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ABSTRACT
Time-aware recommendation has been widely studied for modeling

the user dynamic preference and a lot of models have been proposed.

However, these models often overlook the fact that users may not

behave evenly on the timeline, and observed datasets can be biased

by user intrinsic preferences or previous recommender systems,

leading to degraded model performance. We propose a causally

debiased time-aware recommender framework to accurately learn

user preference. We formulate the task of time-aware recommenda-

tion by a causal graph, identifying two types of biases on the item

and time levels. To optimize the ideal unbiased learning objective,

we propose a debiased framework based on the inverse propensity

score (IPS) and extend it to the doubly robust method. Considering

that the user preference can be diverse and complex, which may

result in unmeasured confounders, we develop a sensitivity analy-

sis method to obtain more accurate IPS. We theoretically draw a

connection between the proposed method and the ideal learning

objective, which to the best of our knowledge, is the first time in the

research community. We conduct extensive experiments on three

real-world datasets to demonstrate the effectiveness of our model.

To promote this research direction, we have released our project at

https://www-cdtr.github.io/.
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1 INTRODUCTION
The key of a recommender system lies in the accurate understand-

ing of the user preference. In real-world scenarios, the user pref-

erence usually exhibits dynamic properties. For example, in the

e-commerce recommendation, the users may purchase more items

when they are on sale. In the movie recommendation, one may give

higher ratings at weekends due to the holiday mood. To capture the

dynamic nature of the user preference, researchers have designed

a lot of promising time-aware recommender models. For example,

TimeSVD++ [23] incorporates the time information into the matrix

factorization methods. BPTF [42] leverages tensor factorization to

captures the user, item and time interactions.
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While the above models have achieved remarkable successes,

an important problem has been largely ignored, that is, the ob-

served datasets can be biased by the user intrinsic preference or

the previous recommender models. As exampled in Figure 1, the

user is a fan of science-fiction. Thus in her watching records, we

may observe much more sci-fi movies than other types of films. If

the model is learned based on such dataset, the performance can

be unsatisfying if different types of movies are evaluated with the

same weights (i.e., in an unbiased manner) [4]. From the interaction

time perspective, due to the watching habit, the user watches more

movies at weekends, while on the working days, the interactions

are quite sparse. With these records, the model will learn more

about the user weekend behavior patterns (e.g., tending to give

higher ratings), which may not work well for the working days.

However, an ideal temporal model should accurately estimate the

user preference for all the interaction times. The above item- and

time-level biases jointly influence the observed datasets, and the

models learned based on them may be biased and not perform well

on the disadvantaged items/times.

To alleviate the above problem, in this paper, we propose a

causally debiased time-aware recommender framework (called

CDTR for short). In particular, we formulate the task of time-aware

recommendation by a causal graph, based on which we analyze the

causes of the item- and time-level biases. To correct these biases, we

adjust the training samples based on the inverse propensity score

(IPS) [31]. Although this seems to be a straightforward idea, there

are many challenges. To begin with, debiased recommendation has

been extensively studied before. However, previous work only fo-

cused on the item-level bias. In our problem, there are two types

of biases, that is, the item- and time-level biases. How to jointly

model and correct them needs careful designs. Then, accurately

estimating IPS for a recommender system is not easy, since the

datasets can be quite sparse and noisy. Previous work usually al-

leviated this problem by building doubly robust (DR) models [38].

However, how to extend these models to the time-aware settings is

not clear. At last, due to the complex user preferences, there can

be many unmeasured confounders which are not recorded in the

dataset. How to handle them is also a challenge.

To overcome the above challenges, we firstly define the ideal

unbiased learning objective. Then, we deploy two independent

models to estimate the propensity scores for the items and times,

respectively, which are expected to flexibly capture the item/time

observational patterns. Based on these propensity scores, we design

a time-aware debiased recommender framework, and also extend

it to the doubly robust method. To reveal the rationalities of these

methods, we theoretically prove that they are unbiased to the ideal

objective. To capture the unmeasured confounders, we develop

a sensitivity analysis method [9] by quantitatively indicating the

degree of the unconfoundedness. Basically, we first find the “worst-

case IPS” in a range to maximize the loss function, which is then

minimized to learn the parameters by fixing the IPS. For the pro-

posed method, we theoretically prove that the objective is an upper
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Figure 1: Motivating example. The upper sub-figure presents
the userwatching records, including the viewedmovies, inter-
action times and user-posted ratings. The bottom sub-figure
shows the uneven distributions of the viewed movies and
interaction times. (best view in color)

bound of the ideal objective. To demonstrate the effectiveness of our

framework, we apply it to different time-aware recommender mod-

els, and conduct extensive experiments based on three real-world

datasets.

Notably, we have noticed that there is a pioneer work [16] on

dynamic debiased recommender model. However, our paper has

significant differences. To begin with, our model is derived from

the causal perspective. In particular, we formulate the task of time-

aware recommendation by a causal graph, which enables us to

clearly understand the item- and time-level biases, and be aware of

the potential unmeasured confounders. Then, we propose a doubly

robust method to improve the estimation accuracy. At last, we

provide a series of theoretical understandings of our model.

The main contributions of this paper can be summarized as

follows:

• We propose to build a debiased time-aware recommender

framework from the causal perspective.

• To achieve this goal, we design an IPS based model, and extend

it by building a doubly robust method and explicitly modeling the

unmeasured confounders.

• We provide a series of theoretical analysis on the designed

models.

• Extensive experiments have been conducted to demonstrate

the effectiveness of our models, and we have released our project

at https://www-cdtr.github.io/.

2 RELATEDWORK
2.1 Debiased Recommendation
In recent years, the topic of debiased recommendation has gained

significant attention due to the realization that many recommenda-

tion systems suffer from biases that can degrade recommendation

performance. Recommendation datasets usually contain different

types of biases because the data are observational rather than exper-

imental. To remove the data biases, recent years have witnessed a

large amount of debiased recommender frameworks. Schnabel et al.

[31] proposes a method that removes the item exposure bias by in-

corporating the inverse propensity score into the traditional matrix

factorization model. To estimate propensity score more accurately,

[44] develops an influence function based method to correct biases

in the recommender system. Another method proposed by [38]

combines error imputation and inverse propensity score to design a

doubly robust method for unbiased recommendation. Subsequently,

researchers have focused on optimizing the doubly robust method

further, using various techniques to reduce the bias and variance.

To this end, [7] formulates various doubly robust methods into a

unified and general paradigm and further proposes to reduce bias

and achieve a better trade-off between the bias and variance.

Unmeasured confounding is a common problem in the field of

recommender systems, where theremay be hidden factors that influ-

ence user preferences and item ratings, but which are not captured

by the available data. In response, researchers have developed a

variety of techniques to address the issue of unmeasured confound-

ing. The first line is to model and estimate the effect of unmeasured

confounding using statistical and machine learning methods. [39]

uses neural networks to model the impact of unobserved latent con-

founding on recommendation results and incorporates it into the

optimization process. [46] proposes iDCF, a general deconfounded

recommender framework that applies proximal causal inference to

infer the unmeasured confounders and identify the counterfactual

feedback. Another line is using sensitivity analysis to learn a robust

model that considers unmeasured confounders within a bound. In

the field of causal inference, [19] introduces confounding-robust

policy that takes into account possible unobserved confounding.

Similarly, in [9], the authors make the assumption that the impact

of observed confounding on the recommender system is limited.

They use sensitivity analysis to estimate this influence range and

then leverage adversarial learning to construct a recommendation

system that is robust to unobserved confounding within this limit.

Most of the above models only consider the biases from the item

perspective. However, in our framework, we jointly consider the

item- and time-level biases. We have also improved the robustness

of our recommendation system to unobserved confounding by con-

ducting sensitivity analysis from both the perspectives of item and

time. The most similar work to our paper is [16], but as mentioned

before, there are significant differences on the modeling perspective,

framework components and theoretical analysis.

2.2 Dynamic Recommendation
Dynamic recommendation can be generally divided into two classes

according to how the time information is utilized [3, 6, 34]. In the

following, we briefly introduce each of them.

Time-dependent recommendation. In recent times, this par-

ticular type of recommendation has gained significant attention

from the research community. In this type of models, the time is

leveraged to chronologically sort the items, and the models focus

more on the item correlations along the timeline. Sequential rec-

ommendation [36], session based recommendation [35] and next-

basket recommendation [43] all belong to this class. For example,
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He et al. [13] propose Fossil assuming that the user behaviors can

be approximated as a Markov process, where the current action

is only influenced by the most recent decision. Fossil combines

FISM [18] and Markov chain to model, where FISM is used to model

long-term interest, and Markov chain is used to model short-term

interest. In recent years, researchers have started to explore the

use of RNNs in the field of recommendation systems, particularly

for sequential recommendation tasks. Hidasi et al. [15] propose

a session-based recommendation method based on GRUs, achiev-

ing state-of- the art performance with fewer parameters. [20] uses

self-attention to model the influence of the items interacted long

before. [33] leverages the bidirectional Transformers to model the

user behaviors. In addition, many models incorporate the absolute

time information to highlight the importance of the time interval

between successive items for the user decisions [45].

Time-aware recommendation. In this type of methods, the

time is used as a contextual information, which will directly influ-

ence the model predictions. For example, [23] combines the time

information with the matrix factorization model, and the user and

item properties are represented by temporal latent vectors. [10]

imposes exponential decay rates on the older user behaviors to

make more reasonable estimations. [42] is a tensor factorization

method, where the time information is regarded as an additional di-

mension to capture the user dynamic preference. [6] leverages deep

convolutional neural network to capture the nonlinear correlations

between the time and user-item.

Our paper targets at time-aware recommendation. However,

different from the previous work, we do not aim to develop an addi-

tional model to better incorporate the time information. We reveal a

fundamental problem, that is, the observed time information can be

biased due to the user selection preferences. In addition, we build a

debiased framework, which can be applied to most of the previous

time-aware recommender models.

3 PROBLEM FORMULATION
Our paper focuses on time-aware recommendation. Time-aware

recommendation is motivated by the dynamic nature of the user

preference [3]. We have used multiple symbols and abbreviations

in this paper, and their meanings are presented in Table 1.

Formally, suppose we have a user set U and an item set V . The

interactions between the users and items are defined as

O= {(𝑢, 𝑣, 𝑡, 𝑟𝑢𝑣𝑡 ) |𝑢 ∈ U, 𝑣 ∈ V, 𝑡 ∈ T },
where each element (𝑢, 𝑣, 𝑡, 𝑟𝑢𝑣𝑡 ) means that user 𝑢 has interacted

with item 𝑣 at time 𝑡 with feedback 𝑟𝑢𝑣𝑡 . T is the set of all possible

interaction times. 𝑟𝑢𝑣𝑡 can be either explicit feedback like the rating

from the user to the item, or implicit feedback, such as whether the

user has clicked or purchased the item
1
. Based on {U,V,T ,O},

time-aware recommendation aims to learn a model 𝑓 , such that

for a given user-item pair (𝑢, 𝑣) and an interaction time 𝑡 , 𝑓 can

accurately estimate the likeness from the user to the item at time 𝑡 .

In order to learn 𝑓 , the following time-aware objective is usually

optimized:

𝐿 =
1

|O|
∑︁

(𝑢,𝑣,𝑡,𝑟𝑢𝑣𝑡 ) ∈O
𝛿 (𝑓 (𝑢, 𝑣, 𝑡), 𝑟𝑢𝑣𝑡 ), (1)

1
In practice, the implicit feedback is usually converted to a 0-1 value.

Figure 2: (a) The causal graph for generating the observed
dataset. (b) The causal graph for generating the dataset for
training the ideal learning objective. The effects of the in-
verse propensity scores on the causal graph of (a) are shown
in (c) and (d).

where 𝛿 is the loss for a specific sample. For the explicit feedback,

𝛿 can be implemented with a regression loss, such as the mean

squared error [12]. For the implicit feedback, the task is usually

converted to a classification problem, and 𝛿 can be specifiedwith the

binary cross entropy loss [37]. In the past few decades, people have

devoted a lot of effort to designing 𝑓 for better fitting the observed

datasets [14, 20, 33]. However, the observed datasets can be skewed

by the user self-selection preferences or the recommender systems

used, which may bias the learned models.

Causal understanding of time-aware recommendation. In
order to more deeply understand the data biases in time-aware

recommendation, we provide a causality analysis of this task. To

begin with, we present a causal graph to describe the observed data

generation process in Figure 2(a), where 𝑼 , 𝑽 , 𝑻 and 𝑹 represent

the user, item, interaction time and feedback, respectively. The

rationalities of this causal graph are explained as follows:

• 𝑼 , 𝑽 , 𝑻 → 𝑹: these edges encode the assumption that the

feedback is jointly determined by the user, item and interaction

time, which is the basis for all the time-aware recommender models.

• 𝑼 → 𝑽 : this edge represents that the observation of the item is

influenced by the user. For example, if the item is actively selected

by the user, then the user intrinsic preference determines which

item is observed (i.e., self-selection bias). If the item is recommended

by the previous systems, then, since most recommender models

are personalized, the observed item is influenced by the user (i.e.,
selection bias). Both of the self-selection and exposure biases can

be abstracted by the edge 𝑼 → 𝑽 .
• 𝑼 → 𝑻 , 𝑽 → 𝑻 : these edges mean that the interaction time is

jointly influenced by the user and item. On one hand, it is intuitive

that different users may click/purchase the same item at various

times. On the other hand, for the same user, different items also

determine their own interaction times. For example, one may pur-

chase T-shit in summer, but for the cotton coat, the interaction time

is more likely to be the winter.

The ideal learning objective and causal graph. Intuitively, an
ideal time-aware recommender model should accurately estimate

the user feedback on all items at all times, which corresponds to
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the following learning objective:

𝐿
ideal

=
1

|U|
∑︁
𝑢∈U

1

|V|
∑︁
𝑣∈V

1

|T |
∑︁
𝑡 ∈T

𝛿 (𝑓 (𝑢, 𝑣, 𝑡), 𝑟𝑢𝑣𝑡 )

=
1

|U|
∑︁
𝑢∈U

𝐸𝑣∼𝑝𝑉 (𝑣) [𝐸𝑡∼𝑝𝑇 (𝑡 ) [𝛿 (𝑓 (𝑢, 𝑣, 𝑡), 𝑟𝑢𝑣𝑡 )]],
(2)

where the samples iterate all the users, items and times. Here, we

follow the previous work [1, 25, 28] to discretize the time, and all

possible times are collected in T . 𝑝𝑉 (𝑣) = 1

|V | (∀𝑣 ∈ V) and
𝑝𝑇 (𝑡) = 1

| T | (∀𝑡 ∈ T ) are the uniform distributions on the item

and time sets, respectively.

To optimize objective (2), the datasets should be generated ac-

cording to the ideal causal graph presented in Figure 2(b), where

the item and time are independent with the user, and uniformly

observed. In practice, obtaining such datasets needs random online

experiments, which can be too expensive or even infeasible [8].

By comparing the causal graph for generating the observed

dataset (i.e., Figure 2(a)) with the ideal one (i.e., Figure 2(b)), we
can find two major differences: on one hand, the item observation

in Figure 2(a) is influenced by the user, thus there will be more

user favored items in the observed dataset than those in the ideal

dataset (generated based on Figure 2(b)). This is the basic reason

for the item-level bias. On the other hand, the interaction time in

Figure 2(a) is influenced by the user and item, which makes the

observational time distribution not uniform as required by the ideal

dataset, leading to the time-level bias. The existence of the item-

and time-level biases makes the traditional objective (1) deviated

from the ideal one. In this paper, we would like to design a debiased

framework which is more aligned with the ideal objective.

4 THE CDTR MODEL
To achieve the above goal, in this section, we propose a debiased

time-aware recommender framework. In particular, we firstly de-

sign an IPS method to correct the item- and time-level biases si-

multaneously. Then we extend the IPS method to the doubly ro-

bust model. At last, we capture the unmeasured confounders by

a sensitivity analysis method, which facilitates more accurate IPS

estimation.

4.1 The Temporal IPS Method
IPS is a widely-used and effective method for correcting the data

bias in recommendation. [4] This method adjusts the training sam-

ples by assigning importance weights based on the inverse of their

probability of observation. Instances with smaller observation prob-

abilities are assigned higher weights, whereas more frequently

observed samples are assigned lower weights. Although previous

research has shown that IPS can effectively address item-level bi-

ases, these methods are not suitable for handling the biases at both

the item and time levels. To simultaneously handle the item- and

time-level biases, we design the following objective:

𝐿IPS=
1

|U|
∑︁
𝑢∈U


1

|V𝑢 |
∑︁
𝑣∈V𝑢

𝑝𝑉 (𝑣)
𝑝𝑉
𝑂
(𝑣 |𝑢)


1

|T𝑢𝑣 |
∑︁

𝑡 ∈T𝑢𝑣

𝑝𝑇 (𝑡)
𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣)

𝛿𝑢𝑣𝑡


 ,

where 𝛿𝑢𝑣𝑡 is short for 𝛿 (𝑓 (𝑢, 𝑣, 𝑡), 𝑟𝑢𝑣𝑡 ). V𝑢 is the set of items

interacted by user 𝑢. T𝑢𝑣 is the set of interaction times
2
for the

user-item pair (𝑢, 𝑣). 𝑝𝑉
𝑂
(𝑣 |𝑢) represents the probability of user 𝑢

selecting item 𝑣 , while 𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣) represents the probability of time

𝑡 being observed for the user-item pair (𝑢, 𝑣).
Based on the above design, we have the following theory.

Theorem 1 (Unbiasedness of 𝐿IPS). 𝐿IPS is an unbiased estimator
for 𝐿ideal, that is, 𝐸 [𝐿IPS] = 𝐿ideal.

The proof of this theorem is presented in the Appendix. The

above theorem suggests that we can unbiasedly estimate 𝐿
ideal

based on the observed dataset. From the causal perspective, the

weight
𝑝𝑉 (𝑣)
𝑝𝑉
𝑂

adjusts the distribution of 𝑽 to be uniform, which

actually cuts down the relation between 𝑼 and 𝑽 (see Figure 2(c)).

Similarly, by introducing the weight
𝑝𝑇 (𝑡 )
𝑝𝑇
𝑂

, we aim to make the

variable 𝑇 uniformly distributed on the time set T , which blocks

the edges 𝑼 → 𝑻 and 𝑽 → 𝑻 in Figure 2(d).

4.2 The Temporal Doubly Robust Method
In the above section, we have designed an unbiased estimator for

the ideal objective. However, the real propensity scores 𝑝𝑉
𝑂
(𝑣 |𝑢)

and 𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣) are not accessible, which need to be estimated. In

practice, estimating the propensity score may suffer from the low

accuracy and high variance [11]. Previous work usually alleviate

these problems using doubly robust (DR) methods [38]. In this

section, we extend this idea to the time-aware recommendation,

and propose a temporal doubly robust method. In particular, we

firstly introduce an imputation model
ˆ𝛿𝑢𝑣𝑡 to estimate the loss for

all the user-item-time triplets, and then correct it by an unbiased

deviation term △𝑢𝑣𝑡 = 𝛿𝑢𝑣𝑡− ˆ𝛿𝑢𝑣𝑡 based on the estimated propensity

scores. The final objective for our doubly robust method is:

𝐿DR=
1

|U|
∑︁
𝑢∈U


1

|V𝑢 |
∑︁
𝑣∈V𝑢

𝑝𝑉 (𝑣)
𝑝𝑉
𝑂
(𝑣 |𝑢)


1

|T𝑢𝑣 |
∑︁

𝑡 ∈T𝑢𝑣

𝑝𝑇 (𝑡)
𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣)

△𝑢𝑣𝑡



+ 1

|U||V||T |
∑︁
𝑢∈U

∑︁
𝑣′∈V

∑︁
𝑡 ′∈T

ˆ𝛿𝑢𝑣′𝑡 ′ ,

where 𝑝𝑉
𝑂
(𝑣 |𝑢) and 𝑝𝑇

𝑂
(𝑡 |𝑢, 𝑣) are the estimated propensity scores.

The imputation model
ˆ𝛿𝑢𝑣𝑡 is optimized based on the following

objective:

𝐿imp =
1

|U|
∑︁
𝑢∈U

∑︁
𝑣∈V𝑢

𝑝𝑢𝑣

∑︁
𝑡 ∈T𝑢𝑣

𝑝𝑢𝑣𝑡 (𝛿𝑢𝑣𝑡 − ˆ𝛿𝑢𝑣𝑡 )2,

where 𝑝𝑢𝑣 =
𝑝𝑉 (𝑣)

|V𝑢 |𝑝𝑉𝑂 (𝑣 |𝑢 ) and 𝑝𝑢𝑣𝑡 =
𝑝𝑇 (𝑡 )

| T𝑢𝑣 |𝑝𝑇𝑂 (𝑡 |𝑢,𝑣) .

By the inverse propensity scores, we aim to make the learned

imputation model unbiased. The parameters of 𝛿𝑢𝑣𝑡 and ˆ𝛿𝑢𝑣𝑡 are

alternatively optimized based on 𝐿DR and 𝐿imp, respectively.

In the following, we discuss the unbiasedness and variance of

𝐿DR. The detailed derivation can be found in Appendix.

2
In most recommendation datasets, each user interacts with an item at most once.

Thus, | T𝑢𝑣 | = 1 in most cases.
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Theorem 2 (The Bias of 𝐿DR). Suppose 𝑝𝑉𝑂 (𝑣 |𝑢) and 𝑝𝑉
𝑂
(𝑣 |𝑢) are the

real and estimated propensity scores for the item-level bias; 𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣)

and 𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣) are the real and estimated propensity scores for the

time-level bias; △𝑢𝑣𝑡 = 𝛿𝑢𝑣𝑡 − ˆ𝛿𝑢𝑣𝑡 is the error between the real and
estimated losses. We define the bias of 𝐿DR from 𝐿𝑖𝑑𝑒𝑎𝑙 as:

𝐵𝑖𝑎𝑠 (𝐿DR) = |E [𝐿DR] − 𝐿𝑖𝑑𝑒𝑎𝑙 |,
then, we have:

𝐵𝑖𝑎𝑠 (𝐿DR) =
����� 1

|U||V||T |
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

△𝑢𝑣𝑡 (
𝑠𝑢𝑣𝑡 − 𝑠𝑢𝑣𝑡

𝑠𝑢𝑣𝑡
)
����� ,

where

𝑠𝑢𝑣𝑡 = 𝑝𝑉
𝑂
(𝑣 |𝑢)𝑝𝑇𝑂 (𝑡 |𝑢, 𝑣), 𝑠𝑢𝑣𝑡 = 𝑝𝑉

𝑂
(𝑣 |𝑢)𝑝𝑇𝑂 (𝑡 |𝑢, 𝑣).

This theorem suggests that 𝐿DR is an unbiased estimator of 𝐿
ideal

when the propensity scores are accurately estimated (i.e., 𝑠𝑢𝑣𝑡 =

𝑠𝑢𝑣𝑡 ) or the imputation model can perfectly predict the real loss

(i.e., 𝛿𝑢𝑣𝑡 = ˆ𝛿𝑢𝑣𝑡 ). Comparing with 𝐿IPS, 𝐿DR provides additional

opportunities to achieve the unbiased estimator, that is, even if the

propensity scores are wrongly predicted, we may also rely on an

accurate enough imputation model.

Theorem 3 (The Variance of 𝐿DR). We define

𝑤𝑢𝑣𝑡 =
𝑝𝑉 (𝑣)𝑝𝑇 (𝑡)

|V𝑢 | |T𝑢𝑣 |𝑝𝑉𝑂 (𝑣 |𝑢)𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣)

,

and let 𝑋𝑢𝑣𝑡 = 𝑤𝑢𝑣𝑡𝛿𝑢𝑣𝑡 and 𝑌𝑢𝑣𝑡 = 𝑤𝑢𝑣𝑡
ˆ𝛿𝑢𝑣𝑡 , then we have:

Var(𝐿DR) =
1

|U|2
∑︁
𝑢∈U

∑︁
𝑣∈V𝑢

∑︁
𝑡 ∈T𝑢𝑣

Var(𝑋𝑢𝑣𝑡 − 𝑌𝑢𝑣𝑡 ),

and Var(𝐿DR) < Var(𝐿IPS).

4.3 Unmeasured Confounder Modeling
In the above sections, we design and improve the IPS based frame-

work by assuming that the causal graph in Figure 2(a) is causally

sufficient, that is, there are no unmeasured confounders. However,

in reality, the factors that influence the selections of the items and

times are quite complex and diverse, and there can be many factors

which are not recorded in the datasets, for example, the user emo-

tions and item promotions. These factors invalidate the causally

sufficient assumption. [9]

To alleviate this problem, we propose to relax this assumption

by explicitly modeling the unmeasured confounders. A straightfor-

ward method to capture the unmeasured confounders is designing a

parametric model to infer them [2, 26]. However, without sufficient

prior knowledge, the model can be incorrectly specified, which may

lower the final performance. To overcome this weakness, we intro-

duce a non-parametric sensitivity analysis method [32], where we

only quantify the strength of the unmeasured confounders without

imposing any model assumptions. More specifically, for the item-

level bias, we estimate the propensity score is 𝑝𝑢𝑣 = 𝑝𝑉
𝑂
(𝑣 |𝑢) =

exp (𝑔𝑢𝑣 )∑
𝑣′ ∈V exp (𝑔𝑢𝑣′ ) ,where 𝑔𝑢𝑣 can be any scoring function for the user-

item pair (𝑢, 𝑣).
Suppose the unmeasured confounders which influence the user-

item selections are represented by ℎ𝑢𝑣 , then in 𝑝𝑉
𝑂
(𝑣 |𝑢), the predic-

tion of the item should also be dependent on ℎ𝑢𝑣 . Similar to the

previous work [9], we consider an additive model for deriving the

propensity score based on the unmeasured confounders, that is

𝑝𝑢𝑣 = 𝑝
𝑉
𝑂 (𝑣 |𝑢,ℎ𝑢𝑣) = exp (𝑔𝑢𝑣+𝛽 (ℎ𝑢𝑣 ) )∑

𝑣′ ∈V exp (𝑔𝑢𝑣′+𝛽 (ℎ𝑢𝑣′ ) ) , where 𝛽 can be any

function projecting ℎ𝑢𝑣 into a scalar, indicating the strength of the

unmeasured confounders. Instead of specifying 𝛽 with a parametric

model, we only indicate the value space of 𝛽 (ℎ𝑢𝑣), and optimize

𝐿IPS and 𝐿DR based on the uncertainty set of 𝑝𝑢𝑣 represented by

𝑝𝑢𝑣 .

In particular, suppose 𝛽 (ℎ𝑢𝑣) ∈ [𝑎, 𝑏], then we have: 𝑝𝑢𝑣 ∈
[ 1

[1+( 1

�̂�𝑢𝑣
−1)Γ𝑢𝑣 ]

, 1

[1+( 1

�̂�𝑢𝑣
−1)Γ𝑢𝑣−1 ]

] ≜ 𝑨𝑢𝑣 , where Γ𝑢𝑣 = 𝑒𝑏−𝑎 is a

hyper-parameter larger than 1.

Similarly, for the time-level bias, we estimate the original IPS

and the one considering the unmeasured confounders as follows:

𝑝𝑢𝑣𝑡 = 𝑝𝑇
𝑂
(𝑡 |𝑢, 𝑣) = exp (𝑔1𝑢𝑣𝑡 )∑

𝑡 ′ ∈T exp (𝑔1
𝑢𝑣𝑡 ′ )

and 𝑝𝑢𝑣𝑡 = 𝑝
𝑇
𝑂 (𝑡 |𝑢, 𝑣, ℎ𝑢𝑣𝑡 ) =

exp (𝑔1𝑢𝑣𝑡+𝛽
′ (ℎ1

𝑢𝑣𝑡 ) )∑
𝑣′ ∈V exp (𝑔1

𝑢𝑣𝑡 ′+𝛽
′ (ℎ1

𝑢𝑣𝑡 ′ ) )
, where 𝑔1 and 𝛽

′
can be any functions,

and ℎ1𝑢𝑣𝑡 is the representation of the unmeasured confounders

which influence the selection of the time given a user-item pair.

Suppose 𝛽 (ℎ1𝑢𝑣𝑡 ) ∈ [𝑐, 𝑑], then, we have:
𝑝𝑢𝑣𝑡 ∈ [ 1

[1+( 1

�̂�𝑢𝑣𝑡
−1)Γ𝑢𝑣𝑡 ]

, 1

[1+( 1

�̂�𝑢𝑣𝑡
−1)Γ−1𝑢𝑣𝑡 ]

] ≜ 𝑩𝑢𝑣𝑡 , where Γ𝑢𝑣𝑡 =

𝑒𝑑−𝑐 is a hyper-parameter.

The key of our sensitivity analysis method is optimizing 𝐿IPS
and 𝐿DR based on the uncertainty sets of 𝑝𝑢𝑣 and 𝑝𝑢𝑣𝑡 . In particular,

we use adversarial learning to optimize the maximum loss induced

by the uncertainty sets, which helps to remove the unstable factors

result from the unmeasured confounders, and lead to more robust

optimization. Formally, we improve 𝐿IPS and 𝐿DR as follows:

𝐿IPS-UM= max

𝑝𝑢𝑣 ∈𝑨𝑢𝑣,

𝑝𝑢𝑣𝑡 ∈𝑩𝑢𝑣𝑡

𝐶
∑︁
𝑢∈U


1

|V𝑢 |
∑︁
𝑣∈V𝑢

1

𝑝𝑢𝑣


1

|T𝑢𝑣 |
∑︁

𝑡 ∈T𝑢𝑣

1

𝑝𝑢𝑣𝑡
𝛿𝑢𝑣𝑡


 ,

𝐿DR-UM= max

𝑝𝑢𝑣 ∈𝑨𝑢𝑣,

𝑝𝑢𝑣𝑡 ∈𝑩𝑢𝑣𝑡

𝐶
∑︁
𝑢∈U


1

|V𝑢 |
∑︁
𝑣∈V𝑢

1

𝑝𝑢𝑣


1

|T𝑢𝑣 |
∑︁

𝑡 ∈T𝑢𝑣

1

𝑝𝑢𝑣𝑡
△𝑢𝑣𝑡




+𝐶
∑︁
𝑢∈U

∑︁
𝑣′∈V

∑︁
𝑡 ′∈T

ˆ𝛿𝑢𝑣′𝑡 ′ ,

where 𝐶 = 1

|U | |V | | T | . To more accurately debias the imputation

model
ˆ𝛿𝑢𝑣𝑡 , we also learn it based on the uncertainty sets of 𝑝𝑢𝑣

and 𝑝𝑢𝑣𝑡 , which revises 𝐿imp as follows:

𝐿imp-UM = max

𝑝𝑢𝑣 ∈𝑨𝑢𝑣,

𝑝𝑢𝑣𝑡 ∈𝑩𝑢𝑣𝑡

1

|U|
∑︁
𝑢∈U

∑︁
𝑣∈V𝑢

𝑝𝑢𝑣

∑︁
𝑡 ∈T𝑢𝑣

𝑝𝑢𝑣𝑡 (𝛿𝑢𝑣𝑡 − ˆ𝛿𝑢𝑣𝑡 )2,

where 𝑝𝑢𝑣 =
𝑝𝑉 (𝑣)
|V𝑢 |𝑝𝑢𝑣

and 𝑝𝑢𝑣𝑡 =
𝑝𝑇 (𝑡 )

| T𝑢𝑣 |𝑝𝑢𝑣𝑡
.

Basically, 𝐿IPS-UM and 𝐿DR-UM learn the model based on the

IPS uncertainty sets. We find that such type of optimization has

close connections with the generalization error bound of the ideal

objective 𝐿
ideal

. We focus our analysis on 𝐿IPS-UM, and the results

can be easily extended to 𝐿DR-UM.

Theorem 4. Suppose 𝑝∗𝑢𝑣 and 𝑝∗𝑢𝑣𝑡 are the ground truths of the
propensity scores, which are unknown, |𝛿𝑢𝑣𝑡 | ≤ 𝜅 . All the propensity
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scores are bounded in the range of [𝑠1, 𝑠2], where 0 < 𝑠1 < 𝑠2 < 1. If

we set 𝜆1 = 𝜆2 =
𝜅𝑠2

2
(1−𝑠1 )

1−𝑠1+𝑠2 , then,

𝐿ideal ≤ 𝐿IPS-UM +𝐶𝑜𝑛𝑠𝑡, (3)

where 𝐶𝑜𝑛𝑠𝑡 is a constant.

This theorem suggests that by optimizing 𝐿IPS-UM, we actually

lower the upper bound of the ideal objective, which reveals the

rationality of our model in theory. We present the proof of this

theorem in the Appendix.

4.4 Model Specification
In this section, we detail the specifications of functions. To begin

with, 𝛿𝑢𝑣𝑡 is implemented with the mean squared error loss. The

recommender model in
ˆ𝛿𝑢𝑣𝑡 is the same as the one in 𝛿𝑢𝑣𝑡 , but

with independent parameters. To predict the propensity scores,

we firstly introduce two embedding matrices 𝑬𝑈 ∈ 𝑹U×𝑑
and

𝑬𝑉 ∈ 𝑹V×𝑑
for the users and items, respectively. Suppose 𝑒𝑈𝑢 ∈

𝑹𝑑 and 𝑒𝑉𝑣 ∈ 𝑹𝑑 are the 𝑢-th and 𝑣-th columns of 𝑬𝑈 and 𝑬𝑉 ,
representing the embeddings of the user 𝑢 and item 𝑣 . Then, we

have 𝑝𝑢𝑣 = [SOFTMAX(𝑬𝑉 (𝑒𝑈𝑢 )𝑇 )]𝑣 , where [·]𝑣 indicates the 𝑣-th
element of a vector and SOFTMAX is the softmax operator. 𝑝𝑢𝑣𝑡 =

[SOFTMAX(MLP( [𝑒𝑈𝑢 ; 𝑒𝑉𝑣 ]))]𝑡 , where [·; ·] is the concatenation

operation and MLP projects the input into a |T |-dimension vector.

We estimate 𝑝𝑢𝑣 (or 𝑝𝑢𝑣𝑡 ) based on a MLP, where the input is the

concatenation of the user-item (or user-item-time) embeddings, and

the output is a scalar. Since different 𝑝𝑢𝑣 ’s (or 𝑝𝑢𝑣𝑡 ’s) are predicted

by a unified framework, they are actually dependent.

5 EXPERIMENTS
5.1 Experiment Setup
Datasets. Our experiments are conducted on three real-world

datasets:

• Movielens-1M(ML-1M)3 is a commonly used recommen-

dation dataset, which contains the user-movie interactions

and the time information.

• Amazon4 is an e-commerce dataset, which includes the user

purchasing behaviors on the products.

• Food5 is a dataset containing the user preferences on the

foods, which is collected from “food.com”.

The statistics of our datasets are summarized in Table 4, where

we can see the characters of these datasets vary a lot. For example,

ML-1M is a smaller and denser dataset, but Amazon and Food are

much larger and sparser. The domains of these datasets range from

movie to e-commerce and food.

Baselines. Since the proposed method is a framework instead of a

specific model, the effectiveness and generality should be demon-

strated by applying it to different time-aware recommender models.

In particular, the following representative models are leveraged to

implement the base model 𝑓 :

3
https://grouplens.org/datasets/movielens/1m/

4
http://jmcauley.ucsd.edu/data/amazon/

5
https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-

interactions

• TimeSVD++ [24] is awell knownmatrix factorizationmodel,

where the time information is combined with the user and

item embeddings, respectively.

• BPTF [42] is tensor factorization model, where the time

information is modeled by an independent tensor dimension.

• CoNCARS [6] is deep time-aware recommender model,

which leverages the CNN to capture the non-linear rela-

tionships among the users, items and time.

It should be noted that our paper focuses on time-aware recommen-

dation, and the time-dependent methods, such as the sequential or

session-based recommender models [15, 41] are beyond the scope

of this paper, and thus not compared.

From the framework perspective, we introduce a baseline called

DANCER [16], which, to our knowledge, is the only time-aware

debiased framework. We predict the preference score by TMF [16],

which can achieve better performance on our datasets. In addi-

tion, we also compare our framework with two static baselines:

SVD++[22] is a widely-used matrix factorization model, where the

rating is estimated by the inner product between the user and item

latent vectors. RD-DR[9] is a recently proposed debiased recom-

mender model, where the unmeasured confounders are captured

by sensitivity analysis.

Implementation details. In the domain of time-aware recommen-

dation, the time information is usually projected into IDs [3]. In

general, there are two strategies: the first one (S1) is segmenting the

complete time range of the dataset into many bins, and the indexes

of the bins are regarded as the time IDs [16, 21]; The second one

(S2) is indicating the time IDs as the indexes of the hours of a day or

the days of a week [1, 5, 27]. We conduct our experiments based on

both settings, where for the first strategy, we split the time range

into seven bins and for the second strategy, we produce the IDs

according to the days of a week.

Evaluating debiased recommender frameworks needs to build

unbiased testing sets, in our experiments, we follow the common

practice [29, 30, 40, 47] to resample the original dataset according

to the sample observational frequencies. In particular, we use 50%

interactions of each user for biased model training. To build the val-

idation and testing sets, we sample from the remaining interactions.

For a sample (𝑢, 𝑣, 𝑡, 𝑟 ), we select it according to the probabilities

in proportional to

max𝑣′,𝑡 ′ 𝑂𝑣′𝑡 ′
𝑂𝑣𝑡

, where 𝑂𝑣𝑡 is the number of times

that (𝑣, 𝑡) appears in the dataset. The ratio between the validation

and test sets is set as 1:1.

We evaluate the performance of our framework based on the com-

monly used metrics including Root Mean Squared Error(RMSE) and

Mean Absolute Error(MAE) [17]. The hyper-parameters are tuned

based on grid search. In particular, the learning rate and hidden em-

bedding size are determined in the ranges of [0.1, 0.01, 0.001, 0.0001]
and [32, 64, 128], respectively. Γ𝑢𝑣 and Γ𝑢𝑣𝑡 are both tuned in the

range of [1.1, 1.3, 1.5, 1.8, 2]. We empirically set the batch size as

1024. For the baselines, we tune their parameters in the same ranges

to our framework’s. For more implementation details, we refer the

readers to our project released at https://www-cdtr.github.io/.

5.2 Overall Performance
The overall comparison results are presented in Table 1, where we

can see: by incorporating the time information, TimeSVD++, BPTF
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Table 1: Overall comparison between our framework (i.e., CDTR) and the baselines. For each base model, we use bold fonts
to label the best performance of the evaluated models. ∗ indicates that the improvement of our framework against the best
baseline is significant under paired-t test with 𝑝 < 0.05.

Dataset ML-1M-S1 ML-1M-S2 Amazon-S1 Amazon-S2 Food-S1 Food-S2

Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SVD++ [22] 1.0156 0.7994 0.9462 0.7443 0.9623 0.7367 1.0165 0.7633 1.0830 0.7397 1.0882 0.7419

RD-DR [9] 0.9931 0.8037 0.9583 0.7718 0.9957 0.7282 0.9963 0.7274 0.9969 0.6491 1.0022 0.6520

TimeSVD++ [23] 0.8797 0.6884 0.9004 0.7071 0.9356 0.6992 0.8843 0.6508 1.0523 0.7117 1.0502 0.7350

DANCER [16] 0.8698 0.6804 0.8832 0.6909 0.8974 0.6534 0.8806 0.6302 1.0340 0.6897 1.0316 0.6827

IPS 0.8712 0.6812 0.8786 0.6861 0.9021 0.6577 0.8825 0.6416 1.0318 0.6699 1.0336 0.6888

IPS-UM 0.8707 0.6818 0.8757 0.6840 0.8888 0.6501 0.8803 0.6442 1.0311 0.6683 1.0272 0.6678

DR 0.8661 0.6770 0.8724 0.6816 0.8974 0.6615 0.8801 0.6407 1.0117 0.6879 1.0159 0.7167
CDTR

DR-UM 0.8650* 0.6765* 0.8696* 0.6797* 0.8813* 0.6672 0.8790* 0.6401* 0.9959* 0.6504 0.9995* 0.6459*
BPTF [42] 0.8941 0.7003 0.9147 0.7154 1.0368 0.7751 1.0596 0.7908 1.0162 0.6424 1.0162 0.6294

DANCER [16] 0.8815 0.6899 0.9209 0.7217 1.0166 0.7604 1.0441 0.7758 1.0122 0.6294 1.0188 0.6248

IPS 0.8885 0.6960 0.9087 0.7112 1.0143 0.7610 1.0378 0.7837 1.0078 0.6288 1.0057 0.6205

IPS-UM 0.8817 0.6900 0.9073 0.7116 1.0045 0.7554 1.0265 0.7644 1.0038 0.6193 1.0000 0.6104

DR 0.8797 0.6864 0.8895 0.6945 0.9575 0.6816 1.0312 0.7618 0.9613 0.6967 0.9982 0.6059
CDTR

DR-UM 0.8764* 0.6856* 0.8887* 0.6946 0.9204* 0.6509* 0.9513* 0.6913* 0.9200* 0.6727 0.9980* 0.5993*
CoNCARS [6] 0.9335 0.7402 0.9325 0.7387 0.9387 0.6422 0.9375 0.6809 1.027 0.6543 1.0320 0.6729

DANCER [16] 0.9184 0.7253 0.9171 0.7267 0.9127 0.6679 0.9226 0.6524 1.009 0.6417 0.9950 0.6361

IPS 0.9170 0.7250 0.9152 0.7223 0.9126 0.6646 0.9291 0.6849 1.0140 0.6237 0.9940 0.6083

IPS-UM 0.9149 0.7224 0.9115 0.7235 0.9100 0.6384 0.9090 0.6765 0.9928 0.6290 0.9840 0.687

DR 0.9044 0.7127 0.9043 0.7197 0.9030 0.6400 0.9076 0.6515 0.9766 0.5526 0.9916 0.6034
CDTR

DR-UM 0.8990* 0.7087* 0.8932* 0.7020* 0.8940* 0.6495 0.9061* 0.6294* 0.9749* 0.5690 0.9826* 0.5856*

Table 2: Comparison between our framework and its variants.
The best performance is labeled by bold fonts.

Method ML1M Food

Metric RMSE MAE RMSE MAE

TimeSVD++ 0.9440 0.7457 1.0523 0.7117

IPS 0.8712 0.6812 1.0318 0.6699
w/o V 0.9055 0.7125 1.1086 0.7612

w/o T 0.9173 0.7231 1.1080 0.7595

IPS-UM 0.8707 0.6818 1.0311 0.6683
w/o V 0.9651 0.7510 1.1089 0.7616

w/o T 0.9652 0.7511 1.1088 0.7614

DR 0.8661 0.6770 1.0117 0.6879
w/o V 0.8727 0.6799 1.1370 0.8294

w/o T 0.8860 0.6939 1.0904 0.7697

DR-UM 0.8650 0.6765 0.9959 0.6504
w/o V 0.8729 0.6798 1.0091 0.6954

w/o T 0.8730 0.6798 1.0089 0.6919

and CoNCARS can usually achieve better performance than the

static models like SVD++. This is as expected, which demonstrates

the effectiveness of the time information for estimating the user

preference. For each base model, DANCER can improve the per-

formance across different metrics and datasets, and the results are

consistent in most cases. The observation agrees with the previous

work [16]. The reason can be that, in DANCER, the training sam-

ples are reweighted according to the observational frequencies. The

learned model can equally treat different items and times, which

is more aligned with the unbiased test sets. However, in the base

model, the sample weights are not adjusted, thus the learned model

may put more focus on the advantaged items/times, which may not

perform well when different items/times are equally evaluated.

Encouragingly, our framework consistently outperforms base-

lines across different datasets, evaluation metrics, and base models

in most cases. On average, our framework can improve the perfor-

mance of the best baseline up to 4.73% and 6.23% on RMSE andMAE,

respectively. Comparing with DANCER, we find that the basic IPS

method of our framework does not exhibit significant superiority.

This is not surprising, since they have similar major components,

and are only different in how to estimate the IPS. By extending the

IPS method to the doubly robust model, our framework can usually

achieve better performances. We speculate that the introduction of

the imputation model reduces the variance of our framework, and

more easily obtain the unbiased estimator, which is aligned with

the test set.

Modeling the unmeasured confounders is effective, which is evi-

denced by the improved performances of IPS-UM and DR-UM as

compared with IPS and DR, respectively. By combining the doubly

robust method and the component for capturing the unmeasured

confounders, the performances are further improved, which sug-

gests that these modules are both important, complementary to

each other.

5.3 Ablation Studies
In the above section, we have evaluated the effectiveness of our

framework based on four implementations, that is, IPS, DR, IPS-UM

and DR-UM. In this section, we would like to study whether the

item- and time-level IPS’s in these implementations are both nec-

essary. To answer this question, we compare our framework with

its two variants: in X(w/o V), we remove the item-level IPS, where

𝑋 indicates an implementation of our framework. In X(w/o T), we

remove the time-level IPS. We base the experiment on ML-1M and

Food, and use TimeSVD++ as the base model. We use S1 to process

the time information (i.e., discretizing the time to days in a week).

From the results presented in Table 2, we can see: the winner

between X(w/o V) and X(w/o T) varies on different datasets and

implementations of our framework, but the performance gains

are not significant. In some cases, X(w/o V) and X(w/o T) may

even perform worse than the base model. For any implementation,

combining the item- and time-level IPS can always achieve the best

performance, and the results are consistent on different datasets.

These observations suggest that simultaneously correcting the item-
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(a) ML-1M

(b) Food

Figure 3: Debiasing effects of our framework on the items and
times with different observational frequencies. 𝐼𝑚𝑝. refers
to the improvement over the baseline. We sort the samples
based on the inverse of item-time occurrence frequency.
{𝑇1,𝑇2,𝑇3,𝑇4,𝑇5} represent the samples in the intervals of
[0, 20%], [20, 40%], [40, 60%], [60, 80%], and [80, 100%] according
to their occurrence frequency.

and time-level biases is necessary, and only one type of IPS is usually

sub-optimal.

5.4 Fine-grained Debiasing Effects
In this section, we study the debiasing effect of our framework for

the samples with different observational frequencies. To achieve

this goal, we firstly sort the item-time pairs according to their fre-

quencies in the training set, where a higher ranking corresponds a

more popular item-time pair. Then we divide the testing set into five

subsets {𝑇1,𝑇2,𝑇3,𝑇4,𝑇5}, which only contain the samples with

the item-time pairs ranked between [0, 20%], [20, 40%], [40, 60%],
[60, 80%] and [80, 100%], respectively. In the experiments, we keep

the training set the same as before, and report the performances on

T1, T2, T3, T4 and T5, respectively. The other experiment settings

follow the above section.

From the results presented in Figure 3, we can see: on the testing

sets with popular samples (e.g., T1), our framework does not outper-

form the base model, and sometimes, the performance is actually

degraded. This is not surprising, since in the training process of our

framework, the popular samples are imposed with smaller weights,

which are valued less than the base model. On the testing sets with

non-popular samples (e.g., T4 and T5), our framework can achieve

much better performance, which agrees with our expectation. This

observation suggests that the debiasing effect of our framework

are more effective for the samples with lower observational fre-

quencies. By changing the testing sets from T1 to T5, we find that

the performance improvement of our framework is continually

enlarged, which is encouraging and demonstrates the potential of

our framework for handling the extremely biased samples.

Table 3: Performance of our framework with different bias
severity. The best performance is labeled by bold fonts.

Dataset ML-1M

𝜌 0.5 1 2

Metric RMSE MAE RMSE MAE RMSE MAE

TimeSVD++ 0.9622 0.7535 1.0976 0.8419 1.440 1.0842

IPS 0.9516 0.7491 1.0425 0.8122 1.3122 1.0086

IPS-UM 0.9530 0.7489 1.0042 0.7896 1.2266 0.9508

DR 0.9794 0.7810 1.0415 0.8235 1.2832 0.9967
CDTR

DR-UM 0.9510 0.7569 1.0035 0.8008 1.2001 0.9454
Dataset Food

𝜌 0.5 1 2

Metric RMSE MAE RMSE MAE RMSE MAE

TimeSVD++ 1.0385 0.6982 1.0418 0.7007 1.0453 0.6944

IPS 1.0215 0.6727 1.0243 0.6732 1.0266 0.6746

IPS-UM 1.0195 0.6666 1.0240 0.6672 1.0249 0.6880

DR 1.0119 0.6632 1.0098 0.6596 1.0213 0.6763
CDTR

DR-UM 1.0109 0.6379 1.0048 0.6466 1.0093 0.6434

5.5 Influence of the Bias Severity
In this section, we would like to study whether our framework can

work well for differently biased training sets. To study this problem,

we simulate different bias severities by resampling the original

training set. In particular, we sample the dataset according to the

frequencies of the item-time pairs, that is, [ 𝑂𝑣𝑡

max𝑣′,𝑡 ′ 𝑂𝑣′𝑡 ′
]𝜌 , where

𝑂𝑣𝑡 is the number of times that (𝑣, 𝑡) is observed in the training set.

By setting a larger 𝜌 , the dataset is more biased, since the popular

samples are more likely to be selected, and the unpopular ones have

smaller chances to be kept in the training set. In the experiments,

we tune 𝜌 in the range of [0.5, 1, 2], and the other settings follow

the above section.

From the results presented in Table 3, we can see: for each 𝜌 ,

the best of our framework can always achieve better performance

than the base model, and the results are consistent on both datasets.

These results manifest that the effectiveness of our framework

is not influenced by the bias severity. In most cases, DR-UM can

outperform the other implementations of our framework, which

agrees with the observations in Table 1, and further demonstrates

the effectiveness of the doubly robust and sensitivity analysis mod-

ules. Interestingly, as the bias becomes severer, the performance

improvement of our framework is enlarged. On average, the perfor-

mance improvements of our framework are 1.91%, 6.06% and 10.05%

when 𝜌 = 0.5, 𝜌 = 1 and 𝜌 = 2, respectively. This observation

demonstrates the potential of our framework for the application

scenarios where the datasets are extremely biased.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a causally debiased recommender frame-

work, where we firstly design a basic IPSmodel and then extend it to

the doubly robust method to further improve it performance. In ad-

dition, we also propose a sensitivity analysis method to capture the

unmeasured confounders. Beyond introducing the model designs,

we also present a series of theoretical analysis, which is expected to

provide more in depth understandings on our framework. Actually,

there is still much room left for improvement. To begin with, one

can extend our framework to the settings of sequential recommen-

dation, where the time is not used as a context information, but

leveraged to chronologically sort the items. In addition, it could be

also interesting to directly model the continuous time information,

where the propensity score should follow a continuous distribution.
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A DATASET DETAILS

Table 4: Statistics of the datasets.

Dataset Users Items Interactions Sparsity

ML-1M 6,041 3,707 1,000,209 95.53%

Amazon 22,879 115,083 238,692 99.99%

Food 23,087 211,040 872,021 99.98%

B PROOF OF THEOREMS
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B.2 Proof of Theorem 2
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𝑠𝑢𝑣𝑡

𝑠𝑢𝑣𝑡
+ ˆ𝛿𝑢𝑣𝑡 − 𝛿𝑢𝑣𝑡

] �����
=

����� 1

|U||V||T |
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

△𝑢𝑣𝑡 (
𝑠𝑢𝑣𝑡

𝑠𝑢𝑣𝑡
− 1)

�����
=

����� 1

|U||V||T |
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

△𝑢𝑣𝑡
𝑠𝑢𝑣𝑡 − 𝑠𝑢𝑣𝑡

𝑠𝑢𝑣𝑡

����� .
(4)

B.3 Proof of Theorem 3
Proof. The variance of 𝐿IPS is:

Var(𝐿IPS) =
1

|U|2
∑︁
𝑢∈U

∑︁
𝑣∈V𝑢

∑︁
𝑡 ∈T𝑢𝑣

Var(𝑋𝑢𝑣𝑡 ).

To compare Var(𝐿DR) and Var(𝐿IPS), we have:

Var(𝐿DR)−Var(𝐿IPS)=
1

|U|2
∑︁
𝑢∈U

∑︁
𝑣∈V𝑢

∑︁
𝑡 ∈T𝑢𝑣

Cov(𝑌𝑢𝑣𝑡 − 2𝑋𝑢𝑣𝑡 , 𝑌𝑢𝑣𝑡 ) .

Remember that by objective𝐿imp, we actually hope that𝑋𝑢𝑣𝑡 = 𝑌𝑢𝑣𝑡 .

In such a scenario, Cov(𝑌𝑢𝑣𝑡 −2𝑋𝑢𝑣𝑡 , 𝑌𝑢𝑣𝑡 ) = Cov(−𝑌𝑢𝑣𝑡 , 𝑌𝑢𝑣𝑡 ) < 0,

which means Var(𝐿DR) < Var(𝐿IPS).

B.4 Proof of Theorem 4
Proof. To begin with, we define

𝐿
′
IPS-UM

=
1

|U|
∑︁
𝑢∈U

𝑙𝑢 ,

where

𝑙𝑢 =
1

|V𝑢 |
∑︁
𝑣∈V𝑢

1

|T𝑢𝑣 |
∑︁

𝑡 ∈T𝑢𝑣

𝑝𝑉 (𝑣)𝑝𝑇 (𝑡)
𝑝𝑢𝑣𝑝𝑢𝑣𝑡

𝛿𝑢𝑣𝑡 .

Let 𝑝𝑢𝑣 and 𝑝𝑢𝑣𝑡 be the initially estimated propensity scores, which

do not consider the unmeasured confounders, then we have the

following lemma on the uncertainty sets:

Lemma B.1. The constraints 𝑝𝑢𝑣 ∈ 𝑨𝑢𝑣 and 𝑝𝑢𝑣𝑡 ∈ 𝑩𝑢𝑣𝑡 are equal
to

| log( 𝑝𝑢𝑣

1 − 𝑝𝑢𝑣
) − log(

𝑝𝑢𝑣

(1 − 𝑝𝑢𝑣)
) | ≤ 𝑏 − 𝑎

and

| log( 𝑝𝑢𝑣𝑡

1 − 𝑝𝑢𝑣𝑡
) − log(

𝑝𝑢𝑣𝑡

(1 − 𝑝𝑢𝑣𝑡 )
) | ≤ 𝑑 − 𝑐.

Based on Lemma B.1, we rewrite 𝐿IPS-UM in the form of

𝐿IPS-UM

= max

𝑝𝑢𝑣 , 𝑝𝑢𝑣𝑡

𝐿
′
IPS-UM

−
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

𝜆1|log(
𝑝𝑢𝑣

1 − 𝑝𝑢𝑣
)−log(

𝑝𝑢𝑣

(1 − 𝑝𝑢𝑣)
)|

−
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

𝜆2 | log(
𝑝𝑢𝑣𝑡

1 − 𝑝𝑢𝑣𝑡
) − log(

𝑝𝑢𝑣𝑡

(1 − 𝑝𝑢𝑣𝑡 )
) |,
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where we replace the constraints of 𝑝𝑢𝑣 ∈ 𝑨𝑢𝑣 and 𝑝𝑢𝑣𝑡 ∈ 𝑩𝑢𝑣𝑡
by adding regularizers in the objective; 𝜆1 and 𝜆2 are regularizer

coefficients. Then we have the following:

Suppose 𝑝∗𝑢𝑣 and 𝑝∗𝑢𝑣𝑡 are the real propensity scores, then we

have:

𝐿
ideal

− 𝐸𝑝∗
𝑢𝑣 , 𝑝

∗
𝑢𝑣𝑡

[𝐿
′
IPS-UM

]

=
1

|U||V||T |
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

(1 −
𝑝∗𝑢𝑣𝑝

∗
𝑢𝑣𝑡

𝑝𝑢𝑣𝑝𝑢𝑣𝑡
)𝛿𝑢𝑣𝑡 .

(5)

According to theHoeffding’s inequality, and assuming 𝑙𝑢 ∈ [𝑐𝑢 , 𝑑𝑢 ],
|𝑐𝑢 − 𝑑𝑢 | ≤ 𝐵, then the expectation of 𝐿

′
IPS-UM

is bounded by the

following value with probability at least 1 − 𝜂:

𝐸𝑝∗
𝑢𝑣 , 𝑝

∗
𝑢𝑣𝑡

[𝐿
′
IPS-UM

] ≤ 𝐿
′
IPS-UM

+ 𝐵

√︄
1

2|U| 𝑙𝑜𝑔(
2|H |
𝜂

).

Let

𝐶 = 𝐵

√︄
1

2|U| 𝑙𝑜𝑔(
2|H |
𝜂

), 𝛼𝑢𝑣𝑡 =
𝛿𝑢𝑣𝑡

|U||V||T |𝑝𝑢𝑣𝑝𝑢𝑣𝑡
.

Then,

𝐿
ideal

= 𝐿
ideal

−𝐸𝑝∗
𝑢𝑣 , 𝑝

∗
𝑢𝑣𝑡

[𝐿
′
IPS-UM

]+𝐸𝑝∗
𝑢𝑣 , 𝑝

∗
𝑢𝑣𝑡

[𝐿
′
IPS-UM

]

≤ 1

|U||V||T |
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

(1 −
𝑝∗𝑢𝑣𝑝

∗
𝑢𝑣𝑡

𝑝𝑢𝑣𝑝𝑢𝑣𝑡
)𝛿𝑢𝑣𝑡 + 𝐿

′
IPS-UM

+𝐶

≤
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

𝛼𝑢𝑣𝑡 (𝑝𝑢𝑣𝑝𝑢𝑣𝑡 − 𝑝∗𝑢𝑣𝑝
∗
𝑢𝑣𝑡 ) + 𝐿

′
IPS-UM

+𝐶

≤
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

[𝛼𝑢𝑣𝑡 (𝑝𝑢𝑣𝑝𝑢𝑣𝑡 −𝑝𝑢𝑣𝑝𝑢𝑣𝑡 )

+𝛼𝑢𝑣𝑡 (𝑝𝑢𝑣𝑝𝑢𝑣𝑡 −𝑝∗𝑢𝑣𝑝∗𝑢𝑣𝑡 )]+ 𝐿
′
IPS-UM

+𝐶

≤
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

𝛼𝑢𝑣𝑡 (𝑝𝑢𝑣𝑝𝑢𝑣𝑡 − 𝑝𝑢𝑣𝑝𝑢𝑣𝑡 ) + 𝐿
′
IPS-UM

+𝐶1

=
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

𝛼𝑢𝑣𝑡 (𝑝𝑢𝑣𝑝𝑢𝑣𝑡 −𝑝𝑢𝑣𝑝𝑢𝑣𝑡 +𝑝𝑢𝑣𝑝𝑢𝑣𝑡 −𝑝𝑢𝑣𝑝𝑢𝑣𝑡 )

+ 𝐿
′
IPS-UM

+𝐶1

=
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

[𝛼𝑢𝑣𝑡𝑝𝑢𝑣 (𝑝𝑢𝑣𝑡 −𝑝𝑢𝑣𝑡 )+𝛼𝑢𝑣𝑡𝑝𝑢𝑣𝑡 (𝑝𝑢𝑣−𝑝𝑢𝑣)]

+ 𝐿
′
IPS-UM

+𝐶1

≤
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

[𝛼𝑢𝑣𝑡𝑝𝑢𝑣 (2𝑠2−𝑝𝑢𝑣𝑡 −𝑝𝑢𝑣𝑡 )

+𝛼𝑢𝑣𝑡𝑝𝑢𝑣𝑡 (2𝑠2−𝑝𝑢𝑣−𝑝𝑢𝑣)] + 𝐿
′
IPS-UM

+𝐶1

≤ 𝜅𝑠2

|U||V||T |𝑠2
1

∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

[(2𝑠2−|𝑝𝑢𝑣𝑡 |− |𝑝𝑢𝑣𝑡 |)

+(2𝑠2−|𝑝𝑢𝑣 |− |𝑝𝑢𝑣 |)] + 𝐿
′
IPS-UM

+𝐶1

≤ 𝜅𝑠2

|U||V||T |𝑠2
1

∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

[(2𝑠2−|𝑝𝑢𝑣𝑡 − 𝑝𝑢𝑣𝑡 |)

+ (2𝑠2−|𝑝𝑢𝑣 − 𝑝𝑢𝑣 |)] + 𝐿
′
IPS-UM

+𝐶1

≤ − 𝜅𝑠2

|U||V||T |𝑠2
1

∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

( |𝑝𝑢𝑣𝑡 − 𝑝𝑢𝑣𝑡 |+ |𝑝𝑢𝑣 − 𝑝𝑢𝑣 |)

+ 𝐿
′
IPS-UM

+𝐶2,

(6)

where

𝐶1 = 𝜅 (
𝑠2
2

𝑠2
1

− 1) +𝐶,𝐶2 =
4𝜅𝑠2

2

𝑠2
1

+𝐶1 .

Lemma B.2. Suppose 𝑓 (𝑥) = log
𝑥

1−𝑥 and 𝑥 ∈ [𝑠1, 𝑠2], then
|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝜂 |𝑥 − 𝑦 |

, where 𝜂 = 1

𝑠1
+ 1

1−𝑠2 .

Proof. According to the Taylor expansion, we have log𝑥 =∑∞
𝑛=1 (−1)𝑛−1

(𝑥−1)𝑛
𝑛 and log(1 − 𝑥) = −∑∞

𝑛=1
𝑥𝑛

𝑛 . Thus,

|log 𝑥

1−𝑥 −log 𝑦

1−𝑦 |=|log𝑥−log𝑦−[log(1−𝑥)−log(1−𝑦)] |

=|
∞∑︁
𝑛=1

(−1)𝑛−1 (𝑥−1)
𝑛

𝑛
−

∞∑︁
𝑛=1

(−1)𝑛−1 (𝑦−1)
𝑛

𝑛

+
∞∑︁
𝑛=1

𝑥𝑛

𝑛
−

∞∑︁
𝑛=1

𝑦𝑛

𝑛
|

=|
∞∑︁
𝑛=1

(−1)𝑛−1(𝑥−1)
𝑛 − (𝑦−1)𝑛
𝑛

+
∞∑︁
𝑛=1

𝑥𝑛 − 𝑦𝑛

𝑛
|

=|
∞∑︁
𝑛=1

(−1)𝑛−1(𝑥−𝑦)[(𝑥−1)
𝑛−1+(𝑥−1)𝑛−2 (𝑦−1)...+(𝑦−1)𝑛−1]

𝑛

+
∞∑︁
𝑛=1

(𝑥−𝑦) [𝑥𝑛−1 + 𝑥𝑛−2𝑦... + 𝑦𝑛−1]
𝑛

|

=|𝑥 − 𝑦 | |
∞∑︁
𝑛=1

[(1−𝑥)𝑛−1 + (1−𝑥)𝑛−2 (1−𝑦) ... + (1−𝑦)𝑛−1]
𝑛

+
∞∑︁
𝑛=1

[𝑥𝑛−1 + 𝑥𝑛−2𝑦... + 𝑦𝑛−1]
𝑛

|

≤|𝑥 − 𝑦 | |
∞∑︁
𝑛=1

𝑛(1 − 𝑠1)𝑛−1
𝑛

+
∞∑︁
𝑛=1

𝑛𝑠𝑛−1
2

𝑛
|

=|𝑥 − 𝑦 | |
∞∑︁
𝑛=1

(1 − 𝑠1)𝑛−1 +
∞∑︁
𝑛=1

𝑠𝑛−1
2

|

≤( 1
𝑠1

+ 1

1 − 𝑠2
) |𝑥 − 𝑦 | = 𝜂 |𝑥 − 𝑦 |.

Let 𝜆 =
𝜅𝑠2

|U | |V | | T |𝑠2
1

. Then based on Lemma B.2, we have:

𝐿
ideal

≤ −𝜆
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

( |𝑝𝑢𝑣𝑡 − 𝑝𝑢𝑣𝑡 | + |𝑝𝑢𝑣 − 𝑝𝑢𝑣 |)

+ 𝐿
′
IPS-UM

+𝐶2

≤ −𝜆
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

1

𝜂
| log( 𝑝𝑢𝑣

1 − 𝑝𝑢𝑣
)−log(

𝑝𝑢𝑣

(1 − 𝑝𝑢𝑣)
) |

− 𝜆
∑︁
𝑢∈U

∑︁
𝑣∈V

∑︁
𝑡 ∈T

1

𝜂
| log( 𝑝𝑢𝑣𝑡

1 − 𝑝𝑢𝑣𝑡
) − log(

𝑝𝑢𝑣𝑡

(1 − 𝑝𝑢𝑣𝑡 )
) |

+ 𝐿
′
IPS-UM

+𝐶2

≤ 𝐿IPS-UM +𝐶𝑜𝑛𝑠𝑡 .
□
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