
AlchemistCoder: Harmonizing and Eliciting Code Capability by
Hindsight Relabeling on Multi-source Data

Anonymous ACL submission

Abstract
Open-source Large Language Models (LLMs)001
and their specialized variants, particularly Code002
LLMs, have recently delivered impressive per-003
formance. However, previous Code LLMs are004
typically fine-tuned on a single dataset, which005
may insufficiently elicit the potential of pre-006
trained Code LLMs. This paper presents Al-007
chemistCoder, a series of Code LLMs with008
better code generation and generalization abil-009
ities fine-tuned on multi-source data. To har-010
monize the inherent conflicts among the var-011
ious styles and qualities in multi-source data,012
we introduce data-specific prompts, termed Al-013
chemistPrompts, inspired by hindsight relabel-014
ing, to improve the consistency between in-015
structions and responses. We further propose016
to incorporate the data evolution process itself017
into the fine-tuning data to enhance the code018
comprehension capabilities of LLMs, including019
instruction evolution, data filtering, and code re-020
view. Extensive experiments demonstrate that021
AlchemistCoder holds a clear lead among all022
models of the same size (6.7B/7B) and rivals or023
even surpasses larger models (15B/33B/70B),024
showcasing the efficacy of our method in refin-025
ing instruction-following capabilities and ad-026
vancing the boundaries of code intelligence.027

1 Introduction028

Closed-source Large Language Models (LLMs)029

like ChatGPT and GPT-4 (OpenAI, 2022, 2023)030

exhibit impressive code intelligence by learning031

on large-scale and diverse code corpus, which032

also benefits many other applications, such as033

math reasoning (Chen et al., 2022), embodied con-034

trol (Liang et al., 2023), and agent (Yang et al.,035

2024). Since open-source LLMs (Touvron et al.,036

2023) still lag behind closed-source LLMs (Ope-037

nAI, 2023) in this field, there has been grow-038

ing interest in investigating the acquisition of039

code capabilities by developing specialized Code040

LLMs (Roziere et al., 2023; Guo et al., 2024).041

49.9% improvement

176.6% improvement

33.3% improvement

Inferior performance from
directly mixing multi-source data

Figure 1: Performance scatter plot (top right is better) of
open-source models on mainstream code benchmarks,
HumanEval and MBPP. We use different shapes/sizes
to represent different series/parameters of models, and
draw dashed lines to indicate the improvements of the
fine-tuned Code LLMs compared to the base models.
-L/-CL/-DS respectively indicate the models fine-tuned
on Llama 2/CodeLlama-Python/DeepSeekCoder-Base.

The training of Code LLMs mainly goes through 042

pre-training and fine-tuning stages (Roziere et al., 043

2023). Pioneer works (Chen et al., 2021; Nijkamp 044

et al., 2022; Li et al., 2023) have amassed exten- 045

sive code data for pre-training, while recent open- 046

source models (Luo et al., 2023b; Wei et al., 2023) 047

highlight the effectiveness of high-quality or tar- 048

geted code fine-tuning datasets. Despite these ad- 049

vancements, current fine-tuning methods mainly 050

rely on a particular kind of code-related question- 051

answering dataset, unlike the pre-training stage 052

that integrates code-related corpus from various 053

sources (Roziere et al., 2023). Such a discrepancy 054

indicates that the fine-tuning data may not be di- 055

verse enough to fully stimulate the capabilities of 056

base models, resulting in limited performance, gen- 057

eralization, and robustness. 058

To tackle these challenges, we first explore inte- 059

grating data from multiple sources and find that di- 060

rectly mixing (e.g., the DirectlyMix-L-7B model in 061

1

(a) Open-Source Data Integration

(c) AlchemistPrompt Customization

open-source
datasets

data filtering
& deduplication

(b) Open-Source Data Evolution

instruction
evolution

multi-source
data

Instruction: Find the shortest path from one vertex to all other vertices in a graph.
Response: Here is the Python code that satisfies the requirement:

def bellman_ford(graph, start_vertex):
'''Bellman-Ford algorithm: A dynamic programming algorithm that …'''

Instruction: Please generate Python code for the following task and attempt to
use the concept of Dynamic Programming. Find the shortest path from one vertex
to all other vertices in a graph.
Response: Here is the Python code that satisfies the requirement …

(d) Code Comprehension Task Construction

open-source
data

comprehension
task data

EvolCode
data

instruction
data

GPT-3.5

Alchemist
Prompt

customized
data

low-quality data

raw instruction
evolution data

A. Short Responses
B. Uncompilable code
C. Unclear code
D. Disorganized code data formatting

(multiple choice)

data
selecting

multi-source data

1. Correctness Score
2. Clarity
3. Suggestions
4. Refined Codecode review

GPT-4

GPT-4

Instruction
Tuning

AlchemistCoder

Harmonized Data

Pretrained LLMs
…

Figure 2: Overview for developing AlchemistCoder series. We first integrate high-quality open-source data (a) and
conduct data evolution based on them (b). Then, we adopt AlchemistPrompt to harmonize their inherent conflicts (c)
and construct code comprehension data (d). We use a mix of these data to fine-tune various pre-trained LLMs to
obtain our AlchemistCoder models.

Fig. 1) does not produce the desired effect due to in-062

herent conflict of multi-source data. Therefore, we063

propose to adopt hindsight relabeling (Andrychow-064

icz et al., 2017; Zhang et al., 2023) for multi-source065

data mixing, which designs data-specific prompts066

to harmonize the inherent conflicts of different data067

sources so that they can be used together to elicit068

the performance of base models more sufficiently.069

We term this form of prompts as AlchemistPrompts,070

inspired by the power and definition of Alchemists:071

“Alchemist: Someone Who Transforms Things for072
the Better.” —— Merriam Webster Dictionary073

Specifically, we first integrate some high-quality074

open-source code instruction data and conduct data075

evolution (Luo et al., 2023b) based on some of076

them (Fig. 2(a, b)) to obtain multi-source data077

for fine-tuning. Due to the diverse styles, cod-078

ing languages, and varying data quality of differ-079

ent sources, directly mixing multi-source data will080

cause the trained model to be unaligned to specific081

coding languages and styles, resulting in inferior082

performance. Therefore, as shown in Fig. 2(c),083

for instruction-response pairs of different sources,084

we adopt one LLM to generate AlchemistPrompts085

that more accurately and explicitly describe the086

characteristics as requirements of the response to087

enrich the instructions. This makes the response088

more consistent with and goal-conditioned on the089

new instructions in each data source and eventually090

transforms the fine-tuning process on multi-source091

data from cloning different responses to similar092

questions to learning to follow diverse instructions.093

Consequently, AlchemistPrompts not only enhance094

the instruction-following capability of LLMs but095

also allow the integrated multi-source data to effec- 096

tively boost different aspects of the base models. 097

Apart from the conventional problem-solution 098

data, we argue that the evolution of code data (Luo 099

et al., 2023b) reflects higher-level capabilities and 100

is also valuable for the learning of Code LLMs. 101

Thus, we decompose the process of data evolution 102

into three tasks incorporated for training, includ- 103

ing instruction evolution, data filtering, and code 104

review (Fig 2 (d)), enabling further improvements 105

of code comprehension capabilities. 106

We conduct extensive experiments with vari- 107

ous base models (Touvron et al., 2023; Roziere 108

et al., 2023; Guo et al., 2024) and develop the 109

instruction-tuned AlchemistCoder series. As shown 110

in Fig. 1, on two mainstream code benchmarks, 111

HumanEval and MBPP, AlchemistCoder holds a 112

clear lead among all models of the same size 113

(6.7/7B), and rivals or even surpasses larger mod- 114

els (15/33/70B), demonstrating harmonized and 115

formidable code capabilities. We further ana- 116

lyze the efficacy of AlchemistPrompts and ob- 117

serve that AlchemistPrompts mitigates the instruc- 118

tion/response misalignment of the data. More sur- 119

prisingly, AlchemistPrompts allow the code corpus 120

also significantly improve the general capability of 121

Code LLMs, as demonstrated by the improvements 122

on MMLU, BBH, and GSM8K. 123

2 Method 124

To more comprehensively elicit the capability of 125

the base LLMs, we first construct multi-source data 126

for fine-tuning (§ 2.1), which is harmonized by Al- 127

chemistPrompts to take effect(§ 2.2). Code com- 128

2

Instruction: How to calculate fixed legs for cross currency swap?
Response (a): Calculate fixed legs in a cross-currency swap by
setting notional amounts, adjusting for risk and duration, agreeing
on fixed rates, and multiplying these rates by the notional amounts.
Response (b): Here's a simple Python program for the calculation:
Define the notional amounts
notional_usd = 10000000 # Notional amount in USD
notional_eur = 8000000 # Notional amount in EUR

Set the fixed interest rates
fixed_rate_usd = 0.035 # Fixed rate for USD
fixed_rate_eur = 0.025 # Fixed rate for EUR

Calculate the fixed payment amounts
fixed_payment_usd = notional_usd * fixed_rate_usd
fixed_payment_eur = notional_eur * fixed_rate_eur

Instruction: Merge the elements of two given arrays into
one, but ensure that the merged array contains only the
common elements between the two arrays.
Response (a): Here is an example implementation in JavaScript:

Response (b): Sure, here's a Python function to do that:
def merge_common_elements(arr1, arr2):

merged_arr = []
for element in arr1:

if element in arr2 and element not in merged_arr:
merged_arr.append(element)

return merged_arr

function mergeArrays(array1, array2)
{

return array1.filter(item => array2.includes(item));
}

Figure 3: Example of conflicts from multiple sources.

prehension tasks are also constructed to further im-129

prove the performance(§ 2.3). We also discuss the130

details and statistics of the filtered and harmonized131

multi-source data in § 2.4.132

2.1 Multi-source Data Construction133

To fully elicit the capability of code LLMs, we first134

collect the fine-tuning data from multiple sources135

(Fig. 2(a)) and adopt the instruction evolution (Luo136

et al., 2023b) to improve the complexity of the in-137

structions (Fig. 2(b)). However, integrating multi-138

source data for instruction tuning is challenging.139

Naturally, one code-related question can be solved140

by different coding languages with various algo-141

rithms or response styles (e.g., with or without142

reasoning). When naively combing data curated143

by different developers with different LLMs, the144

model will learn to answer similar questions with145

different coding languages and response styles, as146

shown in Fig. 3. On the one hand, learning diverse147

responses may elicit different capability aspects148

of the base models. On the other hand, since the149

learned responses to similar instructions are quite150

different due to different implicit human intentions,151

the LLMs tend to be unaligned (to our expectation)152

after the fine-tuning on the directly mixed data (e.g.,153

we cannot expect which coding language the LLMs154

will use in real-world applications), resulting in155

inferior performance. Therefore, directly mixing156

multi-source data is not a promising solution and157

can be detrimental.158

2.2 AlchemistPrompt159

To better facilitate the models’ learning from multi-160

source data, we propose customizing data-specific161

meta prompts called AlchemistPrompts, to harmo-162

nize the inherent conflicts of data (Fig. 2(c)), in-163

spired by hindsight relabeling (Andrychowicz et al.,164

2017; Zhang et al., 2023). Specifically, we harmo-165

nize multi-source data via employing GPT-4 (Ope-166

nAI, 2023) to play the role of an Alchemist for gen-167

AlchemistPrompt Generation
Here are {{ sample number }} sets of instructions-response paired
coding samples. Each set begins with [SAMPLE BEGIN] and ends with
[SAMPLE END]. Please read them carefully and complete the TASK.

[SAMPLE 1 BEGIN]
<|Instruction|>:
{ AlchemistPrompt }
{{ sample 1 instruction }}
<|Response|>:
{{ sample 1 response }}
[SAMPLE 1 END]
…

TASK:
Please fill in { AlchemistPrompt } with appropriate content (within 50
words) to make the instructions clearer and better match the
responses.
NOTE (very important):
1. If you find code in the response, try to analyze (including but not
limited to programming languages, algorithm concepts, and code
characteristics) and briefly reflect the results in { AlchemistPrompt }.
2. You are not allowed to modify anything other than the contents
within { AlchemistPrompt }.
3. You are asked to generate only one { AlchemistPrompt }, which
should be universally applicable to all the {{ sample number }} samples.

Figure 4: Detailed prompt designed for generating data-
specific AlchemistPrompts.

erating AlchemistPrompts, using the prompt as il- 168

lustrated in Fig. 4 to obtain data-specific Alchemist- 169

Prompts. For instance, for an instruction of ‘Write 170

code to find the shortest path from one vertex to all 171

other vertices in a graph’, if the response involves 172

Python code employing a Bellman-Ford algorithm 173

with dynamic programming, we would expect to 174

customize the instruction with an AlchemistPrompt 175

of ‘Please generate Python code for the following 176

task and attempt to use the concept of Dynamic 177

Programming’. 178

The adjustment to data by AlchemistPrompt is 179

relatively minor and well-calibrated, and our abla- 180

tion study indicates that optimal performance can 181

be achieved by incorporating AlchemistPrompts 182

into only 5% of all the samples. It attains a balance 183

between the diversity and domain gap resulting 184

from the fusion of multi-source data. Crucially, 185

by retrospectively analyzing previous responses 186

and reinterpreting them as alternate goals, the Al- 187

chemistPrompts serve to elevate the condition/goal 188

of the data. This hindsight integration (Andrychow- 189

icz et al., 2017; Zhang et al., 2023; Liu et al., 2023a) 190

allows for a more nuanced and adaptive learning 191

process, not only enhances the models’ compre- 192

hension of data but also refines their instruction- 193

following capabilities. 194

2.3 Code Comprehension Task 195

The existing training datasets for Code LLMs (Li 196

et al., 2022; Chaudhary, 2023; theblackcat102, 197

2023; Luo et al., 2023b; Wei et al., 2023) primar- 198

ily focus on the code generation task consisting 199

of programming problems and their corresponding 200

3

solutions with code. We argue that apart from this,201

the process of constructing code data demonstrates202

higher-level abilities. Thus, it is also valuable for203

Code LLMs to further improve their performance204

by enhancing code comprehension from various205

dimensions. Therefore, we devise three code com-206

prehension tasks relevant to data construction, in-207

cluding instruction evolution, data filtering, and208

code review (Fig. 2(d)).209

Instruction Evolution. Inspired by the concept of210

instruction evolution (Xu et al., 2023; Luo et al.,211

2023b), we employ GPT-3.5 (OpenAI, 2022) to212

construct instruction evolution task data. including213

increased requirements for instructions and detailed214

explanations for programming tasks. The introduc-215

tion of instruction evolution task can help the model216

intuitively perceive the differences before and af-217

ter evolutions, deepening the comprehension of218

programming requirements, code complexity, task219

decomposition, and other code-related concepts.220

Data Filtering. We identify four categories of221

low-quality data from multiple sources, including222

(a) responses that are too short and do not contain223

code, (b) code that fails to compile, (c) code with224

poor clarity, and (d) code that does not follow the225

requirement in the instruction regarding its orga-226

nization in function form. In each instruction of227

the data filtering task, we present the model with a228

low-quality sample and ask the model to determine229

which of the four categories it belongs to. The data230

filtering task involves reusing the filtered-out data231

by providing counter examples, enabling the model232

to generate fewer low-quality responses.233

Code Review. In this task, we require the model to234

review a piece of code and assign scores between235

0 and 10 for correctness and clarity separately. Ad-236

ditionally, the model is expected to provide sugges-237

tions for code improvement and present the refined238

code. To obtain higher-quality data, we utilize239

GPT-4 (OpenAI, 2023) to generate code reviews240

and select cases that are more representative, specif-241

ically those with average scores for correctness and242

clarity greater than 8 or less than 6. Simultaneously,243

we also focus on situations where there are severe244

deficiencies in one aspect, i.e., when correctness or245

clarity is equal to or less than 4.246

2.4 Data Cleaning and Decontamination247

In practice, we have devised a set of filtering rules248

to refine our data cleaning and purification scripts.249

These involve excluding samples based on various250

criteria, such as response length (either too short or251

Python
(43.0%)

Others
(6.3%)

SQL
(8.2%)

HTML
(6.9%)

C & C++
(24.4%)

JavaScript
(6.9%)

Java
(4.3%)

AlchemistPrompt-Customized Data
(4.6%)

Code Comprehension Task Data
(3.7%)

Figure 5: Data distribution analysis of our Alchemist-
Coder dataset. The outer and inner circular diagrams re-
spectively display the distributions of data composition
and programming languages, with the data constructed
by us marked in bold italic. The data from Alchemist-
Prompts and code comprehension tasks, accounting for
only 8% of the total data volume, is sufficient to endow
the harmonized code capability of AlchemistCoder.

too long), absence of code or insufficient code con- 252

tent, non-compilable code, code failing test cases 253

(pertinent to certain samples), responses structured 254

in notebook form, and instances with excessive tex- 255

tual descriptions preceding the code. After conduct- 256

ing an extensive series of validation experiments, 257

we conclusively opt to eliminate low-quality data 258

meeting either of the following conditions: (a) re- 259

sponses that are excessively brief and lack accom- 260

panying code. Such responses typically offer direct 261

answers to the instructions, omitting both the code 262

solution and explanatory annotations. Additionally, 263

these samples frequently present overly simplistic 264

questions in the instructions; (b) code solutions that 265

are non-compilable or fail test cases (relevant to 266

specific samples). 267

Simultaneously, following (Gunasekar et al., 268

2023), we employ N-gram similarity, cosine dis- 269

tance of code segment embeddings, and edit dis- 270

tance of the syntax tree of code segments to calcu- 271

late the similarity between training data and sam- 272

ples in HumanEval and MBPP. We subsequently 273

eliminate samples with excessively high similarity 274

through this process of data filtering and dedupli- 275

cation, resulting in the removal of approximately 276

6% of the dataset. 277

2.5 Harmonized AlchemistCoder Dataset 278

Our AlchemistCoder dataset (∼200M tokens) con- 279

sists of four types of multi-source data, includ- 280

4

Table 1: Results of pass@1 on HumanEval (HumanEval+) and MBPP (MBPP+) benchmarks. Models are evaluated
in zero-shot on Human Eval and 3-shot on MBPP. We report the results of HumanEval and MBPP consistently from
the EvalPlus (Liu et al., 2023b) and the bold scores denote the best performance among models of the same size

Model Params Base Model HumanEval (+) MBPP (+) Average (+)

Closed-source Models

GPT-3.5-Turbo (2022) - - 72.6 (65.9) 81.7 (69.4) 77.2 (67.7)
GPT-4-Turbo (2023) - - 85.4 (81.7) 83.0 (70.7) 84.2 (76.2)

Open-source Models

Llama 2-Chat (2023) 70B Llama 2 31.7 (26.2) 52.1 (38.6) 41.9 (32.4)
CodeLlama-Python (2023) 70B Llama 2 57.9 (50.0) 72.4 (52.4) 65.2 (51.2)
CodeLlama-Instruct (2023) 70B CodeLlama 65.2 (58.5) 73.5 (55.1) 69.4 (56.8)

CodeLlama-Python (2023) 34B Llama 2 51.8 (43.9) 67.2 (50.4) 59.5 (47.2)
WizardCoder-CL (2023b) 34B CodeLlama-Python 73.2 (56.7) 73.2 (51.9) 73.2 (54.3)
DeepSeek-Coder-Instruct (2024) 33B DeepSeek-Coder-Base 78.7 (67.7) 78.7 (59.7) 78.7 (63.7)

StarCoder (2023) 15B - 34.1 (33.5) 55.1 (43.4) 44.6 (38.5)
CodeLlama-Python (2023) 13B Llama 2 42.7 (36.6) 61.2 (45.6) 52.0 (41.1)
WizardCoder-SC (2023b) 15B StarCoder 51.9 (45.7) 61.9 (44.9) 56.9 (45.3)

Llama 2 (2023) 7B - 14.0 (10.4) 26.1 (17.5) 20.1 (14.0)
StarCoder (2023) 7B - 24.4 (21.3) 33.1 (29.2) 28.8 (25.3)
CodeLlama-Python (2023) 7B Llama 2 37.8 (33.5) 57.6 (42.4) 47.7 (38.0)
WizardCoder-CL (2023b) 7B CodeLlama-Python 48.2 (42.1) 56.6 (42.4) 52.4 (42.3)
DeepSeek-Coder-Base (2024) 6.7B - 47.6 (41.5) 70.2 (53.6) 58.9 (47.6)
Magicoder-CL (2023) 7B CodeLlama-Python 60.4 (49.4) 64.2 (46.1) 62.3 (47.8)
MagicoderS-CL (2023) 7B CodeLlama-Python 70.7 (60.4) 68.4 (49.1) 69.6 (54.8)
Magicoder-DS (2023) 6.7B DeepSeek-Coder-Base 66.5 (55.5) 75.4 (55.6) 71.0 (55.6)
DeepSeek-Coder-Instruct (2024) 6.7B DeepSeek-Coder-Base 73.8 (69.5) 72.7 (55.6) 73.3 (62.6)
MagicoderS-DS (2023) 6.7B DeepSeek-Coder-Base 76.8 (65.2) 75.7 (56.1) 76.3 (60.7)
AlchemistCoder-L (ours) 7B Llama 2 56.7 (52.4) 54.5 (49.6) 55.6 (51.0)
AlchemistCoder-CL (ours) 7B CodeLlama-Python 74.4 (68.3) 68.5 (55.1) 71.5 (61.7)
AlchemistCoder-DS (ours) 6.7B DeepSeek-Coder-Base 79.9 (75.6) 77.0 (60.2) 78.5 (67.9)

AlchemistCoder-CL▲

AlchemistCoder-L▲

AlchemistCoder-L

AlchemistCoder-CL

AlchemistCoder-CL▲

AlchemistCoder-L▲

AlchemistCoder-L

AlchemistCoder-CL

0% 10% 20% 30% 40% 50% 60%

No Code SyntaxError AssertionError NameError ValueError

0% 10% 20% 30% 40% 50% 60%

Failed Wrong Answer

(a) Analysis of Error Cases on HumanEval

(b) Analysis of Error Cases on MBPP

Figure 6: Comparative distribution of text description
lengths (left) and code lines (right). Our dataset contains
high-quality samples with more diverse distributions.

ing three types of data constructed by us and281

open-source datasets. Specifically, (a) EvolCode282

data generated from gpt-3.5-turbo following (Luo283

et al., 2023b), (b) data customized by Alchemist-284

Prompts, (c) data of the code comprehension tasks285

(i.e., instruction evolution, data filtering, and code286

review), and (d) open-source datasets including287

Evol-Instruct-Code-80k-v1 (codefuse ai, 2023b),288

CodeExercise-Python-27k (codefuse ai, 2023a),289

and evol-codealpaca-v1 (theblackcat102, 2023).290

We visualize the distributions of data sources and291

programming languages involved using two circu-292

lar graphs in Fig. 5. Concurrently, Fig. 6 reports293

a distribution of text description lengths and code294

lines. Compared to CodeAlpaca (Chaudhary, 2023)295

and OOS-INSTRUCT (Wei et al., 2023), our Al-296

chemistCoder dataset presents a notably diverse297

distribution and maintains moderate overall text de- 298

scription and code lengths, benefiting significantly 299

from the integration of multi-source data along with 300

AlchemistPrompts and code comprehension tasks. 301

This is instrumental in contributing to a compre- 302

hensive evolution of code capability. 303

3 Experiments 304

In this section, we report results on various bench- 305

marks of code generation and conduct ablation ex- 306

periments. Furthermore, we present analytical stud- 307

ies to provide a more in-depth demonstration of the 308

efficacy of our AlchemistCoder. 309

3.1 Benchmarks and Implementation Details 310

Benchmarks. We adopt six code benchmarks: Hu- 311

manEval (Chen et al., 2021), HumanEval+ (Liu 312

et al., 2023b), HumanEval-X (Zheng et al., 2023), 313

MBPP (Austin et al., 2021), MBPP+ (Liu et al., 314

2023b), and DS-1000 (Lai et al., 2023). In ad- 315

dition, we access three mainstream benchmarks 316

(MMLU (Hendrycks et al., 2020), BBH (Suzgun 317

et al., 2022), and GSM8K (Cobbe et al., 2021)) to 318

evaluate generalization abilities. All evaluation and 319

benchmark details can be found in AppendixA. 320

5

Table 2: Results of pass@1 on HumanEval-X. We
present the multilingual code capabilities of our Al-
chemistCoder with the respective base models and com-
petitors. All models possess 6.7B/7B parameters

Model Python C++ Go Java JS Avg

Llama 2 14.0 11.0 6.1 11.0 14.0 11.2
CodeLlama 31.7 27.4 12.8 25.6 32.9 26.1
AlchemistCoder-L 56.7 31.1 25.6 45.1 41.5 37.1

CodeLlama-Python 37.8 33.5 30.5 39.6 35.4 35.4
MagicoderS-CL 68.3 47.6 39.6 34.8 57.9 49.6
AlchemistCoder-CL 74.4 53.1 42.7 64.0 52.4 57.3

DeepSeek-Coder-Base 47.6 45.1 38.4 56.1 43.9 46.2
MagicoderS-DS 72.6 63.4 51.8 70.7 66.5 65.0
AlchemistCoder-DS 79.9 62.2 59.8 72.0 68.9 68.6

Baselines. We compare with the following compet-321

itive baselines. Closed-Source Models: GPT-3.5-322

Turbo (OpenAI, 2022) and GPT-4-Turbo (OpenAI,323

2023). Open-Source Models: Llama 2 (Touvron324

et al., 2023), CodeLlama (Roziere et al., 2023),325

StarCoder (Li et al., 2023), WizardCoder (Luo326

et al., 2023b), DeepSeek-Coder (Guo et al., 2024),327

and Magicoder (Wei et al., 2023).328

Supervised Fine-Tuning. We adopt Llama-2-329

7B, CodeLlama-Python-7B, and DeepSeek-Coder-330

Base-6.7B as the base models and fine-tune all the331

base models for 2 epochs using 32 NVIDIA A100-332

80GB GPUs. We set the initial learning rate at 1e-4.333

We use Adam optimizer (Loshchilov and Hutter,334

2017) and choose a batch size of 2 with a sequence335

length of 8192.336

3.2 Evaluation on Code Generation Task337

Results on Python Code Generation. We first338

access HumanEval and MBPP to evaluate the ca-339

pability of the AlchemistCoder series for python340

code generation. These benchmarks necessitate341

models to generate code based on the function342

definitions and subsequently pass the test cases.343

Models are evaluated in zero-shot on HumanEval344

and 3-shot on MBPP. The comprehensive compar-345

isons in Tab. 1 and Fig. 1 demonstrate the impres-346

sive capabilities of AlchemistCoder models. From347

the results, AlchemistCoder-L attains a remarkable348

performance boost of 42.7% and 28.4% pass@1349

scores on HumanEval and MBPP respectively, com-350

pared to Llama 2-7B. Notably, AlchemistCoder-DS351

elevates the pass@1 scores to 79.9% and 77.0%352

on these benchmarks, holding an overall improve-353

ment of 33.3%. Moreover, our AlchemistCoder354

series with 7B parameters outperforms larger mod-355

els (e.g., WizardCoder-CL-34B and CodeLlama-356

Instruct-70B) and rivals with GPT-3.5-Turbo, sig-357

nificantly bridging the performance gap between358

closed-source and open-source models.359

Table 3: Pass@1 results of models with 6.7/7B param-
eters on DS-1000. pd, np, tf, sp, skl, torch, and plt
represent Pandas, Numpy, Tensorflow, Scipy, Sklearn,
Pytorch, and Matplotlib, respectively

Model pd np tf sp skl torch plt All

Llama 2 2.4 7.3 6.7 6.6 2.6 1.5 7.7 5.0
CodeLlama 12.0 27.7 17.8 13.2 12.2 20.6 15.5 17.0
AlchemistCoder-L 13.4 22.7 31.1 11.3 25.2 8.8 29.0 20.2

CodeLlama-Python 16.2 16.4 15.6 17.9 20.0 22.1 38.7 21.0
MagicoderS-CL 25.1 40.9 35.6 29.3 36.5 38.2 51.0 36.7
AlchemistCoder-CL 30.9 43.6 46.7 30.2 37.4 41.2 52.3 40.3

DeepSeek-Coder-Base 21.3 35.0 26.7 23.6 34.8 25.0 34.8 28.7
MagicoderS-DS 30.6 46.8 44.2 30.2 33.0 29.7 45.2 37.1
AlchemistCoder-DS 32.0 51.7 44.5 33.1 38.4 33.8 49.8 40.5

Results on Multilingual Code Generation. We 360

compare the pass@1 accuracy of the base models 361

and the corresponding fine-tuned AlchemistCoder 362

models on Humaneval-X (Zheng et al., 2023). The 363

results presented in Tab. 2 demonstrate that the 364

AlchemistCoder series exhibits great improvements 365

(exceeding 50%) for multilingual code generation, 366

delivering comprehensive code capabilities. 367

Results on Code Generation for Data Science. 368

We further conduct evaluation of data science code 369

completion on DS-1000 (Lai et al., 2023). Accord- 370

ing to Tab. 3, AlchemistCoder models achieve up to 371

19.2% overall performance gain over base models. 372

Particularly, AlchemistCoder-CL achieves an aston- 373

ishing overall accuracy of 40.3% with relatively 374

better performance in all libraries, demonstrating 375

powerful capabilities in data science workflows. 376

3.3 Ablation Study 377

The Recipe of AlchemistPrompts. As illustrated 378

in Sec. 2.2, AlchemistPrompts can further align the 379

instructions and responses of data samples and har- 380

monize the domain gap between multiple sources. 381

To find the appropriate recipe of AlchemistPrompts 382

that maintains a balance between data diversity and 383

domain gap, we conduct ablation experiments on 384

the proportion (0% to 20%) of data customized by 385

AlchemistPrompts. We adopt two settings: (a) aug- 386

ment the original data with its customized variant 387

and report the results of fine-tuning for 2 epochs 388

on CodeLlama-Python-7B; (b) replace the original 389

data and report the results of fine-tuning for the 390

same steps (i.e., keeping the number of tokens used 391

consistent). As shown in Fig. 7, AlchemistCoder is 392

particularly enhanced when the proportion of cus- 393

tomized data increases from 1% to 5%, and nearly 394

peaks in performance at 5%. Thus, we introduce 395

AlchemistPrompts into 5% of the training set to 396

balance the performance gain and the generation 397

cost. Additionally, both two strategies effectively 398

6

55

57

59

61

63

65

67

69

71

73

0% 1% 3% 5% 7% 10% 13% 16% 20%

Be
nc

hm
ar

k
Sc

or
e

ALCHEMIST-PROMPT Ratio 55

57

59

61

63

65

67

69

71

73

0.00% 5.00% 10.00% 15.00% 20.00%

Be
nc

hm
ar

k
Sc

or
e

(%
)

ALCHEMIST-PROMPT Ratio

HumanEval Score (Pass@1)
MBPP Score (Pass@1)

6.6% improvement

12.2% improvement

0 20 40 60 80 100 120 140

CodeAlpaca

Evol-Instruct-Code-80k-v1

OOS-INSTRUCT

AlchemistCoder Dataset

Average Lines of Code Average Length of Description

55
57
59
61
63
65
67
69
71
73
75

0% 5% 10% 15% 20%

Be
nc

hm
ar

k
Sc

or
e

(%
)

 AlchemistPrompt Ratio

HumanEval (Pass@1)
MBPP (Pass@1)

55
57
59
61
63
65
67
69
71
73
75

0% 5% 10% 15% 20%

Be
nc

hm
ar

k
Sc

or
e

(%
)

HumanEval (Pass@1)
MBPP (Pass@1)

8.9% improvement

19.4% improvement

10.3% improvement

20.4% improvement

(a) Augmentation
 AlchemistPrompt Ratio

(b) Replacement

Figure 7: Ablation experiments on the proportion (0%
to 20%) of data customized by AlchemistPrompts con-
ducted on CodeLlama-Python-7B. (a) Augment the orig-
inal data. (b) Replace the original data.

Table 4: Ablation study on the utility of code under-
standing tasks for the AlchemistCoder-CL-7B model,
across the HumanEval and MBPP benchmarks

Alchemist
Prompt

Instruction
Evolution

Data
Filtering

Code
Review

HumanEval
(Pass@1)

MBPP
(Pass@1)

- - - - 59.8 58.2
✓ - - - 72.0 63.4
✓ ✓ - - 71.3 65.8
✓ ✓ ✓ - 73.8 67.7
- ✓ ✓ ✓ 65.2 64.6
✓ ✓ ✓ ✓ 74.4 68.5

enhance the performance and validate the efficacy399

of our approach. To push the limit of Alchemist-400

Coder, we employ the augmentation strategy in our401

performance experiments.402

Efficacy of the Code Comprehension Tasks. We403

conduct an ablation study on the key components404

of the code comprehension tasks to ascertain their405

individual contributions to the overall performance.406

As reported in Tab. 4, compared to the baselines407

(the first and second rows), the model demonstrates408

enhanced performance on both benchmarks fol-409

lowing the incremental incorporation of code com-410

prehension task data. Notably, the improvement411

(5.1% regard to the pass@1 metric) is particularly412

remarkable on MBPP. This indicates the significant413

contribution of all code comprehension tasks to414

further programming capabilities.415

3.4 Analytical Study416

AlchemistPrompts Harmonize the Discrepancy417

Between Instructions and Responses. To418

in-depth verify the efficacy of AlchemistPrompts,419

we calculate the perplexities of the model420

in generating responses under given condi-421

tions (instructions), i.e., the difference between422

Perplexity(conditional_instruction + response)423

and Perplexity(response), called Conditional Per-424

plexity Discrepancy (CPD). Specifically, we adopt425

the instructions before and after customization by426

AlchemistPrompts for comparison, and provide427

the Kernel Density Estimation of CPD in Fig. 8.428

Figure 8: In-depth analysis of the efficacy from Al-
chemistPrompts. Left: Kernel Density Estimation of
conditional perplexity discrepancy. Right: UMAP visu-
alization of 10 instruction/response groups.

Table 5: Results on various benchmarks, encompassing
interdisciplinary knowledge (MMLU), comprehensive
reasoning (BBH), and mathematical abilities (GSM8K)

Model Params MMLU BBH GSM8K Avg

Llama 2 7B 41.1 34.6 16.8 30.8
CodeLlama 7B 31.5 42.7 14.4 29.5
AlchemistCoder-L 7B 43.9 42.7 25.0 37.2

CodeLlama-Python 7B 26.1 26.7 6.6 19.8
MagicoderS-CL 7B 33.0 41.5 18.8 31.1
AlchemistCoder-CL 7B 42.1 39.3 20.2 33.9

DeepSeek-Coder-Base 6.7B 34.0 12.8 22.0 22.9
MagicoderS-DS 6.7B 34.4 43.8 14.3 30.8
AlchemistCoder-DS 6.7B 38.5 45.6 28.0 37.4

Clearly, the latter (green) gains smaller overall 429

CPD values, indicating that AlchemistPrompts 430

are beneficial for prediction and can provide 431

effective contextual information. Furthermore, we 432

randomly select 10 groups of these samples and 433

use UMAP (McInnes et al., 2018) to map their 434

feature representations into a 2-D space in the 435

right of Fig. 8. From the fact that the solid lines 436

are generally shorter than the dashed lines, our 437

AlchemistPrompts can harmonize the discrepancy 438

between instructions and responses, leading 439

to higher-quality data for attaining improved 440

instruction-following ability. 441

AlchemistCoder Models are Better Generalists. 442

To further analyze the comprehensive capabili- 443

ties of our AlchemistCoder, we conduct evalua- 444

tions on more diversified benchmarks, including 445

MMLU (Hendrycks et al., 2020) for multitask lan- 446

guage understanding, BBH (Suzgun et al., 2022) 447

for comprehensive reasoning, and GSM8K (Cobbe 448

et al., 2021) for mathematical ability. The re- 449

sults are presented in Tab. 5 and illustrate that 450

the AlchemistCoder models exhibit an overall per- 451

formance increase of 6.4%, 13.6%, and 14.5% 452

over the base models Llama 2, CodeLlama-Python, 453

and DeepSeek-Coder-Base, respectively. Notably, 454

CodeLlama-Python presents inferior performance 455

on these benchmarks relative to Llama 2, indicat- 456

ing the discrepancy between natural language pro- 457

cessing and code capabilities of open-source mod- 458

7

AlchemistCoder-CL▲

AlchemistCoder-L▲

AlchemistCoder-L

AlchemistCoder-CL

AlchemistCoder-CL▲

AlchemistCoder-L▲

AlchemistCoder-L

AlchemistCoder-CL

0% 10% 20% 30% 40% 50% 60%

No Code SyntaxError AssertionError NameError ValueError

55
57
59
61
63
65
67
69
71
73
75

0% 5% 10% 15% 20%

Be
nc

hm
ar

k
Sc

or
e

(%
)

ALCHEMIST-PROMPT Ratio

HumanEval (Pass@1)
MBPP (Pass@1)

0% 10% 20% 30% 40% 50% 60%

Failed Wrong Answer

(a) Analysis of Error Cases on HumanEval

(b) Analysis of Error Cases on MBPP

Figure 9: Analysis of error cases on HumanEval and
MBPP. The horizontal axis denotes the proportion of er-
ror cases among all test cases. The symbol ▲ represents
the version that has not incorporated AlchemistPrompts
and the code comprehension task data.

els. Such divergence can be attributed to “catas-459

trophic forgetting” (Dong et al., 2023; Luo et al.,460

2023a; Kotha et al., 2023), often occurring when461

fine-tuning is exclusively concentrated on domain-462

specific data. By leveraging harmonized multi-463

source data, our AlchemistCoder series achieves464

more multifaceted and comprehensive capabilities.465

Error Case Analysis. To meticulously dissect466

the improvements brought by our method, we pro-467

vide an analysis of error cases on HumanEval and468

MBPP. We compare models before and after the469

introduction of AlchemistPrompts and code under-470

standing task data. The bar chart shown in Fig. 9471

(a) indicates that these two types of key data help472

to better handle compilation errors (i.e., SyntaxEr-473

ror, NameError, and ValueError), and eliminate the474

occurrence of no code written in the responses. On475

the other hand, the results of Fig. 9 (b) on MBPP476

suggest that the AlchemistCoder series incorpo-477

rated with these two types of data attains stronger478

programming logic, as evidenced by the clear re-479

duction in the ‘Wrong Answer’ error cases.480

4 Related Work481

Code Large Language Models. Early researches482

(Chen et al., 2021; Nijkamp et al., 2022; Li et al.,483

2023) focus on collecting massive amounts of code484

data to develop pretrained Code LLMs. Recent485

efforts (Luo et al., 2023b; Yu et al., 2023; Wei et al.,486

2023) are dedicated to fine-tune these pretrained487

models with specific instructional data to further488

the coding abilities. For instance, WizardCoder489

(Luo et al., 2023b) and Magicoder (Wei et al., 2023)490

construct their instruction tuning datasets based491

on CodeAlpaca (Chaudhary, 2023) and the stack492

(Kocetkov et al., 2022) dataset, respectively. In493

this work, we develop the AlchemistCoder series494

by instruction tuning on optimized multi-source 495

data instead of single-category data as in previous 496

methods, endowing astonishing and harmonized 497

code capability. 498

Instruction Tuning. Instruction tuning aims to en- 499

hance LLMs via fine-tuning pre-trained LLMs us- 500

ing samples of instruction/response pairs. Obtain- 501

ing high-quality data for instruction tuning is typ- 502

ically challenging and extensive works have been 503

dedicated to this endeavor. For instance, Alpaca 504

(Taori et al., 2023) employs self-instruct (Wang 505

et al., 2022) to generate instruction-following 506

demonstrations. WizardLM (Xu et al., 2023) in- 507

troduces Evol-Instruct and transforms the instruc- 508

tion data into more complex variants. In addi- 509

tion to Evol-Instruct, we also incorporate the data 510

construction process itself as a form of data into 511

the training. Moreover, although previous works 512

(Ivison et al., 2023; Wang et al., 2023b,a) utilize 513

multiple fine-tuning datasets, we harmonize multi- 514

source data at a fine-grained level. 515

Learning from Hindsight. The concept of learn- 516

ing from hindsight (Liu et al., 2023a) has been 517

explored in goal-conditioned learning (Kaelbling, 518

1993; Ganguli et al., 2022). Andrychowicz et al. 519

(Andrychowicz et al., 2017) introduce Hindsight 520

Experience Replay (HER) to re-label rewards and 521

facilitate learning from sparse feedback retrospec- 522

tively. Korbak et al. (Korbak et al., 2023) study the 523

influence of human preferences during pre-training, 524

showing improved performance when models are 525

aligned with human preferences. Previous work 526

primarily serves as an alternative to RLFT, utiliz- 527

ing HER to leverage (suboptimal) historical data 528

for model learning. We focus on constructing multi- 529

source data and harmonizing the inherent conflicts 530

within multi-source data through hindsight, to fully 531

tap into the potential of base models. 532

5 Conclusion 533

In this paper, we develop AlchemistCoder, a se- 534

ries of enhanced Code LLMs fine-tuned on multi- 535

source data. To achieve this, we introduce data- 536

specific AlchemistPrompts leveraging the idea of 537

hindsight to harmonize multi-source data, and de- 538

sign code comprehension tasks to provide data with 539

more dimensions. Performance experiments verify 540

the harmonized and superior code capabilities of 541

the AlchemistCoder models. Additionally, exten- 542

sive analytical studies have been well-designed and 543

delved deeply into the efficacy of our method. 544

8

6 Limitations545

Currently, GPT-4 holds an advantage in generating546

high-quality responses, and thus has been chosen547

as our Alchemist model. Although our experiments548

have verified that customizing only 5-7% of the549

data can achieve a leap in performance, the genera-550

tion of AlchemistPrompts is still a significant cost.551

We will explore fine-tuning open-source models to552

achieve the free generation of AlchemistPrompts in553

the future.554

7 Ethical Considerations555

We use publicly available datasets, benchmarks,556

and models for training and evaluation, free from557

any possible harm toward individuals or groups.558

The generated data from LLMs are relevant to code-559

related tasks and no personal identification informa-560

tion is involved. Furthermore, we adopt ChatGPT561

to polish the writing and assist with language.562

References563

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas564
Schneider, Rachel Fong, Peter Welinder, Bob Mc-565
Grew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-566
ciech Zaremba. 2017. Hindsight experience replay.567
Advances in neural information processing systems,568
30.569

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten570
Bosma, Henryk Michalewski, David Dohan, Ellen571
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.572
Program synthesis with large language models. arXiv573
preprint arXiv:2108.07732.574

Sahil Chaudhary. 2023. Code alpaca: An instruction-575
following llama model for code generation.576

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming577
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-578
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,579
Greg Brockman, et al. 2021. Evaluating large580
language models trained on code. arXiv preprint581
arXiv:2107.03374.582

Wenhu Chen, Xueguang Ma, Xinyi Wang, and583
William W. Cohen. 2022. Program of thoughts584
prompting: Disentangling computation from rea-585
soning for numerical reasoning tasks. CoRR,586
abs/2211.12588.587

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and588
Denny Zhou. 2023. Teaching large language models589
to self-debug. arXiv preprint arXiv:2304.05128.590

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,591
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias592
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro593
Nakano, et al. 2021. Training verifiers to solve math594
word problems. arXiv preprint arXiv:2110.14168.595

codefuse ai. 2023a. The codeexercise-python-27k 596
dataset. https://huggingface.co/datasets/ 597
codefuse-ai/CodeExercise-Python-27k. 598

codefuse ai. 2023b. The evolinstrutcode 599
dataset. https://huggingface.co/datasets/ 600
codefuse-ai/Evol-instruction-66k. 601

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng- 602
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, 603
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023. 604
How abilities in large language models are affected 605
by supervised fine-tuning data composition. arXiv 606
preprint arXiv:2310.05492. 607

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda 608
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann, 609
Ethan Perez, Nicholas Schiefer, Kamal Ndousse, 610
et al. 2022. Red teaming language models to re- 611
duce harms: Methods, scaling behaviors, and lessons 612
learned. arXiv preprint arXiv:2209.07858. 613

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 614
César Teodoro Mendes, Allie Del Giorno, Sivakanth 615
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 616
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 617
you need. arXiv preprint arXiv:2306.11644. 618

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 619
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 620
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 621
large language model meets programming–the rise of 622
code intelligence. arXiv preprint arXiv:2401.14196. 623

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 624
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 625
2020. Measuring massive multitask language under- 626
standing. arXiv preprint arXiv:2009.03300. 627

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, 628
Nathan Lambert, Matthew Peters, Pradeep Dasigi, 629
Joel Jang, David Wadden, Noah A Smith, Iz Belt- 630
agy, et al. 2023. Camels in a changing climate: En- 631
hancing lm adaptation with tulu 2. arXiv preprint 632
arXiv:2311.10702. 633

Leslie Pack Kaelbling. 1993. Learning to achieve goals. 634
In IJCAI, volume 2, pages 1094–8. Citeseer. 635

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, 636
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer- 637
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf, 638
et al. 2022. The stack: 3 tb of permissively licensed 639
source code. arXiv preprint arXiv:2211.15533. 640

Tomasz Korbak, Kejian Shi, Angelica Chen, 641
Rasika Vinayak Bhalerao, Christopher Buck- 642
ley, Jason Phang, Samuel R Bowman, and Ethan 643
Perez. 2023. Pretraining language models with 644
human preferences. In International Conference on 645
Machine Learning, pages 17506–17533. PMLR. 646

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghu- 647
nathan. 2023. Understanding catastrophic forgetting 648
in language models via implicit inference. arXiv 649
preprint arXiv:2309.10105. 650

9

https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/CodeExercise-Python-27k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k
https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,651
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel652
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A653
natural and reliable benchmark for data science code654
generation. In International Conference on Machine655
Learning, pages 18319–18345. PMLR.656

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas657
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc658
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.659
2023. Starcoder: may the source be with you! arXiv660
preprint arXiv:2305.06161.661

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,662
Julian Schrittwieser, Rémi Leblond, Tom Eccles,663
James Keeling, Felix Gimeno, Agustin Dal Lago,664
et al. 2022. Competition-level code generation with665
alphacode. Science, 378(6624):1092–1097.666

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol667
Hausman, Brian Ichter, Pete Florence, and Andy668
Zeng. 2023. Code as policies: Language model pro-669
grams for embodied control. In ICRA, pages 9493–670
9500. IEEE.671

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. 2023a.672
Chain of hindsight aligns language models with feed-673
back. arXiv preprint arXiv:2302.02676, 3.674

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-675
ming Zhang. 2023b. Is your code generated by chat-676
gpt really correct? rigorous evaluation of large lan-677
guage models for code generation. arXiv preprint678
arXiv:2305.01210.679

Ilya Loshchilov and Frank Hutter. 2017. Decou-680
pled weight decay regularization. arXiv preprint681
arXiv:1711.05101.682

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie683
Zhou, and Yue Zhang. 2023a. An empirical study684
of catastrophic forgetting in large language mod-685
els during continual fine-tuning. arXiv preprint686
arXiv:2308.08747.687

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo688
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-689
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:690
Empowering code large language models with evol-691
instruct. arXiv preprint arXiv:2306.08568.692

Leland McInnes, John Healy, and James Melville. 2018.693
Umap: Uniform manifold approximation and pro-694
jection for dimension reduction. arXiv preprint695
arXiv:1802.03426.696

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan697
Wang, Yingbo Zhou, Silvio Savarese, and Caiming698
Xiong. 2022. Codegen: An open large language699
model for code with multi-turn program synthesis.700
arXiv preprint arXiv:2203.13474.701

OpenAI. 2022. Chatgpt: Optimizing language mod-702
els for dialogue. https://openai.com/blog/703
chatgpt/.704

OpenAI. 2023. Gpt-4 technical report. Technical report. 705

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 706
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 707
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 708
Code llama: Open foundation models for code. arXiv 709
preprint arXiv:2308.12950. 710

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 711
bastian Gehrmann, Yi Tay, Hyung Won Chung, 712
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny 713
Zhou, et al. 2022. Challenging big-bench tasks and 714
whether chain-of-thought can solve them. arXiv 715
preprint arXiv:2210.09261. 716

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 717
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 718
and Tatsunori B Hashimoto. 2023. Stanford alpaca: 719
An instruction-following llama model. 720

theblackcat102. 2023. The evolved code alpaca 721
dataset. https://huggingface.co/datasets/ 722
theblackcat102/evol-codealpaca-v1. 723

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 724
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 725
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 726
Bhosale, et al. 2023. Llama 2: Open founda- 727
tion and fine-tuned chat models. arXiv preprint 728
arXiv:2307.09288. 729

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, 730
Sen Song, and Yang Liu. 2023a. Openchat: Advanc- 731
ing open-source language models with mixed-quality 732
data. arXiv preprint arXiv:2309.11235. 733

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack 734
Hessel, Tushar Khot, Khyathi Raghavi Chandu, 735
David Wadden, Kelsey MacMillan, Noah A Smith, 736
Iz Beltagy, et al. 2023b. How far can camels go? 737
exploring the state of instruction tuning on open re- 738
sources. arXiv preprint arXiv:2306.04751. 739

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al- 740
isa Liu, Noah A Smith, Daniel Khashabi, and Han- 741
naneh Hajishirzi. 2022. Self-instruct: Aligning lan- 742
guage model with self generated instructions. arXiv 743
preprint arXiv:2212.10560. 744

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 745
Lingming Zhang. 2023. Magicoder: Source code is 746
all you need. arXiv preprint arXiv:2312.02120. 747

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 748
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 749
Jiang. 2023. Wizardlm: Empowering large lan- 750
guage models to follow complex instructions. arXiv 751
preprint arXiv:2304.12244. 752

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R. 753
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao 754
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. 755
2024. If LLM is the wizard, then code is the wand: A 756
survey on how code empowers large language models 757
to serve as intelligent agents. CoRR, abs/2401.00812. 758

10

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,759
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng760
Yin. 2023. Wavecoder: Widespread and versatile761
enhanced instruction tuning with refined data genera-762
tion. arXiv preprint arXiv:2312.14187.763

Tianjun Zhang, Fangchen Liu, Justin Wong, Pieter764
Abbeel, and Joseph E Gonzalez. 2023. The wisdom765
of hindsight makes language models better instruc-766
tion followers. arXiv preprint arXiv:2302.05206.767

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan768
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,769
Yang Li, et al. 2023. Codegeex: A pre-trained model770
for code generation with multilingual evaluations on771
humaneval-x. arXiv preprint arXiv:2303.17568.772

A Benchmark and Evaluation Details773

A.1 HumanEval/HumanEval+774

HumanEval (Chen et al., 2021) and HumanEval+775

(Liu et al., 2023b) are benchmarks for assessing776

LLMs’ code generation, focusing on functional cor-777

rectness. HumanEval+ expands on HumanEval by778

significantly increasing test cases through EvalPlus,779

using LLM and mutation strategies for more rigor-780

ous evaluation. This approach reveals performance781

drops in models like GPT-4 and ChatGPT against782

challenging tests, emphasizing the need for diverse783

test scenarios to accurately evaluate LLMs’ cod-784

ing abilities. For evaluation on HumanEval and785

HumanEval+, we adopt the prompt designed for786

HumanEval/HumanEval+ tasks shown in Fig. A1.787

Following prior works (Zheng et al., 2023; Chen788

et al., 2023; Wei et al., 2023), we use the greedy de-789

coding strategy and focus on comparing the pass@1790

metric.791

A.2 MBPP/MBPP+792

The MBPP (Mostly Basic Python Programming)793

benchmark (Austin et al., 2021) consists of around794

1,000 Python challenges, crowd-sourced to test ba-795

sic programming skills, including fundamentals796

and standard library use. Aimed at beginners,797

each challenge offers a description, solution, and798

three tests for verifying solution accuracy. MBPP+799

(Liu et al., 2023b) is an extension of the MBPP800

benchmark, utilizing a subset of hand-verified prob-801

lems from MBPP-sanitized to ensure tasks are802

well-defined and unambiguous. For evaluation803

on MBPP and MBPP+, we adopt the three-shot804

prompt shown in Fig. A2.805

A.3 HumanEval-X806

HumanEval-X (Zheng et al., 2023) is a compre-807

hensive benchmark that assesses the capabilities808

Prompt

Below is an instruction that describes a task. Write a
response that appropriately completes the request.

Complete the following python function.

{ instruction }

Here is the completed function:

Prompt

Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:

Figure A1: Prompt used to evaluate on HumanEval and
HumanEval+.

of code generation models across multiple pro- 809

gramming languages, including Python, C++, Java, 810

JavaScript, and Go. It consists of 820 meticulously 811

created data samples, each accompanied by test 812

cases, making it an invaluable resource for evalu- 813

ating and improving multilingual code generation 814

models. The benchmark aims to provide insights 815

into the models’ proficiency in solving diverse cod- 816

ing challenges and their accuracy in generating 817

functionally correct code in different languages. 818

For evaluation on HumanEval-X, we do not use spe- 819

cific prompts and follow the original test prompts. 820

A.4 DS-1000 821

The DS-1000 benchmark (Lai et al., 2023) adapts 822

1000 different data science coding problems each 823

with unit tests from StackOverflow and checks both 824

execution semantics and surface-form constraints. 825

These realistic problems are drawn from seven pop- 826

ular data science libraries in Python, including Mat- 827

plotlib (plt), NumPy (np), Pandas (pd), SciPy (scp), 828

Scikit-Learn (sk), PyTorch (py), and TensorFlow 829

(tf). DS-1000 has two modes: completion and in- 830

sertion, and here we only evaluate completion, as 831

the basic CodeLlama-Python does not support in- 832

sertion. For evaluation on DS-1000, we do not 833

use specific prompts and follow the original test 834

prompts. 835

A.5 MMLU 836

The Massive Multitask Language Understanding 837

(MMLU) benchmark (Hendrycks et al., 2020) is 838

an evaluation framework designed to measure the 839

depth and breadth of knowledge that LLMs pos- 840

sess. It accomplishes this by testing these models 841

across 57 varied tasks in both zero-shot and few- 842

shot scenarios. The tasks encompass a wide array 843

11

of topics, including basic math, American history,844

computer science, law, and more, challenging the845

models to leverage their acquired knowledge to846

solve complex problems. MMLU seeks to emulate847

the multifaceted way in which human knowledge848

and problem-solving skills are assessed, offering a849

comprehensive gauge of a model’s ability to un-850

derstand and apply information across multiple851

domains. For evaluation on MMLU, we do not852

use specific prompts and follow the original test853

prompts.854

A.6 BBH855

The BIG-Bench Hard (BBH) Benchmark (Suzgun856

et al., 2022) is a specialized evaluation framework857

tailored to rigorously test the capabilities of LLMs.858

This benchmark targets a selection of tasks that859

have historically proven challenging for LLMs, fo-860

cusing on areas where models typically do not861

exceed average human performance. The BBH862

Benchmark aims to push the boundaries of what863

LLMs can achieve by emphasizing complex rea-864

soning, deep understanding, and nuanced interpre-865

tation, setting a high bar for model development866

and performance evaluation. For evaluation on867

BBH, we do not use specific prompts and follow868

the original test prompts.869

A.7 GSM8K870

The GSM8K (Grade School Math 8,000) bench-871

mark (Cobbe et al., 2021) serves as a rigorous872

evaluation framework for testing the mathemati-873

cal problem-solving prowess of LLMs. This bench-874

mark comprises a dataset of 8,500 diverse and high-875

quality math word problems at the grade school876

level, designed to challenge LLMs with tasks ne-877

cessitating advanced, multi-step reasoning abilities.878

GSM8K’s primary aim is to gauge how well these879

models can parse, understand, and solve math prob-880

lems, thereby offering a comprehensive measure of881

their capacity for logical reasoning and mathemati-882

cal computation. By incorporating such a special-883

ized benchmark, researchers can better understand884

the extent to which LLMs can mimic human-like885

reasoning in solving complex mathematical scenar-886

ios. For evaluation on GSM8K, we do not use spe-887

cific prompts and follow the original test prompts.888

Prompt

Below is an instruction that describes a task. Write a
response that appropriately completes the request.

Complete the following python function.

{ instruction }

Here is the completed function:

Prompt

Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:
{ few_shot_response }
Question:
You are an expert Python programmer, and here is
your task:
{ few_shot_instruction }
Your code should pass these tests:

{ few_shot_test_case }
Your code should start with a [BEGIN] tag and end
with a [DONE] tag.
Answer:

Figure A2: Three-shot prompt used to evaluate on
MBPP and MBPP+.

B AlchemistCoder Dataset Details 889

B.1 AlchemistPrompt 890

We provide two samples of AlchemistPrompts in 891

Fig. A4 and Fig. A5. 892

B.2 Code Comprehension Task Data 893

B.2.1 Instruction Evolution Data 894

We provide two samples of instruction evolution 895

task data in Fig. A6 and Fig. A7. 896

B.2.2 Data Filtering Data 897

We provide two samples of data filtering task data 898

in Fig. A8 and Fig. A9. 899

B.2.3 Code Review Data 900

We design prompt as illustrated in Fig. A3 to obtain 901

high-quality code review task data and we provide 902

12

: Find the shortest path from one vertex to all other vertices in a graph.
Response: Here is the Python code that satisfies the requirement:

def bellman_ford(graph, start_vertex):
'''Bellman-Ford algorithm: A dynamic programming algorithm that …'''

Instruction

Code Review Data Generation
You are asked to act as a professional code reviewer and your task is to
professionally and accurately review the given content and assign a
score. The involved programming languages include but are not limited
to Python, C, C++, Java, JavaScript, HTML, Haskell, SQL, C#, and PHP.

Please adhere to the following review requirements:
- Correct: No syntax and logic errors. The implementations should
follow the given function names.
- Clarity: Variables should have meaningful names. The arguments and
return values of functions should have type annotations.

NOTE (important):
1. Please evaluate and score the code from the aspects of 'correct' and
'clarity', and adhere to the following output format:
[Correct]
<your score (ranges from 0 to 10)>. <your review>
[Clarity]
<your score (ranges from 0 to 10)>. <your review>
[Suggestions]
<your additional suggestions for further improvement>
[Refined Code]
<The refined code according to your suggestions (DO NOT modify the
function declarations appearing in the code)>
2. If there is no code in the given content, please answer with [N/A].
3. DO NOT respond with content that is outside of the specified output
format.

Given Content:
{{ code from multi-source data}}

Figure A3: Detailed prompt designed for generating
code review data.

two samples in Fig. A10 and Fig. A11.903

13

Design a function that finds the greatest common divisor (GCD) of two given
numbers: 10, 20

AlchemistPrompt
Please provide a Python code example for the following task including the
expected output after the code execution.

Instruction

Sure, here is a Python function that uses the Euclidean algorithm to find the GCD of
two numbers:

This function keeps replacing `a` with `b` and `b` with `a % b` (the remainder of `a /
b`) until `b` is `0`, at which point `a` is the greatest
common divisor. So, the GCD of 10 and 20 would be 10.

You can call the above function with any two numbers you want to find the GCD of.

def gcd(a, b):
while b != 0:

a, b = b, a % b
return abs(a)

print(gcd(10, 20)) # Output: 10

Response

Compare two strings and output true if they are an anagram. The input strings can
contain both lowercase and uppercase letters.

Write a Python function to check if two input strings are anagrams of each other,
considering both lower and uppercase letters. An anagram is a word or phrase
formed by rearranging the letters of a different word or phrase.

Instruction

def is_anagram(string1, string2):
string1 = string1.lower()
string2 = string2.lower()
string1 = string1.replace(" ", "")
string2 = string2.replace(" ", "")

list1 = list(string1)
list2 = list(string2)
list1.sort()
list2.sort()

sorted_string1 = ''.join(list1)
sorted_string2 = ''.join(list2)

Compare the sorted strings
if sorted_string1 == sorted_string2:

return True
else:

return False

Response

AlchemistPrompt

Figure A4: Example #1 of AlchemistPrompts.

Design a function that finds the greatest common divisor (GCD) of two given
numbers: 10, 20

AlchemistPrompt
Please provide a Python code example for the following task including the
expected output after the code execution.

Instruction

Sure, here is a Python function that uses the Euclidean algorithm to find the GCD of
two numbers:

This function keeps replacing `a` with `b` and `b` with `a % b` (the remainder of `a /
b`) until `b` is `0`, at which point `a` is the greatest
common divisor. So, the GCD of 10 and 20 would be 10.

You can call the above function with any two numbers you want to find the GCD of.

def gcd(a, b):
while b != 0:

a, b = b, a % b
return abs(a)

print(gcd(10, 20)) # Output: 10

Response

Compare two strings and output true if they are an anagram. The input strings can
contain both lowercase and uppercase letters.

Write a Python function to check if two input strings are anagrams of each other,
considering both lower and uppercase letters. An anagram is a word or phrase
formed by rearranging the letters of a different word or phrase.

Instruction

def is_anagram(string1, string2):
string1 = string1.lower()
string2 = string2.lower()
string1 = string1.replace(" ", "")
string2 = string2.replace(" ", "")

list1 = list(string1)
list2 = list(string2)
list1.sort()
list2.sort()

sorted_string1 = ''.join(list1)
sorted_string2 = ''.join(list2)

Compare the sorted strings
if sorted_string1 == sorted_string2:

return True
else:

return False

Response

AlchemistPrompt

Figure A5: Example #1 of AlchemistPrompts.

14

Instruction
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Response
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. Return a dictionary with the count
of each item. The input list can have a maximum length of 1000.

Assistant
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.Figure A6: Example #1 of instruction evolution task data.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Assistant
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.

Instruction
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. Return a dictionary with the count
of each item. The input list can have a maximum length of 1000.

Response

Figure A7: Example #2 of instruction evolution task data.

15

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Assistant
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. Return a dictionary with the count
of each item. The input list can have a maximum length of 1000.

Assistant
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.

Below is a code task and its corresponding solution. Please utilize your
understanding of code to carefully review this solution.

Task:
Before we proceed, let's briefly talk about Python list indexing. Python uses
zero-based indexing, which means the first element of a list is at index 0. The
list 'a' here is a mutable sequence of integers, and we are going to modify it
using a for loop.
Consider a list `a = [1,3,2,2,3,4]`. What would be the output of the following
code?

Solution:
The correct output of the given code would be: [3, 1, 3, 2, 2, 3]

The above solution is considered to be of *low quality*. Choose from the
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into
modularized functions.

Your choice (answer only the choice without the reason):

a = [1,3,2,2,3,4]

for i in range(len(a)):
a[i] = a[i -1]

a. The solution is too short (less than 20 words) and does not contain code.

User
Below is a code task and its corresponding solution. Please utilize your
understanding of code to carefully review this solution.

Task:
Write a function that takes as input a tuple of numbers (t_1,...,t_{N+1}) and
returns a tuple of length N where the i-th element of the tuple is equal to t_i *
t_{i+1}. The function should also handle negative numbers and zeros, and
return an error message if the input is not a tuple.

Solution:
Here is a function implementation in Python:

The above solution is considered to be of *low quality*. Choose from the
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into
modularized functions.

Your choice (answer only the choice without the reason):

def tuple_product(input_tuple):
if not isinstance(input_tuple, tuple):

return "Error: Input is not a tuple"
return tuple(input_tuple[i] * input_tuple[i + 1] for i in

range(len(input_tuple) - 1))

print(tuple_product((1, 2, 3, 4, 5))
Outputs: (2, 6, 12, 20)

print(tuple_product((-1, 2, -3, 4, -5)))
Outputs: (-2, -6, -12, -20)

Assistant
a. The solution is too short (less than 20 words) and does not contain code.

Instruction

Response

Figure A8: Example #1 of data filtering task data.

16

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee.

Assistant
Construct an SQL query to add a new column called "Gender" to the table
"Employees" with values "Male" and "Female", but also make sure that the values
for the "Gender" column are randomly assigned for each employee. Additionally,
ensure that the ratio of male to female employees is approximately 1:1.

User
Please increase the difficulty of the given programming test question a bit.
You can increase the difficulty using, but not limited to, the following methods:
If the original problem can be solved with only a few logical steps, please add
more reasoning steps.

Given Prompt:
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. Return a dictionary with the count
of each item. The input list can have a maximum length of 1000.

Assistant
Iterate over a list and count the number of occurrences of each item. The list may
contain duplicates and non-integer elements. However, now you need to also
handle nested lists and dictionaries within the main list. You should recursively
iterate through the nested data structures and count the occurrences of each
item. Return a dictionary with the count of each item. Additionally, consider
optimizing the code for performance, as the input list can have a maximum length
of 10,000.

User
Below is a code task and its corresponding solution. Please utilize your
understanding of code to carefully review this solution.

Task:
Before we proceed, let's briefly talk about Python list indexing. Python uses
zero-based indexing, which means the first element of a list is at index 0. The
list 'a' here is a mutable sequence of integers, and we are going to modify it
using a for loop.
Consider a list `a = [1,3,2,2,3,4]`. What would be the output of the following
code?

Solution:
The correct output of the given code would be: [3, 1, 3, 2, 2, 3]

The above solution is considered to be of *low quality*. Choose from the
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into
modularized functions.

Your choice (answer only the choice without the reason):

a = [1,3,2,2,3,4]

for i in range(len(a)):
a[i] = a[i -1]

Assistant
a. The solution is too short (less than 20 words) and does not contain code.

Below is a code task and its corresponding solution. Please utilize your
understanding of code to carefully review this solution.

Task:
Write a function that takes as input a tuple of numbers (t_1,...,t_{N+1}) and
returns a tuple of length N where the i-th element of the tuple is equal to t_i *
t_{i+1}. The function should also handle negative numbers and zeros, and
return an error message if the input is not a tuple.

Solution:
Here is a function implementation in Python:

The above solution is considered to be of *low quality*. Choose from the
following four options what category this solution belongs to:
a. The solution is too short (less than 20 words) and does not contain code.
b. There are code compilation errors in the solution.
c. The clarity of the code in the solution is too poor.
d. The solution contains multiple sections of code and is not organized into
modularized functions.

Your choice (answer only the choice without the reason):

def tuple_product(input_tuple):
if not isinstance(input_tuple, tuple):

return "Error: Input is not a tuple"
return tuple(input_tuple[i] * input_tuple[i + 1] for i in

range(len(input_tuple) - 1))

print(tuple_product((1, 2, 3, 4, 5))
Outputs: (2, 6, 12, 20)

print(tuple_product((-1, 2, -3, 4, -5)))
Outputs: (-2, -6, -12, -20)

b. There are code compilation errors in the solution.

Instruction

Response

Figure A9: Example #2 of data filtering task data.

17

The prompt for generating data is omitted.
Given Content:
You can use the `generate_json` function to get JSON string:

import json
def process_value(value):

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value
def generate_json(dictionary):

modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

[Correct]
9. The code is correct. It correctly processes the values according to the
specified rules and returns the expected JSON string.
[Clarity]
8. The code is clear and easy to understand. The function names are descriptive
and the code follows a logical flow.
[Suggestions]
- It would be helpful to include type annotations for the function arguments and
return values. This would make the code more clear and easier to understand.
[Refined Code]
import json
from typing import Any, Dict, List, Union

def process_value(value: Union[str, int, List[Any], Dict[str, Any]]) ->
Union[str, int, List[Any], Dict[str, Any]]:

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value

def generate_json(dictionary: Dict[str, Any]) -> str:
modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

User
The prompt for generating data was omitted.
Given Content:
The error in the code is an incorrect indentation when printing the indentation spaces.
The number of spaces printed should be based on the line number, but the code
mistakenly indents by a fixed number of spaces. This leads to misalignment and missing
characters in some lines. Additionally, there are missing asterisks and periods in the inner
loop, which causes the alternating pattern to be incorrect. By fixing the indentation and
adding the missing characters, the tower of stars will be displayed correctly.

def print_star_tower():
for i in range(1, 11):

Error: Incorrect indentation
print(' ' * i, end='') # Indentation should be based on line number

for j in range(1, i*3):
if j % 2 == 0:

print('.', end='') # Error: Missing asterisk
else:

print('*', end='') # Error: Missing period
print('')

print_star_tower()

Assistant
[Correct]
3. The code has syntax and there are logic errors that cause the tower of stars to be
displayed incorrectly.
[Clarity]
8. The code uses meaningful variable names and is easy to understand.
[Suggestions]
- The code could benefit from adding type annotations to the function and its arguments.
- The logic errors could be fixed by adjusting the indentation and adding the missing
characters in the inner loop.
[Refined Code]

In the refined code, the indentation has been fixed and the missing characters have been
added. Additionally, type annotations have been added to the function and its arguments
to improve clarity.

def print_star_tower() -> None:
for i in range(1, 11):

print(' ' * i, end='')
for j in range(1, i*3):

if j % 2 == 0:
print('.', end='')

else:
print('*', end='')

print()

Instruction

Response

Figure A10: Example #1 of code review task data. For clarity, the prompt for generating data is omitted.

18

User
The prompt for generating data was omitted.
Given Content:
You can use the `generate_json` function to get JSON string:

import json
def process_value(value):

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value
def generate_json(dictionary):

modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

Assistant
[Correct]
9. The code is correct. It correctly processes the values according to the
specified rules and returns the expected JSON string.
[Clarity]
8. The code is clear and easy to understand. The function names are descriptive
and the code follows a logical flow.
[Suggestions]
- It would be helpful to include type annotations for the function arguments and
return values. This would make the code more clear and easier to understand.
[Refined Code]
import json
from typing import Any, Dict, List, Union

def process_value(value: Union[str, int, List[Any], Dict[str, Any]]) ->
Union[str, int, List[Any], Dict[str, Any]]:

if isinstance(value, str):
return value.upper()

elif isinstance(value, int):
return value * 2

elif isinstance(value, list):
return [process_value(element) for element in value]

elif isinstance(value, dict):
return {key.upper(): process_value(val) for key, val in

value.items()}
else:

return value

def generate_json(dictionary: Dict[str, Any]) -> str:
modified_dictionary = process_value(dictionary)
json_string = json.dumps(modified_dictionary)
return json_string

The prompt for generating data is omitted.
Given Content:
The error in the code is an incorrect indentation when printing the indentation spaces.
The number of spaces printed should be based on the line number, but the code
mistakenly indents by a fixed number of spaces. This leads to misalignment and missing
characters in some lines. Additionally, there are missing asterisks and periods in the inner
loop, which causes the alternating pattern to be incorrect. By fixing the indentation and
adding the missing characters, the tower of stars will be displayed correctly.

def print_star_tower():
for i in range(1, 11):

Error: Incorrect indentation
print(' ' * i, end='') # Indentation should be based on line number

for j in range(1, i*3):
if j % 2 == 0:

print('.', end='') # Error: Missing asterisk
else:

print('*', end='') # Error: Missing period
print('')

print_star_tower()

[Correct]
3. The code has syntax and there are logic errors that cause the tower of stars to be
displayed incorrectly.
[Clarity]
8. The code uses meaningful variable names and is easy to understand.
[Suggestions]
- The code could benefit from adding type annotations to the function and its arguments.
- The logic errors could be fixed by adjusting the indentation and adding the missing
characters in the inner loop.
[Refined Code]

In the refined code, the indentation has been fixed and the missing characters have been
added. Additionally, type annotations have been added to the function and its arguments
to improve clarity.

def print_star_tower() -> None:
for i in range(1, 11):

print(' ' * i, end='')
for j in range(1, i*3):

if j % 2 == 0:
print('.', end='')

else:
print('*', end='')

print()

Instruction

Response

Figure A11: Example #2 of code review task data. For clarity, the prompt for generating data is omitted.

19

	Introduction
	Method
	Multi-source Data Construction
	AlchemistPrompt
	Code Comprehension Task
	Data Cleaning and Decontamination
	Harmonized AlchemistCoder Dataset

	Experiments
	Benchmarks and Implementation Details
	Evaluation on Code Generation Task
	Ablation Study
	Analytical Study

	Related Work
	Conclusion
	Limitations
	Ethical Considerations
	Benchmark and Evaluation Details
	HumanEval/HumanEval+
	MBPP/MBPP+
	HumanEval-X
	DS-1000
	MMLU
	BBH
	GSM8K

	AlchemistCoder Dataset Details
	AlchemistPrompt
	Code Comprehension Task Data
	Instruction Evolution Data
	Data Filtering Data
	Code Review Data

