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ABSTRACT

Vision-Language Models (VLMs) excel at many multimodal tasks, yet they fre-
quently struggle with tasks requiring precise understanding and handling of fine-
grained visual elements. This is mainly due to information loss during image en-
coding or insufficient attention to critical regions. Recent work has shown promise
by incorporating pixel-level visual information into the reasoning process, en-
abling VLMs to access high-resolution visual details during their thought process.
However, this pixel-level information is often overused, leading to inefficiency
and distraction from irrelevant visual details. To address these challenges, we pro-
pose the first framework for adaptive pixel reasoning that dynamically determines
necessary pixel-level operations based on the input query. Specifically, we first
apply operation-aware supervised fine-tuning to establish baseline competence in
textual reasoning and visual operations, then design a novel rollout-guided rein-
forcement learning framework relying on feedback of the model’s own responses,
which enables the VLM to determine when pixel operations should be invoked
based on query difficulty. Experiments on extensive multimodal reasoning bench-
marks show that our model achieves superior performance while significantly re-
ducing unnecessary visual operations. Impressively, our model achieves 73.4%
accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1%,
improving accuracy and simultaneously reducing tool usage by 66.5% compared
to the previous methods.

1 INTRODUCTION

Vision-Language Models (VLMs) have achieved remarkable progress, leveraging large language
models and powerful vision encoders. Modern VLMs, such as GPT-4 (Hurst et al., 2024), Qwen-
VL (Bai et al., 2025; Wang et al., 2024a), InternVL (Zhu et al., 2025; Wang et al., 2025b) and
LLaVA (Li et al., 2024; Liu et al., 2023; 2024), can perform sophisticated visual understanding and
reasoning tasks (Shen et al., 2025). However, VLMs frequently encounter difficulties in capturing
fine-grained visual elements, largely because of information loss in the image encoding process or
the limited allocation of attention to critical regions (Ge et al., 2024; He et al., 2024). Recently,
advanced models (Su et al., 2025a; Wang et al., 2025c; Zhang et al., 2025b; Zheng et al., 2025;
Zhou et al., 2025) have been proposed, which are capable of executing pixel-level operations—an
ability we refer to as pixel-space reasoning. By zooming into specific image regions, these models
can selectively focus on critical areas when the original image is too complex.

Existing models or frameworks that allow pixel-level operations can be broadly categorized into
pipelining and end-to-end strategies. Pipelining approaches (Hu et al., 2024b;c; Lu et al., 2025;
Liu et al., 2025; Li et al., 2025e) typically consist of multiple components, such as a predefined
cropping tool or auxiliary feature extractors. While computationally efficient, they tend to leverage
visual information more passively, rather than being actively shaped by the model’s reasoning needs.
Therefore, they often fail to capture subtle but essential visual cues, especially in tasks requiring
spatial reasoning or fine-grained perception. End-to-end strategies, in contrast, enable the model
to actively manipulate visual inputs through pixel-level operations (Zheng et al., 2025; Zhou et al.,
2025; Su et al., 2025b), such as zooming into specific regions.

Despite the flexibility of existing end-to-end methods (Wang et al., 2025a; Zhang et al., 2025a;
Huang et al., 2025b), they often encourage the application of pixel-level operations regardless of
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Figure 1: Comparison of different reasoning strategies. The “Overuse” strategy unnecessarily in-
corporates pixel-level operations, leading to inefficiency and potential distraction. The “Neglect”
strategy relies solely on pure textual CoT reasoning, failing to engage with critical fine-grained vi-
sual details. Our “Adaptive” strategy achieves a balance by intelligently deciding whether to perform
pixel-level operations based on the specific query, optimizing both accuracy and efficiency.

whether the operations are actually needed. This overuse of pixel-level operations causes the fol-
lowing weaknesses: 1) Computational inefficiency: the frequent encoding of parts of the images
requires additional time and slows down the inference speed. 2) Learning difficulties: cropped im-
ages occupy substantial context space, potentially introducing noise and causing error propagation
in the sequential generation process, particularly when cropped regions are irrelevant to the query.
Ideally, a model should adaptively decide when to invoke pixel-level operations to focus more on
relevant regions, and when a pure textual chain of thought (CoT) (Wei et al., 2022) alone suffices,
thereby striking a balance between accuracy and efficiency. One straightforward solution is to have
human experts manually label whether each query requires pixel-level operations, thereby providing
additional supervision to guide the VLMs. However, this approach is both tedious and costly, mak-
ing it impractical at scale. This naturally raises the question: can VLMs learn to apply pixel-level
operations only when necessary, without relying on additional, predefined labels?

To address this, we propose the first framework for adaptive pixel-space reasoning that equips VLMs
with the ability to dynamically determine the necessity of pixel-level operations. Since current open-
source VLMs are rarely trained with pixel-level operations, we begin with operation-aware super-
vised fine-tuning (SFT) (§4.1), which provides the model with baseline competence in answering
visual-related questions with or without pixel-level operations following specifications in the query.
Afterwards, we design a novel rollout-guided reinforcement learning (RGRL) framework (§4.2)
to enhance adaptive pixel-space reasoning capability. Unlike the conventional RL approach, which
typically only promotes accuracy and encourages the frequency of tool usage, we carefully design
the reward assignment strategy to encourage the VLMs to leverage pixel reasoning only when it is
beneficial. Our rollout-guided RL framework consists of two complementary components: (1) Pixel
Necessity Rollouts, VLMs are explicitly required to produce answers both with and without pixel
operations. The relative success rates provide implicit pixel operation necessity indicating whether
pixel-level operations are beneficial for the query. (2) Adaptive Rollouts, which encourage VLMs
to autonomously decide whether and how to apply pixel operations. Rewards are determined not
only by the correctness of the responses, but also by their consistency with the necessity estimated
in the previous rollouts. In this way, we promote efficient and robust adaptive pixel-space reasoning
leveraging only the VLM’s own responses.

Extensive experiments show that our framework outperforms both general-purpose VLMs and
strong tool-augmented baselines, achieving the highest average accuracy while minimizing unnec-
essary visual operations (§5.2). Specifically, our framework achieves 73.4% accuracy on HR-Bench
4K (Wang et al., 2024b) while maintaining a tool usage ratio of only 20.1%, improving accuracy
and simultaneously reducing tool usage by 66.5% compared to the previous methods. Qualitative
analysis further validates that our model can adaptively identify relevant visual regions and perform
pixel operations only when contextually appropriate (§5.4).

In summary, this work makes three key contributions: 1) we introduce the first framework that
enables adaptive pixel-space reasoning, allowing VLMs to determine when pixel-level operations
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are necessary rather than applying them indiscriminately; 2) our training framework does not rely
on any external pixel-level supervision or hand-crafted rules, allowing the model to estimate the
necessity of pixel-level operations directly from its own reasoning process; 3) we achieve superior
performance compared to existing baselines across five multimodal reasoning benchmarks while
simultaneously improving reasoning accuracy and tool efficiency.

2 RELATED WORK

Vision-Language Models. Vision-Language Models (VLMs) have evolved from early pipelines
connecting visual encoders to frozen language models into more unified architectures trained with
joint objectives. Representative frameworks such as BLIP-2 (Li et al., 2023) and LLaVA (Liu et al.,
2023) employ connector modules—either projection layers (Li et al., 2025a; Cha et al., 2024) or
attention-based adapters (Hu et al., 2023; Song et al., 2024)—to align image features with text
embeddings, enabling tasks such as visual question answering and instruction following (Li et al.,
2025c;d). Later research addresses perception bottlenecks, enhancing encoder capacity (Shen et al.,
2024) or introducing dynamic resolution strategies (Anghelone et al., 2023). Open-source series
(Wang et al., 2024a; Bai et al., 2025) and large-scale systems like Flamingo (Alayrac et al., 2022)
and mPLUG-Owl (Ye et al., 2023; 2024) demonstrate competitive performance across multimodal
benchmarks. Despite these developments, most models remain perception-centric, leaving room for
improvements in complex multimodal reasoning.

Textual-space VLM Reasoning. Textual-space reasoning refers to approaches where VLMs im-
prove reasoning by producing pure textual CoT, without directly manipulating pixels. Early works
(Chen et al., 2023; Zhang et al., 2023) showed that inserting CoT steps enhances visual question
answering. Follow-up methods refined this paradigm by improving rationale quality through self-
consistency (Tan et al., 2023), dynamic routing (Aytes et al., 2025; Hu et al., 2025), or multi-image
(Zhang et al., 2024; Xie et al., 2025) and relation-aware reasoning. Other directions emphasized
interpretability via staged reasoning (Zheng et al., 2023) or automatic rationale generation to reduce
annotation cost (Ma et al., 2024; Luo et al., 2024). Despite these advances, textual-space reasoning
relies on static image embeddings and lacks mechanisms to adaptively refine visual evidence, which
motivates pixel-space reasoning approaches.

Pixel-space VLM Reasoning. Pixel-space reasoning, or “thinking with images,” refers to ap-
proaches where models actively manipulate visual inputs—such as cropping, masking, or sketch-
ing—rather than relying solely on pure textual CoT. Early attempts (Liu et al., 2025; Huang et al.,
2025a; Lu et al., 2025) followed predefined workflows or required auxiliary annotations like spa-
tial layouts, attributes, or external knowledge, which limited their generality. More recent tool-
augmented frameworks (Su et al., 2025a; Wang et al., 2025c; Zhang et al., 2025b; Zheng et al.,
2025; Zhou et al., 2025) take a step toward interactive multimodal reasoning by enabling direct
pixel-level operations. However, they often lack principled strategies for deciding when and how to
invoke these operations (Feng et al., 2025; Li et al., 2025b), leading to inefficiency or distraction.
These limitations motivate adaptive mechanisms that dynamically balance accuracy and efficiency.
Unlike prior work that either hard-codes tool usage or overlooks its cost, our method explicitly learns
when pixel-level operations are beneficial, achieving adaptive visual reasoning.

3 PROBLEM FORMULATION

Multimodal reasoning involves solving queries that require varying degrees of pixel-level operations.
While some queries can be accurately addressed using the model’s pure textual CoT, others demand
focused pixel-level exploration to extract fine-grained information. This motivates adaptive pixel-
space reasoning, where the model dynamically determines whether to invoke a pixel-level operation.

Formally, let x = [V,L] denote a vision-language query, with V representing the visual input and L
the textual instruction. The model generates a reasoning trajectory y = [y1, . . . , yn, â], where each
step yt can be either a pure textual CoT or a zoom-in operation, and â is the model’s final predicted
answer. The zoom-in operation extracts high-resolution information from a specified region of V ,
which is then incorporated into the subsequent reasoning steps: yt ← concat(yt, fzoom-in(yt)), where
fzoom-in(yt) denotes the high-resolution visual features acquired by the zoom-in operation.

3
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To evaluate solution correctness, we compare the predicted answer â with the ground-truth answer
a∗ and define the reward:

rcorrect(x,y) =

{
1 if â = a∗,

0 otherwise.
(1)

The overall objective of RL training can then be written as

max
θ

Ex∼D,y∼πθ(y|x)

[
R(x,y)

]
, R(x,y) = rcorrect(x,y) + λ rpixel(x,y), (2)

where rpixel(x,y) provides a positive reward if a pixel-level operation improves the final answer
â and a negative reward if it is unnecessary or detrimental, and λ controls the trade-off between
correctness and efficiency.

Under this formulation, the model must develop a query-specific adaptive strategy: it should invoke
zoom-in selectively, only when pixel-level operations contribute to the final solution. By explicitly
considering the benefit of visual operations, the framework encourages accurate, efficient, and robust
multimodal reasoning across diverse query complexities.

4 METHOD

Existing RL methods for pixel-space reasoning often fail to learn an adaptive strategy, leading to
two common failure modes: either an over-reliance on zoom-in or a complete avoidance of it. To
address this, we propose an adaptive rollout-guided RL training framework that enables dynamic
decision-making for visual exploration. Our method consists of two primary stages: operation-aware
SFT phase (§4.1) and rollout-guided reinforcement learning (RGRL) phase (§4.2).
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Figure 2: Overview of rollout-guided reinforcement learning. The framework generates rollouts
under three prompting modes: forced tool use, prohibited tool use, and adaptive tool use, and these
rollouts are rewarded by multiple reward functions. The adaptive tool-necessity alignment reward
leverages comparisons between tool and no-tool rollouts to determine pixel tool necessity and guide
the adaptive rollout, where the reward is determined by the model’s own adaptive reasoning and
match of tool necessity. All rewards are aggregated to compute group advantage, which updates the
policy to achieve efficient and adaptive visual reasoning.

4.1 OPERATION-AWARE SUPERVISED FINE-TUNING

We begin with a supervised training stage on DSFT, a dataset that not only provides question-answer
pairs but also their detailed reasoning trajectories. These trajectories are operation-aware: a portion
of them involves explicit pixel-level operations, while others rely purely on textual CoT. By exposing
the model to both categories, this stage enables it to establish foundational competence in both pure
textual CoT and the proper execution of visual operations. It effectively prepares the model for the
more complex adaptive RGRL stage by having it minimize a standard cross-entropy loss:

LSFT = −
∑

(xi,yi)∈DSFT

logPθ(yi | xi), (3)

where xi denotes the input query, yi is the reasoning trajectory, and θ is the model parameters.
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4.2 ROLLOUT-GUIDED REINFORCEMENT LEARNING (RGRL)

After the SFT training, we transition to rollout-guided RL, where the model learns to achieve adap-
tive pixel-space reasoning. For each vision-language query x = [V,L], we perform a total of N
reasoning rollouts. These rollouts are strategically divided into two groups: pixel necessity rollouts,
which evaluate the necessity of zoom-in and provide an implicit tool necessity signal, and adap-
tive rollouts, where the model learns to make its own informed decisions. To control the model’s
behavior during each rollout, we prepend a specific system prompt in the textual instruction L.

4.2.1 PIXEL NECESSITY ROLLOUTS

The first Nnecessity = n1 + n2 rollouts are controlled to estimate the query-specific necessity of
invoking zoom-in. We achieve this by using different system prompts. For the first n1 rollouts, we
use system prompt ptool to force a tool-use action. For the next n2 rollouts, we use system prompt
pno tool to prohibit tool use. This setup provides two distinct performance baselines: one with pixel
operation and one with only pure textual CoT. We then compare the average accuracy of these two
groups, acctool and accno tool, to determine a query-specific adaptive tool necessity. Let 1tool necessity
denotes the indicator of the necessity to use pixel-space operations (1 if necessary, 0 otherwise).
This tool necessity provides a crucial guidance signal for subsequent learning:

1tool necessity =

{
1 if accno tool < acctool,

0 otherwise.
(4)

Instruction-following Reward. During the pixel necessity estimation phase, we apply an
instruction-following reward to ensure the model follows the enforced system prompt for the en-
tire reasoning trajectory. Let z = [z1, . . . , zm] denote the sequence of pixel-level actions in the
trajectory, and let Zprompt ⊂ {0, 1} be the set of allowed actions according to the current prompt
({1} for forced zoom-in, {0} for prohibited zoom-in). We define the reward as

rinstr =

{
+b1, if ∃t s.t. zt ∈ Zprompt,

−c1, otherwise,
(5)

where b1, c1 > 0 are positive constants. That is, the trajectory receives a positive reward if it contains
at least one action allowed by the prompt, and a negative reward otherwise.

4.2.2 ADAPTIVE ROLLOUTS

The remaining Nadaptive = n3 rollouts allow the model to learn its adaptive strategy. For these
attempts, a neutral system prompt padapt is used, letting the model freely decide whether to invoke
a zoom-in operation. Each adaptive rollout guides the model to learn an efficient, query-specific
strategy. For detailed prompts, please refer to Appendix B.

Adaptive Tool-Necessity Alignment Reward. This reward encourages the model to align its
zoom-in decisions with the query-specific tool necessity obtained from the pixel necessity roll-
outs. Let 1zoom ∈ {0, 1} denote whether a zoom-in operation is performed during the thought
process (1 if performed, else 0), 1correct ∈ {0, 1} indicate whether the final answer is correct,
and m = 1[(1zoom = 1 ∧ 1tool necessity = 1) ∨ (1zoom = 0 ∧ 1tool necessity = 0)] represent whether the
zoom decision matches the query-specific necessity (m = 1 if matched, else m = 0). We define the
adaptive tool-necessity alignment reward as:

r =


+b2, if 1correct = 1 and m = 1,

+b3, if 1correct = 1 and m = 0,

−c2, if 1correct = 0 and m = 1,

−c3, if 1correct = 0 and m = 0,

(6)

where b2, c2, b3, c3 > 0 are positive real numbers, with b2 > b3 and c3 > c2. Intuitively, the
reward separates two factors: (i) whether the zoom decision matches the query-specific necessity,
and (ii) whether the final answer is correct. If the model follows the query-specific necessity and
produces a correct answer, it receives +b2; if it follows the guidance but the answer is incorrect, it

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance and tool usage ratio of models on five multimodal reasoning benchmarks.
Numbers in the top row indicate Accuracy (or ANLS for InfoVQA), while the gray numbers in
parentheses indicate the corresponding tool usage ratio (%). ∗ denotes results reproduced by our-
selves, † denotes methods using GPT-4V.

Model Size V* Bench MMStar HR-Bench 4K HR-Bench 8K InfoVQA Avg

Model w/o Tools
GPT-4o - 62.8 61.6 59.0 55.5 80.7 63.9
Gemini-2.0-Flash - 73.2 - - - 86.5 -
Gemini-2.5-Pro - 79.2 - - - 84.0 -
LLaVA-OneVision 7B 75.4 61.7 63.0 59.8 68.8 65.7
DeepSeek-VL 7B - 40.5 35.5 33.4 - -
IXC2-4KHD 7B - - 57.8 51.3 68.6 -
Video-R1 7B 51.2 - - - 67.9 -
LongLLava 13B 68.5 - - - 65.4 -
Gemma3 27B 62.3 - - - 59.4 -
Qwen2.5-VL∗ 7B 73.3 63.6 67.3 64.1 78.5 69.4

Model w/ Tools

IVM-Enhance† - 81.2 - - - - -
SEAL 7B 74.8 - - - - -
PaLI-X-VPD 55B 76.6 - - - - -

Pixel Reasoner∗ 7B 84.3
(80.7)

63.4
(47.1)

72.6
(86.6)

66.1
(87.4)

83.9
(25.1)

74.1
(65.4)

Ours 7B 85.9
(59.1)−21.6

64.3
(37.9)−9.2

73.4
(20.1)−66.5

66.6
(48.5)−38.9

84.4
(14.6)−10.5

74.9
(36.0)−29.4

receives−c2; if it does not follow the guidance but still answers correctly, it receives +b3; otherwise
it receives −c3. We evaluate two dimensions—adherence and correctness. Since the reward for
being both adherent and correct should exceed that for being correct despite non-adherence, we set
b2 > b3 > 0. Moreover, the case associated with c3 corresponds to simultaneous non-adherence
and incorrectness; hence it incurs the largest penalty, with c3 > c2 > 0. Together, these constraints
encourage both correctness and adherence to the tool-necessity guidance.

Rollout Consistency Reward. To encourage stable decisions across rollouts of the same query,
we penalize inconsistent tool usage among the Nadaptive adaptive rollouts:

rcons = −γVar(1zoom), γ > 0. (7)

The Var(1zoom) measures the variability of tool usage, with lower variance corresponding to more
consistent decisions.

4.2.3 OVERALL ROLLOUT-GUIDED REWARD

The overall objective is to maximize a unified reward R, which is realized differently in the two
rollout phases: Rnecessity for pixel necessity rollouts and Radapt for adaptive rollouts.

For the pixel necessity rollouts, the reward combines correctness and instruction-following:

Rnecessity = rcorrect + λinstr rinstr, (8)

where λinstr > 0 controls the relative importance of following the prompt versus answering correctly.

For the adaptive rollouts, the reward incorporates three components, guiding the model towards an
optimal, stable, and adaptive strategy:

Radapt = rcorrect + λalign ralign + rcons, (9)

where λalign > 0 balances the influence of the adaptive tool-necessity alignment reward relative to
correctness and consistency.

5 EXPERIMENTS

5.1 SETUPS

Training. We follow Pixel-Reasoner (Su et al., 2025a) and use its datasets, comprising 4k samples
for SFT and 7k samples for RL. The base model is Qwen2.5-VL-7B-Instruct (Bai et al., 2025). We
adopt Open-R1 (Hugging Face, 2025) for SFT and OpenRLHF (Hu et al., 2024a) for RL. For SFT,
we use a batch size of 128 and a learning rate of 1 × 10−6, with 10% warm-up steps. For RL, we
employ a cosine learning rate schedule with a learning rate of 1 × 10−6. Each batch samples 256
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prompts, with N = 16 rollouts per prompt (n1 = 4, n2 = 4 and n3 = 8), allowing at most 6
pixel-level operations. We provide detailed hyperparameters in the Appendix C.

Baseline. We compare our approach with general-purpose and tool-augmented VLMs. The
first group includes representative VLMs such as GPT-4o (Hurst et al., 2024), Gemini-2.5 series
(Team et al., 2024; Comanici et al., 2025; Team et al., 2023), LLaVA-OneVision (Li et al., 2024),
DeepSeek-VL (Lu et al., 2024), InternLM-XComposer2-4KHD (IXC2-4KHD) (Dong et al., 2024),
Qwen2.5-VL (Bai et al., 2025), Video-R1 (Feng et al., 2025), LongLLaVA (Wang et al., 2024c), and
Gemma3 (Team et al., 2025). These models directly perform reasoning without external tool invoca-
tion. The second group consists of tool-augmented models, including Instruction-Guided Masking
(IVM-Enhance) (Zheng et al., 2024), Visual-Program-Distillation (PaLI-X-VPD) (Hu et al., 2024c),
SEAL (Wu & Xie, 2024), and Pixel Reasoner (Su et al., 2025a), which represents a strong baseline
for pixel-space reasoning with its innovative approach to zoom-in visual operations.

Benchmark. We evaluate our method across five diverse multimodal benchmarks, covering both
fine-grained perception and complex high-level reasoning including V* (V-Star) Bench (Wu & Xie,
2024), MMStar (Chen et al., 2024), HR-Bench (4K/8K) (Wang et al., 2024b) and InfographicVQA
(InfoVQA) (Mathew et al., 2022). Among these benchmarks, all adopt Accuracy metrics for evalu-
ation except InfoVQA, which uses the Average Normalized Levenshtein Similarity (ANLS) metric.

5.2 MAIN RESULTS

Our method achieves consistent superior performance on multimodal reasoning benchmarks,
outperforming both general-purpose VLMs and strong tool-augmented systems. As shown in
Table 1, compared to existing baselines, our method achieves the highest average score. Both our
method and Pixel Reasoner are trained based on Qwen2.5-VL under comparable data settings. While
Pixel Reasoner exhibits performance degradation on MMStar due to indiscriminate pixel-level op-
erations, our method maintains consistent superior performance across all five benchmarks. This
demonstrates that our adaptive framework can effectively determine when pixel-level operations are
truly necessary, avoiding redundant computations while preserving accuracy.

Adaptive tool usage significantly reduces unnecessary visual operations without sacrificing ac-
curacy. We further analyze the tool usage ratio across benchmarks in Table 1. The result shows that
our model adaptively balances pure textual CoT and pixel-level operations assistance, achieving
an average tool ratio of 36.0%, substantially lower than the existing strong tool-augmented baseline
Pixel Reasoner (65.4%). The lower overall average ratio primarily reflects our ability to avoid redun-
dant tool invocations, indicating that the model not only achieves better accuracy but also reduces
unnecessary computational overhead during the thought process.

Adaptive reasoning capabilities emerge through Rollout-Guided RL training. The task-
dependent distribution of the tool usage ratio provides strong evidence that our framework has suc-
cessfully trained the model to possess adaptive reasoning capabilities. Our model naturally invokes
fewer tools on relatively simple benchmarks (e.g., InfoVQA, tool ratio 14.6%) while increasing tool
reliance on more challenging benchmarks (e.g., HR-Bench 8K, tool ratio 48.5%), demonstrating
that the learned adaptive behavior aligns with the actual reasoning demands of queries. Besides, as
shown in Table 2, our RGRL training can effectively correct redundant tool usage patterns learned
during SFT. For instance, on InfoVQA, the model initially exhibits excessive tool usage (20.1%)
after SFT, but our RL training successfully reduces this to 14.6%, while simultaneously improving
accuracy from 73.9% to 84.4%.

5.3 ABLATION STUDY

5.3.1 EFFECTIVENESS OF ROLLOUT-GUIDED RL (RGRL)

We also evaluate our model without the RGRL phase, relying solely on operation-aware SFT. As
shown in Table 2, without RL training, the variant exhibits a significantly lower accuracy and higher
tool usage compared to our full approach. These results suggest that, while SFT alone provides
foundational capability, it lacks the ability to dynamically adjust tool usage based on the complexity
of the task. This reinforces the effectiveness of combining operation-aware SFT with RGRL to
enhance the model’s adaptive decision-making in multimodal reasoning tasks.
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Table 2: Ablation study on the effectiveness of rollout-guided RL.
Model V* Bench MMStar HR-Bench 4K HR-Bench 8K InfoVQA Avg

Ours w/o RGRL 78.5
(9.4)

58.4
(39.3)

66.6
(68.8)

57.0
(65.3)

73.9
(20.1)

66.9
(40.6)

Ours 85.9
(59.1)

64.3
(37.9)

73.4
(20.1)

66.6
(48.5)

84.4
(14.6)

74.9
(36.0)

5.3.2 COMPARISON OF DIFFERENT TOOL USAGE STRATEGIES

The results of the ablation study, which evaluates our trained model under different tool usage
prompts, are shown in Table 3. The first two rows correspond to extreme cases: All No-Tool, where
the model relies solely on pure textual CoT, and All Tool, where the model always uses pixel-level
operations. The All No-Tool strategy achieves an average accuracy of 72.4 across the five bench-
marks, while the All Tool strategy achieves 72.5. Both are lower than our adaptive method, which
reaches an average accuracy of 74.9. The All-Tool strategy underperforms particularly on high-
resolution benchmarks such as HR-Bench 8K, showing that excessive reliance on pixel-level oper-
ations can be counterproductive. Frequent zoom-in operations lead to redundant cropping, which
introduces noisy visual paths and distracts the reasoning process. Similarly, the All No-Tool strat-
egy cannot fully exploit the benefits of visual operations in complex scenarios, as it can’t zoom into
critical regions and extract fine-grained visual cues. In contrast, our adaptive method determines
dynamically when tool usage is beneficial, leading to the highest accuracy on all five benchmarks.

Table 3: Ablation study of different tool usage strategies.
Model V* Bench MMStar HR-Bench 4K HR-Bench 8K InfoVQA Avg

All No-Tool 81.2 63.8 70.9 63.8 82.1 72.4
All Tool 83.2 63.5 71.3 62.6 81.7 72.5
Ours 85.9 64.3 73.4 66.6 84.4 74.9

5.3.3 EFFECTIVENESS OF PIXEL NECESSITY ESTIMATION

We further evaluate the effect of dynamically determining tool usage necessity in pixel necessity
rollouts compared to using predefined necessity. The predefined necessity is obtained by running our
SFT model with a temperature of 1.0 and collecting 8 rollouts per query (Pass@8); for each query,
if the majority of rollouts involve tool usage, the necessity is set to “tool,” otherwise to “no-tool”.
Figure 3 (a) shows the accuracy across five benchmarks. The predefined necessity approach achieves
an average accuracy of 72.1, which is lower than Pixel Reasoner (Su et al., 2025a) and significantly
below our adaptive method. This demonstrates that static necessity assignment cannot adapt to
changes in the model’s capability and thus fails to reliably estimate whether a query requires tool
usage during the training process, leading to substantial accuracy loss. The performance gap is most
pronounced on HR-Bench 4K/8K, where predefined necessity reduces the model’s ability to handle
high-resolution visual reasoning. Figure 3 (b) reports the ratio of tool usage across benchmarks.

(a) (b)

Figure 3: Ablation study on the effectiveness of pixel necessity estimation, showing benchmark
accuracy (a) and tool usage ratio (b).
Although predefined necessity produces a tool ratio of 46.9, falling between Pixel Reasoner and
our method, it fail to deliver the same accuracy improvements. This indicates that while predefined
necessity reduces redundant pixel-level operations compared to Pixel Reasoner, they cannot match
the flexibility of adaptive reasoning. Our adaptive strategy enables the model to make more informed
decisions about when to invoke tools, improving both accuracy and efficient tool utilization.

5.3.4 EFFECTIVENESS OF REWARDS IN PIXEL NECESSITY ROLLOUTS

Table 4 evaluates the effectiveness of incorporating rewards from the pixel necessity rollouts during
RGRL. When the rewards from the first eight rollouts (forced tool and forced no-tool) are excluded
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from gradient updates (Ours w/o PN rewards), the model attains an average accuracy of 73.7 across
the five benchmarks. Incorporating these rewards consistently improves performance, with our full
method reaching 74.9 on average. These results confirm that the rewards in pixel necessity rollouts
provide reliable tool necessity for learning when tool usage is truly beneficial, which subsequently
enhances the adaptive rollouts.

Table 4: Ablation study on the effectiveness of rewards in the pixel necessity rollouts.
Model V* Bench MMStar HR-Bench 4K HR-Bench 8K InfoVQA Avg

Ours w/o PN rewards 85.3
(68.1)

64.0
(54.9)

73.1
(21.9)

64.0
(39.0)

82.1
(1.9)

73.7
(37.2)

Ours 85.9
(59.1)

64.3
(37.9)

73.4
(20.1)

66.6
(48.5)

84.4
(14.6)

74.9
(36.0)

5.4 CASE STUDY

Figure 4 illustrates two representative cases. On the left, for archaeological site sign text recognition,
Pixel Reasoner conducts redundant cropping operations, introducing interfering visual information
and thus failing to identify the correct text. In contrast, our model focuses on the key sign, clearly
recognizing the text and outputting the correct answer “ISTRE.PULA” without unnecessary steps.
On the right, for cricket statistics comparison, Pixel Reasoner makes multiple incorrect crops and
miscalculates, while our model accurately locates the relevant statistics in the infographic and solves
the task directly, yielding the correct answer “95”. These cases show that our adaptive framework
improves efficiency by avoiding unnecessary operations and enhances robustness by making more
reliable tool-use decisions. For more examples, please refer to Appendix E.

Figure 4: Comparison between Pixel Reasoner and our method on multimodal reasoning tasks. Left:
Archaeological site sign text recognition. Right: Cricket statistics comparison.

6 CONCLUSION

In this work, we introduced a framework for adaptive pixel-space reasoning in multimodal reason-
ing tasks. By combining operation-aware supervised fine-tuning with rollout-guided reinforcement
learning, the model learns query-specific strategies for deciding when to invoke pixel-level opera-
tions. Compared to other pipelining and end-to-end multimodal reasoning methods, the proposed
approach demonstrates the ability to dynamically adapt to varying query complexities, avoiding both
neglect and overuse of pixel-level operations. Extensive experiments across five benchmarks con-
firm that this framework consistently improves accuracy and efficiency, validating the effectiveness
of our adaptive pixel-space reasoning framework.

9
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ETHICS STATEMENT

Our work aims to enhance the adaptive pixel-space reasoning ability of VLMs without introducing
any additional ethical concerns or resolving existing ones.

REPRODUCIBILITY STATEMENT

We propose a training framework for adaptive pixel-space reasoning. All reward formulations, roll-
out configurations, and evaluation protocols are described in detail in the main paper. Specifically,
Appendix B lists all prompts used in training, Appendix C provides the complete hyperparameters
for both SFT and RL stages, and Appendix E includes additional case studies to facilitate further
analysis and verification. Our code, data, and models will be publicly accessible.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are employed solely to assist with language refinement and stylistic
polishing of the manuscript. They are not involved in research ideation, experimental design and
analysis. All conceptual and technical contributions are the sole responsibility of the authors.

B DETAILED PROMPTS

We provide the exact prompts used in different training phases. Specifically, the SFT stage uses
the instruction template in Prompt 1, which aims to establish foundational competence in both pure
textual CoT and the proper execution of visual operations. In the RL stage, the prompts for pixel
necessity estimation rollouts enforce opposite behaviors: Prompt 2 explicitly instructs the model to
invoke zoom-in, while Prompt 3 prohibits its use. These controlled settings enable the model to learn
the correspondence between query type and tool necessity. In contrast, the adaptive rollout phase
adopts the neutral prompt in Prompt 4, where the model is free to decide whether or not to perform
pixel-space reasoning. This setup ensures that the model is first exposed to both extremes during
necessity estimation and then given autonomy to balance textual reasoning and visual operations
during adaptive rollouts.

C TRAINING HYPERPARAMETERS

Table A1 and A2 summarize the key hyperparameters for both the supervised fine-tuning (SFT) and
reinforcement learning (RL) stages. The SFT phase initializes the model with baseline competence
in pure textual CoT and pixel-space operations, specifying optimizer, learning rate schedule, batch
sizes and frozen vision modules.

The RL phase trains the model for adaptive tool usage through rollout-guided reinforcement learn-
ing. Key settings include global and micro batch sizes, replay buffer size, number of samples and
episodes, input/output lengths, learning rate, KL coefficient, train temperature, top-p sampling, re-
ward and its coefficients.

D BENCHMARK DETAILS

We evaluate our method across five diverse multimodal benchmarks, covering both fine-grained per-
ception and complex high-level reasoning. V* (V-Star) Bench (Wu & Xie, 2024) assesses the ability
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Prompt 1: SFT Prompt

You are a helpful assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags: <tools>{“type”:
“function”, “function”: {“name”: “crop image normalized”, “description”: “Zoom in on the image
based on the bounding box coordinates. It is useful when the object or text in the image is too small to be
seen.”, “parameters”: {“type”: “object”, “properties”: {“bbox 2d”: {“type”: “array”, “description”:
“coordinates for bounding box of the area you want to zoom in. Values should be within [0.0,1.0].”,
“items”: {“type”: “number”}}, “target image”: “type”: “number”, “description”: “The index of
the image to crop. Index from 1 to the number of images. Choose 1 to operate on original image.”},
“required”: [“bbox 2d”, “target image”]}}} </tools>

For each function call, return a json object with function name and arguments within
<tool call></tool call> XML tags: <tool call>{“name”: <function-name>, “arguments”: <args-
json-object>} </tool call>

[image]

[question]

Guidelines: Understand the given visual information and the user query. Determine if it is benefi-
cial to employ the given visual operations (tools). We can look closer by crop image. Reason with the
visual information step by step, and put your final answer within \boxed{}.

Prompt 2: RL Prompt for Tool Use in Pixel Necessity Rollouts

You are a helpful assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags: <tools>{“type”:
“function”, “function”: {“name”: “crop image normalized”, “description”: “Zoom in on the image
based on the bounding box coordinates. It is useful when the object or text in the image is too small to be
seen.”, “parameters”: {“type”: “object”, “properties”: {“bbox 2d”: {“type”: “array”, “description”:
“coordinates for bounding box of the area you want to zoom in. Values should be within [0.0,1.0].”,
“items”: {“type”: “number”}}, “target image”: “type”: “number”, “description”: “The index of
the image to crop. Index from 1 to the number of images. Choose 1 to operate on original image.”},
“required”: [“bbox 2d”, “target image”]}}} </tools>

For each function call, return a json object with function name and arguments within
<tool call></tool call> XML tags: <tool call>{“name”: <function-name>, “arguments”: <args-
json-object>} </tool call>

[image]

[question]

Guidelines: Understand the given visual information and the user query. You must zoom in on the
image using the tool (crop image). Reason with the visual information step by step, and put your final
answer within \boxed{}.

of VLMs to handle visually intricate, high-resolution images and capture subtle details. MMStar
(Chen et al., 2024) focuses on general-purpose multimodal reasoning, testing comprehension across
a broad set of tasks involving textual and visual interactions. HR-Bench (Wang et al., 2024b) (HR-
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Prompt 3: RL Prompt for No Tool Use in Pixel Necessity Rollouts

You are a helpful assistant.

[image]

[question]

Guidelines: Understand the given visual information and the user query. Reason with the visual
information step by step, and put your final answer within \boxed{}.

Prompt 4: RL Prompt for Adaptive Tool Use in Adaptive Rollouts

You are a helpful assistant.

# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags: <tools>{“type”:
“function”, “function”: {“name”: “crop image normalized”, “description”: “Zoom in on the image
based on the bounding box coordinates. It is useful when the object or text in the image is too small to be
seen.”, “parameters”: {“type”: “object”, “properties”: {“bbox 2d”: {“type”: “array”, “description”:
“coordinates for bounding box of the area you want to zoom in. Values should be within [0.0,1.0].”,
“items”: {“type”: “number”}}, “target image”: “type”: “number”, “description”: “The index of
the image to crop. Index from 1 to the number of images. Choose 1 to operate on original image.”},
“required”: [“bbox 2d”, “target image”]}}} </tools>

For each function call, return a json object with function name and arguments within
<tool call></tool call> XML tags: <tool call>{“name”: <function-name>, “arguments”: <args-
json-object>} </tool call>

[image]

[question]

Guidelines: Understand the given visual information and the user query. Determine if it is benefi-
cial to employ the given visual operations (tools). We can look closer by crop image. Reason with the
visual information step by step, and put your final answer within \boxed{}.

Bench 4K/8K) are specifically designed to probe the capability of models in dealing with ultra-high-
resolution images, where reasoning often requires identifying small-scale objects or subtle visual
cues that are easily overlooked. Finally, InfographicVQA (InfoVQA) (Mathew et al., 2022) em-
phasizes reasoning over infographic-style images that tightly integrate diagrams, charts, and textual
annotations, requiring precise alignment between textual information and visual layout.

E MORE CASES

To complement the main experiments, we provide additional qualitative comparisons in Fig-
ure A1–A5. These cases illustrate how our model adapts its tool usage across different scenarios.
They serve as concrete examples to better understand the model’s reasoning behaviors beyond ag-
gregate metrics.

Figure A1 displays a case from the license plate recognition task, illustrating the reasoning processes
of Pixel Reasoner and our method. The goal is to determine the license plate number of the vehicle
in the image among the provided options. Pixel Reasoner makes multiple attempts at cropping, first
focusing on irrelevant pavement areas before eventually finding the van and its license plate. Our
method, however, efficiently zooms in on the van in a single cropping step, directly retrieving the
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Table A1: SFT and RL hyperparameters.

Parameter Value
Number of nodes 1
GPUs per node 8
Total epochs 5
Seed 49
Optimizer AdamW
Learning rate 1.0× 10−6

Scheduler Cosine decay
Warmup ratio 0.1
Per-device batch size 1
Gradient accumulation steps 2
Precision bfloat16 (BF16)
Gradient checkpointing Enabled
Attention implementation FlashAttention-2
Freeze vision modules True

(a) SFT hyperparameters

Parameter Value
Training batch size (global) 256
Micro batch size (per actor) 2
Replay buffer size 512
Rollout batch size 512
Number of samples per prompt 16
Number of epochs 3
Max input length 2048
Max generation length 10000
Actor learning rate 1.0× 10−6

Zero Redundancy Stage 3
Auxiliary loss coefficient 0.05
KL coefficient 0.0
Train Temperature 1.0
Top-p 0.95
Precision bfloat16 (BF16)
Gradient checkpointing Enabled
Attention implementation FlashAttention

(b) RL hyperparameters

Table A2: RL reward and its coefficients.

Category Setting

Pixel Necessity
b1: 1.2
c1: 1.0
λinstr: 0.08

Adaptive

b2: 1.6
c2: 0.8
b3: 1.2
c3: 1.0
λadapt: 0.05

Rollout Consistency γ: 0.1

correct license plate number “V-223-LV”. This case exemplifies how our approach optimizes tool
utilization for more efficient and precise multimodal reasoning in the context of this case study.

Figure A2 presents a case from the task of determining the year Sachin Tendulkar reached the
Guinness World Record for being the first player to score 10,000 runs, comparing the reasoning
processes of Pixel Reasoner and our method. Pixel Reasoner attempts to zoom in on a section
of the infographic’s timeline but ends up with an incorrect year, 2005. Our method, on the other
hand, directly analyzes the infographic’s content and accurately identifies the correct year, 2001,
without unnecessary tool-based cropping. This case demonstrates the effectiveness of our approach
in efficiently and accurately reasoning about such sports-related milestone-finding tasks compared
to Pixel Reasoner.

As shown in Figure A3, it presents a case from the task of identifying which two numbered locations
on a provided map belong to the same country, comparing the reasoning processes of Pixel Reasoner
and our method. Pixel Reasoner zooms in on the map and incorrectly concludes that locations 2 and
3 belong to the same country, selecting option B. Our method, through analyzing the geographical
locations of each numbered marker, accurately determines that locations 1 and 2 are both in the
United Kingdom, thus selecting the correct option C. This case illustrates how our approach excels
in precise geographical reasoning and correct option selection compared to Pixel Reasoner in such
map-based country association tasks, highlighting the latter’s error in misidentifying the affiliation
of location 3.
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Figure A1: Case of license plate recognition task comparison between Pixel Reasoner and our
method.

As shown in Figure A4, it presents a case from the task of determining how many types of bonding
exist in chemistry, comparing the reasoning processes of Pixel Reasoner and our method. Pixel
Reasoner zooms in on a section of the “Map of Chemistry” but only identifies two types of bonding
(covalent and ionic), leading to an incorrect answer of 2. Our method, by strategically locating
the “BONDS” section in the lower-left part of the infographic, accurately identifies four types of
bonding: Covalent Bond, Ionic Bond, van der Waals bonding, and Hydrogen Bond, thus obtaining
the correct answer of 4. This case demonstrates how our approach enables more comprehensive
and accurate information retrieval in chemical concept-related reasoning tasks compared to Pixel
Reasoner.
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Figure A2: Case of Sachin Tendulkar’s Guinness World Record year determination task comparison
between Pixel Reasoner and our method.

For coronavirus-related geographic reasoning in Figure A5, Pixel Reasoner engages in two crop
attempts yet fails to zero in on the correct location each time. This points to a tendency of invoking
the cropping tool in a mechanical, almost obligatory manner—“calling the tool just for the sake
of tool invocation”—without a strategic, solution-oriented assessment of when and where to crop.
In contrast, our model accurately targets the key geographic information in a more direct way and
produces the correct answer “Thailand” without redundant operations.

Through the five case studies (license plate recognition, Sachin Tendulkar’s record year deter-
mination, same-country location identification on a map, chemical bonding type counting and
coronavirus-related geographic reasoning), we observe the strengths of our method in adaptive pixel-
space reasoning.

In each case, baselines like Pixel Reasoner either overused pixel-level operations (e.g., redundant
cropping in license plate recognition and map tasks, leading to inefficiency or errors) or failed to in-
voke visual inspection when necessary (missing critical visual cues, as seen in the chemical bonding
task where Pixel Reasoner identified only partial bonding types).

In contrast, our model adaptively decides when to perform fine-grained visual operations (e.g., tar-
geted zoom-in for license plate recognition, direct content analysis for cricket statistics and chemical
bonding) or rely on semantic reasoning. By combining operation-aware supervised fine-tuning and
rollout-guided reinforcement learning, it balances the need for pixel-level operations and high-level
reasoning: it avoids overusing compute-intensive pixel operations while capturing critical visual de-
tails. This adaptive strategy, guided by rewards for correctness, instruction-following, adaptive tool-
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Figure A3: Case of identifying same-country locations on a map: Comparison between Pixel Rea-
soner and our method.

necessity alignment, and rollout consistency, achieves accurate results across diverse multimodal
reasoning tasks—from visual identification to knowledge-based querying—surpassing both general
VLMs and tool-augmented baselines, and validating the effectiveness of adaptive pixel-space rea-
soning.
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Figure A4: Case of determining the number of chemical bonding types: Comparison between Pixel
Reasoner and our method.
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Figure A5: Case of coronavirus-related geographic reasoning: Comparison between Pixel Reasoner
and our method.
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