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ABSTRACT

Neural network minima are often connected by curves along which train and test
loss remain nearly constant, a phenomenon known as mode connectivity. While
this property has enabled applications such as model merging and fine-tuning, its
theoretical explanation remains unclear. We propose a new approach to explor-
ing the connectedness of minima using parameter space symmetry. By linking
the topology of symmetry groups to that of the minima, we derive the number of
connected components of the minima of linear networks and show that skip con-
nections reduce this number. We then examine when mode connectivity and linear
mode connectivity hold or fail, using parameter symmetries which account for a
significant part of the minimum. Finally, we provide explicit expressions for con-
necting curves in the minima induced by symmetry. Using the curvature of these
curves, we derive conditions under which linear mode connectivity approximately
holds. Our findings highlight the role of continuous symmetries in understanding
the neural network loss landscape.

1 INTRODUCTION

Among recent studies on the loss landscape, a particularly interesting finding is mode connectivity
(Draxler et al., 2018; Garipov et al., 2018), which refers to the phenomenon that distinct minima
found by stochastic gradient descent (SGD) can be connected by continuous, low-loss paths through
the high-dimensional parameter space. Mode connectivity has significant implications for other
aspects of deep learning theory, including the lottery ticket hypothesis (Frankle et al., 2020) and
the analysis of loss landscapes and training trajectories (Gotmare et al., 2018). Additionally, mode
connectivity has inspired applications in diverse fields, including model ensembling (Garipov et al.,
2018; Benton et al., 2021; Benzing et al., 2022), model averaging (Izmailov et al., 2018; Wortsman
et al., 2022), pruning (Frankle et al., 2020), improving adversarial robustness (Zhao et al., 2020),
and fine-tuning for altering prediction mechanism (Lubana et al., 2023).

Despite extensive empirical validation, mode connectivity, especially linear mode connectivity, re-
mains largely a theoretical conjecture (Altintas et al., 2023). The limited theoretical explanation
suggests a need for new proof techniques. In this paper, we focus on parameter symmetries, which
encode information about the structure of the parameter space and the minimum. Our work in-
troduces a new approach towards understanding the topology of the minimum and complements
existing theories on mode connectivity (Yunis et al., 2022; Freeman & Bruna, 2017; Nguyen, 2019;
2021; Kuditipudi et al., 2019; Shevchenko & Mondelli, 2020; Nguyen et al., 2021).

Discrete symmetry is well-known to be related to mode connectivity. In particular, the neural net-
work output, and hence the minimum, is invariant under neuron permutations (Hecht-Nielsen, 1990).
Various algorithms have been developed to find the optimal permutation for linear connectivity
(Singh & Jaggi, 2020)(Ainsworth et al., 2023), and Entezari et al. (2022) conjecture that all minima
found by SGD are linearly connected up to permutation. Compared to discrete symmetry, the role
of continuous symmetry, such as positive rescaling in ReLU, on shaping loss landscape remains less
well studied.

We explore the connectedness of minimum through continuous symmetries in the parameter space.
Continuous symmetry groups with continuous actions define positive dimensional connected spaces
in the minimum (Zhao et al., 2023). By relating topological properties of symmetry groups to
their orbits and the minimum, we show that both continuous and discrete symmetry are useful in
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understanding the origin and failure cases of mode connectivity. Additionally, continuous symmetry
defines curves on the minimum (Zhao et al., 2024). This enables a principled method for deriving
explicit expressions for paths connecting two minima, a task that previously relied on empirical
approaches.

In this paper, we focus on the complete set of minima, instead of restricting to those reachable by
SGD. Our main contributions are:

• Providing the number of connected components of full-rank linear regression with and
without skip connections, by relating topology of symmetry groups to topology of minima.

• Proving mode connectivity up to permutation for linear networks with invertible weights.

• Deriving examples where the error barrier on linear interpolation of minima is unbounded.

• Deriving explicit low-loss curves that connect minima related by symmetry, and bounding
the loss barrier on linear interpolations between minima using the curvature of these curves.

2 RELATED WORK

Mode connectivity. Garipov et al. (2018) and Draxler et al. (2018) discover empirically that the
global minimum of neural networks are connected by curves on which train and test loss are almost
constant. It is then observed that SGD solutions are linearly connected if they are trained from pre-
trained weights (Neyshabur et al., 2020) or share a short period of training at the beginning (Frankle
et al., 2020). Additionally, neuron alignment by permutation improves mode connectivity (Singh
& Jaggi, 2020) (Tatro et al., 2020). Subsequently, Entezari et al. (2022) conjecture that all minima
found by SGD are linearly connected up to permutation. Following the conjecture, Ainsworth et al.
(2023) develop algorithms that find the optimal alignment for linear mode connectivity, and Jordan
et al. (2023) further reduce the barrier by rescaling the preactivations of interpolated networks.

It is worth noting that linear mode connectivity does not always hold outside of computer vision.
Language models that are not linearly connected have different generalization strategies (Juneja
et al., 2023). Lubana et al. (2023) further show that the lack of linear connectivity indicates that the
two models rely on different attributes to make predictions. We derive new theoretical examples of
failure cases of linear mode connectivity (Section 5.2).

Theory on connectedness of minimum. Several work explores the theoretical explanation of
mode connectivity by studying the connectedness of sub-level sets. Freeman & Bruna (2017) show
that the minimum is connected for 2-layer linear network without regularization, and for deeper lin-
ear networks with L2 regularization. Futhermore, they show that the minimum of a two-layer ReLU
network is asymptotically connected, that is, there exists a path connecting any two solutions with
bounded error. Nguyen (2019) proves that the sublevel sets are connected in pyramidal networks
with piecewise linear activation functions and first hidden layer wider than 2N , where N is the
number of training data). The width requirement is later improved to N + 1 (Nguyen, 2021).

Others prove connectivity under dropout stability. Kuditipudi et al. (2019) prove the existence of a
piece-wise linear path between two solutions for ReLU networks, if they are both dropout stable,
or both noise stable and sufficiently overparametrized. Shevchenko & Mondelli (2020) generalize
this proof to show that wider neural networks are more connected, following the observation that
SGD solutions for wider neural network are more dropout stable. Nguyen et al. (2021) give a new
upper bound of the loss barrier between solutions using the loss of sparse subnetworks that are
optimized, which is a milder condition than dropout stability. We approach the theoretical origin of
mode connectivity via continuous symmetries in the parameter space, a connection that has not been
previously established.

A few papers propose theoretical explanations for linear mode connectivity using different tools.
Yunis et al. (2022) explain linear mode connectivity through finding a convex hull defined by SGD
trajectory endpoints. Ferbach et al. (2023) use optimal transport theory to prove that wide two-layer
neural networks trained with SGD are linearly connected with high probability. Singh et al. (2024)
explain the topography of the loss landscape that enables or obstructs linear mode connectivity.
Zhou et al. (2023) show that the feature maps of each layer are also linearly connected and identify
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conditions that guarantee linear connectivity. Altintas et al. (2023) analyze effects of architecture,
optimization algorithm, and dataset on linear mode connectivity empirically.

Symmetry in the loss landscape. Discrete symmetries have inspired a line of work on loss land-
scapes. Brea et al. (2019) show that permutations of a layer are connected within a loss level set. By
analyzing permutation symmetries, Şimşek et al. (2021) characterize the geometry of the global min-
ima manifold for networks without other symmetries and show that adding one neuron to each layer
in a minimal network connects the permutation equivalent global minima. Continuous symmetries
have also attracted recent attention. By removing permutation and rescaling symmetries, Pittorino
et al. (2022) study the geometry of minima in the functional space. Zhao et al. (2023) find a set of
nonlinear continuous symmetries that partially parametrizes the minimum. Zhao et al. (2024) use
symmetry induced curves to approximate the curvature of the minimum. Our paper explores a new
application of parameter symmetries – explaining the connectedness of the minimum.

3 PRELIMINARIES

In this section, we review mathematical concepts used in the paper and list some useful results on
the number of connected components of topological spaces. A more detailed version with proofs
can be found in Appendix A.

3.1 CONNECTED COMPONENTS

Consider two topological spaces X and Y . A map f : X → Y is continuous if for every open
subset U ⊆ Y , its preimage f−1(U) is open in X . If X and Y are metric spaces with metrics dX
and dY respectively, this is equivalent to the delta-epsilon definition. That is, f is continuous if at
every x ∈ X , for any ϵ > 0 there exists δ > 0 such that dX(x, y) < δ implies dY (f(x), f(y)) < ϵ
for all y ∈ X .

A topological space is connected if it cannot be expressed as the union of two disjoint, nonempty,
open subsets. A topological space X is path connected if for every p, q ∈ X , there is a continuous
map f : [0, 1] → X such that f(0) = p and f(1) = q. Path connectedness implies connectedness.
The converse is not always true (Lee, 2010), but counterexamples are often specifically constructed
and unlikely to be encountered in the context of deep learning. Path connectedness can therefore
help develop intuition for connectedness, for practical purposes.

The following theorem is the main intuition of this paper and will appear frequently in proofs.
Theorem 3.1 (Theorem 4.7 in Lee (2010)). Let X,Y be topological spaces and let f : X → Y be
a continuous map. If X is connected, then f(X) is connected.

A map f is a homeomorphism from X to Y if f is bijective and both f and f−1 are continuous. X
and Y are homeomorphic if such a map exists. A (connected) component of a topological space X is
a maximal nonempty connected subset of X . The components of X form a partition of X . The next
two corollaries of Theorem 3.1 show that connectedness and the number of connected components
are topological properties. That is, they are preserved under homeomorphisms.
Corollary 3.2. Let f : X → Y be a homeomorphism from X to Y , and let U ⊆ X be a subset of
X with the subspace topology. Then U is connected if and only if f(U) ⊆ Y is connected.
Corollary 3.3. Let X be a topological space that has N components. Let Y be a topological space
homeomorphic to X . Then Y has N components.

Another consequence of Theorem 3.1 is the following upper bound on the number of components
of the image of a continuous map.
Proposition 3.4. Let f : X → Y be a continuous map. The number of components of the image
f(X) ⊆ Y is at most the number of components of X .

Let X1, ..., Xn be topological spaces. The product space is their Cartesian product X1 × ... ×Xn

endowed with the product topology. Denote π0(X) as the set of connected components of a space
X . The following proposition provides a way to count the components of a product space.
Proposition 3.5. Consider n topological spaces X1, ..., Xn. Then |π0(X1 × ... × Xn)| =∏n

i=0 |π0(Xi)|.
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3.2 GROUPS

A group is a set G together with a composition law, written as juxtaposition, that satisfies associa-
tivity, (ab)c = a(bc) ∀ a, b, c ∈ G, has an identity 1 such that 1a = a1 = a ∀ a ∈ G, and for all
a ∈ G, there exists an inverse b such that ab = ba = 1. An action of a group G on a set S is a map
· : G× S → S that satisfies 1 · s = s for all s ∈ S and (gg′) · s = g · (g′ · s) for all g, g′ in G and
all s in S. The orbit of s ∈ S is the set O(s) = {s′ ∈ S | s′ = gs for some g ∈ G}.

A topological group is a group G endowed with a topology such that multiplication and inverse
are both continuous. A recurring example is the general linear group GLn(R), with the subspace
topology obtained from Rn2

. The group GLn(R) has two connected components, which correspond
to matrices with positive and negative determinant.

The product of groups G1, ..., Gn is a group denoted by G1 × ... × Gn. The set underlying
G1 × ... × Gn is the Cartesian product of G1, ..., Gn. The group structure is defined by identity
(1, ..., 1), inverse (g1, ..., gn)

−1 = (g−1
1 , ..., g−1

n ), and multiplication rule (g1, ..., gn)(g
′
1, ..., g

′
n) =

(g1g
′
1, ..., gng

′
n).

3.3 CONNECTEDNESS OF GROUPS, ORBITS, AND LEVEL SETS

From Theorem 3.1, continuous maps preserve connectedness. Through continuous actions, we study
the connectedness of orbits and level sets by relating them to the connectedness of more familiar
objects such as the general linear group. Establishing a homeomorphism from the group to the set
of minima requires the symmetry group’s action to be continuous, transitive, and free. Here we only
assume the action to be continuous and try to bound the number of components of the orbits.

As an immediate consequence of Proposition 3.4, an orbit cannot have more components than the
group.

Corollary 3.6. Assume that the action of a group G on S is continuous. Then the number of
connected components of orbit O(s) is smaller than or equal to the number of connected components
of G, for all s in S.

Let X be a topological space and L : X → R a continuous function on X . A topological group G is
said to be a symmetry group of L if L(g ·x) = L(x) for all g ∈ G and x ∈ X . In this case, the action
can be defined on a level set of L, L−1(c) with a c ∈ R, as G×L−1(c) → L−1(c). If the minimum
of L consists of a single orbit, Corollary 3.6 extends immediately to the number of components of
the minimum.

Corollary 3.7. Let L be a function with a symmetry group G. If the minimum of L consists of a
single G-orbit, then the number of connected components of the minimum is smaller or equal to the
number of connected components of G.

Generally, symmetry groups do not act transitively on a level set L−1(c) ∈ X . In this case, the
connectedness of the orbits does not directly inform the connectedness of the level set. Neverthe-
less, since the set of orbits partitions the space, we can use the following bound on the number of
components of the space.

Proposition 3.8. Let X be a topological space and let X =
∐

i Xi be a partition of X into disjoint
subspaces. Then |π0(X)| ≤

∑
i |π0(Xi)|.

Consider a topological space X and a group G that acts on X . Let O = {O1, ..., On} be the set of
orbits. By Proposition 3.8, the number of components of the orbits give the following upper bound
on the number of components of the space: |π0(X)| ≤

∑n
i=1 |π0(Oi)|.

4 CONNECTED COMPONENTS OF THE MINIMUM

In this section, we relate topological properties of symmetry groups to topological properties of the
minimum. In particular, we provide the number of connected components of the minimum when all
symmetries are known. Omitted proofs can be found in Appendix B.
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4.1 LINEAR NETWORK WITH INVERTIBLE WEIGHTS

Let Param be the space of parameters. Consider the multi-layer loss function L : Param → R,

L : Param → R, (W1, ...,Wl) 7→ ||Y −Wl...W1X||22. (1)

where X,Y ∈ Rh×h are the input and output of the network. In this subsection, we assume that
both X,Y have rank h, and Param = (Rh×h)l. Then L is invariant to GLh(R)l−1, which acts
on Param by g · (W1, ...,Wl) = (g1W1, g2W2g

−1
1 , ..., gl−1Wl−1g

−1
l−2,Wlg

−1
l−1), for (g1, ..., gl−1) ∈

GLh(R)l−1.

Let L−1(c) = {θ ∈ Param : L(θ) = c} be a level set of L. Since ∥ · ∥2 ≥ 0 and L−1(0) ̸= ∅, the
minimum value of L is 0. By relating the topology of GLh(R) and L−1(0), we have the following
observations on the structure of the minimum of L.
Proposition 4.1. There is a homeomorphism between L−1(0) and (GLh)

l−1.

Since (GLh)
l−1 has 2l−1 connected components and homeomorphisms preserve topological prop-

erties, L−1(0) also has 2l−1 connected components. Note that this number is independent of the
width of the network, due to the fact that GLn(R)) has two connected components regardless of n.
Corollary 4.2. The minimum of L has 2l−1 connected components.

4.2 RESNET WITH 1D WEIGHTS

The topological properties of the minimum set depend on the architecture. As an example of this
dependency, we show that adding a skip connection changes the number of connected components
of the minimum.

Consider a residual network W3(W2W1X + εX) and loss function

L(W3,W2,W1) = ||Y −W3(W2W1X + εX)||2, (2)

where (W1,W2,W3) ∈ Param = Rn×n×Rn×n×Rn×n, ε ∈ R, and data X ∈ Rn×n, Y ∈ Rn×n.
The following proposition states that for a three-layer residual network with weight matrices of
dimension 1× 1, the number of components of the minimum is smaller than that of a linear network
without the skip connection.
Proposition 4.3. Let n = 1. Assume that X,Y ̸= 0. When ε = 0, the minimum of L has 4
connected components. When ε ̸= 0, the minimum of L has 3 connected components.

The ε = 0 case follows from Corollary 4.2. For the ε ̸= 0 case, the proof decomposes the minimum
of L into two sets S1 and S0, corresponding to the minima without the skip connection and an
extra set of solutions because of the skip connection. S1 is homeomorphic to GL1 × GL1 and has
4 connected components. S0 is a line and has 1 connected component. Two components of S1

are connected to S0, while the other two components of S1 are not. Therefore, S0 connects two
components of S1. As a result, the minimum of L has 3 connected components.

Figure 1 visualizes the minimum without and with the skip connection. This result reveals the effect
of skip connection on the connectedness of the set of minima, which may lead to a new explanation
of the effectiveness of ResNets (He et al., 2016) and DenseNets (Huang et al., 2017). We leave the
connection between the topology of the minimum and the optimization and generalization properties
of neural networks to future work.

5 MODE CONNECTIVITY

The previous section counts the connected components of the minimum and shows that the connect-
edness of the minimum is related to the symmetry of the loss function under certain conditions. In
this section, we use this insight to explain recent empirical observations that with high probability
two points in the minimum are connected, i.e. there is a large connected component. Proofs of this
section appears in Appendix C.

Mode connectivity refers to the phenomenon that there exist high accuracy or low loss paths between
two minima found by stochastic gradient descent (Garipov et al., 2018). Linear mode connectivity

5
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Figure 1: Minimum of (a) 3-layer linear net ||Y −W3W2W1X||2 and (b) 3-layer linear net with a
residual connection ||Y −W3(W2W1X +X)||2, where X = 1, Y = 1, and W1,W2,W3 ∈ R.

occurs when all points on the linear interpolation between two minima have low loss values. More
recently, permutation of neurons is usually performed to align the two minima before evaluating
linear mode connectivity (Entezari et al., 2022; Ainsworth et al., 2023). We use the term mode
connectivity when we consider arbitrary curves and will specify linear mode connectivity when
only linear interpolation is considered.

5.1 MODE CONNECTIVITY UP TO PERMUTATION

For the family of linear neural networks defined in Section 4.1, we show that permutations allow us
to connect points in the minimum that are not connected without permutation. Our results support
the empirical observation that neuron alignment by permutation improves mode connectivity (Tatro
et al., 2020).

Consider again the linear network (1) with invertible weights. When l = 2, the minimum of L has
two connected components corresponding to the two connected components of the GL group. Any
g ∈ GL that is not on the identity component can take a point on one connected component of the
minimum to the other.

Lemma 5.1. Consider two points (W1,W2), (W
′
1,W

′
2) ∈ L−1(0) that are not connected in L−1(0).

For any g ∈ GL(h) such that det(g) < 0, g · (W1,W2) and (W ′
1,W

′
2) are connected in L−1(0).

When the hidden dimension h ≥ 2, there exists a permutation g such that det(g) > 0, and a
permutation g such that det(g) < 0. Therefore, Lemma 5.1 implies the following result that all
points on the minimum of L are connected up to permutation.

Proposition 5.2. Assume that h ≥ 2. For all (W1, ...,Wl), (W
′
1, ...,W

′
l ) ∈ L−1(0), there exists a

list of permutation matrices P1, ..., Pl−1 such that (W1P1, P
−1
1 W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl)

and (W ′
1, ...,W

′
l ) are connected in L−1(0).

The results above are examples where a larger part of the minimum becomes connected after a
permutation. More generally, permutation improves mode connectivity in cases where an orbit is
not connected due to the symmetry group comprising multiple connected components, the orbit does
not reside on the same connected component of the minimum, and there exists a permutation that
takes a point on one connected component of the group to another.

5.2 FAILURE CASE OF LINEAR MODE CONNECTIVITY

As an application of obtaining new minima from old ones using symmetries, we show that linear
mode connectivity fails to hold in multi-layer regressions. The following proposition says that in
neural networks with a homogeneous activation (such as leaky ReLU) between the last two layers,
the error barrier in the linear interpolation between two solutions can be arbitrarily large.
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Proposition 5.3. Consider a loss function of the following form

L : Param → R,W = (W1, ...,Wl) 7→
||Y −Wlσ(Wl−1f(Wl−2,Wl−3, ...,W1, X))||22, (3)

where f is a function of Wl−2,Wl−3, ...,W1, X , and σ(cz) = ckσ(z) for all c ∈ R and some
k > 0. Assume that ||Y ||2 ̸= 0 and L−1(0) ̸= ∅. Also assume that l ≥ 2. For any positive number
b > 0, there exist W,W ′ ∈ L−1(0) that belong to the same connected component of L−1(0) and
0 < α < 1, such that L ((1− α)W + αW ′) > b.

0
W1

0W
2

(W1, W2)

(W ′
1, W ′

2)

(1 )(W1, W2) + (W ′
1, W ′

2)

minimum
0

1

2

3

4

5

6

L(
W

1,
W

2)

Figure 2: Interpolation between 2 min-
ima of loss function L(W1,W2) =
||Y − W2W1X||2 with 1 dimensional
weights. Loss on the interpolation can
be unbounded.

The proof constructs a new point on the minimum from
an existing one using the rescaling symmetry of homo-
geneous functions. The two points can be far apart since
the orbit of this group action is unbounded. To provide
intuition, Figure 2 visualizes the two points on the mini-
mum of a two-layer network with weights of dimension
1× 1 and the linear interpolation between them. The lin-
ear network used is a special case of a homogeneous net-
work. Note that our result here does not contradict with
the layer-wise connectivity result in Adilova et al. (2024),
as more than one layer of the two minima are different.

The loss function considered in Proposition 5.3 is signif-
icantly more general than those in Section 5.1. For the
architecture, we only require the presence of a rescaling
symmetry in the last two layers, and f can be any neu-
ral network with any activation. Other assumptions of the
proposition are also not excessively restrictive, as the la-
bels Y are rarely all zero, and there usually exists a min-
imum in common machine learning tasks.

Proposition 5.3 extends to cases where we allow certain permutations. The following proposition
states that under additional assumptions, the error barrier in the linear interpolation is unbounded
even with neuron permutations. The proof construction is similar to that of Proposition 5.3.

Let Sn be the set of n× n permutation matrices, where n is the number of columns of Wl.
Proposition 5.4. Consider the loss function with the same set of assumptions in Proposition
5.3. Assume additionally that there does not exist a permutation P such that every column of
Pσ(Wl−1f(Wl−2,Wl−3, ...,W1, X)) is in the null space of Wl. For any positive number b > 0,
there exist (W1, ...,Wl), (W

′
1, ...,W

′
l ) ∈ L−1(0) and 0 < α < 1, such that (W1, ...,Wl−2) =

(W ′
1, ...,W

′
l−2) and

min
P∈Sn

L
(
(1− α)(W1, ...,Wl)

+ α(W1, ...,Wl−2, P
−1Wl−1,WlP )

)
> b.

By including permutation, the setting in Proposition 5.4 is closer to the setting in which linear mode
connectivity is empirically observed. However, the permutation in Proposition 5.4 is restricted to
the first two layers, which does not rule out the possibility of lowering the loss barrier by including
permutations of other neurons.

The proofs of Proposition 5.3 and 5.4 depend on the rescaling symmetry of homogenenous activation
functions. For other activations with known symmetries, similar results may be derived as using
the large set of minimum obtained from the group action. Whether the loss barrier on the linear
interpolation is bounded can depend on the compactness of the symmetry group and the curvature
of the minimum. We leave a systematic investigation of the condition for linear mode connectivity
to future work.

One possible reason why linear mode connectivity is observed in practice despite Proposition 5.4 is
that only a small part of the minima is reachable by stochastic gradient descent due to implicit bias
(Min et al., 2021), as other optimizers have been observed to find less connected minima (Altintas
et al., 2023).
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5.3 LINEAR MODE CONNECTIVITY OF ORBITS

Symmetry accounts for a large part of the set of minima. In particular, given a known minimum x,
the orbit of x defines a set of points that are also minima. Although not all minima are on the same
orbit of known symmetries, each orbit often contains a nontrivial set of minima. In this section,
we examine the error barrier of linear interpolations of minima restricted to an orbit of parameter
symmetries.

When the architecture contains a multiplication of two weight matrices W2W1, where W2 ∈
Rm×h,W1 ∈ Rh×n, there is a GLh symmetry that acts on (W1,W2) by g · (W1,W2) =
(gW1,W2g

−1) for g ∈ GLh. The following proposition states that a point on the linear inter-
polation of two points in the same orbit can be far away from the orbit.

Proposition 5.5. Let A ∈ Rn×n be an invertible matrix. Let set S = {(W1,W2) : W1,W2 ∈
Rn×n,W1W2 = A}. For any positive number b > 0, there exist W ′,W ′′ ∈ S and 0 < α < 1, such
that minŴ∈S ∥ ((1− α)W ′ + αW ′′)− Ŵ∥2 > b.

The structure in the form of W1W2 is not uncommon in deep learning architectures. Notably, the pa-
rameter matrices for queries and keys in the attention function are multiplied directly in this manner
(Vaswani et al., 2017), thus admitting the GLh symmetry and having orbits with properties given by
Proposition 5.5.

While the error barrier in the linear interpolation of two minima can be unbounded (Proposition
5.3), this typically occurs when the parameters are allowed to be arbitrarily large. Constraining
the parameters to remain bounded ensures that the loss barrier is bounded above. The following
proposition makes this intuition precise for the set of minima consisting of a particular orbit.

Proposition 5.6. Consider the loss function with the same set of assumptions in Proposition 5.3. Let
W ∈ L−1(0) be a point on the minimum. Consider the multiplicative group of positive real numbers
R+ that acts on L−1(0) by g · (W1, ...,Wl) = (W1, ...,Wl−2, gWl−1,Wlg

−k), where g ∈ R+.
Then there exists a positive number b > 0, such that for all 0 < α < 1 and W ′ ∈ Orbit(W )
with ||W ′

i ||2 < c for all i and some c > 0, the loss value for points on the linear interpolation
L ((1− α)W + αW ′) < b.

Proposition 5.5 and 5.6 are two examples where the knowledge of parameter symmetry enables
analysis of the linear connectivity of subsets of minima. As more continuous symmetries are char-
acterized (e.g. the nonlinear symmetries in Zhao et al. (2023)), these analysis can potentially be
extended to even larger parts of the set of minima.

6 CURVES ON MINIMUM FROM GROUP ACTIONS

The paths connecting two points in the set of minima may not be linear. Previously, these paths
were discovered empirically by finding parametric curves on which the expected loss is minimized
(Garipov et al., 2018). Using parameter space symmetry, we uncover an alternative and principled
way to find curves on the minimum.

6.1 SYMMETRY INDUCED CURVES

Suppose the loss function L : Param → R is invariant with respect to some Lie group G. Consider
the following curve for a point w ∈ Param and M ∈ Lie(G):

γM : R× Param → Param,

γM (t,w) = exp (tM) ·w. (4)

Since exp (tM) ∈ G and the action of G preserves the value of L, every point on γM is in the same
L level set as w. This provides a way to find a curve of constant loss between two points that are in
the same orbit. Concretely, given two points w1 and w2 = g ·w1, let γ be the following curve:

γ : [0, 1]×G× Param → Param,

γ(t, g,w) = exp (t log(g)) ·w. (5)

8
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Figure 3: (a) Empirical validation of Proposition 6.1. (b-c) The loss on the curves induced by
approximate symmetries (γ) remains relatively low, compared to the loss on the linear interpolation
between the two ends of these curves. (b) and (c) differ by the magnitude of the group element used.
The loss is averaged over 5 random curves.

Note that γ(0, g,w1) = w1, γ(1, g,w1) = w2, and L(γ(t, g,w1)) = L(w1) = L(w2) for all
t ∈ [0, 1]. Hence, γ is a curve that connects the points w1 and w2, and every point on γ has the
same loss value as L(w1) = L(w2).

For a group G, the curve γ is defined when the map · : G × Param → Param is continuous and
id ·w = w for all w ∈ Param, even if it is not a group action or does not preserve loss. However,
when · does not preserve loss, the loss can change on γ. Consider our two-layer network and the
following map:

· : GL(h,R)× Param → Param

g · (U, V ) = (Uσ(V X)σ(gV X)†, gV ). (6)

When σ is the identity function, · preserves the loss value, and γ defines a curve on the minimum.
In general, the map (6) does not preserve loss when batch size k is larger than hidden dimension h.
However, the maximum change of loss on γ can be bounded as follows.
Proposition 6.1. Let (U, V ) ∈ Param, and (U ′, V ′) = g · (U, V ). Then

∥Uσ(V X)− U ′σ(V ′X)∥ ≤ ∥Uσ(V X)∥. (7)

We demonstrate Proposition 6.1 empirically using a set of two-layer networks with various parame-
ter space dimensions. Specifically, we construct networks in the form of ∥Uσ(V X)− Y ∥2, with σ
being the sigmoid function, X ∈ Rn×k, Y ∈ Rm×k, and (U, V ) ∈ Param = Rm×h × Rh×n. We
create 100 such networks, each with m,h, n, k randomly sampled from integers between 2 and 100.
In each network, elements in X and Y are sampled independently from a normal distribution, and
U, V are randomly initialized. After training with SGD, we compute (U ′, V ′) = g · (U, V ) using
(6) with a random invertible matrix g. We then plot ∥Uσ(V X)∥ against ∥Uσ(V X)− U ′σ(V ′X)∥
in Figure 3(a). All points are above the line y = x, as predicted by Proposition 6.1.

While the map (6) is not a group action in general, it connects more points in the set of minima than
only using known symmetries, and the points on the connecting curves have bounded loss. Figure
3(b-c) shows that the loss on the curves induced by approximate symmetries remains relatively low,
compared to the loss on the linear interpolation between the two ends of these curves. We consider
a two layer network with loss function ∥W2σ(W1X) − Y ∥, with σ being a leaky ReLU function,
X ∈ R16×8, Y ∈ R64×8, and (W1,W2) ∈ Param = R32×16 × R32. In the figures, γ denotes a
curve obtained using Equation (5) together with (6). The starting point of γ is a minimum found
by SGD. Both γ and the linear interpolation are parametrized by t ∈ [0, 1]. Compared to the linear
interpolation between the two end points of γ, the loss on γ is consistently lower. Figure 3(c) uses
group elements with larger magnitudes, resulting in a larger distance between γ(0) and γ(1), which
might explain the higher loss barrier on their linear interpolation.

6.2 APPROXIMATE LINEAR CONNECTIVITY UNDER BOUNDED CURVATURE OF MINIMA

Knowing the explicit expression of connecting curves brings new insight into when linear mode
connectivity approximately holds. In particular, these expressions provide information about the

9
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curvature of the curves. If the curvatures are small, then there exists an approximately straight line
connecting any two minima along which the loss remains close to its minimum value.

Consider a loss level set L−1(c) = {w ∈ Param : L(w) = c} with some c ∈ R. Suppose we
have two points w1,w2 ∈ L−1(c) connected by a smooth curve γ lying entirely within L−1(c).
The curvature of γ can be written as κ(γ, t) = ∥T ′(t)∥

∥γ′(t)∥ , where γ′ = dγ
dt and T (t) = γ′(t)

∥γ′(t)∥ . If the
curvature of this curve is small or bounded, we can show that there exists an approximately straight
line connecting w1 and w2 that remains close to L−1(c). Additionally, if L is Lipschitz continuous,
its value remains close to c along this line segment. We formalize this with the following theorem.

Theorem 6.2. Let L−1(c) ⊂ Param, with c ∈ R, be a level set of the loss function L : Param → R.
Let γ : [0, 1] → L−1(c) be a smooth curve in L−1(c) connecting two points w1 = γ(0) and
w2 = γ(1). Suppose the curvature κ(t) of γ satisfies κ(t) ≤ κmax for all t ∈ [0, 1].

Let S be the straight line segment connecting w1 and w2. Then, for any point w on S, the distance
to L−1(c) is bounded by

dist(w, L−1(c)) ≤ dmax =
1

κmax

1−

√
1−

(
κmax∥w2 −w1∥2

2

)2
 . (8)

Furthermore, assuming L is Lipschitz continuous with Lipschitz constant CL, the loss at any point
w on S satisfies

|L(w)− c| ≤ CLdmax. (9)

When the group action induces curves with bounded curvature, Theorem 6.2 applies. Since the mini-
mum is also a level set of L, Theorem 6.2 provides a sufficient condition for linear mode connectivity
to approximately hold. When the curvature of the minimum is small, points on the minimum are
approximately connected through nearly straight paths along with the loss does not increase signifi-
cantly. If κmax∥w2 −w1∥ is small, we can use the first-order approximation of the square root and
obtain dmax ≈ κmax∥w2−w1∥2

2

8 .

7 DISCUSSION

In this work, we study topological properties of the loss level sets by relating their topology to the
topology of symmetry groups. We derive the number of connected components of full-rank multi-
layer networks with and without skip connections, and prove mode connectivity up to permutation
for full-rank linear regressions. Using symmetry in the parameter space, we construct an explicit
expression for curves that connect two points in the same orbit. The explicit expressions allow us to
obtain the curvature of these curves, which are useful to bound the loss barrier on linear interpolation
between minima.

While symmetry appears to be a useful tool for studying the loss landscape, our current results
rely on the existence of a homeomorphism between symmetry groups and the minimum. A future
direction is to explore the possibility of removing this assumption. Another interesting direction
is to investigate additional links between different architecture choices, such as normalization, and
connectedness of the minimum. The impact of these results can also benefit from further study on
the connection between the topology of minimum and generalization ability of neural networks.

The connectedness results obtained from symmetry raise a number of interesting questions related
to mode connectivity. For example, it would be interesting to understand when and why there is no
significant change in loss on the linear interpolation between two minima. One possible explanation
is that there always exists a γ defined in the way above that is close to the line formed by the linear
interpolation. Another possible reason is that the dimension of minimum is usually high, and a
significant part of the linear interpolation is within the minimum with high probability. Moreover, it
has been observed that the train and test accuracy are both near constant on the paths that connect
different SGD solutions (Garipov et al., 2018). If these paths are induced by a group action, this
implies that the group action’s dependence on data is weak.
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APPENDIX

A BACKGROUND

This section contains additional background in general topology and proofs for statements in Section
3. We refer readers to Lee (2010) for a more detailed introduction to this topic.

A.1 CONNECTED COMPONENTS

Consider two topological spaces X and Y . A map f : X → Y is continuous if for every open
subset U ⊆ Y , its preimage f−1(U) is open in X . If X and Y are metric spaces with metrics dX
and dY respectively, this is equivalent to the delta-epsilon definition. That is, f is continuous if at
every x ∈ X , for any ϵ > 0 there exists δ > 0 such that dX(x, y) < δ implies dY (f(x), f(y)) < ϵ
for all y ∈ X .

A topological space is connected if it cannot be expressed as the union of two disjoint, nonempty,
open subsets. A topological space X is path connected if for every p, q ∈ X , there is a continuous
map f : [0, 1] → X such that f(0) = p and f(1) = q. Path connectedness implies connectedness,
but the converse is not true (Lee, 2010). Nguyen (2019) studies the path connectedness of sublevel
sets of loss functions.

The following theorem is the main intuition of this paper and will appear frequently in proofs.
Theorem A.1 (Theorem 4.7 in Lee (2010), Theorem 3.1 in the Main Text). Let X,Y be topological
spaces and let f : X → Y be a continuous map. If X is connected, then f(X) is connected.

A map f is a homeomorphism from X to Y if f is bijective and both f and f−1 are continuous. X
and Y are homeomorphic if such a map exists. A (connected) component of a topological space X is
a maximal nonempty connected subset of X . The components of X form a partition of X . The next
two corollaries of Theorem A.1 show that connectedness and the number of connected components
are topological properties. That is, they are preserved under homeomorphisms.
Corollary A.2. Let f : X → Y be a homeomorphism from X to Y , and let U ⊆ X be a subset of
X with the subspace topology. Then U is connected if and only if f(U) ⊆ Y is connected.

Proof. By the definition of homeomorphism, f and f−1 are continuous. From Theorem A.1, if U ∈
X is connected, then f(U) ∈ Y is connected. Similarly, if f(U) is connected, then f−1(f(U)) = U
is connected.

Corollary A.3. Let X be a topological space that has N components. Let Y be a topological space
homeomorphic to X . Then Y has N components.

Proof. Let C1, ..., CN be the components of X . Let f be a homeomorphism from X to Y . Since f
is bijective and C1, ..., CN is a partition of X , f(C1), ..., f(CN ) is a partition of Y . From Theorem
A.1, since C1, ..., CN are all connected, so are f(C1), ..., f(CN ).

Lastly, we need to show that f(C1), ..., f(CN ) are maximally connected. Suppose there exists a
set U ⊆ Y , such that U ̸⊆ f(Ci) and f(Ci) ∪ U is connected for some i. Then by Theorem A.1,
f−1(f(Ci) ∪U) ⊃ Ci is connected in X . This contradicts the fact that Ci is a maximal component
in X . Therefore, f(C1), ..., f(CN ) are maximally connected.

Since f(C1), ..., f(CN ) partitions Y and are maximally connected, Y has N components.

Another consequence of Theorem A.1 is the following upper bound on the number of components
of the image of a continuous map.
Proposition A.4. Let f : X → Y be a continuous map. The number of components of the image
f(X) ⊆ Y is at most the number of components of X .

Proof. Let C1, ..., CN be the components of X . Since Ci is continuous and the action is con-
tinuous, according to Theorem A.1, f(Ci) is continuous for all i ∈ {1, ..., N}. Additionally,
since

⋃N
i=1 Ci = X , we have

⋃N
i=1 f(Ci) = f(X). Therefore, there is a surjective map from
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{f(C1), ..., f(CN )} to the set of components of f(X), which implies that f(X) has at most N
components.

Let X1, ..., Xn be topological spaces. The product space is their Cartesian product X1 × ... ×Xn

endowed with the product topology. Denote π0(X) as the set of connected components of a space
X . The following proposition provides a way to count the components of a product space.
Proposition A.5. Consider n topological spaces X1, ..., Xn. Then |π0(X1 × ... × Xn)| =∏n

i=0 |π0(Xi)|.

Proof. When n = 1, the number of components of the product space is |π0(X1)|.
For the n > 1 case, since X1 × ... × Xn = (X1 × ... × Xn−1) × Xn, it suffices to show that
|π0(A × B)| = |π0(A)||π0(B)| for any topological spaces A and B. Let f : π0(A) × π0(B) →
π0(A×B) be the map that assigns C ∈ π0(A)× π0(B) to the element in π0(A×B) that contains
C. Then f is surjective because π0(A) × π0(B) forms a partition of A × B. To prove that f is
injective, suppose that f(C1) = f(C2) for C1, C2 ∈ π0(A) × π0(B). Consider the projection
πA : A × B → A. Since πA is continuous and C1, C2 belong to the same component of A × B,
πA(C1) and πA(C2) belong to the same component of A. Similarly, πB(C1) and πB(C2) belong to
the same component of B under the projection πB : A×B → B. Since all components of A and B
are maximally connected, we have C1 = C2, which implies that f is injective. Since f is a bijection
from π0(A)× π0(B) to π0(A×B), |π0(A×B)| = |π0(A)||π0(B)|.

A.2 GROUPS

A group is a set G together with a composition law, written as juxtaposition, that satisfies associa-
tivity, (ab)c = a(bc) ∀ a, b, c ∈ G, has an identity 1 such that 1a = a1 = a ∀ a ∈ G, and for all
a ∈ G, there exists an inverse b such that ab = ba = 1. An action of a group G on a set S is a map
· : G× S → S that satisfies 1 · s = s for all s ∈ S and (gg′) · s = g · (g′ · s) for all g, g′ in G and
all s in S. The orbit of s ∈ S is the set O(s) = {s′ ∈ S | s′ = gs for some g ∈ G}.

A topological group is a group G endowed with a topology such that multiplication and inverse
are both continuous. A recurring example is the general linear group GLn(R), with the subspace
topology obtained from Rn2

. The group GLn(R) has two connected components, which correspond
to matrices with positive and negative determinant.

The product of groups G1, ..., Gn is a group denoted by G1 × ... × Gn. The set underlying
G1 × ... × Gn is the Cartesian product of G1, ..., Gn. The group structure is defined by identity
(1, ..., 1), inverse (g1, ..., gn)

−1 = (g−1
1 , ..., g−1

n ), and multiplication rule (g1, ..., gn)(g
′
1, ..., g

′
n) =

(g1g
′
1, ..., gng

′
n).

A.3 RELATING CONNECTEDNESS OF GROUPS, ORBITS, AND LEVEL SETS

From Theorem 3.1, continuous maps preserve connectedness. Through continuous actions, we study
the connectedness of orbits and level sets by relating them to the connectedness of more familiar
objects such as the general linear group. Establishing a homeomorphism from the group to the set
of minima requires the symmetry group’s action to be continuous, transitive, and free. Here we only
assume the action to be continuous and try to bound the number of components of the orbits.

As an immediate consequence of Proposition A.4, an orbit cannot have more components than the
group.
Corollary A.6. Assume that the action of a group G on S is continuous. Then the number of
connected components of orbit O(s) is smaller than or equal to the number of connected components
of G, for all s in S.

Proof. An orbit O(s) is the image of the group action, which we assume to be continuous. The
result follows from Proposition A.4.

Let X be a topological space and L : X → R a continuous function on X . A topological group
G is said to be a symmetry group of L if L(g · x) = L(x) for all g ∈ G and x ∈ X . In this case,
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the action can be defined on a level set of L, L−1(c) with a c ∈ R, as G × L−1(c) → L−1(c). If
the minimum of L consists of a single orbit, Corollary A.6 extends immediately to the number of
components of the minimum.

Corollary A.7. Let L be a function with a symmetry group G. If the minimum of L consists of a
single G-orbit, then the number of connected components of the minimum is smaller or equal to the
number of connected components of G.

Generally, symmetry groups do not act transitively on a level set L−1(c) ∈ X . In this case, the
connectedness of the orbits does not directly inform the connectedness of the level set.

Proposition A.8.

(a) There exists a space X and a group G with an action on X , such that each orbit for the group
action is connected and X is not connected.

(b) There exists a space X and a group G with an action on X , such that each orbit for the group
action is disconnected and X is connected.

Proof. For part (a), consider a subspace of R2, X = X1 ∪X2 where X1 = {(x, y) : x = 0, y > 0}
and X2 = {(x, y) : x = 1, y > 0}. The space X is not connected. Let G be the multiplicative
group of positive real numbers and act on X by multiplication on the second coordinate. Then there
are two orbits, X1 and X2, which are both connected.

For part (b), consider the space X = R2 \ {0}. Then X is connected. Let G be the multiplicative
group of real numbers, which acts on X by multiplication on both coordinates. That is, g ·(x1, x2) =
(gx, gx2),∀(x1, x2) ∈ X,∀g ∈ G. The orbit of any point (x1, x2) ∈ X is not connected.

Nevertheless, since the set of orbits partitions the space, we can use the following bound on the
number of components of the space.

Proposition A.9. Let X be a topological space and let X =
∐

i Xi be a partition of X into disjoint
subspaces. Then |π0(X)| ≤

∑
i |π0(Xi)|.

Proof. Let S = {A ⊆ X : ∃i, A is a component of Xi} be the union of the components of the
subspaces. Then S is a partition of X , and every element in S is connected. Therefore, there is
a surjective map from S to π0(X), defined by mapping each s ∈ S to the element of π0(X) that
includes s. This implies that |π0(X)| ≤ |S| =

∑n
i=1 |π0(Xi)|.

Consider a topological space X and a group G that acts on X . Let O = {O1, ..., On} be the set of
orbits. By Proposition A.9, the number of components of the orbits give the following upper bound
on the number of components of the space: |π0(X)| ≤

∑n
i=1 |π0(Oi)|.

B PROOFS IN SECTION 4

Proposition 4.1. There is a homeomorphism between L−1(0) and (GLh)
l−1.

Proof. Recall that W1, ...,Wn, X, Y are matrices in Rh×h, and X,Y are both full rank. Consider
the map

f : (GLh)
l−1 → L−1(0), (g1, ..., gl−1) 7→ (g1X

−1, g2, ..., gl−1, Y

l−1∏
i

g−1
i ). (10)

The inverse f−1 : (W1, ...,Wl) 7→ (W1X,W2,W3, ...,Wl−1) is well defined, because X ,
W1,W2,W3, ...,Wl−1 are all full-rank. Since both f and f−1 are continuous, f is a homeomor-
phism between (GLh)

l−1 and L−1(0).

Corollary 4.2. The minimum of L has 2l−1 connected components.
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Proof. From Proposition 4.1, L−1(0) is homeomorphic to (GLh)
l−1. According to Corollary A.3,

this implies that L−1(0) has the same number of connected components as (GLh)
l−1. From Propo-

sition A.5, GLh(R)l−1 has 2l−1 connected components. Therefore, L−1(0) has 2l−1 connected
components.

Proposition 4.3. Let n = 1. Assume that X,Y ̸= 0. When ε = 0, the minimum of L has 4
connected components. When ε ̸= 0, the minimum of L has 3 connected components.

Proof. When ε = 0, the skip connection is effectively removed, and the loss function (2) reduces to
(1). By Corollary 4.2, the minimum of L has 4 connected components. In the rest of the proof, we
consider the case where ε ̸= 0.

Let (W10 ,W20 ,W30) = (I, (α − ε)I, α−1Y X−1), where α ∈ R is an arbitrary number such that
α ̸= ε and α ̸= 0. Then (W10 ,W20 ,W30) is a point in L−1(0). Define set G1 = {g ∈ Rh×h :
det (gW20W10X + εX) ̸= 0}. Let a : GL1 ×G1 → Param be the following map:

g1, g2 7→ (g1W10 ,

g2W20g
−1
1 ,

W30(W20W10X + εX)(g2W20W10X + εX)−1). (11)
From the definition of G1, (g2W20W10X + εX) is invertible, so a is well defined. Additionally, we
have L(a(g1, g2)) = L(W10 ,W20 ,W30) = 0,∀g1, g2 ∈ GL1 ×G1. Therefore, denoting the image
of a as S1, we have S1 ⊆ L−1(0).

Let S0 = {(W1,W2,W3) : W3 = Y (εX)−1 and W1 = 0} if ε ̸= 0, or ∅ otherwise. For
(W1,W2,W3) ∈ S0, we have L(W1,W2,W3) = ||Y − Y (εX)−1(0 + εX)||2 = 0. Therefore,
S0 ⊆ L−1(0).

We then show that the minimum of L is the union of S1 and S0. Consider a point (W1,W2,W3) ∈
L−1(0). If W1 = 0, then ε ̸= 0, otherwise (W1,W2,W3) cannot be in L−1(0). In this case,
W3 must equal to Y (εX)−1, and (W1,W2,W3) ∈ S0. If W1 ̸= 0, then W1W

−1
10

∈ GL1

and W2W1W
−1
10

W−1
20

∈ G1. The second part is due to W2W1W
−1
10

W−1
20

W20W10X + εX =

W2W1X + εX ̸= 0 since (W1,W2,W3) ∈ L−1(0). In this case we have (W1,W2,W3) =
a(W1W

−1
10

,W2W1W
−1
10

W−1
20

), which means that (W1,W2,W3) ∈ S1.

The number of connected components of S1 and S0 can be obtained from their structures. Since
W20W10X ̸= 0, there is a homeomorphism between G1 and GL1 defined by the map

f : G1 → GL1, g 7→ gW20W10X + εX (12)

with inverse f−1 : GL1 → G1, g 7→ ε(g − εX)(W20W10X)−1. Since a is also a homeomorphism,
its image S1 is homeomorphic to GL1 ×GL1 and has 4 connected components. When ε ̸= 0, S0 is
a line and thus has 1 connected component.

The last part of the proof shows the connectedness of the connected components of S1 and S0. Let
G+

1 = {g2 ∈ G1 : f(g2) ∈ GLsign(εX)} be the connected component in G1 that correspond to
GLsign(εX), and G−

1 = {g2 ∈ G1 : f(g2) ∈ GL−sign(εX)} be the component that correspond to
GL−sign(εX). For convenience, we name the connected components of Im(a) as follows:

C1 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL+, g2 ∈ G+
1 }

C2 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL−, g2 ∈ G+
1 }

C3 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL+, g2 ∈ G−
1 }

C4 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL−, g2 ∈ G−
1 }

Note that for (W1,W2,W3) ∈ S1, there exists a (unique) g2 ∈ G1 such that we can write W3 as

W3 = W30 [W20W10X + εX][g2W20W10X + εX]−1) = Y f(g2)
−1.

Following from the definition of G+
1 , for a point (W1,W2,W3) in C1 or C2, sign(W3) =

sign(Y (εX)−1). Additionally, when g2 is close to 0, g2 belongs to G+
1 . The boundary of both

C1 and C2 contain a point in S0:
lim

g1→0+
a(g1, g1) = lim

g1→0−
a(g1, g1) = (0, α− ε, Y (εX)−1) ∈ S0.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Therefore, both C1 and C2 are connected to S0.

For points in C3 and C4, sign(W3) ̸= sign(Y (εX)−1). Therefore, no point in C3 or C4 can be
sufficiently close to S0. As a result, these components are not connected to S0. In summary, when
ε ̸= 0, S0 connects 2 components of S1, and the minimum of L has 3 connected components.

C PROOFS IN SECTION 5

Lemma 5.1. Consider two points (W1,W2), (W
′
1,W

′
2) ∈ L−1(0) that are not connected in L−1(0).

For any g ∈ GL(h) such that det(g) < 0, g · (W1,W2) and (W ′
1,W

′
2) are connected in L−1(0).

Proof. Consider the map f and its inverse f−1 defined in (10) in the proof of Proposition 4.1. Let
g = f−1(W1,W2) and g′ = f−1(W ′

1,W
′
2). By Corollary A.2, since (W1,W2) and (W ′

1,W
′
2) are

not in the same connected component of L−1(0), g and g′ are not in the same connected compo-
nent of GLh. Equivalently, det(gg′) < 0. Consider a g1 ∈ GLh such that det(g) < 0. Then
det(g1gg

′) > 0, which means that g1g and g′ belong to the same connected component of GLh.
Therefore, according to Corollary A.2, g1 · (W1,W2) = f(g1g) and (W ′

1,W
′
2) = f(g′) belong to

the same connected component of L−1(0).

Example. Suppose
(
W1 =

[
1 0
0 1

]
,W2 =

[
−1 0
0 1

])
is a point in L−1(0) for some loss func-

tion L. Then
(
W ′

1 =

[
−1 0
0 1

]
,W ′

2 =

[
1 0
0 1

])
is also a point in L−1(0). However, (W1,W2) and

(W ′
1,W

′
2) are not on the same connected component of the minimum, since their determinants have

different signs. By Lemma 5.1, any g ∈ GL(h) with det(g) < 0 can bring (W1,W2) and (W ′
1,W

′
2)

to the same connected component in L−1(0). Let g be the permutation matrix
[
0 1
1 0

]
. Then

g · (W1,W2) =

([
0 1
1 0

]
,

[
0 −1
1 0

])
, which is in the same connected component as (W ′

1,W
′
2).

Proposition 5.2. Assume that h ≥ 2. For all (W1, ...,Wl), (W
′
1, ...,W

′
l ) ∈ L−1(0), these exists a

list of permutation matrices P1, ..., Pl−1 such that (W1P1, P
−1
1 W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl)

and (W ′
1, ...,W

′
l ) are connected in L−1(0).

Proof. Let (g1, ..., gl−1), (g
′
1, ..., g

′
l−1) ∈ (GLh)

n−1 such that f(g1, ..., gl−1) = (W1, ...,Wl) and
f(g′1, ..., g

′
l−1) = (W ′

1, ...,W
′
l ). Let P0 = I . For i = 1, ..., l − 1, if det(gig′iP

−1
i−1) > 0, set Pi to I .

Otherwise, we set Pi to an arbitrary element in P ∈ Sh \Ah, which is not empty when h ≥ 2.

Let (g′′1 , ..., g
′′
l−1) ∈ (GLh)

n−1 such that f(g′′1 , ..., g
′′
l−1) = (W1P1, P

−1
1 W2P2, ..., Pl−2Wl−1Pl−1,

Pl−1Wl). By the way we construct Pi’s, we have g′′i = P−1
i−1g

′
iPi and det(gig

′′
i ) > 0. Therefore, gi

and g′′i belong to the same connected component of (GLh)
l−1 for all i. Since f is a homeomorphism

between (GLh)
l−1 and L−1(0), (W1P1, P

−1W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl) and (W ′
1, ...,W

′
l )

are connected in L−1(0).

Proposition 5.3. Consider the loss function of the following form

L : Param → R,W = (W1, ...,Wl) 7→ ||Y −Wlσ(Wl−1f(Wl−2,Wl−3, ...,W1, X))||22, (13)

where f is a function of Wl−2,Wl−3, ...,W1, X , and σ(cz) = ckσ(z) for all c ∈ R and some
k > 0. Assume that ||Y ||2 ̸= 0 and L−1(0) ̸= ∅. Also assume that l ≥ 2. For any positive number
b > 0, there exist W,W ′ ∈ L−1(0) that belong to the same connected component of L−1(0) and
0 < α < 1, such that L ((1− α)W + αW ′) > b.

Proof. Let W = (Wl, ...,W2,W1) ∈ L−1(0) be an arbitrary point on the minimum of L. Let
W ′ = (W ′

l , ...,W
′
2,W

′
1) = (Wlm

−k,mWl−1,Wl−2, ...,W1). Then W,W ′ belong to the same
connected component of L−1(0), connected by curve γ : R → Param, γ(t) = ((1 − t)Wl +
tWlm

−k, (1− t)Wl−1 + tmWl−1,Wl−2, ...,W1).
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Since W ∈ L−1(0), we have Wlσ [Wl−1f(Wl−2, ...,W1, X)] = Y . The loss on the linear interpo-
lation of W,W ′ is

L ((1− α)W + αW ′) =||Y − ((1− α)Wl + αW ′
l )σ

[
((1− α)Wl−1 + αW ′

l−1)f(Wl−2, ...,W1, X)
]
||22

=||Y − (1− α+ αm−k)Wlσ [(1− α+ αm)Wl−1f(Wl−2, ...,W1, X)] ||22
=||Y − (1− α+ αm−k)(1− α+ αm)kWlσ [Wl−1f(Wl−2, ...,W1, X)] ||22
=(1− (1− α+ αm−k)(1− α+ αm)k)2||Y ||22.

(14)

Let α = 0.5. Then

L ((1− α)W + αW ′) =

(
1−

(
1

2
+

1

2
m−k

)(
1

2
+

1

2
m

)k
)2

||Y ||22

=
(
1− 2−(k+1)(1 +m−k)(1 +m)k

)2
||Y ||22 (15)

Let m =
(
2k+1

( √
b

||Y ||2 + 1
)
− 1
)k

. Recall that k > 0. Then m > 0, (1 +m)k > 1, and

2−(k+1)(1 +m−k)(1 +m)k > 2−(k+1)(1 +m−k) =

√
b

||Y ||2
+ 1 > 1. (16)

Therefore, the loss at our chosen values of α and m is at least b:

L ((1− α)W + αW ′) >

(
1−

( √
b

||Y ||2
+ 1

))2

||Y ||22 = b. (17)

Figure 4 visualizes the loss barrier on the linear interpolation between two minima. We construct
a network with loss function ∥W5σ (W4σ(W3σ(W2σ(W1X))))− Y ∥, with σ being a leaky ReLU
function, X ∈ R8×4, Y ∈ R4×4, and (W1,W2,W3,W4,W5) ∈ Param = R16×8 × R32×16 ×
R16×32 × R8×16 × R4×8. The network is initialized with random weights, and each element of
X,Y is sampled independently from a normal distribution.

We obtain the first minima (W ′
1,W

′
2,W

′
3,W

′
4,W

′
5) by SGD, and the second

(W ′′
1 ,W

′′
2 ,W

′′
3 ,W

′′
4 ,W

′′
5 ) = (W ′

1,W
′
2,W

′
3,mW ′

4,W
′
5m

−1) by rescaling the last two layers
with m ∈ R+. At large m, the two minima are farther apart, and the loss evaluated at the middle
point of their linear interpolation grows unboundedly as predicted by Proposition 5.3.

0 4000 8000 12000
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Figure 4: Loss at the middle of the linear interpolation between two minima in a homogeneous
network becomes unbounded when the two minima is far apart.
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Proposition 5.4. Consider the loss function with the same set of assumptions in Proposition
5.3. Assume additionally that there does not exist a permutation P such that every column of
Pσ(Wl−1f(Wl−2,Wl−3, ...,W1, X)) is in the null space of Wl. For any positive number b > 0,
there exist (W1, ...,Wl), (W

′
1, ...,W

′
l ) ∈ L−1(0) and 0 < α < 1, such that (W1, ...,Wl−2) =

(W ′
1, ...,W

′
l−2) and minP∈Sn

L
(
(1− α)(W1, ...,Wl) + α(W1, ...,Wl−2, P

−1Wl−1,WlP )
)
> b.

Proof. Let W = (Wl, ...,W2,W1) ∈ L−1(0) be an arbitrary point on the minimum of L. Let
W ′ = (W ′

l , ...,W
′
2,W

′
1) = (Wlm

−k,mWl−1,Wl−2, ...,W1).

Since W ∈ L−1(0), we have Wlσ [Wl−1f(Wl−2, ...,W1, X)] = Y . The loss on the linear interpo-
lation of W,W ′ is
L ((1− α)W + αW ′) =||Y − ((1− α)Wl + αW ′

lP )σ
[
((1− α)Wl−1 + αP−1W ′

l−1)f(Wl−2, ...,W1, X)
]
||22.

(18)
Let α = 0.5. Then

L ((1− α)W + αW ′) =||Y − 1

4
Wl(I +m−kP )σ

[
(I +mP−1)Wl−1f(Wl−2, ...,W1, X)

]
||22.
(19)

When m → ∞,
lim

m→∞
σ
[
(I +mP−1)Wl−1f(Wl−2, ...,W1, X)

]
= lim

m→∞
mkσ

[
(m−1I + P−1)Wl−1f(Wl−2, ...,W1, X)

]
= lim

m→∞
mkP−1σ [Wl−1f(Wl−2, ...,W1, X)] . (20)

Therefore,

lim
m→∞

L ((1− α)W + αW ′) = lim
m→∞

||Y − 1

4
Wl(I +m−kP )mkP−1σ [Wl−1f(Wl−2, ...,W1, X)] ||22

= lim
m→∞

||Y − 1

4
Wl(I +mkP−1)σ [Wl−1f(Wl−2, ...,W1, X)] ||22

= lim
m→∞

||3
4
Y − mk

4
WlP

−1σ [Wl−1f(Wl−2, ...,W1, X)] ||22.
(21)

Since we assumed that there does not exist a permutation P such that every column of
Pσ(Wl−1f(Wl−2,Wl−3, ...,W1, X)) is in the null space of Wl, at least one element in the sec-
ond term is unbounded for any permutation P . Therefore, L ((1− α)W + αW ′) is unbounded for
any P .

Proposition 5.6. Consider the loss function with the same set of assumptions in Proposition 5.3. Let
W ∈ L−1(0) be a point on the minimum. Consider the multiplicative group of positive real numbers
R+ that acts on L−1(0) by g · (W1, ...,Wl) = (W1, ...,Wl−2, gWl−1,Wlg

−k), where g ∈ R+.
Then there exists a positive number b > 0, such that for all 0 < α < 1 and W ′ ∈ Orbit(W )
with ||W ′

i ||2 < c for all i and some c > 0, the loss value for points on the linear interpolation
L ((1− α)W + αW ′) < b.

Proof. Since W ′ ∈ Orbit(W ), W ′ = (Wlm
−k,mWl−1,Wl−2, ...,W1) for some m > 0.

Additionally, m and m−k are bounded since W ′
i is bounded. Since W ∈ L−1(0), we have

Wlσ [Wl−1f(Wl−2, ...,W1, X)] = Y . The loss on the linear interpolation of W,W ′ is

L ((1− α)W + αW ′) =||Y − ((1− α)Wl + αW ′
l )σ

[
((1− α)Wl−1 + αW ′

l−1)f(Wl−2, ...,W1, X)
]
||22

=||Y − (1− α+ αm−k)Wlσ [(1− α+ αm)Wl−1f(Wl−2, ...,W1, X)] ||22
=||Y − (1− α+ αm−k)(1− α+ αm)kWlσ [Wl−1f(Wl−2, ...,W1, X)] ||22
=(1− (1− α+ αm−k)(1− α+ αm)k)2||Y ||22.

(22)

As m, m−k, and α are all bounded, the loss value for points on the linear interpolation
L ((1− α)W + αW ′) is also bounded.
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Proposition 5.5. Let A ∈ Rn×n be an invertible matrix. Let set S = {(W1,W2) : W1,W2 ∈
Rn×n,W1W2 = A}. For any positive number b > 0, there exist W ′,W ′′ ∈ S and 0 < α < 1, such
that minŴ∈S ∥ ((1− α)W ′ + αW ′′)− Ŵ∥2 > b.

Proof. Let W be an element of S. Let W ′
1 = W1g

−1
1 ,W ′

2 = g1W2,W
′′
1 = W1g

−1
2 , and

W ′′
2 = g2W2, where g1, g2 ∈ Rn×n are invertible matrices. Note that W ′ = (W ′

1,W
′
2) and

W ′′ = (W ′′
1 ,W

′′
2 ) are both in S. Then,

min
Ŵ∈S

∥ ((1− α)W ′ + αW ′′)− Ŵ∥22

= min
Ŵ∈S

∥(1− α)W1g
−1
1 + αW1g

−1
2 − Ŵ1∥22 + ∥(1− α)g1W2 + αg2W2 − Ŵ2∥22

= min
g∈GL(n)

∥W1((1− α)g−1
1 + αg−1

2 − g−1)∥22 + ∥W2((1− α)g1 + αg2 − g)∥22. (23)

Let g1 = βI and g2 = β−1I for some β > 0. Let α = 1
2 . Then, in the limit of a large β, we have

lim
β→∞

min
Ŵ∈S

∥ ((1− α)W + αW ′)− Ŵ∥22

= lim
β→∞

min
g∈GL(n)

∥∥∥∥W1

(
β + β−1

2
I − g−1

)∥∥∥∥2
2

+

∥∥∥∥W2

(
β + β−1

2
I − g

)∥∥∥∥2
2

. (24)

As β → ∞, g and g−1 cannot approach β+β−1

2 I simultaneously. Therefore, (24) is not bounded.

D PROOFS IN SECTION 6

Proposition 6.1. Let (U, V ) ∈ Param, and (U ′, V ′) = g · (U, V ). Then

∥Uσ(V X)− U ′σ(V ′X)∥ ≤ ∥Uσ(V X)∥. (25)

Proof. We note that I − σ(gV X)†σ(gV X) is a projection:

(I − σ(gV X)†σ(gV X))2

=I − σ(gV X)†σ(gV X)− σ(gV X)†σ(gV X)(I − σ(gV X)†σ(gV X))

=I − σ(gV X)†σ(gV X).

Therefore,

∥Uσ(V X)− U ′σ(V ′X)∥ = ∥Uσ(V X)
(
I − σ(gV X)†σ(gV X)

)
∥ ≤ ∥Uσ(V X)∥. (26)

Theorem 6.2. Let L−1(c) ⊂ Param, with c ∈ R, be a level set of the loss function L : Param → R.
Let γ : [0, 1] → L−1(c) be a smooth curve in L−1(c) connecting two points w1 = γ(0) and
w2 = γ(1). Suppose the curvature κ(t) of γ satisfies κ(t) ≤ κmax for all t ∈ [0, 1].

Let S be the straight line segment connecting w1 and w2. Then, for any point w on S, the distance
to L−1(c) is bounded by

dist(w, L−1(c)) ≤ dmax =
1

κmax

1−

√
1−

(
κmax∥w2 −w1∥2

2

)2
 .

Furthermore, assuming L is Lipschitz continuous with Lipschitz constant CL, the loss at any point
w on S satisfies

|L(w)− c| ≤ CLdmax.
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Proof. We will find an upper bound for the maximum distance between a smooth curve and the
chord connecting two points on the curve, assuming the curvature of the curve is bounded by κmax.

The curvature κ at a point on a curve is defined as κ = 1
R , where R is the radius of the osculating

circle at that point. Let s be the maximum perpendicular distance from the midpoint of a chord to
the curve. For a circular arc, Pythagorean theorem gives

R2 =

(
∥w2 −w1∥2

2

)2

+ (R− s)2.

Solving for s:

s = R

1−

√
1−

(
∥w2 −w1∥2

2R

)2
 .

Substitute R = 1
κ into the above, we have

s =
1

κ

1−

√
1−

(
κ∥w2 −w1∥2

2

)2
 .

Since the curvature of γ is everywhere less than or equal to κmax, the curve cannot bend more
sharply than the osculating circle with curvature κmax. Therefore, the maximum deviation dmax

between γ and its chord cannot exceed that of the osculating circle:

dist(w, L−1(c)) ≤ dmax
def
=

1

κmax

1−

√
1−

(
κmax∥w2 −w1∥2

2

)2
 .

Assuming L is Lipschitz continuous with Lipschitz constant CL, for any w on S, we have

|L(w)− c| = |L(w)− L(γ(t))| ≤ CL∥w − γ(t)∥ ≤ CLdmax.
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