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ABSTRACT

Although a variety of different methods have emerged in the field of clustering, K-
means still occupies an important position, and many advanced clustering methods
even rely on the K-means to achieve effective cluster detection. However, the sensi-
tivity of K-means to the selection of the initial cluster center and its limited ability
to handle nonlinear separable data somewhat restrict its clustering performance. In
order to overcome the limitations of K-means, we draw inspiration from manifold
learning and redefine K-means as a manifold K-means clustering framework. This
framework supports various types of distance matrices, thus facilitating the efficient
processing of nonlinear separable data. A unique advantage of this approach is
that it does not require the calculation of the cluster center, while it maintains
the consistency between manifold structure and cluster labels. Additionally, we
highlight the significant role of the ℓ2,p-norm; by maximizing the ℓ2,p-norm, we
can ensure the balance of classes in the clustering process, which is also supported
by theoretical analysis. The results from extensive experiments across multiple
databases substantiate the superiority of our proposed model.

1 INTRODUCTION

In the field of data analysis and pattern recognition, clustering is an unsupervised learning method
aimed at grouping data points into clusters. The objective is to ensure that data points within the same
cluster exhibit high similarity, while those from different clusters show significant differences. This
methodology has garnered considerable attention over the past decades, leading to the development
of various clustering algorithms designed to enhance data annotation and parsing. Among these,
K-means is particularly notable for its popularity. It partitions the data into K clusters and iteratively
optimizes the centroids to minimize the intra-cluster sum of squared distances. K-means is celebrated
for its simplicity, intuitiveness, and efficiency, making it a staple in many applications.

Despite its prominence, K-means is not without drawbacks. Specifically, it uses metrics like the
Euclidean distance to assign data points to the nearest cluster center, which may not be effective
for data with nonlinear distributions. To address this, researchers employ kernel functions—such
as the linear kernel Vankadara & Ghoshdastidar (2020), Euler kernel Lin & Chen (2023a), and
multi-kernel Liu (2023); Yao et al. (2021)—to map data into a high-dimensional kernel space where
it becomes linearly separable. Nevertheless, even with kernel-based enhancements, the choice of
initial cluster centers remains crucial in K-means. Incorrect initial selections can lead the algorithm
to converge to local optima, significantly impacting the clustering outcome Peña et al. (1999); Li et al.
(2021); Xiong et al. (2016); Xie et al. (2020); Liang et al. (2024).

To mitigate this issue, various strategies for selecting initial clustering centers have been proposed.
These include K-Means++ Bachem et al. (2016); Arthur & Vassilvitskii (2007), which reduces
randomness; methods based on data point density Lan et al. (2015); spatial distribution-based
partitioning techniques Aslam et al. (2020); and genetic algorithms that optimize for high-quality
centers Laszlo & Mukherjee (2006). Additionally, some studies combine spectral clustering with
K-means to bypass the need for estimating the centroid matrix. Since spectral clustering can
automatically determine the initial cluster center, it also alleviates the sensitivity of K-means to initial
center selection Pei et al. (2023). However, these approaches often overlook the alignment of data
geometry with labels, which can limit their effectiveness on complex datasets.

Inspired by manifold learningRoweis & Saul (2000); Belkin & Niyogi (2001), we develop a new
clustering algorithm. Manifold learning effectively captures and retains the complex nonlinear
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geometry inherent in data Cai (2015); Wu et al. (2022). From this perspective, our algorithm
reinterprets and enhances the traditional K-means algorithm by directly estimating the data clusters,
avoiding the need to estimate a centroid matrix, and utilizing manifold learning to accurately capture
the geometric structure of the data.

It is noteworthy that during the algorithm design process, we also incorporate the concept of ℓ2,p-
normWang et al. (2018); Zhao et al. (2024). ℓ2,p-norm minimization often plays a crucial role in areas
such as image recovery, text compression, and signal processing. However, our study also reveals
additional significant roles for ℓ2,p-norm. Specifically, by maximizing the ℓ2,p-norm, we ensure the
balance of classes in the clustering process, thus avoiding the problem that some classes are too large
or too small, and enhancing the effectiveness and stability of clustering.

Specifically, our method differs from existing K-means techniques in several key aspects:

• We establish the link between K-means and manifold learning, ensuring the consistency of
manifold structures and clustering labels.

• Unlike traditional K-means and its variants, our approach directly obtains data clusters
without the need for estimating cluster centers.

• We identify a significant role of the ℓ2,p-norm. By maximizing the ℓ2,p-norm, we can ensure
balanced clusters in the clustering process and provide a theoretical analysis.

• A unified clustering framework is established, and by utilizing different distance functions
(such as Euclidean distance, kernel Euclidean distance, KNN distance, etc.), we can derive
various K-means variants.

2 RELATED WORK

The essence of traditional K-means clustering is to find a set of cluster centers and then assign data
points to the nearest cluster center using Euclidean distances. However, when the data is nonlinearly
separable, K-means may not accurately reflect the similarities and differences between the data.

To address nonlinear separability in the original feature space, an efficient method is to employ the
kernel trick. This technique maps the raw data into a high-dimensional feature space where the
features become linearly separable. This approach has inspired the development of kernel K-means
and various variants. Girolami Girolami (2002) pioneered the integration of clustering and kernel
methods by proposing a clustering method based on the Mercer kernel. Kong et al. Kong & Kong
(2013) used a conditional positive definite kernel (CPD) to map data into a high-dimensional space
and performed K-means clustering there. Wu et al. Lin & Chen (2023a) introduced the Euler kernel
to kernel K-means by mapping input data onto a unit hypersphere in an equal-dimensional space
and performing K-means clustering on that sphere. However, Lin et al. Lin & Chen (2023b) noted
that the center of mass tends to deviate from the surface of the unit hypersphere during Euler kernel
clustering, leading to outliers. To address this issue, they proposed constraining the center of mass to
the unit hypersphere or optimizing the mapping of the original data in Euler kernel space, effectively
handling the problem of center of mass deviation.

However, the performance of kernel K-means clustering largely depends on the choice of kernel
functions. To alleviate this issue, multiple kernel learning has been introduced into K-means clustering
to find the best kernel combination for clustering. Liu et al. Liu et al. (2017) proposed an adaptive
optimal neighborhood multi-core clustering model, which employs matrix-induced regularization
to enhance the diversity of selected kernels and the representability of optimal kernels. In contrast,
Yao et al. Yao et al. (2021) enhanced kernel diversity from the perspective of subset selection by
choosing representative kernels from predefined sets. However, both approaches Liu et al. (2017);
Yao et al. (2021) rely on additional discretization steps to obtain the final discrete clustering indicator
matrix. To bypass this discretization step, Wang et al. Wang et al. (2022) proposed a discrete and
parameterless multi-core k-means model. By implicitly introducing regularization terms to assess the
correlation between different kernels and using alternative optimization methods, this model directly
generates the cluster index matrix without further processing.

It should be noted that the K-means algorithm is sensitive to the selection of initial cluster centers.
Several methods have been proposed to select the initial clustering center, notably the improved
algorithm K-Means++. K-Means++ Bachem et al. (2016); Arthur & Vassilvitskii (2007) ensures that
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the distance between initial centers of mass is maximized, thus reducing the risk of the algorithm
converging to a local optimal solution. Lan et al. Lan et al. (2015) proposed initializing cluster centers
with density peaks, determining cluster centers based on the local density of data points and their
distance to higher density points. Wu et al. Wu et al. (2021) calculated the nearest neighbor density for
each point, selected those with the highest density as initial center candidates, and further determined
the final initial cluster centers by constructing a minimum spanning tree among these candidates.
Additionally, Liao et al. Liao et al. (2024) calculated the decision value for each data point based on
the product of the nearest neighbor density peak (NNDP) of data points, and automatically selected
the point with the highest decision value as the initial clustering center. Aslam et al. Aslam et al.
(2020) evenly divided the data into k partitions by Euclidean distance, using the mean value of each
partition as the initial centroid. Laszlo et al. Laszlo & Mukherjee (2006) used a data-based super
quadtree and genetic algorithm to select a cluster centroid. Mardi et al. Mardi & Keyvanpour (2021)
proposed a genetics-based K-Means (GBKM) algorithm, where the clustering centroid is determined
by a genetic algorithm that maximizes the fitness function. Merhad Ay et al. Ay et al. (2023) fixed
some clustering centers and then searched for the optimal centers for the remaining clusters.

Although optimizing initial centroids can enhance the stability of K-means, the iterative update
process for centroids remains unstable. Consequently, some researchers have proposed variants
of the K-means algorithm that avoid direct estimation of the center of mass. Nie et al. Nie et al.
(2022) reformulated classical K-means as a trace maximization problem, thus directly assigning
each sample to the appropriate cluster without updating the center. Additionally, Pei et al. Pei et al.
(2023) introduced k-sum, based on the relationship between spectral clustering and K-means, to avoid
estimating the centroid matrix when the number of samples in each cluster is strictly equal. However,
these methods often overlook the consistency between data geometries and labels, which can limit
their effectiveness on complex datasets.

Notations: For clarity and consistency within this document, we introduce the notations used
throughout the paper. Scalars are denoted by lowercase letters (e.g., q), vectors by bold lowercase
letters (e.g., q), and matrices by bold uppercase letters (e.g., Q). The i-th row and j-th column of
matrix Q are denoted by qi and qj , respectively.

3 RETHINKING FOR K-MEANS

The essence of traditional K-means clustering is to find a set of cluster centers such that the sum of the
distances between all samples and the cluster centers to which they belong is minimized. Specifically,

min
mj ,Y

∑
i,j

yij ∥xi − mj∥2F s.t. Y ∈ Ind (1)

where mj is the j-th centroid. The element yij = 1 if sample xi belongs to the j-th cluster, and
yij = 0 otherwise.

Considering the sensitivity of K-means to the selection of initial clustering centers, we introduce
Theorem 1. This allows us to reformulate K-means by incorporating the concept of manifold learning,
thus better capturing the intrinsic geometry of the data and avoiding the dependence on the centroid
matrix.

Theorem 1 Let matrices P = diag(p1, . . . , pK) and H = diag(h1, . . . , hN ), where pj =
∑

i yij
and hi =

∑
j yij . Then, we have∑

i,j

yij ∥xi − mj∥2F =
∑
i,l

∥xi − xl∥2F sil (2)

where the manifold structure S represents the cluster structure in the data, S = QQT , Q = YP−1/2.

Proof 1 Expanding the left side of Eq. (2) yields:

tr
∑
i,j

xixTi yij − 2 tr
∑
i,j

xT
i mjyij + tr

∑
i,j

mjmT
j yij (3)

Taking the partial derivative with respect to mj and setting it to zero, we find:

mj =

∑
i xiyij
pj

= Xyjp
−1
j (4)
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Substituting Eq. (4) back into Eq. (3), we see that Eq. (3) simplifies to:

tr
∑
i

xixTi hi − tr
∑
j

Xyjp
−1
j yTj XT = tr(X(H − YP−1YT )XT ) (5)

Letting the adjacency matrix S = YP−1YT , then

S1 = YP−1(1T Y)T = Y1 = H1 (6)

Eq. (6) means that H is a degree matrix of S, then Eq. (5) can be written as:

tr(X(H − YP−1YT )XT ) =
∑
i,l

∥xi − xl∥2F sil (7)

Therefore, according to Eq. (3), Eq. (5), and Eq. (7), we can conclude that Eq. (2) holds. □

In summary, our method constructs the manifold structure S from label Y, ensuring the consistency
of sample labels on the same manifold. At the same time, the estimation of the centroid matrix is
avoided. We reinterpret K-means from the perspective of manifold learning to obtain the new form:

min
Y∈Ind

∑
i,l

∥xi − xl∥2F sil = min
Y∈Ind

∑
i,l

∥xi − xl∥2F
〈
Qi,Ql

〉
= min

Y∈Ind

∑
i,l

dil
〈
Qi,Ql

〉
= min

Y∈Ind
tr(QTDQ) = min

Y∈Ind
tr(YTDYP−1)

(8)

where Y ∈ RN×K denotes the label matrix, and the elements of the distance matrix D are defined as
dil = ∥xi − xl∥2F , Q = YP−1/2.

4 METHODOLOGY

4.1 MOTIVATION AND OBJECTIVE

The model (8) is difficult to solve and does not guarantee class equilibrium. Therefore, to optimize the
model and ensure the equilibrium of classes after clustering, we introduced Theorem 2 as a solution.

Theorem 2 Given n1 + n2 + . . .+ nK = N , where nj ≥ 0 represents the number of samples in the
j-th cluster, Eq.(9) reaches its maximum value when n1 = n2 = . . . = nK = N

K . In this scenario, Y
is discrete and exhibits a balanced class distribution.

max
Y

∥YT ∥2,p s.t. Y ≥ 0,Y1 = 1 (9)

Proof 2 ∥∥YT
∥∥
2,p

=

K∑
j=1

∥yj∥p2 =

K∑
j=1

(∥yj∥22)
p
2 =

K∑
j=1

aj
p
2 (10)

where aj = ∥yj∥22.

Let a = [a1, a2, . . . , aK ]T ∈ RK×1, λ1 = λ2 = . . . = λK = 1
K . f(aj) = aj

p
2 is a convex function

with respest to aj , then according to Jensen inequality, we have

f

 K∑
j=1

λjaj

 ⩾
K∑
j=1

λjf (aj) =
1

K

K∑
j=1

f (aj) =
1

K

∥∥YT
∥∥
2,p

(11)

Equality holds if and only if a1 = a2 = . . . = aK .

In order to find the maximum on the right-hand side of the inequality, we can translate to finding the
maximum on the left-hand side of the inequality

maxf

 K∑
j=1

λjaj

 = max(
1

K

K∑
j=1

aj)
p
2 = max(

1

K

K∑
j=1

∥yj∥22)
p
2 = max(

1

K
∥Y ∥2F )

p
2 (12)

4
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We have

max
yij≥0,

∑
j

yij=1
∥Y∥2F = max

yij≥0,
∑
j

yij=1

∑
ij

y2ij = max
yij≥0,

∑
j

yij=1

∑
i

∑
j

y2ij (13)

In Eq.(13), each row of Y is independent, so for each row of Y, Eq.(13) becomes

max
yij≥0,

∑
j

yij=1

K∑
j=1

y2ij (14)

The solution to the maximization problem (14) should be realized when yi has only one element equal
to 1 and the rest are 0, and the maximum value should be 1. Thus, we can conclude that the problem
(∥Y ∥2F )

p
2 only reaches a maximum when Y is a discrete matrix.

In this case, combined with Eq. (11), we have

f

 K∑
j=1

1

K
aj

 = f(
1

K

K∑
j=1

aj) = f(
1

K

K∑
j=1

nj) = f(
N

K
) (15)

So we know that when we take the maximum, a1 = a2 = . . . = aK = n1 = n2 = . . . = nK = N
K . □

Theorem 2 demonstrates that Eq. (9) can achieve an approximate class equilibrium. Consequently,
model (8) is transformed into a continuous model (16) under these constraints.

min
Y

tr(YTDY)− λ
∥∥YT

∥∥
2,p

s.t.Y ≥ 0,Y1 = 1 (16)

When Eq. (16) achieves the optimal solution, Y is discrete and each class is balanced.

4.2 OPTIMIZATION

The ℓ2,p-norm, involving the sum of the singular values of a matrix, is generally non-smooth.
Therefore, direct optimization of model (16), which incorporates the ℓ2,p-norm, using gradient descent
can be complex and challenging. To simplify the optimization process, we define f(Y) = ∥Y∥2,p
and perform a first-order Taylor expansion at Y(t) as follows:

f(Y) = f(Y(t)) + ⟨∇f(Y(t)),Y −Y(t)⟩ (17)

where Y(t) is the solution at the t-th iteration, and ∇f(Y(t)) is the gradient of ∥Y∥2,p.

The derivative of ∥Y∥2,p with respect to Y is denoted as H, given by:

H =
∂
∥∥YT

∥∥
2,p

∂Y
= p ∗ Y ∗ diag( 1

∥y1∥
2−p
2

, . . . ,
1

∥yK∥2−p
2

) (18)

Ignoring the constant in the Eq.(17), we solve the Eq.(16) iteratively as follows

Y(t+1) = argmin
Y

tr(YTDY)− λ < ∇f(Y(t)),Y >

= argmin
Y

tr(YTDY)− λtr(HTY)
(19)

So we approximate Eq.(16) to Eq.(20), Y is updated by solving the following problem:

min
Y1=1,Y⩾0

tr(Y⊤DY)− λtr(H⊤Y) (20)

Let Y =

[
yi

Y0

]
, D =

[
dii d⊤

i0
di0 D0

]
, where Y0 ∈ R(N−1)×K , di0 ∈ R(N−1)×1, D0 ∈

R(N−1)×(N−1). We have:

Y⊤DY =
[
(yi)⊤ (Y0)

⊤] [dii d⊤
i0

di0 D0

] [
yi

Y0

]
= (yi)⊤diiy

i + (Y0)
⊤di0y

i + (yi)⊤d⊤
i0Y0 + (Y0)

⊤D0Y0

(21)

5
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Let H =

[
hi

H0

]
, H⊤Y =

[
(hi)⊤ (H0)

⊤] [yi

Y0

]
= (hi)⊤yi + (H0)

⊤Y0

Y⊤DY − λH⊤Y = (yi)⊤diiy
i + (Y0)

⊤di0y
i + (yi)⊤d⊤

i0Y0

+ (Y0)
⊤D0Y0 − λ(hi)⊤yi − λ(H0)

⊤Y0

(22)

Then, removing items not related to variable yi, through the properties of trace operation, we have:

tr(Y⊤DY − λH⊤Y) = tr((yi)⊤diiy
i + 2yiY⊤

0 di0 − λyi(hi)⊤) = yi(yi)⊤dii + yig (23)

where g = 2Y⊤
0 di0 − λ(hi)⊤.

Thus, the problem of updating the i-th row of Y can be:

min
yi1=1

yi(yi)⊤dii + yig (24)

As dii = 0(i = 1, 2, · · · , N), (24) can be:

min
yi

yi(2Y⊤
0 di0 − λ(hi)⊤) ⇔ min

yi
yi(2Y⊤di − λ(hi)⊤) (25)

di is the i-th column of D, dii = 0. Y denotes the solution before yi is updated. Then, the solution
of yi can be:

yib =

{
1, b = arg min

j
(2Y⊤di − λ(hi)⊤)j

0, otherwise.
(26)

Algorithm 1 presents the pseudo-code of the optimization procedure.

Algorithm 1: solve problem (16)

1: Input distance matrix D ∈ RN×N , cluster number K, hyperparameter λ.
2: Initialize label matrix Y ∈ RN×K

3: repeat
4: update matrix H by Eq. equation 18;
5: update matrix Y by Eq. equation 26 row by row;
6: until convergence
7: Output Y ∈ RN×K

4.3 COMPUTATIONAL COMPLEXITY ANALYSIS

The time complexity in the optimization method is mainly focused on the solution of H and Y. Update
H with the equation provided, the computational complexity is O(NK2). Calculation YTD requires
multiplying a K×N matrix with an N×N matrix, resulting in a time complexity of O(N2K). If the
outer loop iterates T times, the total complexity of this algorithm becomes O(T × (NK2 +N2K)).

4.4 DISTANCE MATRIX

To explore different K-means variants, we can employ various metrics such as the Euclidean distance,
KNN distance, or even the Euclidean distance in kernel space. These choices define the distance
matrix D. Additionally, we can introduce novel types of distance matrices D to develop new K-
means variants. For instance, using the adjacency matrix S as described in Lu et al. (2023) offers
one such alternative. By applying a suitable transformation function, we can convert the adjacency
matrix S into the distance matrix D and then construct the anchor graphXia et al. (2023). This
conversion incorporates more structural information about the data into the clustering process. The
transformation function for our-custom is defined as follows:

dij =
2

1 + (2πsij)
2 (27)

The nonlinear transformation specified in Eq.(27) assigns closer distances to similar data points and
greater distances to dissimilar ones, enhancing the discriminative power and robustness of the model.
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5 EXPERIMENTS

We evaluate our proposed model using three toy datasets and nine benchmark datasets. Experiments
are conducted on a Windows 10 desktop computer equipped with a 2.40 GHz Intel Xeon Gold 6240R
CPU, 64 GB RAM, and MATLAB R2020b (64-bit).

5.1 EXPERIMENTS ON ARTIFICIAL DATASETS

In this section, we validate our method for clustering nonlinearly separable data using two synthetic
datasets. Specifically, we create a two-moon dataset with 400 samples that form two moon-like shapes
on a two-dimensional plane, showcasing nonlinear separability. Additionally, we utilize a three-curve
dataset comprising 1,200 samples distributed across three S-shaped curves on a two-dimensional
plane, each curve representing a distinct, nonlinearly separable cluster.

The first row of Figure 1 illustrates the clustering effects of the two-moon dataset using various
distance measures. Specifically, Figure 1(a) and (b) demonstrate the clustering results based on
Euclidean distance, Figure 1(c) depicts the outcome using KNN distance, Figure 1(d) presents the
effects using Euclidean distance in kernel space, and Figure 1(e) displays the results achieved by
our algorithm using a custom distance measure. The second row in Figure 1 provides a similar
comparison for the three-curve dataset. By examining the subfigures in Figure 1, we can clearly see
the different clustering effects of various distance measures. Notably, our model effectively utilizes
manifold learning techniques combined with a no-center K-means approach to accurately cluster
nonlinearly separable data by aligning the data labels with the manifold structure, as demonstrated in
Figure 1(e) and (j). This underscores the efficacy of our method in efficiently partitioning nonlinear
separable clusters within the input space, thereby enhancing clustering accuracy.
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Figure 1: Visualization of artificial datasets. Different colors represent different classes of data.

5.2 EXPERIMENTAL ON BENCHMARK DATASETS

5.2.1 DATASETS AND COMPETING ALGORITHMS

We conducted experiments on nine datasets: JAFFE Lyons et al. (1998) consists of 213 expressions
from 10 subjects. ORL Samaria & Harter (1994) contains 400 facial images from 40 individuals.
UMIST Graham & Allinson (1998) consists of 564 facial images from 20 individuals. Face-V5 1

consists of 2,500 face images in 500 categories. AR Martinez & Benavente (1998) contains 3,120 face
images in 120 classes. isolet2 contains 7,797 samples of the pronunciation of 26 letters. USPS Hull
(1994) consists of 9,298 handwritten digit images. Pendigits 3 is made up of 10,992 handwritten
digits. And PEAL Gao et al. (2008) contains 30,863 head and shoulder images of 1,040 people.

1http://biometrics.idealtest.org/dbDetailForUser.do?id=9
2https://archive.ics.uci.edu/dataset/54/isolet
3https://odds.cs.stonybrook.edu/pendigits-dataset/
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In order to fully evaluate the effectiveness of our proposed method, we selected six clustering
algorithms as references for comparative analysis: K-Means, KKMTzortzis & Likas (2008), RKM
Lin et al. (2019), CDKMNie et al. (2022), K-sumPei et al. (2023), K-sum-xPei et al. (2023).

5.2.2 RESULTS

Discussion of the value of p: To gain a deeper understanding of how different values of parameter p
in the ℓ2,p-norm impact the clustering outcomes, we conducted experiments using our model on the
UMIST dataset, as illustrated in Figure 2. We take p between 0.1 and 1, we can find that the overall
performance of the model is better when p = 1. Therefore, in order to simplify the experiment, we
fixed the value as p = 1 in this paper.
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Figure 2: Effect of parameter p on UMIST.

After conducting experiments across nine datasets, we obtained the clustering measurement results,
as shown in Tables 1 and 2. Based on this analysis, we can draw the following conclusions:

Table 1: The clustering performances on the JAFFE, ORL, UMIST, Face-V5, AR, isolet, USPS, and
Pendigits datasets.

Datasets JAFFE ORL UMIST Face-V5

Methods ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

K-means 0.7085 0.8010 0.7455 0.5198 0.7234 0.5705 0.4339 0.6410 0.5110 0.7633 0.9369 0.8114
KKM 0.8028 0.8246 0.8263 0.5425 0.7440 0.5800 0.4661 0.6682 0.5304 0.7816 0.9380 0.8076
RKM 0.8310 0.8159 0.8310 0.5000 0.7143 0.5200 0.4209 0.5963 0.4400 0.8140 0.9473 0.8124
CDKM 0.7451 0.8246 0.7812 0.5507 0.7529 0.6090 0.4210 0.6404 0.5043 0.8506 0.9639 0.8852
K-sum 0.8789 0.8764 0.8789 0.6337 0.7940 0.6562 0.4209 0.6190 0.4553 0.9568 0.9860 0.9656
K-sum-x 0.8930 0.9013 0.8977 0.5877 0.7693 0.6060 0.4296 0.6377 0.4715 0.9638 0.9860 0.9662

Our-ED 0.9671 0.9547 0.9671 0.6575 0.8042 0.6750 0.4765 0.6236 0.4991 0.9684 0.9874 0.9696
Our-KNN 0.9484 0.9442 0.9484 0.6575 0.8078 0.6675 0.5635 0.7069 0.6017 0.9724 0.9900 0.9732
Our-K-ED 0.9671 0.9548 0.9671 0.6600 0.7945 0.6700 0.5339 0.6783 0.5583 0.9752 0.9894 0.9760
Our-custom 0.9671 0.9623 0.9671 0.7050 0.8331 0.7175 0.6348 0.7635 0.6887 0.9724 0.9908 0.9728
Datasets AR isolet USPS Pendigits

Methods ACC NMI Purity ACC NMI Purity ACC NMI Purity ACC NMI Purity

K-means 0.2514 0.5574 0.2749 0.5469 0.7154 0.5958 0.6458 0.6026 0.7129 0.6963 0.6705 0.7260
KKM 0.2112 0.4786 0.2135 0.5238 0.7029 0.5621 0.6872 0.6437 0.7565 0.7859 0.7139 0.7859
RKM 0.2641 0.5752 0.3215 0.6299 0.7346 0.6387 0.6241 0.5748 0.7003 0.7296 0.6639 0.7296
CDKM 0.2653 0.5700 0.2862 0.5328 0.7159 0.5837 0.6526 0.6094 0.7237 0.7027 0.6697 0.7226
K-sum 0.2970 0.5963 0.3686 0.6269 0.7347 0.6402 0.6802 0.6274 0.7486 0.7562 0.6743 0.7562
K-sum-x 0.2454 0.5676 0.3236 0.6094 0.7307 0.6254 0.6502 0.5853 0.7150 0.7768 0.7001 0.7768

Our-ED 0.2612 0.5765 0.2724 0.6538 0.7508 0.6672 0.6539 0.5842 0.7164 0.7816 0.7056 0.7816
Our-KNN 0.3359 0.6353 0.3551 0.6504 0.7533 0.6540 0.7545 0.6690 0.7545 0.8406 0.7719 0.8406
Our-K-ED 0.2747 0.5794 0.2865 0.6810 0.7613 0.6930 0.7595 0.6559 0.7595 0.8579 0.7784 0.8579
Our-custom 0.4333 0.7144 0.4487 0.7454 0.8014 0.7458 0.8450 0.7803 0.8450 0.8322 0.7612 0.8322

Adaptability to Different Distance Matrices: Our model can adapt to various types of distance
matrices. In the experiments, we compared Our-ED (square Euclidean distance), Our-KNN (KNN
distance), Our-K-ED (kernel distance), and Our-custom (custom distance). The experimental results
show that the clustering performance of most datasets can be significantly improved by using Our-
custom. Specifically, our custom distance employs a method of nonlinear mapping to the adjacency
graph, which proves more advantageous than the square Euclidean distance in handling linearly
non-separable datasets. The results of kernel distance are comparable to those of KNN distance.
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Table 2: The clustering performances on the PEAL dataset.

Datasets PEAL

Methods K-means KKM RKM CDKM K-sum K-sum-x Our-ED Our-KNN Our-K-ED Our-custom

ACC 0.7206 0.7087 0.8072 0.7296 0.8770 0.8491 0.8596 0.8919 0.8602 0.8854
NMI 0.8939 0.8624 0.9129 0.8967 0.9424 0.9291 0.9321 0.9417 0.9317 0.9446
Purity 0.7539 0.7296 0.8181 0.7617 0.8811 0.8537 0.8640 0.8939 0.8649 0.8889

However, the custom distance can more effectively utilize the prior knowledge of the graph and
further unearth the intrinsic structural information of the data.

Evaluation of Clustering Algorithms: When evaluating the performance of clustering algorithms,
we observe that algorithms dependent on the centroid matrix—specifically K-means, KKM, and
RKM—perform less effectively on the baseline datasets compared to the K-sum and K-sum-x,
which do not require centroid matrix estimation. Specifically, K-sum and K-sum-x combine spectral
clustering and K-means in the clustering process, bypassing the need to estimate the centroid matrix.
This combination enables them to exhibit higher accuracy when dealing with complex datasets.

Handling Imbalanced Datasets: Although K-sum and K-sum-x algorithms initially assume balanced
dataset categories, this constraint is removed during the actual solution process. This flexibility may
limit their performance in certain scenarios, particularly in datasets with uneven category distribution.
In contrast, we reinterpret the K-means algorithm from a manifold learning perspective and subtly
incorporate the ℓ2,p-norm. The integration of the ℓ2,p-norm not only enhances the model’s flexibility
but also naturally maintains class equilibrium during the solving process.

5.2.3 PARAMETERS SETTING AND ANALYSIS

In order to verify the influence of parameter λ on clustering performance, we carry out parametric
analysis of the custom distance in our model, as shown in Figure 3. In particular, for the AR dataset,
the model with λ = 0.8 reached the best clustering effect. When facing the USPS dataset, the
best clustering performance occurred under λ = 0.6. For the Pendigits dataset, the performance
is optimal when λ = 0.5. And on the PEAL dataset, the model with λ = 0.9 showed the best
clustering performance. These findings further emphasize the importance of precise adjustment
of the λ parameters. By fine-tuning these parameters, we can significantly improve the clustering
effectiveness of the model, thus obtaining better clustering results on various datasets.
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Figure 3: Effect of parameter λ.

5.2.4 TSNE VISUALIZATION

We adopted the TSNE technology to carry out dimensional-reduction processing on several datasets,
including JAFFE, USPS, UMIST, and Pendigits. We successfully mapped high-dimensional data to a
two-dimensional plane and performed visualization clustering displays, as shown in Figure 4. It can
be clearly observed from the figure that the data points are effectively divided into different clusters.
The boundaries between the clusters are distinct, and the data points within the clusters are closely
adjacent.
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Figure 4: TSNE visualization.

5.2.5 CONVERGENCE

Our approach is evaluated for convergence and clustering performance on benchmark datasets such
as AR, USPS, Pendigits, and PEAL. To quantify the convergence process more accurately, we track
the changes in the value of the objective function with the number of iterations. As shown in Figure 5,
the value of the objective function tends to converge swiftly. Simultaneously, we use ACC, NMI,
and Purity indicators to evaluate the clustering performance of the algorithm. Experimental results
show that our method achieves robust clustering performance on these datasets, thus verifying the
effectiveness and practicability of the algorithm.
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Figure 5: Curves of model loss and clustering indexs with number of iterations.

6 CONCLUSION

This paper presents a new manifold K-means clustering framework. Different variants of K-means
can be obtained by flexibly applying different distance matrices. The framework reconstructs the tra-
ditional K-means from the perspective of manifold learning, realizes data clustering without centroid
estimation, and ensures the consistency of manifold structure and cluster labels. Additionally, we
introduce the maximization of the ℓ2,p-norm to effectively maintain the class balance in the clustering
process. A large number of experimental results fully verify the superiority and effectiveness of this
method.
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