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Abstract
Continual Test-Time Adaptation (CTTA) faces
challenges when real-world domains are dy-
namic—recurring with varying frequencies and
durations—unlike the structured changes many
methods assume. Existing approaches then strug-
gle with convergence issues from brief domain
exposures, catastrophic forgetting, and knowl-
edge misapplication in these dynamic conditions.
We propose DPCore, a robust and computation-
ally efficient method designed for such dynamic
patterns. DPCore integrates three key compo-
nents: Visual Prompt Adaptation for efficient do-
main alignment, a Prompt Coreset for knowledge
preservation, and a Dynamic Update mechanism
that intelligently manages prompts based on do-
main similarity. Extensive experiments on four
benchmarks show DPCore achieves state-of-the-
art performance in both structured and dynamic
settings, significantly reducing trainable parame-
ters by 99% and computation time by 64% com-
pared to previous approaches.

1. Introduction
Deep Neural Networks often suffer performance degrada-
tion when facing domain discrepancies between training
and test environments (Recht et al., 2019; Hendrycks &
Dietterich, 2019; Koh et al., 2021). Test-Time Adaptation
(TTA) (Wang et al., 2021; Xiao & Snoek, 2024; Liang et al.,
2020) adapts pre-trained models to unseen target domains
without altering the original training process.

Real-world scenarios present an even more challenging prob-
lem: continuously changing target domains. While Contin-
ual Test-Time Adaptation (CTTA) (Wang et al., 2022; Niu
et al., 2022) has emerged to address this challenge, the initial
CTTA setting (Wang et al., 2022), which we term Contin-
ual Structured Change (CSC), assumed domains change
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Figure 1. Illustrated through an autonomous driving scenario
where a vehicle encounters varying weather and lighting condi-
tions. The top panel shows the conventional CSC setting with struc-
tured, uniform-length domain transitions, while the bottom panel
illustrates our proposed CDC setting where domains recur with
varying frequencies and durations—better reflecting real-world
challenges. When evaluated on ImageNet-to-ImageNet-C with
ViT base model, previous SOTA ViDA’s error rate increases sig-
nificantly from 43.4% to 52.1% when moving from CSC to CDC,
while DPCore maintains robust performance (39.9% to 42.1%).

with uniform durations. However, real-world scenarios ex-
hibit far more dynamic patterns where domains recur with
varying frequencies and durations, which we term Contin-
ual Dynamic Change (CDC). For instance, an autonomous
vehicle driving through mountains frequently transitions
between sunny conditions, dark tunnels, fog, and rain, as
illustrated in Fig. 1. Our experiments show state-of-the-art
(SOTA) methods like ViDA (Liu et al., 2023b) suffer sub-
stantial degradation, with error rates increasing by 8.7% on
ImageNet-to-ImageNet-C when moving from CSC to CDC.

In CDC, existing CTTA methods face three critical limi-
tations: Convergence Issues when domains appear briefly,
Catastrophic Forgetting as knowledge from previous do-
mains is overwritten, and Negative Transfer when knowl-
edge from one domain adversely affects adaptation to differ-
ent domains (Fig. 4b). Furthermore, current approaches are
computationally intensive, requiring extensive data augmen-
tation (Wang et al., 2022; Liu et al., 2023b) or numerous
additional parameters with pre-adaptation warm-up (Liu
et al., 2023b; Song et al., 2023; Gan et al., 2023).

To address these challenges, we introduce Dynamic Prompt
Coreset (DPCore), a novel CTTA method for robust perfor-
mance across varying domain change patterns while main-
taining computational efficiency. As shown in Fig. 2, DP-
Core combines: (1) Visual Prompt Adaptation (VPA) that
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Figure 2. Overview of DPCore. At time step t, Prompt Coreset Pt (upper left) maintains core elements consisting of learned prompts pj

and statistics Γj from previous domains. Dynamic Update (middle) evaluates new test batch Bt by computing a weighted prompt pw

based on distances between batch statistics Γt and core elements Γj . If pw performs well, existing core elements {pj ,Γj} are refined
using weights wj ; otherwise, VPA (right) learns a new prompt by aligning the test batch with source statistics (computed offline from 300
examples) and adds it to the prompt coreset. The updated coreset Pt+1 is then used for the next time step t+ 1.

aligns domains with minimal parameters and no warm-up,
(2) a Prompt Coreset that preserves knowledge from previ-
ous domains, and (3) a Dynamic Update mechanism that
adjusts prompts based on domain similarities. DPCore re-
quires only negligible parameters and merely 300 unlabeled
source examples, eliminating expensive warm-up proce-
dures (see Table 10 and Fig. 6c).

Our experiments across four CTTA benchmarks demon-
strate DPCore’s superiority. On ImageNet-to-ImageNet-
C, DPCore achieves +15.9% improvement over the source
model in CSC, and maintains robust performance in CDC
with a 42.1% error rate, outperforming ViDA by 10.0%.
Our contributions are: (1) We introduce Continual Dynamic
Change (CDC), a new CTTA setup that better reflects real-
world scenarios through frequent domain shifts and varying
durations; (2) We propose DPCore, a dynamic CTTA ap-
proach that effectively manages domain knowledge through
a dynamic prompt coreset; (3) We show that DPCore is
theoretically sound and achieves SOTA results for classifi-
cation and segmentation tasks in both settings while being
computationally efficient.

2. Preliminaries and Problem Formulation
In this section, we introduce Vision Transformers (ViTs) and
define the CTTA problem across both CSC and our proposed
CDC settings. Due to page limits, detailed discussions on
related work are provided in Appendix A.

Vision Transformers (ViTs). We focus on Vision Trans-
formers for their strong representation capabilities (Doso-
vitskiy et al., 2021; Liu et al., 2021). A ViT f with N
transformer layers comprises a feature extractor ϕ : X → Z
(parameter θϕ) and a classifier h : Z → Y (parameter θh),
so f = h ◦ ϕ. Let Ei = {eji}kj=0 be the input sequence to

the (i+ 1)-th layer, where k is the number of patches and
e0i is the classification token from layer Li:

Ei = ϕ(Ei−1), i = 1, ..., N (1)

ŷ = h(e0N ) (2)

Continual Dynamic Change: A new CTTA setup. Given
a model fθ pre-trained on source domain DS = (XS , Y S),
CTTA adapts this model to a sequence of unlabeled tar-
get domains {DT1 ,DT2 , ...,DTM }. The model processes
test batches {Bt}∞t=1 sequentially, with all samples in batch
Bt assumed to belong to the same unknown target domain
(Wang et al., 2022; Yang et al., 2024). At each step t, pa-
rameters update from θt to θt+1 using Bt to enhance future
performance. Previous CTTA settings (Wang et al., 2022;
Liu et al., 2023b; 2024) typically assume Continual Struc-
tured Change (CSC), where domains change with uniform
length at regular intervals (Fig. 1 Top). However, real-world
scenarios exhibit more dynamic patterns where domains
recur with varying durations (Fig. 1 Bottom), which we
term Continual Dynamic Change (CDC). We simulate this
using a Dirichlet distribution with parameter δ: smaller δ
values create transitions closer to CSC, while larger values
produce more frequent and unpredictable domain changes
(Fig. 4a). We set δ = 1 for our main experiments to balance
structured and random changes. Various δ values and other
distributions are discussed in Appendix E.

3. Dynamic Prompt Coreset (DPCore)
Visual Prompt Adaptation (VPA). We leverage visual
prompts (Jia et al., 2022; Ge et al., 2023) by introduc-
ing L learnable tokens p := {[Prompt]i}Li=1, where
[Prompt] ∈ R768 for ViT-Base. These prompts augment
the input sequence as E′

i = {e0i ,p, e1i , ..., eki }, modifying
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Figure 3. Analysis of DPCore on ImageNet-to-ImageNet-C in the CSC setting. (a) Distance between test batches and source domain in
Eq. (3) using source model (baseline), DPCore, and a prompt trained only on Gaussian Noise. DPCore consistently reduces domain gaps
across all corruptions. (b) Evolution of coreset size across corruption types, showing strategic grouping within the four main corruption
categories (Noise, Blur, Weather, Digital). (c) Performance stability across ten different domain orders.

Eq. (1) to: E′
i = ϕ(E′

i−1), ∀ i = 1, ..., N. We first ex-
tract source features ZS = ϕ(XS ; θϕ) before adaptation.
For batch BT

t at time t, we initialize prompt tokens from
a Gaussian distribution without warm-up and denote ex-
tracted features with prompt p as ZT

t (p) := ϕ(BT
t ; θϕ,p).

We align statistics (mean and standard deviation) of BT
t ,

ΓT
t (p) := {µT

t (p),σ
T
t (p)} with source ΓS := {µS ,σS}

through:

d(ΓS ,ΓT
t (p)) = ∥µS − µT

t (p)∥2 + ∥σS − σT
t (p)∥2 (3)

The prompt is learned by minimizing this distance:

p∗ = argmin
p

d(ΓS ,Γt(p)) (4)

where we omit superscript T for simplicity.

Prompt Coreset. To address catastrophic forgetting (Niu
et al., 2022; Kirkpatrick et al., 2017), we introduce a Prompt
Coreset mechanism inspired by Online K-Means (Duda
& Hart, 1973). The coreset starts empty and updates at
each time step: Pt → Pt+1. Each core element contains
a learned prompt and its feature statistics. When the first
batch B1 arrives, we extract features without prompt (Z1),
compute statistics Γ1 = {µ1,σ1}, learn a prompt p1, and
store the pair (p1,Γ1) in the coreset.

Dynamic Update to the Prompt Coreset. Our studies
show prompts from one domain can benefit adaptation to
similar domains but may harm performance on different
domains (Appendix Table 3). Based on this, we first evaluate
Pt on Bt via Weighted Prompt. For time step t > 1 with
K coreset elements {(pj ,Γj)}Kj=1, we extract features Zt

without prompt and compute statistics Γt. We then generate
a weighted prompt pw as:

pw :=
K∑
j=1

wjpj ,

where wj =
exp(−d(Γt,Γ

j)/τ)∑K
l=1 exp(−d(Γt,Γl)/τ)

(5)
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Figure 4. Analysis of CDC setting on ImageNet-to-ImageNet-C.
(a) Domain change patterns with varying Dirichlet distribution pa-
rameter δ (colors represent different domains): smaller δ produces
CSC-like structured changes while larger δ leads to more frequent
and unpredictable transitions. (b) Performance comparison in CDC
setting (δ = 1), where previous methods show significant degrada-
tion while DPCore maintains robust performance.

where τ is a temperature parameter. This approach allows
flexible adaptation when a domain shares characteristics
with multiple visited domains. Subsequently, we update Pt

to Pt+1. We evaluate pw by comparing distances d(ΓS ,Γt)
and d(ΓS ,Γt(pw)). If reduction is insufficient (potential
new domain), we learn a new prompt and add it to the
coreset. Otherwise, we refine pw and update core elements:

pj ← pj + αwj(pt − pj), Γj ← Γj + αwj(Γt − Γj). (6)

We use the ratio d(ΓS ,Γt(pw))
d(ΓS ,Γt)

compared to threshold ρ to
determine domain novelty, allowing dynamic coreset growth
based on domain complexity (Fig. 3b).

Analysis Under the assumption of well-separated domain
clusters, we prove DPCore: 1) correctly assigns batches
to clusters regardless of sequence length, 2) maintains cor-
rect assignments regardless of batch order, and 3) produces
order-independent learned prompts. These properties en-
able effective domain knowledge management in dynamic
environments. Details in Appendix C.4.
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Table 1. Classification error rate (%) for ImageNet-to-ImageNet-C in previous CSC setting, evaluated on ViT-Base with corruption severity
level 5. Bold and underline indicate best and second-best performance respectively.

Algorithm Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓ Gain↑
Source 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0

Pseudo (Lee, 2013) 45.2 40.4 41.6 51.3 53.9 45.6 47.7 40.4 45.7 93.8 98.5 99.9 99.9 98.9 99.6 61.2 -5.4
Tent (Wang et al., 2022) 52.2 48.9 49.2 65.8 73.0 54.5 58.4 44.0 47.7 50.3 23.9 72.8 55.7 34.4 33.9 51.0 +4.8

CoTTA (Wang et al., 2022) 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 54.8 +1.0
VDP (Gan et al., 2023) 52.7 51.6 50.1 58.1 70.2 56.1 58.1 42.1 46.1 45.8 23.6 70.4 54.9 34.5 36.1 50.0 +5.8
SAR (Niu et al., 2023) 45.8 45.9 47.7 52.3 63.7 46.2 50.9 40.3 42.4 41.8 24.4 53.4 53.6 38.4 36.6 45.6 +10.2

RoTTA (Yuan et al., 2023) 51.5 50.3 51.7 60.4 58.7 52.6 54.8 47.2 43.5 42.8 25.9 49.1 48.8 46.3 39.7 48.2 +7.6
EcoTTA (Song et al., 2023) 48.1 45.6 46.3 56.5 67.1 50.4 57.1 41.3 44.5 43.8 24.1 71.6 54.8 34.1 34.8 48.0 +7.8

ViDA (Liu et al., 2023b) 47.7 42.5 42.9 52.2 56.9 45.5 48.9 38.9 42.7 40.7 24.3 52.8 49.1 33.5 33.1 43.4 +12.4
BGD (Yang et al., 2024) 47.5 42.1 41.6 55.5 55.4 44.5 47.9 38.8 37.8 39.6 23.6 57.0 44.4 33.5 32.3 42.8 +13.0
C-MAE (Liu et al., 2024) 46.3 41.9 42.5 51.4 54.9 43.3 40.7 34.2 35.8 64.3 23.4 60.3 37.5 29.2 31.4 42.5 +13.3

DPCore (Proposed) 42.2 38.7 39.3 47.2 51.4 47.7 46.9 39.3 36.9 37.4 22.0 44.4 45.1 30.9 29.6 39.9 +15.9

4. Experiments
Experimental Setup We evaluate on three classification
datasets (ImageNet-to-ImageNet-C (I2I-C), CIFAR100/10-
to-CIFAR100/10C) with 15 corruption types at severity level
5, and a segmentation dataset (Cityscapes-ACDC). We com-
pare against strong CTTA baselines including Tent (Wang
et al., 2021), CoTTA (Wang et al., 2022), ViDA (Liu et al.,
2023b), and C-MAE (Liu et al., 2024). We test in both CSC
setting following (Wang et al., 2022) and our proposed CDC
setting using Dirichlet distribution with δ = 1. Implementa-
tion details, including hyperparameter selection and model
configurations, are available in Appendix B and C.3.

Main Results. We present results on I2I-C across both set-
tings, with CIFAR10/100 and Cityscapes-to-ACDC results
in Appendix D.3. In the CSC setting (Table 1), DPCore
achieves a SOTA improvement of +15.9% over the source
model, surpassing C-MAE by 2.6%. DPCore groups simi-
lar corruptions (e.g., entire Noise group with a single core
element) while learning separate elements for significantly
different domains, maintaining efficiency with just 14 core
elements total. It shows consistent performance across 10
random domain orders, averaging 40.2% error rate with 13.9
elements (Fig. 3c). In the more challenging CDC setting
(Fig. 4b), existing methods suffer severe degradation (ViDA:
43.4% → 52.1%, Tent: 51.0% → 57.1%), while DPCore
shows remarkable resilience with only a modest increase
(39.9% → 42.1%), outperforming others by 10.0%. DPCore
adapts by increasing its coreset from 14 to 25 elements, en-
abling stability across diverse scenarios.

Ablation Studies. We conduct comprehensive ablation stud-
ies on I2I-C in the CSC setting. Table 2 demonstrates the
contribution of each component: using only Visual Prompt
Adaptation (VPA) with Dynamic Update (DU) yields a 4.8%
improvement, adding Prompt Coreset (PC) without DU in-
creases to 7.5%, and replacing VPA with NormLayer pa-
rameters still outperforms Tent by 5.9%. Our sensitivity
analysis reveals robust performance across various hyper-
parameters: prompt length L shows stability across values
1-10 (Fig. 6a), threshold ρ maintains consistent performance

Table 2. Effect of DPCore’s three components: VPA (Visual
Prompt Adaptation), PC (Prompt Coreset), and DU (Dynamic
Update). Time shows relative computation time (Tent=1.0), Err
Mean shows classification error rate (%).

VPA PC DU Time Err Mean↓ Gain↑

Source - - - - 55.8 -
Tent - - - 1.0 51.0 +4.8

Exp-1 ✓ - ✓ 1.0 50.8 +5.0
Exp-2 ✓ ✓ - 11.4 48.3 +7.5
Exp-3 - ✓ ✓ 1.6 45.1 +10.7

DPCore ✓ ✓ ✓ 1.8 39.9 +15.9

between 0.6-0.9 (Fig. 6b), and DPCore remains effective
with as few as 50 source examples (Fig. 6c). For batch
size (Fig. 6d), DPCore maintains stability above size 16
and outperforms other methods at smaller sizes, with our
buffered variant DPCore-B achieving 41.2% error rate even
with single-sample batches. Computationally, DPCore intro-
duces only 0.08M parameters (0.1% of model parameters)
while requiring 55.6% less computation time (Table 10).
Additional results are in Appendix F.

5. Conclusion
We introduce a new CTTA setup: Continual Dynamic
Change (CDC) setting that better reflects real-world scenar-
ios where domains recur with varying frequencies and du-
rations. Through extensive benchmarking on four datasets,
we demonstrate that previous methods for CTTA struggle in
CDC due to convergence issues, catastrophic forgetting, and
negative transfer. To remedy this, we propose DPCore, inte-
grating three complementary components: Visual Prompt
Adaptation for efficient domain alignment with minimal
parameters, Prompt Coreset for strategic knowledge preser-
vation, and Dynamic Update for intelligently managing
domain knowledge—updating existing prompts for similar
domains while creating new ones for substantially different
ones. Through our experiments, we show that DPCore is
effective and achieves SOTA performance for classification
and segmentation tasks for the standard CSC and the new
CDC setting. Our theoretical analysis and comprehensive
ablation studies further validate DPCore’s effectiveness.
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Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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DPCore: Dynamic Prompt Coreset for Continual Test-Time Adaptation
Supplementary Materials

In the Appendix, we provide detailed supplementary materi-
als to enhance understanding of our work:

First, we present background materials: related works on
TTA and CTTA (Sec. A), comprehensive information about
CTTA baselines and implementations (Sec. B), and addi-
tional details about our method and CDC setting, including
hyperparameter selection and theoretical analysis (Sec. C).

The experimental aspects are covered in several sections:
additional experimental results (Sec. D), discussion of our
CDC setting with other CTTA settings (Sec. E), and ex-
tended ablation studies (Sec. F). Finally, we discuss limita-
tions of our method in Sec. G.

A. Related Works
Test-Time Adaptation (TTA) (Wang et al., 2021; Iwasawa
& Matsuo, 2021; Liang et al., 2020; Gao et al., 2023; Schnei-
der et al., 2020; Mirza et al., 2022; 2023; Niu et al., 2024;
Liang et al., 2023; Sun et al., 2020) enhances pre-trained
model performance using unlabeled data at test time, with-
out access to the original training phase. TTA techniques fall
into two main categories based on their use of source data.
The first adjusts models through self-supervised losses like
entropy minimization (Wang et al., 2021; Niu et al., 2023)
and consistency maximization (Wang et al., 2022; Liu et al.,
2023b; 2024). The second involves preliminary steps using
source data: either by extracting source characteristics such
as statistics or features (Mirza et al., 2023; Niu et al., 2024;
Zhang et al., 2024)) or by warming up injected parameters
on source data before adaptation (Lee et al., 2024; Song
et al., 2023; Gan et al., 2023; Liu et al., 2023b; Gao et al.,
2023).

Crucially, both approaches are source-free adaptation since
they operate without source data during adaptation. While
our method falls into the second category, it significantly
reduces source dependency compared to existing methods:
DPCore requires only 300 unlabeled source examples to
compute statistics, in contrast to DePT (Gao et al., 2023),
ViDA (Liu et al., 2023b), VDP (Gan et al., 2023) and Be-
CoTTA (Lee et al., 2024) which need the entire source
dataset for warm-up. Moreover, as demonstrated in Fig. 6c,
our approach maintains effectiveness even when source data
is completely unavailable.

Continual Test-Time Adaptation (CTTA) (Wang et al.,

2022; Lee et al., 2024; Niu et al., 2022; Niloy et al., 2024;
Liu et al., 2023a; Boudiaf et al., 2022; Gong et al., 2022;
Yuan et al., 2023) tackles the challenge of non-stationary tar-
get domains. This paradigm was first introduced in (Wang
et al., 2022), referred to as CSC in this work and shown
in the top of Fig. 1, where domains change in a structured
manner with clear boundaries and uniform lengths. While
several works (Niu et al., 2023; Boudiaf et al., 2022; Gong
et al., 2022) explore TTA challenges such as mixed domains
and label imbalance, they primarily focus on the static do-
main. (Yuan et al., 2023) extends this exploration to the
CSC setting, investigating label imbalance within batches
from changing domains. More recently, (Lee et al., 2024)
introduced scenarios with continual gradual shifts, where
domain boundaries become blurred and transitional batches
may contain mixed-domain data, though the overall domain
progression still follows the CSC pattern.

Existing methods often overlook frequent domain changes
and irregular durations, which are critical in real-world ap-
plications. To address this gap, we propose the Continual
Dynamic Change (CDC) setting, where domains change in
a more realistic, dynamic manner. Traditional CTTA meth-
ods struggle in this setting, as demonstrated in Fig. 4b. Our
DPCore is specifically designed to mitigate the effect of
diverse domain change patterns and frequencies.

B. Baselines
In this section, we provide the details of the CTTA baselines
we use in our paper.

Tent1 (Wang et al., 2021) updates the Norm Layer param-
eters through prediction entropy minimization. We follow
the same hyperparameters that are set in Tent.

CoTTA2 (Wang et al., 2022) is the first to perform TTA on
continually changing domains and propose a teacher-student
learning scheme with augmentation-based consistency max-
imization. We follow the same hyperparameters that are set
in CoTTA. The trainable parameters are all the parameters
in ViT-Base.

DePT (Gao et al., 2023) integrates visual prompts with
Vision Transformers to adapt to target domains through
memory bank-based pseudo-labeling. This method utilizes

1https://github.com/DequanWang/tent
2https://github.com/qinenergy/cotta
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a significant number of prompts, which are initialized by
warming up on source data.

SAR3 (Niu et al., 2023) introduces a sharpness-aware and
reliable entropy minimization method. This approach se-
lectively filters noisy samples and optimizes model weights
towards stable regions in the parameter space.

VDP (Gan et al., 2023) employs visual domain prompts
in pixel space to adapt to continually changing domains. It
dynamically updates lightweight prompts to facilitate do-
main adaptation, modifying input images instead of model
parameters. The pixel prompts are initialized on source
data.

EcoTTA4 (Song et al., 2023) utilizes lightweight meta net-
works and self-distilled regularization to maintain memory
efficiency and ensure long-term adaptation stability. This
method emphasizes consistency between the outputs of
meta networks and the original frozen network, with meta-
networks warmed up on source data for several epochs.

ViDA5 (Liu et al., 2023b) uses high-rank and low-rank do-
main adapters to manage domain-specific and shared knowl-
edge. Designed to address continual test-time adaptation, it
dynamically responds to changing domain conditions. The
adapters are warmed up on source data.

BDG (Yang et al., 2024) is a framework designed to bal-
ance discriminability and generalization in CTTA by gen-
erating high-quality supervisory signals. This framework
uses adaptive thresholds for pseudo-label reliability, lever-
ages knowledge from a pre-trained source model to adjust
unreliable signals, and calculates a diversity score to ensure
future domain generalization.

C-MAE6 (Liu et al., 2024) introduces Adaptive Distri-
bution Masked Autoencoders for CTTA, which employ a
Distribution-aware Masking mechanism to adaptively sam-
ple masked positions in images.

We utilize official implementations of the method where
available; otherwise, we implement it ourselves using the
hyperparameters reported in the original paper. To ensure
fair comparison, we maintain consistent hyperparameters
across both CSC and CDC settings.

C. Additional Details of DPCore
C.1. Visual Prompt Adaptation in TTA

In the context of TTA where labels are unavailable, prompts
can be optimized through consistency maximization, en-

3https://github.com/mr-eggplant/SAR
4https://github.com/Lily-Le/EcoTTA
5https://github.com/Yangsenqiao/vida
6https://github.com/RanXu2000/continual-mae

tropy minimization, or unsupervised distribution alignment
(Niu et al., 2024; Sun et al., 2023; Gao et al., 2023; Zhang
et al., 2024). We employ distribution alignment due to its
proven effectiveness and computational simplicity (Ben-
David et al., 2006; Mehra et al., 2024).

For the current batch BT
t at time step t from unknown

target domain T , a prompt is optimized by minimizing the
distribution alignment between source and target features:

p∗ = argmin
p

d(ZS ,ZT
t (p)) (7)

where d represents a distribution distance and ZT
t (p) =

ϕ(BT
t ; θϕ,p) denotes the extracted features of the current

batch with prompt p, as shown on the right of Fig. 2. We
employ marginal distribution alignment (Ben-David et al.,
2006; Le et al., 2021; Shen et al., 2018) to avoid potential
error accumulation from pseudo labels in continual learning
scenarios, though other sophisticated distance metrics are
also applicable.

Unlike previous prompt-based TTA methods such as DePT
(Gao et al., 2023) or VDP (Gan et al., 2023) that require
prompt warm-up on source data for optimal initialization,
we initialize prompt tokens from a Gaussian distribution
without any warm-up, following Visual Prompt Tuning in
supervised settings (Jia et al., 2022). This approach makes
our method more practical and efficient.

C.2. Algorithm of DPCore

To illustrate how DPCore operates as shown in Fig. 2, we
present its complete algorithm in Alg. 1.

C.3. Implementation Details

Here we detail the hyperparameters used in our main ex-
periments. We randomly sample 300 source examples to
compute the statistics and set the number of prompt tokens
to 8 with a test batch size of 64. The updating weight is set
as α = 0.999. We learn the prompt from scratch for 50 steps
and refine the existing prompt for only 1 step. The model
is optimized using AdamW with a learning rate of 0.01,
and the threshold ρ is set to 0.8. These hyperparameters
were determined using four disjoint validation corruptions
from ImageNet-C and CIFAR10-C (Hendrycks & Dietterich,
2019): [Speckle Noise, Gaussian Blur, Spatter, Saturate],
following (Zhang et al., 2022).

For datasets without validation sets (e.g., CIFAR100-to-
CIFAR100C and Cityscapes-to-ACDC), we apply these
same hyperparameters without additional tuning to align
with practical testing conditions, where hyperparameters
must be selected prior to accessing target data. Moreover,
we employ identical hyperparameters across both CSC and
CDC settings.

9

https://github.com/mr-eggplant/SAR
https://github.com/Lily-Le/EcoTTA
https://github.com/Yangsenqiao/vida
https://github.com/RanXu2000/continual-mae


DPCore for Continual Test-Time Adaptation

Algorithm 1 The proposed algorithm DPCore
Input: A source pre-trained model f(x), source statistics ΓS , test
batches {Bt}Tt=1

Initialization: An empty coreset, a pre-defined ratio threshold ρ,
and random prompt tokens.
1: for the first batch B1 do
2: Compute the statistics of batch B1 without prompt.
3: Learn prompt from scratch (Eq. 7).
4: Add the batch statistics and prompt to the empty coreset.
5: end for
6: for t = 2, ..., T do
7: Compute the statistics of batch Bt without prompt.
8: Compute the weights and weighted prompts (Eq. 5).
9: Compute batch statistics with the weighted prompt.

10: Compute ratio of distances with/w.o. weighted prompt.
11: if ratio ≤ ρ then
12: Update weighted prompt on Bt by 1 step.
13: Update all coreset elements (Eq. 6).
14: else
15: Learn prompt from scratch for Bt (Eq. 7).
16: Add the batch statistics and learned prompt to the coreset

as a new element.
17: end if
18: end for
Output: Prediction for all batches; The learned coreset.

C.4. Comprehensive Analysis of DPCore

We elaborate on the theoretical analysis introduced in Sec. 3.
For simplicity, we consider a version of Alg. 1 where we
use one-hot weights instead of general weights—only the
closest core element to a given test batch is considered,
and only the mean is stored in the coreset. The simplified
algorithm is presented in Alg. 2, denoted as A

Consider batches B1, ..., Bt naturally clustered into M
mutually exclusive clusters {Gi}Mi=1 based on their dis-
tances. Let Conv(Gi) be the convex hull of batches in
Gi, diam(S) = supx,x′∈S d(x, x′) be the diameter of set
S, and d(S, S′) = infx∈S,x′∈S′ d(x, x′) be the set dis-
tance. We denote by Π(t−1) the set of permutations on
(1, ..., t − 1), by Gi

t the set of batches in cluster i at time
t, and by {pi

t,µ
i
t} the i-th core element at time t. Each

core element consists of a core prompt pi
t and a core mean

µi
t. Abstractly, the algorithm A generates the current

prompt pt = A({Bt−1, ..., B1}) using the batch history
{B1, ..., Bt−1} as input.

Assumption (Well-separated clusters): There exists θ > 0
such that:

diam(Conv(Gi)) < θ < d(Conv(Gi),Conv(Gj)), ∀i ̸= j

This implies batches within the same cluster are closer to
each other than to batches from different clusters.
Proposition C.1. For any t ≥ 1, Alg. 2 assigns all batches
B1, ..., Bt to correct clusters.

Proof. We prove by induction. At t = 1, since no clusters

exist, B1 creates the first cluster with µ1 = µ(B1). Suppose
cluster assignments are correct for batches B1, ..., Bt−1.
Since each core mean µi is updated through interpolation
(1− α)µi + αµ(Bt), it remains within the convex hull of
its cluster: µi

t ∈ Conv(Gi
t).

When a new batch Bt belonging to cluster j arrives, we con-
sider four cases based on whether cluster j or other clusters
contain batches: 1) If no clusters exist (|Gj

t−1| = |Gk
t−1| =

0, ∀k ̸= j), Bt creates a new cluster. 2) If only other
clusters exist (|Gj

t−1| = 0, and ∃k ̸= j : |Gk
t−1| > 0),

well-separatedness ensures d(µ(Bt),µ
k) > θ, so Bt cre-

ates a new cluster. 3) If only cluster j exists (|Gj
t−1| >

0, and |Gk
t−1| = 0, ∀k ̸= j), well-separatedness ensures

d(µ(Bt),µ
j) < θ, so Bt joins cluster j. 4) If multiple clus-

ters exist (|Gj
t−1| > 0, and ∃k ̸= j : |Gk

t−1| > 0), well-
separatedness ensures d(µ(Bt),µ

j) < θ < d(µ(Bt),µ
k),

so Bt correctly joins cluster j.

Proposition C.2. For any t > 1, Alg. 2 assigns
Bt to the correct cluster independent of batch order
Bπ(1), ..., Bπ(t−1),∀π ∈ Π(t−1). Furthermore, if α =
1

|Gj | , then the core mean is the cluster mean: µi
t =

1
|Gi

t|
∑

B∈Gi
t
µ(B), also independent of batch order.

Proof. From Proposition C.1, correct assignment at time t
depends only on well-separatedness and correct assignments
at t− 1, not on batch order. For the second claim, consider
batches B(1), B(2), ... are the batches assigned to cluster j
in the order they are processed. With α = 1

|Gj | , updates

yield: µj = µ(B(1)), µj = 1
2 (µ(B

(1)) + µ(B(2))), µj =
1
3 (µ(B

(1))+µ(B(2))+µ(B(3))), and so on. This running
average is independent of batch order.

Proposition C.3. For any t > 1, Alg. 2 learns
prompt pt for batch Bt independent of batch order
Bπ(1), ..., Bπ(t−1),∀π ∈ Π(t−1).

Proof. From Proposition C.2, cluster assignment is inde-
pendent of batch order. For batch Bt, two cases arise: 1)
If Bt belongs to an existing cluster i, pt is learned starting
from existing core prompt pi. Since pi is order-independent,
pt is also order-independent. 2) If Bt creates a new clus-
ter, pt is learned from scratch, making it inherently order-
independent.

Our analysis demonstrates three key properties of DPCore
under the well-separatedness assumption: 1) Correct Clus-
tering: DPCore correctly assigns all batches to their re-
spective clusters regardless of sequence length. 2) Order
Independence: Cluster assignments remain correct regard-
less of the order in which batches arrive. 3) Prompt Stability:
The learned prompts are independent of batch order.
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These properties together show that DPCore can effectively
manage domain knowledge even when domains appear in
arbitrary orders—a crucial advantage in dynamic environ-
ments. While this analysis uses simplified assumptions,
it provides valuable insight into DPCore’s robustness to
random domain changes. The full analysis under general
conditions remains an interesting direction for future work.

Algorithm 2 A simplified version of the proposed algorithm

1: for t = 1, 2, ..., T do
2: Compute the batch mean µ(Bt) and distances dj =

d(µ(Bt),µ
j), i = 1, ...,K against all existing core

elements.
3: if coreset is empty or minj d

j > θ then
4: Learn prompt from scratch for Bt (Eq. 7).
5: Add the batch mean and learned prompt to the

coreset as a new element.
6: else
7: Assign Bt to the closest core element j∗ =

argminj d
j .

8: Update the prompt in j∗-th core element by 1 step.
9: Update j∗-th core element (Eq. 6).

10: end if
11: end for
Output: Prediction for all batches; The learned coreset.

D. Additional Results
D.1. Performance of Single Domain-learned Prompt

To validate the core intuition behind DPCore, we conduct
a preliminary experiment examining how a prompt learned
from one domain transfers to others. Specifically, we learn a
prompt from scratch on the Gaussian Noise domain and eval-
uate its effectiveness across the remaining 14 domains. For
comparison, we also learn domain-specific prompts inde-
pendently with known domain boundaries, where the model
resets each time it encounters a new domain. As shown in
Table 3, the Gaussian Noise-learned prompt yields interest-
ing transfer patterns: it significantly improves performance
on similar domains (Shot Noise and Impulse Noise), shows
limited effectiveness on others (Defocus Blur and Elastic),
and even degrades performance on substantially different do-
mains (Motion and Contrast). These performance variations
strongly align with the domain distance measurements illus-
trated in Fig. 3a, suggesting that the effectiveness of prompt
transfer is directly related to the similarity of domains in
feature space.

Notably, DPCore surprisingly outperforms the domain-
specific prompts despite requiring no domain boundary
information. This superior performance stems from DP-
Core’s ability to learn a unified prompt for similar domains
(e.g., the entire Noise group including Gaussian, Shot, and

Impulse), achieving better adaptation than learning from
individual domains in isolation.

These empirical findings reveal two crucial insights that
motivate DPCore’s design: (1) prompts can transfer effec-
tively between similar domains, potentially enabling more
efficient adaptation, and (2) for fundamentally different do-
mains, learning new domain-specific prompts is essential to
prevent negative transfer.

D.2. Results for 10 Random Orders in CSC

This section provides details for the results presented in
Fig. 3c. We strictly follow the ten random orders used
in CoTTA (Wang et al., 2022) and evaluate DPCore on
ImageNet-to-ImageNet-C across all ten domain orders. It
is important to note that even though the domain order is
changed, the domain change frequency and domain length
remain fixed, resulting in the same domain change pattern
in CSC setting. DPCore demonstrates robust performance
in this setting, achieving an average error rate of 40.2%
with an average coreset size of 13.9 elements. These re-
sults highlight the consistency and effectiveness of DPCore
across various domain orders, further validating its applica-
bility in real-world scenarios where the order of encountered
domains may vary.

D.3. Results for CIFAR10/100-to-CIFAR10/100C

In this section, we present the results on CIFAR10/100-to-
CIFAR10/100C across both CSC and CDC settings. The
results for CIFAR10-to-CIFAR10C are in Table 4 and Ta-
ble 5 for CSC and CDC settings respectively. In the CSC
setting, DPCore significantly outperforms all existing meth-
ods, achieving a +12.8% improvement over the source pre-
trained model and surpassing the previous SOTA (ViDA) by
5.3%. This improvement is consistent across all corruption
types, with particularly strong performance on noise corrup-
tions (reducing error rates from 60.1% to 22.0% on Gaus-
sian Noise). In the more challenging CDC setting, while
previous methods show substantial degradation (ViDA’s im-
provement drops from +7.5% to +4.6%), DPCore maintains
robust performance with an 11.1% improvement over the
source model.

Similarly, for CIFAR100-to-CIFAR100C task (results in Ta-
bles 11 and 12), DPCore demonstrates strong performance
across both settings. In CSC, DPCore achieves a 10.3%
improvement over the source model and outperforms ViDA
by 2.2%, with notable improvements across all corruption
types, particularly on Glass (44.1% vs 60.5% source error
rate) and Contrast corruptions (13.2% vs 34.8% source error
rate). The CDC setting presents a greater challenge, where
several methods (CoTTA, VDP) perform worse than the
source model, and ViDA’s improvement drops from +8.1%
to +5.6%. In contrast, DPCore maintains robust perfor-
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Table 3. Classification error rate (%) for ImageNet-to-ImageNet-C in the CSC setting. Gaussian Noise-learned Prompt denotes the
prompt learned solely on Gaussian Noise and evaluated across other domains. Domain-specific prompt denote the prompt learned on each
domain separately with known domain boundary.

Algorithm Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓ Gain↑
Source 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0

Tent 52.2 48.9 49.2 65.8 73.0 54.5 58.4 44.0 47.7 50.3 23.9 72.8 55.7 34.4 33.9 51.0 +4.8
Gaussian Noise-learned Prompt 42.2 40.4 42.1 67.5 65.3 60.4 66.8 50.0 41.2 56.8 27.6 95.7 56.3 37.7 32.6 52.2 +3.6

Domain-specific Prompt 42.2 39.9 41.6 58.8 58.1 48.6 44.0 35.0 40.6 41.5 21.1 42.9 45.6 29.6 28.0 41.2 +14.6
DPCore (Proposed) 42.2 38.7 39.3 47.2 51.4 47.7 46.9 39.3 36.9 37.4 22.0 44.4 45.1 30.9 29.6 39.9 +15.9
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Figure 5. Performance comparison across different domain change
patterns on ImageNet-to-ImageNet-C. The x-axis shows settings
from CSC to CDC with increasing Dirichlet parameter δ, where
larger δ indicates more frequent domain changes. DPCore main-
tains stable performance even with rapid domain transitions, while
other methods degrade significantly.

mance with an 8.0% improvement over the source model,
demonstrating its effectiveness.

D.4. Comprehensive Results for Cityscapes-to-ACDC

Beyond classification, we evaluate DPCore on real-world se-
mantic segmentation using the Cityscapes-to-ACDC dataset,
where performance is measured by mean Intersection over
Union (mIoU, %). In this section, we provide fine-grained
results on Cityscapes-to-ACDC, presented in Table 13 and
Table 14 for CSC and CDC settings respectively. In the
CSC setting following (Liu et al., 2023b; 2024) where do-
main sequences repeat three times, DPCore shows consis-
tent improvement in mIoU across cycles (62.1→ 62.6→
62.8), outperforming previous SOTA ViDA by 0.6%. In the
more challenging CDC setting, while Tent and EcoTTA per-
form worse than the source model and ViDA’s improvement
drops from +5.2% to +2.5%, DPCore maintains robust per-
formance (from +5.8% to +4.3%) while adapting its coreset
size from 5 elements in CSC to 7 in CDC to handle increased
domain complexity. Fine-grained results are available in
Appendix D.4.

E. Discussion on CTTA Setting.
E.1. CDC with Different Dirichlet Distributions

We analyze how different domain change patterns affect
CTTA methods by varying the Dirichlet distribution param-
eter δ that controls our CDC simulation. As shown in Fig. 5,
smaller δ values (0.01, 0.1) produce domain changes more
similar to CSC, while larger values (1, 10) lead to increas-
ingly frequent transitions. DPCore demonstrates remarkable
stability across all settings, with error rates increasing only
modestly from 39.9% (CSC) to 43.1% (δ = 10), consis-
tently outperforming previous SOTA methods. The stability
of other methods, however, deteriorates significantly as δ
increases. In the most challenging scenario (δ = 10) where
domains change most rapidly, most previous methods per-
form similarly to or worse than the source model (55.8%).
While SAR maintains some improvement with 50.2% error
rate, DPCore significantly outperforms all methods with
43.1%, demonstrating its robust adaptation capability even
under extreme domain variation.

E.2. CDC with Other Distributions

To provide a comprehensive understanding of our CDC
setting beyond the Dirichlet distribution, we present a se-
quence generation method based on two independent distri-
butions: one for domain selection and another for domain
duration (number of batches), termed as CDC-2D. This
two-distribution approach allows us to flexibly control both
which domains appear and how long they persist, creating
realistic scenarios of domain changes.

Taking uniform distributions as a simple case, we iteratively
construct the domain sequence through the following pro-
cess: at each step, we randomly select a domain from the
domain pool using uniform probability, then randomly de-
termine the number of consecutive batches to assign to this
domain, also using uniform distribution. If a selected do-
main has no remaining batches, we perform reselection until
finding an available domain. This process continues until all
batches across all domains have been assigned, naturally en-
suring unpredictable domain changes with varying durations
while maintaining complete coverage of all domains.

This uniform distribution-based generation, which we term
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Table 4. Classification error rate (%) for CIFAR10-to-CIFAR10C in the CSC setting.
Algorithm Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓ Gain↑

Source 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 0.0
Tent (Wang et al., 2021) 57.7 56.3 29.4 16.2 35.3 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5 23.5 +4.7

CoTTA (Wang et al., 2022) 58.7 51.3 33.0 20.1 34.8 20 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.6
VDP(Gan et al., 2023) 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4 27.5 18.4 22.5 19.9 24.1 +4.1

ViDA (Liu et al., 2023b) 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.5
DPCore(Proposed) 22.0 18.2 14.9 14.3 24.4 13.9 12.0 11.6 10.7 15.0 5.7 21.8 15.6 12.7 18.0 15.4 +12.8

Table 5. Classification error rate (%) for CIFAR10-to-CIFAR10C in the CDC setting.
Algorithm Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓ Gain↑

Source 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 0.0
Tent (Wang et al., 2021) 57.4 51.7 34.2 18.2 35.1 22.4 16.9 11.8 12.6 21.6 5.1 36.7 22.1 24.3 23.2 26.2 +2.0

CoTTA (Wang et al., 2022) 59.2 54.8 45.1 20.5 36.1 21.9 19.1 11.6 12.1 21.2 6.1 35.1 22.5 21.7 19.7 27.1 +1.1
VDP(Gan et al., 2023) 58.1 51.2 32.2 22.4 34.8 20.4 15.6 11.2 11.4 20.1 4.9 30.4 20.4 22.7 19.9 25.0 +3.2

ViDA (Liu et al., 2023b) 56.4 50.8 28.4 16.7 32.5 15.2 13.7 10.1 10.4 13.5 4.2 26.5 19.4 35.1 21.2 23.6 +4.6
DPCore(Proposed) 24.1 20.6 24.5 13.9 26.5 14.2 13.2 13.4 10.2 12.8 5.0 22.5 16.8 20.1 18.5 17.1 +11.1

CDC-2D, offers an alternative perspective on dynamic do-
main changes compared to the Dirichlet approach in the
main paper. As shown in Table 7, we observe two signifi-
cant trends similar to our main results: First, previous SOTA
methods suffer substantial performance degradation when
moving from CSC to this CDC-2D setting, with several
methods showing minimal improvement over the source
model’s 55.8% error rate and even the best baseline achiev-
ing only moderate gains. This degradation is particularly
evident in challenging corruption types where most meth-
ods struggle to significantly improve upon the source model.
Second, DPCore maintains robust performance with a 43.2%
error rate (comparable to 42.1% achieved with Dirichlet
distribution) and consistently outperforms other methods,
achieving a significant improvement of +12.6% over the
source model while the second-best method only achieves
+8.1

To further validate DPCore’s effectiveness across diverse do-
main change patterns, we explore CDC settings with differ-
ent probability distributions. Taking ImageNet-to-ImageNet-
C as an example with its 15 corruption domains, we consider
probability vectors [P1, P2, ..., P15] where each Pi repre-
sents the probability of selecting the i-th domain. These
vectors must satisfy Pi > 0 for all i (ensuring every domain
has some probability of being selected) and

∑15
i=1 Pi = 1

(making it a valid probability distribution). The uniform
distribution represents a special case where Pi = 1

15 for
all i. We randomly generate ten different such probability
vectors, each defining a unique pattern of domain changes.
The results in Table 7 demonstrate DPCore’s remarkable
consistency across these varied settings, achieving a mean
error rate of 43.5% with standard deviation of 0.7. This
stability across different domain change patterns further val-
idates DPCore’s robustness and its ability to handle diverse
scenarios of distribution shift.

E.3. Comparison with Other CTTA Settings

In this section, we discuss how our proposed CDC setting
differs from other CTTA variants. First, we consider the
repeating setting introduced in (Wang et al., 2022), where 15
corruption domains are repeated for 10 rounds. While this
setting eventually accumulates numerous domain changes,
it differs fundamentally from CDC: each domain maintains
uniform duration (782 batches), and changes occur gradu-
ally. This structured nature makes it more similar to CSC
than our CDC setting, where domain durations vary signifi-
cantly and changes occur more frequently.

Second, the gradual domain change setting proposed in (Lee
et al., 2024) assumes blurred domain boundaries, where
batches near transitions contain mixed-domain data. While
this realistic assumption differs from traditional CTTA meth-
ods, it still follows the CSC pattern where mixed batches
constitute only a small portion of all data due to long do-
main durations. Although we haven’t directly evaluated
DPCore in this setting, our proposed variant DPCore-B (de-
tailed in Section F.2) demonstrates effective handling of
mixed-domain batches, suggesting potential applicability to
gradual domain changes.

Third, the Practical Test-Time Adaptation (PTTA) setting
(Yuan et al., 2023) assumes label-balanced batches with
local class correlation (e.g., single-class batches) in CSC.
This contrasts with our setting, which follows the common
CTTA assumption (Wang et al., 2022; Niu et al., 2022;
Liu et al., 2023b; 2024) of uniform sampling and label bal-
ance. Interestingly, despite not being designed for PTTA,
DPCore shows substantial improvement in this setting (re-
sults in Table 8). Meanwhile, RoTTA (Yuan et al., 2023),
though specifically designed for PTTA, demonstrates lim-
ited effectiveness on ImageNet-C with ViTs compared to
its stronger performance on smaller datasets like CIFAR10,
consistent with findings in (Marsden et al., 2023). Further-
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Table 6. Classification error rate (%) for ImageNet-to-ImageNet-C in the CDC-2D setting.
Algorithm Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓ Gain↑

Source 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0
Tent (Wang et al., 2022) 54.1 53.2 52.9 66.7 74.6 56.6 61.2 49.2 52.3 57.5 32.1 90.4 56.1 37.7 37.1 55.4 +0.4

CoTTA (Wang et al., 2022) 52.4 52.2 51.1 68.4 76.3 57.9 62.1 48.7 53.1 55.1 26.1 88.9 57.1 37.6 38.2 55.0 +0.8
VDP (Gan et al., 2023) 53.1 53.3 51.5 62.4 73.1 53.4 60.1 43.5 54.3 58.2 25.1 82.2 56.6 35.7 36.3 53.3 2.5
SAR (Niu et al., 2023) 47.0 46.1 46.1 56.1 66.4 49.9 55.1 41.1 44.8 50.9 23.6 65.3 54.2 32.9 31.4 47.4 +8.1

EcoTTA (Song et al., 2023) 48.9 47.4 49.3 59.2 71.2 54.1 59.8 46.2 44.3 57.2 24.0 84.1 55.2 37.2 35.3 51.6 +4.2
ViDA (Liu et al., 2023b) 48.8 49.2 47.3 56.6 71.6 55.3 59.6 41.2 49.4 60.5 27.1 83.9 57.9 34.6 34.4 51.8 +4.0

DPCore (Proposed) 42.7 40.4 42.2 57.4 61.0 51.1 52.4 35.8 41.0 38.8 22.1 55.4 48.3 31.1 28.1 43.2 +12.6

Table 7. Average error rate (%) of DPCore across 10 different CDC-2D settings (R1-10) on ImageNet-to-ImageNet-C.
Source Uniform R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Average Std

Err Mean↓ 55.8 43.2 42.1 42.8 44.2 43.5 43.5 42.7 43.9 44.4 44.7 43.0 43.5 0.7

Table 8. Average error rate (%) of DPCore and RoTTA across vari-
ous CTTA settings on ImageNet-to-ImageNet-C. The improvement
over the source model is shown in parentheses.

Algorithm CSC PTTA CDC Average

Source 55.8 55.8 55.8 0
RoTTA 48.2 (+7.6) 49.5 (+6.35) 53.1 (+2.7) 50.3 (+5.6)
DPCore 39.9 (+15.9) 43.9 (+12.0) 42.1 (13.7) 42.0 (+13.9)

Table 9. Average error rate (%) of DPCore-B across various buffer
zone size D on ImageNet-to-ImageNet-C in CSC setting when
batch size is one.

Source D= 8 D= 16 D= 32 D= 64

Err Mean↓ 55.8 43.0 42.1 41.6 41.2

more, RoTTA’s performance degrades significantly in our
CDC setting. In contrast, DPCore maintains robust perfor-
mance across CSC, CDC, and PTTA settings, demonstrating
its versatility across different test-time scenarios.

Our CDC setting introduces unique challenges through its
combination of frequent domain changes and varying do-
main durations, distinguishing it from previous CTTA vari-
ants. This more dynamic and unpredictable environment
better reflects real-world scenarios while posing significant
challenges for existing CTTA methods.

F. Additional Ablation Studies
F.1. Ablation Studies

We provide comprehensive analyses and ablation studies for
DPCore on ImageNet-to-ImageNet-C in the CSC setting.
Additional results are available in Appendix F.

Effect of Each Component. Table 2 evaluates the con-
tributions of DPCore’s key components: Visual Prompt
Adaptation (VPA), Prompt Coreset (PC), and Dynamic Up-
date (DU). In the first experiment (Exp-1), employing only

VPA and DU without PC, we see a 4.8% reduction in error
rate compared to the source pre-trained model, with com-
putation time similar to Tent as it involves learning a single
prompt from scratch for all domains. Exp-2 introduces
PC but omits DU, requiring new prompts for each batch,
enhancing performance to +7.5% but increasing computa-
tion time tenfold compared to Tent. In Exp-3, we replace
VPA with NormLayer parameters while retaining PC and
DU, outperforming Tent by +5.9%, illustrating the method’s
adaptability beyond ViT architectures to CNNs by adapting
NormLayer parameters. The full DPCore setup, integrat-
ing VPA, PC, and DU, achieves a SOTA improvement of
+15.9% while maintaining computational efficiency.

Effect of prompt length L. We assess the impact of prompt
size by varying the number of prompt tokens L within the
range of {1, 2, ..., 10}. As depicted in Fig. 6a, DPCore’s
performance exhibits strong stability across different values
of L, demonstrating low sensitivity to this parameter. We
fix L = 8 for all main experiments.

DPCore’s sensitivity to threshold ρ. The threshold ρ in
Alg. 1 controls DPCore’s sensitivity to domain changes.
Lower ρ values result in more batches being classified as
samples from unseen domains. For example, setting ρ near
zero causes each batch to learn its own prompt. In contrast,
high ρ values lead to all batches after the first one being
considered as from visited domains, potentially reducing
the coreset to a single element. However, even a high ratio ρ
such as 1 is likely to learn a new core element if the weighted
prompt pw increases the domain gap significantly for differ-
ent unseen domains, i.e., d(ΓS ,Γt(pw)) > d(ΓS ,Γt). We
examine ρ within a range of 0.1 to 1.0. Experimental results,
as shown in Fig. 6b, demonstrate stable performance for
ρ values from 0.6 to 0.9. To ensure consistency and avoid
dataset-specific tuning, we fix ρ = 0.8 across all our main
experiments before any exposure to target data.

Effect of test batch size. To comprehensively assess the
impact of test batch size, we evaluate various CTTA meth-
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Figure 6. Ablation studies on ImageNet-to-ImageNet-C: impact of (a) prompt token length, (b) threshold ratio for core element evaluation,
(c) number of source examples used for statistics computation, and (d) batch size on classification error rate.

ods across batch sizes ranging from 1 to 256. The results
illustrated in Fig. 6d reveal a consistent pattern across meth-
ods: regardless of their objective functions (entropy, con-
sistency, or distribution alignment), they maintain stable
performance with sufficiently large batch sizes but exhibit
increased error rates as batch sizes decrease. In the extreme
case of single-sample adaptation (batch size one), all meth-
ods demonstrate significantly degraded performance, falling
below the source model’s baseline. This observation aligns
with findings reported in recent literature (Yuan et al., 2023;
Song et al., 2023). Based on these empirical findings and
consistent with prior work, we standardize the batch size to
64 for fair comparison across methods. Moreover, DPCore
maintains exceptional stability for batch sizes above 16 and
shows minimal degradation for smaller sizes (8 and 4) while
outperforming other methods. For extremely small batch
sizes (e.g. 1), we introduce DPCore-B, which uses a buffer
zone to accumulate samples before updates. With a buffer
size of 64, DPCore-B achieves a 41.2% error rate even with
single-sample batches, demonstrating its practical utility
(details in Appendix F.2).

Effect of number of source examples. We evaluate DP-
Core’s sensitivity to source data volume by varying the num-
ber of source examples used for computing statistics from
0 to 10k. As shown in Fig. 6c, DPCore maintains effective
adaptation even with 50 examples. For all main experiments,
we randomly select 300 unlabeled source examples, notably
different from methods like VDP, DePT, EcoTTA, and ViDA
that require the entire labeled source dataset for parameter
initialization. We further explore an extreme scenario where
source data is completely inaccessible (shown at source data
= 0 in Fig. 6c). For ImageNet-C experiments, using 300 un-
labeled STL10 (Coates et al., 2011) images as reference still
achieves an error rate of 45.6%, improving over the source
model by 10.2%. Details are provided in Appendix F.3.

DPCore’s computation and memory efficiency. We ana-
lyze computational complexity across methods in Table 10,
comparing learnable parameters, forward/backward propa-
gation counts, and relative computation time (normalized
to Tent). DPCore achieves efficiency by introducing only
0.08M parameters (0.1% of model parameters), whereas

Table 10. Computational analysis on ImageNet-to-ImageNet-C.
#Param. shows learnable parameters (Extra Param. indicates
injected parameters beyond model), #FP/#BP shows propagation
counts, Time shows relative computation (Tent=1.0), and Err Mean
shows classification error rate (%).

Algo. #Param. Extra Param. #FP #BP Time Err Mean↓

Tent 0.03M 1 1 1.0 51.0
CoTTA 86.57M 11.7 1 3.6 54.8

VDP 1800 ✓ 2 1 1.5 50.0
EcoTTA 3.46M ✓ 1 1 1.9 48.0

ViDA 93.70M ✓ 11 1 2.8 43.4
Ours 0.08M ✓ 3.1 1.1 1.8 39.9

ViDA requires 7.13M parameters (89× more) and 55.6%
more computation time. While this analysis primarily fo-
cuses on test-time computation, DPCore also maintains
efficiency in pre-adaptation: unlike previous methods which
require extensive source data warm-up (e.g., EcoTTA needs
3 epochs of ImageNet training for parameter initialization),
DPCore requires minimal preparation, involving only for-
warding 300 source examples and computing their statistics.
This shows DPCore’s efficiency in both the preparation and
adaptation phases. Detailed analysis is in Appendix F.4.

F.2. DPCore with Small Batch Size

While DPCore performs effectively with batch sizes of four
or larger (as shown in the Fig. 6d), significant challenges
emerge with extremely small batches, particularly in single-
sample scenarios. To address this limitation, we propose
DPCore-B (DPCore with Buffer Zone), which accumulates
a predefined number of samples (D) in the buffer zone
before performing any updates. During this accumulation
period, we temporarily store the [CLS] features from each
batch.

Our evaluation of DPCore-B in the CSC setting with various
values of D shows promising results (Table 9), effectively
maintaining DPCore’s performance even with small batches.
However, this success is limited to the CSC setting where
domain changes are structured and predictable. Even when
accumulated samples span domain boundaries (violating
the single-domain batch assumption shared by most CTTA
methods, including ours), the impact remains minimal in
CSC due to the limited number of domain transitions. For
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instance, on ImageNet-to-ImageNet-C with batch size 64,
each domain has 782 batches, totaling 11,730 batches across
15 domains. Only 14 transition points potentially contain
mixed-domain data, causing a negligible impact on overall
performance.

In contrast, CDC presents a fundamentally more challeng-
ing scenario where domain transitions occur frequently and
unpredictably. The substantially higher number of poten-
tial mixed-domain batches in CDC violates our method’s
assumptions more severely, making DPCore-B ineffective.
This limitation further demonstrates why CDC, with its fre-
quent domain changes and varying durations, better reflects
real-world challenges compared to conventional CSC set-
tings. The development of effective small-batch adaptation
strategies for CDC remains an important direction for future
research.

F.3. DPCore without Access to Source Data

In this section, we explore an extreme scenario where source
data is completely inaccessible, further demonstrating DP-
Core’s practicality in real-world applications. Following
the insights from (Mehra et al., 2024), we propose using
public datasets that share similar or identical label spaces.
For instance, in ImageNet-to-ImageNet-C or CIFAR10-to-
CIFAR10C tasks, we leverage STL10 (Coates et al., 2011),
which shares label space with CIFAR10 despite being dis-
tinct from ImageNet.

To ensure quality reference data, we filter the public dataset
using the source model with an entropy-based threshold.
Specifically, following (Niu et al., 2022), we set the thresh-
old as 0.4× lnC, where C is the number of classes in the
task (e.g., 1000 for ImageNet-to-ImageNet-C). We maintain
consistency with our main experiments by selecting 300 un-
labeled samples from STL10 using this filtering strategy and
compute statistics to replace the source statistics. Remark-
ably, as shown in Fig. 6c, using these 300 filtered STL10
images as reference data for ImageNet-C experiments still
achieves an error rate of 45.6%, yielding a substantial 10.2%
improvement over the source model. These results demon-
strate that DPCore can maintain effective adaptation even
without access to source data, further establishing its practi-
cal utility in real-world scenarios where source data might be
unavailable due to privacy, security, or storage constraints.

F.4. Details in Computational Complexity

We provide a detailed analysis of the computation and mem-
ory efficiency of DPCore. In Table 10, we list the total
number of trainable parameters required for ImageNet-to-
ImageNet-C tasks. The parameter count for DPCore is not
static; it increases with the addition of more core elements.
The number of core elements depends on the number of
unseen domains encountered. However, we demonstrate in

Fig. 3c that the core set size remains stable across different
domain orders of 15 corruptions in the CSC setting.

For ImageNet-to-ImageNet-C tasks, the total number of
parameters is computed as the number of core elements
(14) multiplied by the prompt length (8) and the dimen-
sion of each prompt token (768). The counts for forward
and backward propagations are averaged per batch. In DP-
Core, a new prompt is learned from scratch over 50 steps
only when a test batch is evaluated as originating from
a potential new domain. This results in the forward and
backward operations being repeated for 50 steps for these
batches. Notably, only 14 prompts undergo this extensive
learning process out of 11,730 batches. For the remaining
batches, DPCore updates the weighted prompt in a sin-
gle step (one forward and one backward operation) and
then uses the updated weighted prompt to refine all exist-
ing prompts without additional forward or backward passes.
Therefore, the average number of backward propagations
per batch is 14×50+(11730−14)×1

11730 ≈ 1.06. For forward prop-
agation, each batch requires two additional forward passes
(one without prompt, one with weighted prompt) for eval-
uation, leading to an average of 1.06 + 2 = 3.06 forward
passes.

The computational overhead of learning new prompts be-
comes negligible given the large number of total batches.
Additionally, the parameters introduced by the prompts are
minimal compared to the parameter increases required by
other CTTA methods. Consequently, our prompt parameters
do not require any warm-up, which conserves memory and
reduces computation both before and during adaptation.

G. Limitations
While our method significantly advances CTTA, it has
certain limitations that may affect its broader application.
Firstly, DPCore requires access to source statistics or ref-
erence data, which may not always be available, especially
in scenarios where the source data is proprietary or sensi-
tive. Secondly, DPCore assumes that each batch of data
comes from the same domain, which may not hold true in
mixed-domain environments. In real-world applications,
data streams could contain a mix of samples from various
domains, and the method’s performance in such scenarios
remains to be investigated. Furthermore, while DPCore
demonstrates impressive efficiency compared to other meth-
ods, it still introduces additional computational overhead
during the adaptation phase, which may pose challenges
in resource-constrained environments or applications with
strict latency requirements.
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Table 11. Classification error rate (%) for CIFAR100-to-CIFAR100C in the CSC setting.
Algorithm Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓ Gain↑

Source 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Tent (Wang et al., 2021) 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3 32.1 +3.3

CoTTA (Wang et al., 2022) 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6
VDP (Gan et al., 2023) 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0 +3.4

ViDA (Liu et al., 2023b) 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1
DPCore (Proposed) 48.2 40.2 21.3 20.2 44.1 21.1 16.2 18.1 15.2 22.3 9.4 13.2 28.6 32.8 25.5 25.1 +10.3

Table 12. Classification error rate (%) for CIFAR100-to-CIFAR100C in the CDC setting.
Algorithm Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean↓ Gain↑

Source 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Tent (Wang et al., 2021) 53.5 46.5 26.2 25.8 61.0 28.1 23.5 21.7 22.6 30.9 11.0 24.4 41.3 49.1 36.7 33.5 +1.9

CoTTA (Wang et al., 2022) 53.3 51.9 27.1 26.3 60.5 29.2 21.3 22.5 23.5 35.6 13.7 33.7 41.6 59.1 39.4 35.9 -0.5
VDP (Gan et al., 2023) 56.6 53.5 31.8 29.1 63.9 33.9 23.5 25.7 29.9 38.5 12.1 15.5 34.0 53.8 39.6 36.1 -0.7

ViDA (Liu et al., 2023b) 50.1 42.1 23.9 23.3 48.1 23.7 19.5 18.7 18.5 29.6 11.6 36.1 32.6 37.1 32.8 29.8 +5.6
DPCore (Proposed) 54.0 42.5 23.5 22.8 45.3 21.4 18.6 21.2 16.8 23.2 10.0 15.1 35.7 34.6 25.9 27.4 +8.0

Table 13. mIoU score for Cityscapes-to-ACDC in the CSC setting. The same target domains are repeated three times.

Algorithm Round 1 Round 2 Round 3 Mean↑ Gain↑Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑
Source 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 0.0

Tent (Wang et al., 2021) 69.0 40.2 60.1 57.3 56.7 68.3 39.0 60.1 56.3 55.9 67.5 37.8 59.6 55.0 55.0 55.7 -1.0
CoTTA (Wang et al., 2022) 70.9 41.2 62.4 59.7 58.6 70.9 41.1 62.6 59.7 58.6 70.9 41.0 62.7 59.7 58.6 58.6 +1.9

DePT (Gao et al., 2022) 71.0 40.8 58.2 56.8 56.5 68.2 40.0 55.4 53.7 54.3 66.4 38.0 47.3 47.2 49.7 53.4 -3.3
VDP (Gan et al., 2023) 70.5 41.1 62.1 59.5 58.3 70.4 41.1 62.2 59.4 58.2 70.4 41.0 62.2 59.4 58.2 58.2 +1.5
SAR (Niu et al., 2023) 69.0 40.2 60.1 57.3 56.7 69.0 40.3 60.0 67.8 59.3 67.5 37.8 59.6 55.0 55.0 57.0 +0.3

EcoTTA (Song et al., 2023) 68.5 35.8 62.1 57.4 56.0 68.3 35.5 62.3 57.4 55.9 68.1 35.3 62.3 57.3 55.8 55.8 -0.9
ViDA (Liu et al., 2023b) 71.6 43.2 66.0 63.4 61.1 73.2 44.5 67.0 63.9 62.2 73.2 44.6 67.2 64.2 62.3 61.9 +5.2
C-MAE (Liu et al., 2024) 71.9 44.6 67.4 63.2 61.8 71.7 44.9 66.5 63.1 61.6 72.3 45.4 67.1 63.1 62.0 61.8 +5.1

DPCore (Proposed) 71.7 47.2 66.1 63.3 62.1 73.0 47.8 66.5 63.1 62.6 73.4 47.8 67.1 62.7 62.8 62.5 +5.8

Table 14. mIoU score for Cityscapes-to-ACDC in the CDC setting. The same target domains are repeated three times.

Algorithm Round 1 Round 2 Round 3 Mean↑ Gain↑Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑ Fog Night Rain Snow Mean↑
Source 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 69.1 40.3 59.7 57.8 56.7 56.7 0.0

Tent (Wang et al., 2021) 68.5 39.8 59.7 58.3 56.6 67.0 38.1 58.9 55.3 54.8 66.1 36.4 58.4 52.6 53.4 54.9 -1.8
CoTTA (Wang et al., 2022) 70.1 41.2 61.9 58.6 58.0 69.7 41.0 61.4 57.2 57.3 68.7 40.5 60.3 56.4 56.5 57.3 +0.5

DePT (Gan et al., 2023) 69.5 40.2 58.7 56.2 56.2 68.4 39.8 58.3 55.7 55.6 66.7 39.1 57.9 54.3 54.5 55.4 -1.3
VDP (Gan et al., 2023) 70.5 40.8 61.9 59.2 58.1 70.1 40.3 61.2 57.8 57.4 70.0 39.2 59.9 57.6 56.7 57.4 +0.7
SAR (Niu et al., 2023) 69.1 41.6 59.9 57.5 57.0 68.8 41.2 59.7 57.4 56.8 69.1 40.8 59.2 57.0 56.5 56.8 +0.1

EcoTTA (Song et al., 2023) 68.4 34.6 61.8 57.4 55.6 68.1 34.3 61.6 57.2 55.3 68.1 33.4 61.7 57.0 55.1 55.3 -1.4
ViDA (Liu et al., 2023b) 71.0 42.1 64.2 62.9 60.1 70.6 41.5 62.1 62.1 59.1 70.2 40.9 61.5 61.6 58.6 59.2 +2.5

DPCore (Proposed) 71.9 46.3 64.1 63.3 61.4 71.6 45.1 63.4 63.1 60.8 71.6 44.2 63.9 63.2 60.7 61.0 +4.3
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