmax𝑥 𝑔(𝑥). Using 𝜙𝑑 (𝑥 ; 𝜇, Σ) to
denote the pdf of 𝑁𝑑 (𝜇, Σ). Then,

exp(𝑔(𝑥∗)) (2𝜋/𝐿)𝑑/2 𝜙𝑑 (𝑥 ;𝑥∗, (1/𝐿)𝐼 )
≤ exp(𝑔(𝑥)) ≤ exp(𝑔(𝑥∗)) (2𝜋/𝛼)𝑑/2 𝜙𝑑 (𝑥 ;𝑥∗, (1/𝛼)𝐼 ).
Given the bounds in Lemma 4.1, we can now implement

the squeeze-function rejection sampler of Section 3.3. Note
that the acceptance probability when targeting the lower
bound is (𝛼/𝐿)𝑑/2, which does not depend on 𝐷 .

4.2 KNG/Gradient mechanism
An alternative to the exponential mechanism is the 𝐾-norm
gradient mechanism (KNG), proposed in Reimherr and Awan
[26], also known as the gradient mechanism [2]. KNG has
been applied to applications such as geometric median es-
timation, and linear and quantile regression [2, 26]. Given
an objective function 𝑔𝐷 (𝑥), KNG samples from 𝑀𝐷 (𝑥) ∝
exp(− 𝜖

2Δ ∥∇𝑔𝐷 (𝑥)∥𝐾 ), where Δ ≥ ∥∇𝑔𝐷 (𝑥) − 𝑔𝐷′ (𝑥)∥𝐾 , for
all 𝑥 and 𝑑 (𝐷,𝐷) ≤ 1.

While the exponential mechanismwith a strongly concave
utility is naturally approximated by a Gaussian distribution
[4], KNG is closely related to the 𝐾-norm distributions [26].
The𝐾-normmechanismwas introduced in Hardt and Talwar
[14], and were also studied in Awan and Slavković [5].

Definition 4.2 ([14]). Let ∥·∥𝐾 be a norm on R𝑑 , with as-
sociated unit norm ball: 𝐾 = {𝑥 ∈ R𝐷 | ∥𝑥 ∥𝐾 ≤ 1}. The
𝐾-norm distribution with location𝑚 and scale 𝑠 has density
𝑓 (𝑥 ;𝑚, 𝑠) = 𝑐−1 exp

( −1
𝑠
∥𝑥 −𝑚∥𝐾

)
, where 𝑐 = (𝑑!)𝑠𝑑Vol(𝐾).

Under similar assumptions as those in Reimherr and Awan
[26, Theorem 3.1], Lemma 4.3 gives upper and lower bounds
which satisfy the assumptions required for Theorem 3.3.

Lemma 4.3. Let 𝑀 (𝑥) ∝ exp(−∥∇𝑔𝐷 (𝑥)∥2) be the target,
where 𝑔𝐷 : R𝑑 → R is twice-differentiable, 𝛼-strongly convex,
and 𝐿-smooth. Call 𝑥∗ := argmin𝑥 𝑔𝐷 (𝑥). Write𝜓𝑑 (𝑥 ;𝑚, 𝑠) to
denote the pdf of a 𝐾-norm distribution with location𝑚, scale
𝑠 , and ℓ2 norm. Denote Vol𝑑 (ℓ2) = 2𝑑 Γ𝑑 (1+1/2)

Γ (1+𝑑/2) the volume of
the unit ℓ2 ball in R𝑑 . Then,

(𝑑!)𝐿−𝑑Vol𝑑 (ℓ2)𝜓𝑑 (𝑥 ;𝑥∗, 1/𝐿)
≤ exp(−∥∇𝑔𝐷 (𝑥)∥2) ≤ (𝑑!)𝛼−𝑑Vol𝑑 (ℓ2)𝜓𝑑 (𝑥 ;𝑥∗, 1/𝛼).
Lemma 4.3 gives bounds that can be used to implement

Algorithm 1. The acceptance probability when targeting the
lower bound is (𝛼/𝐿)𝑑 , which is independent of 𝐷 .

If the underlying utility in KNG is 𝐿-smooth, then the log-
density is 𝐿-Lipschitz. As such, we can apply the adaptive
rejection sampler of Section 3.4.
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