
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Differentially Private Selection from Secure Distributed
Computing

Anonymous Author(s)

ABSTRACT
Given a collection of vectors 𝒙 (1) , . . . , 𝒙 (𝑛) ∈ {0, 1}𝑑 , the selec-
tion problem asks to report the index of an “approximately largest”

entry in 𝒙 =
∑𝑛

𝑗=1
𝒙 (𝑗) . Selection abstracts a host of problems,

for example: Recommendation of a popular item based on user

feedback; releasing statistics on the most popular web sites; hyper-

parameter tuning and feature selection in machine learning. We

study selection under differential privacy, where a released index

guarantees privacy for individual vectors. Though selection can

be solved with an excellent utility guarantee in the central model

of differential privacy, the distributed setting where no single en-

tity is trusted to aggregate the data lacks solutions. Specifically,

strong privacy guarantees with high utility are offered in high trust

settings, but not in low trust settings. For example, in the popular

shuffle model of distributed differential privacy, there are strong

lower bounds suggesting that the utility of the central model cannot

be obtained. In this paper we design a protocol for differentially

private selection in a trust setting similar to the shuffle model—with

the crucial difference that our protocol tolerates corrupted servers

while maintaining privacy. Our protocol uses techniques from se-

cure multi-party computation (MPC) to implement a protocol that:

(i) has utility on par with the best mechanisms in the central model,

(ii) scales to large, distributed collections of high-dimensional vec-

tors, and (iii) uses 𝑘 ≥ 3 servers that collaborate to compute the

result, where the differential privacy guarantee holds assuming an

honest majority. Since general-purpose MPC techniques are not

sufficiently scalable, we propose a novel application of integer secret
sharing, and evaluate the utility and efficiency of our protocol both

theoretically and empirically. Our protocol improves on previous

work by Champion, shelat and Ullman (CCS ’19) by significantly

reducing the communication costs, demonstrating that large-scale

differentially private selection with information-theoretical guar-

antees is feasible in a distributed setting.

ACM Reference Format:
Anonymous Author(s). 2023. Differentially Private Selection from Secure

Distributed Computing. In Proceedings of ACM Conference (Conference’17).
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Differentialy private selection of the largest entry in a vector en-

ables data analysis on sensitive datasets—for example announcing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

the winning candidate in a vote, or identifying a common genetic

marker from a set of DNA sequences. While there exist solutions

to the selection problem with strong guarantees scaling logarithmi-

cally with dimension and independent of the size of vector entries

(e.g., [MS20]), they operate in the central model of differential pri-
vacy, which requires trust in a single party to perform the computa-

tion. Existing solutions with weaker trust assumptions, on the other

hand, scale poorly or require significantly more noise to maintain

privacy.

A pragmatic solution is to aim for a middle ground: distributing

trust among multiple parties. This setting is natural when a person

trusts a party (e.g., their local hospital) with their data, but not

every party (e.g., they may not want to share their data with every

hospital). In principle, every mechanism in the central model of dif-

ferential privacy could be simulated in such a distributed setting us-

ing techniques for secure multi-party computation (MPC), but that

approach is not viable in general because MPC is not yet practical

for large-scale general-purpose computations. Steinke [Ste20] intro-

duced a more restricted class of protocols working in the so-called

multi-central model, in which data holders submit information to 𝑘

servers, which then communicate and compute the output of the

mechanism. An attractive property of this model is that data holders

only need to submit a single message to each server, after which no

involvement is needed. Nevertheless, techniques such as additive

secret sharing allow protocols that have high utility and protect

privacy even if 𝑘 − 1 servers share their information. However,

MPC protocols tolerating 𝑘 −1 corruptions require computationally

heavy public-key encryption techniques and are not very efficient.

In this work we will therefore work with a slightly weaker notion

of privacy: the information gained by any minority of the servers

is differentially private. This allows the MPC solution to be much

more efficient and to achieve unconditional, information-theoretic

security requiring no computational assumptions – this makes our

protocol immediately secure even against the threats of quantum

computing.

A popular approach to differentially private protocols in dis-

tributed settings is the shuffle model [BEM+17, CSU+19b] in which

scalable techniques from cryptography are combined with tech-

niques from differential privacy, often allowing utility close to what

is possible in the central model. However, existing protocols for

selection use private summation, which is known to require much

more noise than selection. It is likely that there is a fundamental

obstacle to achieving better utility for selection in the shuffle model,

due to the lower bound of [CU21] which holds for a wide class

of mechanisms in the shuffle model. Another general tool for dis-

tributed differential privacy, secure aggregation [GX17], faces the

same problem, namely that the magnitude of noise needs to grow

polynomially with the dimension 𝑑 of the input vectors. Finally, we

mention local differential privacy (LDP) [DJW13], in which each in-

put vector is independently made differentially private, and where

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the magnitude of noise grows polynomially in the number 𝑛 of

input vectors.

Given that existing distributed methods for the selection problem

are far from matching what is possible in the central model, and

since we know that in principle it is possible to simulate the cen-

tral model with MPC techniques, Steinke [Ste20] suggests to solve

selection via an MPC implementation of argmax on secret-shared

sums, but states that further investigation about the practicality is

needed. In this work we perform such an investigation, modifying

the approach in several ways to achieve the best fit with scalable

MPC techniques. The contributions of this work are as follows:

• We present the Noise-and-round mechanism (Section 3), a

distributed differentially private selection algorithm with

utility guarantees close to the best algorithms in the central

model.

• We introduce the first demonstration of the multi-central

model for the selection problem using MPC techniques

(Section 4).

• We design a new combination of integer secret sharing

and existing MPC techniques which is tailored to perform a

secure and efficient distributed computation of differentially

private selection. In particular, this allows non-interactive

truncation of input data so that approximate comparisons

can be performed more efficiently than previously known.

• We provide an empirical evaluation of the utility and scal-

ability of Noise-and-round using both synthetic and real-

world data for the 3-servers case (Section 5).

2 TECHNICAL OVERVIEW
Problem formulation. The selection problem is perhaps the sim-

plest instance of “heavy hitters,” a problem ubiquitous in data analy-

sis andmachine learning. Given a collection of vectors 𝒙 (1) , . . . , 𝒙 (𝑛) ∈
{0, 1}𝑑 it asks to report the index of an “approximately largest” en-

try in 𝒙 =
∑𝑛

𝑗=1
𝒙 (𝑗) . More precisely, the task is to report an index 𝑖

such that 𝑥𝑖 ≥ maxℓ (𝑥ℓ) −𝛼𝑛, where 𝛼 ∈ (0, 1) is an approximation

parameter specifying the (additive) error within which 𝑥𝑖 is largest.

This problem is a special case of general heavy hitters problems,

which asks for the most frequently occurring elements in a multiset.

Differential privacy. Differential privacy [DMNS06] formalizes

theworst-case information leakage of any output from an algorithm.

Given two neighboring datasets as input differential privacy limits

how much the output distributions can differ. We say that a pair of

datasets are neighboring, denoted 𝒙 ∼ 𝒙′, if and only if 𝒙 and 𝒙′

differ on exactly one element. In this paper, we work in the bounded

setting where the dataset’s size is fixed.

Definition 2.1 ([DMNS06] (Y, 𝛿)-differential privacy). A random-

ized mechanismM satisfies (Y, 𝛿) − differential privacy if and only

if for all pairs of neighboring datasets 𝒙 ∼ 𝒙′ and all set of outputs

𝑍 we have Pr[M(𝒙) ∈ 𝑍] ≤ 𝑒Y Pr[M(𝒙′) ∈ 𝑍] + 𝛿 . IfM satisfies

(Y, 0)-DP we say that it satisfies Y-differential privacy.

Our Approach. We first describe our approach in the central

model and then extend to the distributed setting. The technique is

rather standard, butwith a couple of deviations: following [DKS
+
21]

we use one-sided noise when computing the noisy argmax, though

Algorithm 1 Noise-and-round

1: Input: 𝒙 (1) , . . . , 𝒙 (𝑛) ∈ {0, 1}𝑑
2: Parameters: Y > 0, 𝛾 ≥ 1, Δ ≥ 0

3: sample 𝜼 ∼ Geometric(1 − 𝑒−Y/2)𝑑
4: 𝒘 ← roundΔ ((

∑𝑑
𝑗=1

𝒙 (𝑗) + 𝜼)/𝛾)
5: return arg max𝑖 (𝒘𝑖)

we replace the exponential distribution with a geometric distribu-

tion that works directly in the integer domain. Second, we show

that the protocol is robust to scaling and rounding before taking

argmax, which helps the efficiency of the MPC protocol.

The bottleneck in the secure computation protocol is the compar-

isons required to compute argmax. For this we use state-of-the-art

protocols from [EGK
+
20]. These must be supplied initially with

correlated randomness and are constructed as protocols for dishon-

est majority. However, we assume 𝑘 servers with 𝑡 semi-honest

corruptions where 𝑡 < 𝑘/2. Therefore, with the help of all servers,

we can preprocess the correlated randomness using the honest ma-

jority protocol from [ACD
+
19], after which the first 𝑡 + 1 servers

run the protocol from [EGK
+
20]. Finally, we let data owners supply

inputs as secret shares over the integers. This allows the servers

to truncate the input without interaction while introducing only

a small error; then the comparisons can work over fewer bits and

hence be more efficient.

We believe that the semi-honest threat model is a realistic se-

curity model in many settings. For instance, when the main issue

is not that the parties fear attacks from the others, but rather that

no one wants to be responsible for storing the private data (and be

liable if something leaks). This is a setting which often occurs in real

life, and where semi-honest security provides sufficient gurantees.

However, it is possible to upgrade our approach to be secure

against malicious servers. A server would then need to commit to

its secret state and prove in zero-knowledge that it did the correct

computation. Using modern techniques for this, the communication

complexity would be essentially the same, but the computational

load would be significantly larger.

3 ALGORITHM IN THE CENTRAL MODEL
In this section we analyze Algorithm 1, which solves selection in the

central model and is well-suited for being extended to an efficient

secure multi-party computation protocol (described in Section 4).

The algorithm is a variant of the well-known “report noisy argmax”

approach to selection, which has been proposed as a candidate

algorithm on which to base an MPC implementation [Ste20].

Compared to a plain noisy argmax approach we make two mod-

ifications that will improve efficiency of the MPC protocol: 1) Use

one-sided, geometric error, and 2) allow the argmax to be based

on rounded values. Rounding is controlled by a parameter Δ, such
that for a rational number𝑤 , roundΔ (𝑤) denotes an integer value

(possibly the output of a randomized algorithm) that differs from𝑤

by at most Δ, and for inputs
𝑥+[
𝛾 and

𝑥+[
𝛾 with |𝑥 − 𝑥 | ≤ 1, using

the same internal randomness for both inputs, satistifies:����roundΔ (
𝑥 + [
𝛾

)
− roundΔ

(
𝑥 + [
𝛾

)���� ≤ 1 . (1)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Differentially Private Selection from Secure Distributed Computing Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Algorithm 2 Relaxed-noise-and-round (The “Ideal Functionality”)

1: Input: 𝒙 (1) , . . . , 𝒙 (𝑛) ∈ {0, 1}𝑑
2: Parameters: 𝑝 (noise parameter), 𝑐 (bits to truncate),𝑘 (number

of servers), 𝑡 (upper bound on corrupted servers),

3: for all 𝑗 ∈ [𝑘] sample 𝒓 (𝑗) ∼ NB
𝑑 (1/(𝑘 − 𝑡), 𝑝)

4: 𝒛 ← ∑
𝑖∈[𝑛] 𝒙

(𝑖) +∑𝑗∈[𝑘] 𝒓
(𝑗)

5: 𝒘 ← roundΔ (𝒛/2𝑐)
6: Output: arg max𝑖 (𝑤𝑖)
7: Leakage: 𝒓 (𝑗) for 𝑗 ∈ [𝑡] (capturing that the corrupted parties

contribution to the noise are known to the adversary.)

When applied to a vector 𝒙 , roundΔ (𝒙) is computed by rounding

independently on each coordinate. Looking ahead to the distributed

implementation of the algorithm, allowing this rounding error will

allow us to perform truncation using a simple and efficient method.

Proof in supplementary material.

Lemma 1. Algorithm 1 is Y-differentially private.

Lemma 2. Algorithm 1 has error at most 2𝛾Δ + 4 ln(𝑑)/Y with
probability at least 1 − 1/𝑑 .

Proof. By a union bound, Pr[∥𝜼∥∞ > 4 ln(𝑑)/Y] ≤ 𝑑 Pr[𝜼𝑖 >
4 ln(𝑑)/Y] < 1/𝑑 . Let M(𝒙) denote the output of Algorithm 1,

where 𝒙 =
∑𝑑

𝑗=1
𝒙 (𝑗) is the sum of the input vectors. We want to

argue that the error |𝒙M(𝒙) −maxℓ (𝒙ℓ) | is not too large. Abbrevi-

ating 𝑖 =M(𝒙), 𝑗 = arg maxℓ (𝒙ℓ), and using that entries in 𝜼 are

non-negative, we have

roundΔ

(𝒙 𝑗 + 𝜼 𝑗

𝛾

)
≤ roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
⇒

𝒙 𝑗 + 𝜼 𝑗

𝛾
− Δ ≤

𝒙𝑖 + 𝜼𝑖
𝛾

+ Δ

⇒ 𝒙 𝑗 + 𝜼 𝑗 − (𝒙𝑖 + 𝜼𝑖) ≤ 2𝛾Δ

⇒ |𝒙M(𝒙) −max

ℓ
(𝒙ℓ) | ≤ 2𝛾Δ + ∥𝜼∥∞ . □

4 SECURE COMPUTATION OF
DIFFERENTIALLY PRIVATE SELECTION

As it is common in the MPC literature, we first describe what we
want to achieve in the form of an idealized algorithm, as it if was

executed by some trusted third party—usually referred to as the

“ideal functionality”. This algorithm formally captures the compu-

tation that the distributed protocol will perform, as well as what

kind of information is leaked to the adversary, while hiding the

details on how the distributed protocols achieves this result. This

ideal functionality, provided in Algorithm 2, has a small deviation

from Algorithm 1; in particular, it adds a larger amount of noise

sampled from a negative binomial distribution (some of which is

leaked). Such distributed addition of noise has been used before in

similar settings [GX17]. The increased level of noise allows us to

perform a very simple and efficient distributed noise generation.

Moreover, the noise leaked by the functionality is used to capture

the fact that, in the distributed implementation of the algorithm,

up to 𝑡 servers might be corrupted by a semi-honest adversary. We

use [𝑛] to denote the set {1, . . . , 𝑛}.

Lemma 3. Algorithm 2 with 𝑝 = 1 − 𝑒−Y/2 and 𝛾 = 2
𝑐 is Y-

differentially private, even if the leakage is considered part of the
output. It has error at most 2𝛾Δ + 16 ln(𝑑)/Y with probability at least
1 − 2/𝑑 .

Proof. By symmetry we can assume that the leakage consists of

the noise added by the first 𝑡 parties, i.e., 𝒓 (𝑗) for 𝑗 ∈ [𝑡]. Consider
any fixed value of the leaked noise vectors—we will argue that the

algorithm is Y-differentially private under the distribution induced

by the remaining 𝑘 − 𝑡 noise vectors. As before, let 𝒙 =
∑𝑑

𝑗=1
𝒙 (𝑗) .

After Line 4 we have

𝒛 = 𝒙 +
∑︁
𝑗∈[𝑘]

𝒓 (𝑗) = ©«𝒙 +
∑︁
𝑗∈[𝑡]

𝒓 (𝑗)ª®¬ +
∑︁

𝑗∈[𝑘]\[𝑡]
𝒓 (𝑗) ,

where𝜼 =
∑

𝑗∈[𝑘]\[𝑡] 𝒓
(𝑗) ∼ Geometric(𝑝)𝑑 since it is a sum of𝑘−𝑡

negative binomials NB(1

𝑘−𝑡 , 𝑝) (see e.g. [GX17]). Since 𝑝 = 1−𝑒−Y/2
this means that Algorithm 2 has the same output distribution as

Algorithm 1 applied to an input with sum �̃� = 𝒙 + �̃�, where �̃� =∑
𝑗∈[𝑡] 𝒓

(𝑗)
is the additional noise added by the first 𝑡 parties. Since

neighboring input sums 𝒙 ∼ 𝒙′ translate to neighboring input sums

�̃� ∼ �̃�′ we conclude that Algorithm 2 is Y-differentially private.

Abbreviating 𝑖 =M(�̃�) and 𝑗 = arg maxℓ (𝒙ℓ) we have, similar

to the proof of Lemma 2,

roundΔ

(�̃� 𝑗 + 𝜼 𝑗

𝛾

)
≤ roundΔ

(
�̃�𝑖 + 𝜼𝑖

𝛾

)
⇒ �̃� 𝑗 − �̃�𝑖 ≤ 2𝛾Δ + 𝜼𝑖 − 𝜼 𝑗

⇒ 𝒙 𝑗 − 𝒙𝑖 ≤ 2𝛾Δ + 𝜼𝑖 − 𝜼 𝑗 − �̃� 𝑗 + �̃�′𝑖
⇒ |𝒙M(𝒙) −max

ℓ
(𝒙ℓ) | ≤ 2𝛾Δ + 2 ∥𝜼∥∞ + 2 ∥�̃�∥∞ .

Since ∥𝜼∥∞ > 4 ln(𝑑)/Y and ∥�̃�∥∞ > 4 ln(𝑑)/Y each happen with

probability at most 1/𝑑 (the latter because the sum is dominated by

a geometric distribution with parameter 𝑝) we are done. □

4.1 Secret-sharing: notation and techniques
Our distributed protocol is performed by 𝑘-servers denoted by

S = {𝑆1, . . . , 𝑆𝑘 }. We assume that at most 𝑡 of them are corrupted by

a semi-honest adversary (i.e., they follow the protocol specifications

but then will try to infer more information by collecting their data)

with 𝑘 = 2 · 𝑡 +1. We let ℎ = 𝑘 − 𝑡 = 𝑡 +1 be the minimum number of

guaranteed honest servers. As it is common in the secure multipary

computation literature, we assume a single, monolithic adversary

that controls all corrupted parties and collects all their internal

states. This can be thought of as an adversary who has installed

“spyware” on the corrupted servers: the adversary is able to observe

everything that the servers observe, but not to change the code

they are running. Finally, the servers will have slightly asymmetric

roles in the protocol. The first ℎ servers are called the computation
servers, whereas the last 𝑡 servers are called the supporting servers
(note that by our assumptions on 𝑘 and 𝑡 , at least one computation

server is guaranteed to be honest, while we can tolerate that all the

supporting servers might be dishonest).

We use an additive integer secret sharing scheme among the com-

puting servers 𝑆1, 𝑆2, . . . , 𝑆ℎ . We use [𝑥]Z to denote a secret sharing
of some integer 𝑥 , consisting of shares 𝑥1, . . . , 𝑥ℎ ∈ Z such that∑ℎ
𝑖=1

𝑥𝑖 = 𝑥 . For every 𝑖 ∈ [ℎ], 𝑆𝑖 has 𝑥𝑖 . In order to securely share

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 3 Primitives for Integer Secret Sharing

1: Addition. [𝑧]Z ← [𝑥]Z+[𝑦]Zmeans that each server 𝑆𝑖 locally

adds their shares, i.e., 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 leading to 𝑧 = 𝑥 + 𝑦.
2: Truncation. [𝑦]Z ← truncΔ ([𝑥]Z, 𝑐) means that each server

𝑆𝑖 locally computes 𝑦𝑖 = ⌊𝑥𝑖/2𝑐 ⌉ for all 𝑖 ∈ [ℎ], removing the

least significant 𝑐 bits from each share 𝑥𝑖 and rounding, leading

to 𝑥/2𝑐 − Δ ≤ 𝑦 ≤ 𝑥/2𝑐 + Δ, for a value Δ analyzed below.

3: Conversion. [𝑦]
2
𝑎 ← convert([𝑥]Z) means that each server

𝑆𝑖 locally computes 𝑦𝑖 = 𝑥𝑖 mod 2
𝑎
, leading to 𝑦 = 𝑥 assuming

𝑥 ≤ 2
𝑎
This is correct because

∑
𝑖∈[ℎ] (𝑥𝑖 mod 2

𝑎) mod 2
𝑎 =∑

𝑖∈[ℎ] 𝑥𝑖 mod 2
𝑎 = 𝑥 mod 2

𝑎
.

an ℓ-bit long secret, we need that the shares are chosen uniformly

at random among integers with ℓ + ^ bits. This results in statistical

security with negligible security error 2
−^

against any adversary,

even if computationally unbounded. That is, the security of our

distributed protocol does not rely on any computational assump-

tion. Our distributed protocol performs additions and truncation of

integer secret sharings, which are detailed in Algorithm 3.

Truncation error. Here we analyze Δ = |𝑥/2𝑐 −∑𝑖∈[ℎ] ⌊𝑥𝑖/2𝑐 ⌉ |,
the possible error incurred by truncation. The error depends on ℎ,

the number of shares of the secret. Consider the case of ℎ = 2: if

the input is secret shared among two servers, at most one carry bit

may be missed when truncating the lower order bits. To generalize

to larger ℎ, first observe that division and rounding incurs an error

of at most 𝑒𝑖 = |𝑥𝑖/2𝑐 − ⌊𝑥𝑖/2𝑐 ⌉ | ≤ 1/2. For shared integer 𝑥 and

shares 𝑥1, . . . , 𝑥ℎ , when we divide 𝑥/2𝑐 , we can write the result

as 𝑥1/2𝑐 + 𝑥2/2𝑐 + · · · + 𝑥ℎ/2𝑐 . Then we can formulate the total

error Δ = |∑𝑖∈[ℎ] 𝑥𝑖/2𝑐 − ⌊𝑥𝑖/2𝑐 ⌉ | ≤
∑
𝑖∈[ℎ] 𝑒𝑖 ≤ ℎ/2 by the

triangle inequality and then applying our bound for 𝑒𝑖 . Notice that

truncΔ ([𝑥]Z, 𝑐) exactly implements roundΔ (𝑥/2𝑐) with Δ = ℎ/2.

4.2 A secure and differentially private
distributed protocol for selection

We are finally ready to describe, in Algorithm 4, a secure distributed

implementation of the differentially private mechanism from Algo-

rithm 2 (the “ideal functionality”). The protocol proceeds as follows:

In Line 4, all servers (computing and supporting) locally sample

noise according to the negative binomial distribution, with param-

eter inversely proportional to the number of honest parties. The

supporting servers need now to share their noise contribution to

the computing servers in Line 5 (this can be done assuming using

shares of size ^ + log(𝑛) assuming log(𝑛) as an upper bound on the

noise magnitude). This assumption is reasonable, since the bound

holds with high probability based on tail bound analysis. If the sam-

pled noise were to exceed the bound the protocol can, for example,

report that the computation failed without compromising privacy.

Alternatively, we can add this small probability to the differential

privacy parameter delta. In Line 6 the computing servers exploit the

linear nature of the secret sharing scheme to locally aggregate the

input vectors and all noise contributions, in secret shared form. To

do so, they each add all input shares and noise shares received from

the supporting parties, as well as their own randomly generated

noise. To increase efficiency the result is then truncated in Line 7,

Algorithm 4 Distributed-noise-and-round (The MPC Protocol)

1: Input: Integer secret-sharings
[
𝒙 (1)

]
Z
, . . . ,

[
𝒙 (𝑛)

]
Z
represent-

ing values in {0, 1}𝑑
2: Parameters: 𝑝 (noise parameter), 𝑐 (bits to truncate),𝑘 (number

of servers), 𝑡 (upper bound on corrupted servers), ^ (security

parameter used in integer secret sharing), 𝑎 = log(𝑛) − 𝑐 + 1

(bits for modular secret sharing)

3: [corr]
2
𝑎 ← preprocessing(𝑆1, . . . , 𝑆𝑘)

4: ∀𝑗 ∈ [𝑘], 𝑆 𝑗 samples 𝒓 (𝑗) ∼ NB
𝑑 (1/(𝑘 − 𝑡), 𝑝)

5: ∀𝑗 ∈ [𝑡 + 2, 𝑘], 𝑆 𝑗 secret-shares 𝒓 (𝑗) as
[
𝒓 (𝑗)

]
Z
and send the

corresponding shares to 𝑆1, . . . , 𝑆ℎ .

6: 𝑆1, . . . , 𝑆ℎ evaluate [𝒛]Z =

[∑
𝑖∈[𝑛] 𝒙

(𝑖) +∑𝑗∈[𝑘] 𝒓
(𝑗)

]
Z
.

7: 𝑆1, . . . , 𝑆ℎ compute [𝒚]Z = truncΔ ([𝒛]Z, 𝑐)
8: 𝑆1, . . . , 𝑆ℎ convert [𝒚]

2
𝑎 ← convert([𝒚]Z)

9: 𝑆1, . . . , 𝑆ℎ execute [𝑜]
2
𝑎 ← ArgMax([𝒚]

2
𝑎 , [corr]

2
𝑎).

10: Output: Open and output 𝑜 = argmax𝑗∈[𝑑] [𝒚]2𝑎

by removing the lowest 𝑐 bits (essentially dividing every value by

2
𝑐
). The secret-sharing are then converted from integer to modular

form in Line 8, to be compatible with the the secure ArgMax proto-

col which is invoked in Line 9. This protocol consumes correlated

randomness which is generated by all servers during a preprocess-

ing phase in Line 4. More details on how the ArgMax protocol and
its preprocessing are implemented are given in Section 4.3.

Correctness. We argue that the output of Algorithm 4 has the

same distribution as the one in the ideal functionality specified in

Algorithm 2. First, note that the inputs are a secret shared version

of the same inputs for the ideal functionality. In Line 4, noise is

drawn according to the same distribution specified in Line 3 of

Algorithm 2. Secret sharing and addition performed in Lines 5

and 6 correctly add the input values and random samples. In Line 7

we truncate using the secret shared version of trunc with the same

output in secret shared form, and in Line 8 the conversion to secret

sharing over a ring from Algorithm 3 is applied, and 𝑎 is chosen

to be of appropriate size for this conversion to be lossless. Lastly,

correctness of the ArgMax protocol used in Line 9 guarantees that

the algorithm outputs the correct argmax value.

Security. Intuitively, security of the distributed protocol follows

from the fact that the entire computation is performed over secret-

shared values and that all employed sub-protocols are secure. More

precisely, as it is common in the MPC literature, we can prove that

the protocol is secure by providing a simulator that, given access to

the input/output of the ideal functionality (including the leakage)

simulates the view of the corrupted servers in the execution of the

protocol. In our case the simulator, which takes as input the set of

corrupted servers, and their inputs/outputs, will simulate the view

of the corrupted servers essentially by running an execution of the

real protocol but where the shares of all the honest parties are set

to some dummy value (e.g., 0). The view of the corrupted servers

contains all their shares and all the messages that they receive from

the honest servers. This includes the messages that they receive

from the honest servers in the preprocessing phase which, by

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Differentially Private Selection from Secure Distributed Computing Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

assumption on the security of the preprocessing protocol, can

be efficiently simulated. The view contains also the shares of the

noise generated by honest supporting servers in Line 4 which can be

simulated (with statistical security 2
−^

) by picking uniform random

shares of the same size log(𝑛) +^ bits as in the protocol. The Lines 6-

8 only consist of local computation and can therefore be trivially

simulated. Note however that, due to the local addition of the noise

by the computing servers, the shares of [𝒚]
2
𝑎 at the end of Line 8

might not be uniformly random. This does not matter, since the

shares are never revealed but instead used as input in the secure

ArgMax sub-protocol, which secure as shown in [EGK
+
20] (and

in particular, internally, only reveals results of secure comparison

protocols). Overall, the protocol in Algorithm 4 can be efficiently

simulated with statistical error 2
−^

(due to the statistical security

of the integer secret-sharing scheme) having access to the ideal

functionality specified in Algorithm 2. This leads to the following:

Corollary 4.1. Algorithm 4with 𝑝 = 1−𝑒−Y/2 is (Y, 2−^)-differentially
private in the view of an adversary that semi-honestly corrupts any 𝑡
servers. It has the same error as Algorithm 2.

4.3 Details on the ArgMax protocol and
preprocessing

There are multiple possible approaches for computing the exact

argmax within an MPC protocol. We choose the state-of-the-art

solution, which is to use a tree data structure, where the maximum

of two values is compared to the maximum of two other values in

each step. This approach requires O(𝑑) comparisons when finding

the argmax of 𝑑 values. To perform the comparisons we use in turn

the integer comparison protocol of [EGK
+
20], which requires that

the parties hold som correlated random variables generated in the

precomputation phase.

We proceed now to describe the necessary correlated random-

ness to execute the comparison from [EGK
+
20], and how to gen-

erate it: we let all 𝑘 servers collaborate in producing the corre-

lated randomness. This allows us to achieve unconditional security

(thanks to the honest majority assumption) but also to achieve high

efficiency using the the protocol from [ACD
+
19]. This protocol

allows us to perform MPC over Z2
𝑎 . In a nutshell, their idea is to

consider a so called Galois extension 𝑅 of Z2
𝑎 . In the ring 𝑅 we can

do Shamir-style secret sharing (of values in Z2
𝑎) and follow the

standard blueprint for honest majority MPC, to perform secure ad-

dition and multiplication. This implies an overhead factor log
2
(𝑘),

which is necessary as Shamir-style secret sharing cannot be done

over Z2
𝑎 directly.

The correlated randomness needed by the protocol from [EGK
+
20]

consists of additively shared random numbers modulo 2
𝑎
, together

with the bits in these numbers, also in shared form. Concretely,

this means that the shares add modulo 𝑎 to the secret in question.

Clearly, if we can create shared random bits [𝑏0]2𝑎 , ..., [𝑏2
𝑎−1]2𝑎 ,

this would be sufficient. Namely, if we let 𝑟 be the number with

binary expansion 𝑏0, 𝑏1, ..., 𝑏2
𝑎−1 , then using only local computation

we can construct

[𝑟]2𝑎 =

𝑎−1∑︁
𝑖=0

2
𝑖 · [𝑏𝑖]2𝑎 .

In order to get a random shared bit, we can use a trick suggested

in [DEF
+
19]. It was shown there how to generate a random shared

bit using secure arithmetic modulo a 2-power, at the cost of a

constant number of secure multiplications. Using their algorithm,

and the protocol from [ACD
+
19] to do the secure arithmetic, we

can generate a sharing [𝑐]𝑅 , where 𝑐 is the random bit and [·]𝑅
refers to the secret-sharing scheme from [ACD

+
19]

1

Finally, [𝑐]𝑅 can be converted to [𝑐]2𝑎 using only local compu-

tation. Namely, if we let _1, ..., _ℎ be the Lagrange coefficients one

would use to reconstruct a secret over 𝑅, and 𝑠1, ..., 𝑠ℎ be the shares

of 𝑐 held by the first ℎ servers, we would have 𝑐 =
∑ℎ
𝑖=1

_𝑖𝑠𝑖 . So

we can think of the _𝑖𝑠𝑖 -values as additive shares of 𝑐 . Each such

share is an element from 𝑅, but it can be represented as a vector of

log
2
(𝑘) numbers from Z2

𝑎 . Since addition in 𝑅 is component-wise

addition, it turns out that each server can keep only one number

from its additive share, discard the rest, and the result will be [𝑐]2𝑎 .
To conclude, note that all three protocols in [DEF

+
19], [EGK

+
20]

and [ACD
+
19] were originally presented for the malicious secu-

rity setting, but since we deal with semi-honest corruptions their

protocol can be greatly simplified in our setting.

The 3 servers case. We note that our protocol can be highly sim-

plified in the case of 𝑘 = 3. Under the assumption of honest majority

this gives ℎ = 2 and 𝑡 = 1. Thus we have 2 computing servers and a

single supporting server. This means that in Line 4 of the protocol

we can simply have the supporting server act as a “dealer” and

produce the correlated randomness locally, and then secret share it

among the computation servers, instead of having to run a secure

protocol among all 3 servers to generate the correlated randomness.

This still guarantees security since if the dealer is corrupted then

both of the computing servers must be honest (by assumption on

𝑡 ≤ 1).

5 EMPIRICAL EVALUATION
Inspired by the evaluation of the state-of-the-art differentially pri-

vate selection algorithmPermute-and-flip [MS20], we run our bench-

marks on the real-world data from DPBench [HMM
+
16]. Specifi-

cally, we use the same five representative datasets (Table 1, full table

in Appendix A.4), and discretize them to 𝑑 = 1024 as in [MS20] .

To show the scalability of our MPC protocol, we also benchmark

performance using synthetic data.

Utility. We implement and run our utility benchmarks using

Python 3.11.3, measuring error for 1000 runs as the absolute dif-

ference between the true argmax value, and the one chosen by

the algorithm. As there are no direct comparisons of differentially

private algorithms that use the same trust model (the multi-central

model), we compare to differentially private algorithms from both

the central model (with stronger trust assumptions), and the lo-

cal model (with weaker trust assumptions). Representing the best

known error for the centralized model, we show Permute-and-flip,

as well as the Exponential mechanism [MT07]. For the local model,

we compare to bitwise Randomized respone [War65], as used in

RAPPOR [EPK14]. As a worst case comparison we also show the

error of uniformly at random reporting an index as argmax. Lastly,

1
An different preprocessing, suggested in [EGK

+
20], is less efficient, as it requires a

super-constant number of secure multiplications per bit.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

we show the error of using MPC to compute argmax, without

guaranteeing differential privacy, via the use of Secure aggrega-

tion [GX17].

In Figure 1, we highlight the error by varying Y and 𝑟 on three

of the datasets from DPBench, for all datasets see Appendix A.4.

We expect Noise-and-round to perform similar to the centralized

algorithms (Permute-and-flip, Exponential mechanism) due to a low

value of 𝑘 (𝑘 = 3), and better than the local algorithm (Randomized

respone) and a purely random choice. As we can see, Noise-and-

round performs similar to Permute-and-flip, and better than the

Exponential mechanism. When Y increases, error decreases and

subsequently reaches 0 (note that the line disappears because of

the log-scale). Interestingly, low values for Y cause Randomized

respone and Secure aggregation aggregation to perform similar to

the completely random choice.

Additionally, we further show the impact of varying the remain-

ing bits 𝑟 on the different datasets in Figure 2. The results show

as expected that the effect of rounding is data dependent. HEPTH

produces accurate results even when dropping a significant amount

of bits, e.g., 𝑟 ≥ 2 (dropping 9 bits or more) gives similar accuracy

in low privacy regimes (notice a change starting at Y = 0.18) as

no rounding. SEARCHLOGS achieves similar accuracy for 𝑟 ≥ 4

(dropping 10 bits or less) and no rounding at all, and PATENT has

a similar behavior for 𝑟 ≥ 6 (also dropping 10 bits or less). These

results indicate that rounding can indeed be used to save commu-

nication overhead of the MPC protocol, while still maintaining

accurate results.

Runtime and communication. The bottleneck for MPC in both

time and communication lies in the computation of argmax using

comparison operations, so we benchmark this part of the protocol.

All benchmarks were carried out on AWS t3.xlarge instances, us-

ing MP-SPDZ [Kel20] to implement the protocol in the 3 servers

case. In our experiments we vary the input dimensions (𝑑), and the

remaining bits (𝑟). We report our results including preprocessing

such as multiplication triples, and all time measurements reported

are the average of ten executions for the same computation.

For each of three datasets from DPBench, we report the maxi-

mum value in each dataset, the number of bits necessary to repre-

sent integers in this range, as well as the runtimes and data sent

in Table 1. Notice that while communication scales linearly in the

number of bits necessary to represent the data, the time necessary

for the evaluations are very close, and the variance in measure-

ments is quite high. The last row in the table reports the necessary

time and data necessary when truncating every entry in the dataset

to 5 bits using our approach. Note that, due to security of MPC

protocols, the runtime of the protocol cannot depend on the actual

values that are being computed upon, but only their size. Therefore,

the benchmarks after truncation are agnostic of which dataset we

start from. The time and communication reported in the last line of

the table correspond to the utility reported for 𝑟 = 5 in Figure 1, and

the utility of the approach without truncation is reported as well.

We observe that by truncating values, the time and communication

necessary for these comparisons is significantly reduced. Practition-

ers may choose howmany bits to truncate based on their utility and

time requirements, as well as the available computational resources.

Table 1: Benchmark results for given input

Results

Dataset Max

value

(𝑛)

Bits Time

(s)

Data

sent

(MB)

PATENT 59602 16 1.74,

std=0.12

2.97

SEARCHLOGS 11160 14 1.81,

std=0.18

2.70

HEPTH 1571 11 1.73,

std=0.07

2.29

Truncated, 𝛼 = 0.125 31 5 1.38,

std=0.20

1.39

The average time required per data point 𝑑 and power of two in

the range 𝑟 is 0.15 ms, and the average communication is 0.22 kB.

Note that while the communication scales linearly in 𝑑 and 𝑟 , time

scales linearly in 𝑑 but logarithmically in 𝑟 . For the chosen range,

the complexity can be approximated as linear in 𝑟 as well.

For synthetic data, the evaluated ring moduli 2
5, 210, 215, 220, and

2
25

could correspond either to different value ranges in a dataset

before truncation or the resulting range of values after truncation.

Based on experiments using synthetic data with sizes 16, 1024, 2048,

4096, and 8192, Figure 3 confirms the linear growth of necessary

time and communication in 𝑑 , as well as the logarithmic growth

of time and linear growth in required communication in 𝑟 . As

expected, the savings in cost and communication by performing

truncation increases with the size of the dataset and the range of

values. Truncating even a few bits results in significant savings in

communication and time, particularly when the dataset has several

thousands of entries.

6 RELATEDWORK
The exponential mechanism, as well as “report-noisy-max” [DR14],

offer asymptotically optimal solutions to the selection problem in

the central model. A mechanism with better constant factors is

permute-and-flip introduced by [MS20]. We compare with their

work by evaluating selection on the same benchmarking datasets

and achieve comparable utility using the weaker trust assumptions

of multi-central differential privacy.

The setting where data is not, and cannot, be gathered by a cen-

tral entity, was a motivation for local differential privacy [DJW13],

where a differentially private function of each participant’s data is

released. One such protocol for binary data is the classical random-
ized response protocol by Warner [War65]. We can apply random-

ized response to each bit of a binary vector (splitting the privacy

budget), as seen for example in [EPK14], which allows us to esti-

mate the sum of vectors with an error proportional to

√
𝑛, where 𝑛

is the number of vectors.

Recent work [BEM
+
17, EFM

+
19, CSU

+
19b, Ste20] has increas-

ingly focused on models of differential privacy that lie between the

central and local models. The shuffle model [BEM
+
17, CSU

+
19b] is

built on trust assumptions that are weaker than the central model,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Differentially Private Selection from Secure Distributed Computing Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0.
06

0.
14

0.
38

0.
30

0.
18

0.
34

0.
26

0.
10

0.
22

0.
02

ε

10−1

101

103

A
bs

ol
ut

e
di

st
an

ce
to

tr
ue

m
ax

HEPTH

0.
01

7
0.

01
5

0.
01

1
0.

01
3

0.
00

9
0.

00
7

0.
00

5
0.

01
9

0.
00

3
0.

00
1

ε

101

103

SEARCHLOGS

0.
07

0.
13

0.
11

0.
19

0.
05

0.
03

0.
09

0.
15
0.

17
0.

01

ε

100

102

104

PATENT

Exponential mechanism

Permute-and-flip

Randomized response

Secure aggregation

Random choice

Noise-and-round, r=5

Noise-and-round, r=10

Noise-and-round, no rounding

Figure 1: Impact of Y on accuracy displayed in log-log scale. Error is measured as the absolute difference between the real max,
and the value of the privately chosen argmax. Lower distance is better. Notice log scale means 0 is not included, which causes
some of the lines to disappear from the plot when error reaches 0.

0.
06

0.
14

0.
38

0.
30

0.
18

0.
34

0.
26

0.
10

0.
22

0.
02

ε

10−1

101

A
bs

ol
ut

e
di

st
an

ce
to

tr
ue

m
ax

HEPTH

0.
01

7
0.

01
5

0.
01

1
0.

01
3

0.
00

9
0.

00
7

0.
00

5
0.

01
9

0.
00

3
0.

00
1

ε

101

103

SEARCHLOGS

0.
07

0.
13

0.
11

0.
19

0.
05

0.
03

0.
09

0.
15

0.
17

0.
01

ε

100

102

PATENT

Noise-and-round, r=2

Noise-and-round, r=4

Noise-and-round, r=6

Noise-and-round, r=8

Noise-and-round, r=10

Noise-and-round, no rounding

Figure 2: Impact of rounding to 𝑟 remaining bits on accuracy displayed in log-log scale. Error is measured as the absolute
difference between the real max, and the value of the privately chosen argmax. Lower distance is better.

in particular a trusted shuffler, while achieving good utility for

some classes of functions. However, [CU21] show an exponential

separation between the central and (robust) shuffle models for the

selection problem, motivating the need for alternative models.

Compared to the shuffle model, the multi-central model dis-

tributes the computation between multiple servers, as opposed

to relying on the inputs being sent using an anonymous chan-

nel (e.g., using onion routing [DMS04]). [CY23] provide lower

bounds for non-interactive multi-server mechanisms. The first

work to consider the combination of differential privacy and MPC

is [DKM
+
06], which focuses on distributed noise generation; how-

ever, their original work focuses on malicious adversaries, while

we operate in the semi-honest security model. Some related works

focus on replacing the trusted aggregator in DP with an MPC pro-

tocol for a variety of computations, while we focus on selection.

[AMFD12, EKM
+
14, BK20] implement the exponential mechanism

with the goal of selection, yet they they perform sampling in MPC

using standard techniques, a step which we avoid by allowing

computing servers to sample noise locally. [BK21] focus on heavy

hitters in their work. One particularly prominent application is

secure aggregation [GX17, BIK
+
17, MPBB19, AG21], used for ex-

ample in federated learning, which lends itself to the use of MPC

for differentially private computations and has been implemented

in practice. Secure aggregation reveals a noisy sum of inputs and

requires larger error than our approach, which reveals only the

output. A work closely related to ours is that of Champion, shelat

and Ullman [CsU19a]: here the authors design an efficient circuit

for sampling a large batch of independent coins with a given bias.

As an application of their sampling technique, they provide a se-

cure distributed implementation of the differentially private report-

noisy-max mechanism. They report on an implementation for the

setting of two-parties, with semi-honest security, using garbled

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 2048 4096 8192
dimensions d

0

10

20

30

d
at

a
se

nt
(M

B
)

0 2048 4096 8192
dimensions d

0

5

10

15

ti
m

e
(s

)

0 2048 4096 8192
dimensions d

0

20

40

ti
m

e
(s

)

r = 5

r = 10

r = 15

r = 20

r = 25

(a) Communication and time for 𝑑 in range 16-8192.

0 10 20 30
r

0

10

20

30

d
at

a
se

nt
(M

B
)

0 10 20 30
r

0

5

10

15

ti
m

e
(s

)

0 10 20 30
r

0

10

20

30

d
at

a
se

nt
(M

B
)

d = 16

d = 1024

d = 2048

d = 4096

d = 8192

(b) Communication and time for 𝑟 in range 5-30.

Figure 3: MPC overhead, scaling with dimensions and remaining bits; lower is better

circuits. As the security models of the two implementations are dif-

ferent (3 parties in our case vs. 2 parties in their case, in both cases

tolerating at most one semi-honest corruption), using different un-

derlying technologies (secret-sharing vs. garbled circuits) making a

meaningful direct comparison of the benchmarks results is some-

how challenging. However, we note that our solution uses between

1 − 5% of their communication (depending on our rounding factor).

For instance, at 𝑑 = 8192, their solution communicates 600𝑀𝐵2

while ours communicates between 5 − 30𝑀𝐵. As both solutions

scale identically with𝑑 , the comparison does not change at different

levels of 𝑑 . The main reason for this significant difference in band-

width consumption is the fact that we can generate secret-shared

samples from a geometric distribution without any interaction,

by having the parties sample noise locally and then adding these

samples to the secret-shared data. In contrast [CsU19a] performs

the noise sampling by evaluating a binary circuit securely using

garbled circuits. In terms of running times, the times are essentially

equivalent but the comparison is made even less meaningful since

the two implementations are developed on top of different MPC

frameworks (Obliv-C for them and MP-SPDZ for us).

REFERENCES
[ACD

+
19] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, and Chen

Yuan. Efficient information-theoretic secure multiparty computation over

Z/𝑝𝑘Z via galois rings. In Dennis Hofheinz and Alon Rosen, editors,

TCC 2019, Part I, volume 11891 of LNCS, pages 471–501. Springer, Heidel-
berg, December 2019.

[AG21] Apple and Google. Exposure Notification Privacy-preserving Analytics

(ENPA). White paper, 2021.

[AMFD12] Dima Alhadidi, Noman Mohammed, Benjamin C. M. Fung, and Mourad

Debbabi. Secure distributed framework for achieving epsilon-differential

privacy. In Proceedings of the 12th International Conference on Privacy
Enhancing Technologies, PETS’12, page 120–139, Berlin, Heidelberg, 2012.
Springer-Verlag.

[BEM
+
17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth

Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes,

and Bernhard Seefeld. Prochlo: Strong Privacy for Analytics in the Crowd.

In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 441–459, New York, NY, USA, 2017. Association for

Computing Machinery.

[BIK
+
17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,

H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and

Karn Seth. Practical secure aggregation for privacy-preserving machine

learning. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

2
There appears to be a typo in their Table 3 where communication is reported in bytes,

but the symbol for bits is used instead.

Dongyan Xu, editors, ACM CCS 2017, pages 1175–1191. ACM Press, Octo-

ber / November 2017.

[BK20] Jonas Böhler and Florian Kerschbaum. Secure sublinear time differentially

private median computation. In Network and Distributed System Security
Symposium, 2020.

[BK21] Jonas Böhler and Florian Kerschbaum. Secure multi-party computation

of differentially private heavy hitters. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’21,
page 2361–2377, New York, NY, USA, 2021. Association for Computing

Machinery.

[CsU19a] Jeffrey Champion, abhi shelat, and Jonathan Ullman. Securely sampling

biased coinswith applications to differential privacy. In Lorenzo Cavallaro,

Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019, pages 603–614. ACM Press, November 2019.

[CSU
+
19b] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim

Zhilyaev. Distributed Differential Privacy via Shuffling. In Yuval Ishai

and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Lecture Notes in Computer Science, pages 375–403, Cham, 2019. Springer

International Publishing.

[CU21] Albert Cheu and Jonathan Ullman. The limits of pan privacy and shuffle

privacy for learning and estimation. In Proceedings of the 53rd Annual
ACMSIGACT Symposium on Theory of Computing, STOC 2021, pages 1081–

1094, New York, NY, USA, 2021. Association for Computing Machinery.

[CY23] Albert Cheu and Chao Yan. Necessary Conditions in Multi-Server Differ-

ential Privacy. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference (ITCS 2023), volume 251 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 36:1–36:21, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[DEF
+
19] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller,

Peter Scholl, and Nikolaj Volgushev. New primitives for actively-secure

MPC over rings with applications to private machine learning. In 2019
IEEE Symposium on Security and Privacy, pages 1102–1120. IEEEComputer

Society Press, 2019.

[DJW13] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local Privacy

and Statistical Minimax Rates. In 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, pages 429–438, 2013.

[DKM
+
06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,

and Moni Naor. Our data, ourselves: Privacy via distributed noise genera-

tion. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 486–503. Springer, Heidelberg, May / June 2006.

[DKS
+
21] Zeyu Ding, Daniel Kifer, Thomas Steinke, Yuxin Wang, Yingtai Xiao,

Danfeng Zhang, et al. The permute-and-flip mechanism is identical to

report-noisy-max with exponential noise. arXiv preprint arXiv:2105.07260,
2021.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Shai Halevi and

Tal Rabin, editors, Theory of Cryptography, number 3876 in Lecture Notes

in Computer Science, pages 265–284. Springer Berlin Heidelberg, 2006.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-

Generation Onion Router. Technical report, Defense Technical Informa-

tion Center (DTIC), 2004.

[DR14] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differ-

ential Privacy. Foundations and Trends® in Theoretical Computer Science,
9(3-4):211–407, 2014.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Differentially Private Selection from Secure Distributed Computing Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[EFM
+
19] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,

Kunal Talwar, and Abhradeep Thakurta. Amplification by Shuffling:

From Local to Central Differential Privacy via Anonymity. In Proceed-
ings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Proceedings, pages 2468–2479. Society for Industrial and Applied
Mathematics, 2019.

[EGK
+
20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter

Scholl. Improved primitives for MPC over mixed arithmetic-binary cir-

cuits. In DanieleMicciancio and Thomas Ristenpart, editors,CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 823–852. Springer, Heidelberg, Au-
gust 2020.

[EKM
+
14] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and

Ivan Pryvalov. Differentially private data aggregation with optimal utility.

In Proceedings of the 30th Annual Computer Security Applications Confer-
ence, ACSAC ’14, page 316–325, New York, NY, USA, 2014. Association

for Computing Machinery.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In Proceed-
ings of the 2014 ACM SIGSACConference on Computer and Communications
Security, CCS ’14, pages 1054–1067, New York, NY, USA, 2014. ACM.

[GX17] Slawomir Goryczka and Li Xiong. A Comprehensive Comparison of

Multiparty Secure Additions with Differential Privacy. IEEE Transactions
on Dependable and Secure Computing, 14(5):463–477, 2017.

[HMM
+
16] Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, and

Dan Zhang. Principled evaluation of differentially private algorithms

using dpbench. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16. Association for ComputingMachinery,

2016.

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party compu-

tation. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,

editors, ACM CCS 2020, pages 1575–1590. ACM Press, November 2020.

[MPBB19] Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and

Tucker Hybinette Balch. Smpai: Secure multi-party computation for

federated learning. In Proceedings of the NeurIPS 2019 Workshop on Robust
AI in Financial Services, 2019.

[MS20] RyanMcKenna and Daniel Sheldon. Permute-and-Flip: A newmechanism

for differentially private selection. 34th Conference on Neural Information
Processing Systems (NeurIPS 2020),, 33:193–203, 2020.

[MT07] F. McSherry and K. Talwar. Mechanism Design via Differential Privacy.

In Symposium on Foundations of Computer Science (FOCS). IEEE, 2007.
[Ste20] Thomas Steinke. Multi-Central Differential Privacy. arXiv preprint, 2020.

arXiv:2009.05401.

[War65] Stanley L. Warner. Randomized Response: A Survey Technique for Elimi-

nating Evasive Answer Bias. Journal of the American Statistical Associa-
tion, 60(309):63–69, 1965.

A SUPPLEMENTARY MATERIAL
A.1 Sensitivity of Rounding
Our privacy analysis will need the property (2), repeated here for

convenience:����roundΔ (
𝑥 + [
𝛾

)
− roundΔ

(
𝑥 + [
𝛾

)���� ≤ 1 . (2)

This bound follows from how the rounding function is implemeted

in our MPC protocol. Note in particular that in this case we are not

interested in the rounding error (i.e., the difference between the

rounded value and the result of our approximate rounding function)

but the sensitivity of the rounding function (i.e., the difference

between the result of the approximate rounding function on two

neighbouring inputs, regardless of their actual accuracy).

First remember that the users secret share 𝑥 to the computing

servers by picking ℎ − 1 uniformly random integers 𝑥1, . . . , 𝑥ℎ−1

from an appropriately large interval) and finally defining 𝑥ℎ =

𝑥−∑𝑖∈[ℎ−1] 𝑥𝑖 (resp. 𝑥ℎ = 𝑥−∑𝑖∈[ℎ−1] 𝑥𝑖), defining sharings [𝑥]Z
and [𝑥]Z. Note that it is crucial that in this phase of the analysis

we are fixing the randomness of both [and the random shares, and

we are only varying the input. Now remember that the rounding

function is being implemented by having each computing server

locally rounding their value which leads to

roundΔ

(
𝑥 + [
𝛾

)
=

∑︁
𝑖∈[ℎ]

⌊(𝑥𝑖 + [)/𝛾⌉ .

Thus we get that����roundΔ (
𝑥 + [
𝛾

)
− roundΔ

(
𝑥 + [
𝛾

)����
=

������ ∑︁𝑖∈[ℎ] ⌊(𝑥𝑖 + [)/𝛾⌉ −
∑︁
𝑖∈[ℎ]

⌊(𝑥𝑖 + [)/𝛾⌉

������
= | ⌊(𝑥ℎ + [)/𝛾⌉ − ⌊(𝑥ℎ + [)/𝛾⌉ | ≤ 1

Where the last inequality follows noticing that 𝑥, 𝑥 are at most 1

apart.

A.2 Privacy Analysis
As a warm-up we analyze an easier special case, after which we

handle the general case.

Lemma 4. If Δ = 0 and 𝛾 = 1, Algorithm 1 is Y-differentially
private.

Proof. LetM(𝒙) denote the output of Algorithm 1 on input

with sum 𝒙 ∈ Z𝑑 . Notice thatM(𝒙) = 𝑖 if and only if

𝒙𝑖 + 𝜼𝑖 ≥ max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]), (3)

where [𝑖′ > 𝑖] equals 1 if the condition 𝑖′ > 𝑖 holds and 0 otherwise.

Consider a neighboring dataset with sum �̄� . By definition of the

neighboring relation it follows that both the left and right hand

side of (3) change by at most 1 when replacing 𝒙 with �̄� . Using
independence and the tail bound on the geometric distribution, we

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 2: Complexity Analysis, 𝑘 > 3

Bits sent Rounds

Offline O(𝑑𝑎2𝑘 log𝑘) O(1)
Online O(𝑎𝑘𝑑) O(log𝑑 log𝑎)

Table 3: Complexity Analysis, 𝑘 = 3

Bits sent Rounds

Offline O(𝑑𝑎2) O(1)
Online O(𝑎𝑑) O(log𝑑 log𝑎)

bound

Pr[M(𝒙) = 𝑖]

=
∑︁
𝑦

Pr[max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]) = 𝑦] Pr[𝒙𝑖 + 𝜼𝑖 ≥ 𝑦]

≤
∑︁
𝑦

Pr[max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]) = 𝑦] Pr[𝒙𝑖 + 𝜼𝑖 ≥ 𝑦 + 2] 𝑒Y

= 𝑒Y Pr[𝒙𝑖 + 𝜼𝑖 ≥ max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]) + 2]

≤ 𝑒Y Pr[�̄�𝑖 + 𝜼𝑖 ≥ max

𝑖′≠𝑖
(�̄�𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖])]

= 𝑒Y Pr[M(�̄�) = 𝑖] .

By symmetry we also have Pr[M(�̄�) = 𝑖] ≤ 𝑒Y Pr[M(𝒙) = 𝑖], as
desired. □

We are ready to prove Lemma 1, which generalizes Lemma 4 to

any value of the parameters:

Proof. The key difference to the proof of Lemma 4 is that while

𝒙𝑖 + 𝜼𝑖 and �̄�𝑖 + 𝜼𝑖 differ by at most 1, we now use (2) to bound

Pr[M(𝒙) = 𝑖] by∑︁
𝑦

Pr

[
max

𝑖′≠𝑖

(
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)
= 𝑦

]
Pr

[
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
≥ 𝑦

]
≤
∑︁
𝑦

Pr

[
max

𝑖′≠𝑖

(
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)
= 𝑦

]
Pr

[
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
≥ 𝑦 + 2

]
𝑒Y

= 𝑒Y

Pr

[
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
≥ max

𝑖′≠𝑖

(
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)
+ 2

]
≤ 𝑒Y Pr

[
roundΔ

(
�̄�𝑖 + 𝜼𝑖

𝛾

)
≥ max

𝑖′≠𝑖

(
roundΔ

(
�̄�𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)]
= 𝑒Y Pr[M(𝑥) = 𝑖] .

By symmetry we also have Pr[M(�̄�) = 𝑖] ≤ 𝑒Y Pr[M(𝒙) = 𝑖],
completing the proof. □

A.3 MPC Protocol Analysis
We offer an analysis of the complexity associated with the oper-

ations performed by the servers in Algorithm 4, in terms of the

number of necessary communication rounds and the number of

bits communicated during the protocol. The local generation of

noise by each server and the generation of shares of this noise by

supporting servers incur no communication. However, one round

of communication is necessary in order for all supporting servers to

distribute their noise shares to the computing servers. Adding the

shared values and the noise vectors, as well as locally truncating the

resulting shares and converting them to shares over a ring, require

no communication. Since the argmax is clearly the bottleneck, we

will analyze that.

In order to run the ArgMax protocol, the preprocessing step in-

volves generating additive shares modulo 2
𝑎
for 𝑎(𝑑 − 1) random

bits, because each of 𝑑 − 1 comparisons requires shares of 𝑎 bits.

Specifically in the case of 3 servers, the dealer can generate these

shares locally, so only one round of communication to distribute

the shares is necessary, and the number of bits to communicate will

be O(𝑑𝑎2).
Preprocessing of each secret shared bit with more than 3 servers

is done using the techniques from [ACD
+
19]. This involves generat-

ing a random shared value and a constant number of multiplications.

This can be done while communicating O(𝑘) elements of the ring

over which the preprocessing is done. Due to the fact that we need

“Shamir-style” secret sharing for the multiplications, we need to use

a ring extension of Z2
𝑎 , where elements have size 𝑎 log(𝑘) bits, so

we get communication of O(𝑎𝑘 log(𝑘)) bits per shared random bit

and so a total of O(𝑎2𝑘 log(𝑘)) because we need 𝑎 random shared

bits. Since all these bits can be created in parallel, we can do them

all in a constant number of rounds. We also need O(𝑎) multipli-

cation triples for multiplying bits, these can be done in the same

complexity using the same techniques.

After precomputation is complete, running the ArgMax proto-

col requires O(𝑑) comparisons in a circuit structure with depth

O(log𝑑). Each comparison requires opening two secret shared val-

ues and executing two binary LT circuits. The LT circuit consists of

2𝑎 − 2 multiplications, including two share openings each, and can

be done using a circuit of depth log𝑎, where the depth indicates

the number of necessary rounds. Therefore, this step incurs O(𝑎𝑑)
share openings and multiplications, and O(log𝑎 log𝑑) rounds of
communication. Since 𝑘 servers are involved, these share open-

ings and multiplications require communication O(𝑎𝑘𝑑), which is

O(𝑎𝑑) if 𝑘 = 3.

In total, the total communication and number of rounds when

𝑘 > 3 is summarized in Table 2 and when 𝑘 = 3 is summarized in

Table 3.

A.4 Utility evaluation
Here we present an individual plot for running the algorithms on

each of the five datasets from DPBench. We pick the values of Y to

be as small as possible to capture when the most of the algorithms

converge to an error of 0.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Differentially Private Selection from Secure Distributed Computing Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40
ε

10−1

101

103

D
is

ta
nc

e
to

tr
ue

m
ax

Exponential mechanism

Permute-and-flip

Randomized response

Secure aggregation

Random choice

Noise-and-round, r=5

Noise-and-round, r=10

Noise-and-round, no rounding

Figure 4: HEPTH dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower is better.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020
ε

101

103

D
is

ta
nc

e
to

tr
ue

m
ax

Exponential mechanism

Permute-and-flip

Randomized response

Secure aggregation

Random choice

Noise-and-round, r=5

Noise-and-round, r=10

Noise-and-round, no rounding

Figure 5: SEARCHLOGS dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower
is better.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
ε

100

102

104

D
is

ta
nc

e
to

tr
ue

m
ax

Exponential mechanism

Permute-and-flip

Randomized response

Secure aggregation

Random choice

Noise-and-round, r=5

Noise-and-round, r=10

Noise-and-round, no rounding

Figure 6: PATENT dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower is
better.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
ε

100

101

102

103

D
is

ta
nc

e
to

tr
ue

m
ax

Exponential mechanism

Permute-and-flip

Randomized response

Secure aggregation

Random choice

Noise-and-round, r=5

Noise-and-round, r=10

Noise-and-round, no rounding

Figure 7: MEDCOST dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower is
better.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020
ε

101

102

103

104

D
is

ta
nc

e
to

tr
ue

m
ax

Exponential mechanism

Permute-and-flip

Randomized response

Secure aggregation

Random choice

Noise-and-round, r=5

Noise-and-round, r=10

Noise-and-round, no rounding

Figure 8: ADULTFRANK dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower
is better.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Differentially Private Selection from Secure Distributed Computing Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

A.5 Efficiency evaluation
All efficiency results for the five chosen datasets from DPBench are

reported in Table 4, including the maximum value in each dataset,

the number of bits necessary to represent integers in this range, as

well as the runtimes and data sent. The five datasets are the same

datasets chosen for evaluation by [MS20] in the Permute-and-flip

mechanism: PATENT, ADULTFRANK, SEARCHLOGS, MEDCOST,

and HEPTH.

Table 4: Benchmark results for given input

Results

Dataset Max

value

(𝑛)

Bits Time

(s)

Data

sent

(MB)

PATENT 59602 16 1.74,

std=0.12

2.97

ADULTFRANK 16836 15 1.83,

std=0.15

2.83

SEARCHLOGS 11160 14 1.81,

std=0.18

2.70

MEDCOST 2885 12 1.73,

std=0.12

2.43

HEPTH 1571 11 1.73,

std=0.07

2.29

Truncated, 𝛼 = 0.125 31 5 1.38,

std=0.20

1.39

13

	Abstract
	1 Introduction
	2 Technical Overview
	3 Algorithm in the central model
	4 Secure computation of differentially private selection
	4.1 Secret-sharing: notation and techniques
	4.2 A secure and differentially private distributed protocol for selection
	4.3 Details on the ArgMax protocol and preprocessing

	5 Empirical evaluation
	6 Related work
	References
	A Supplementary material
	A.1 Sensitivity of Rounding
	A.2 Privacy Analysis
	A.3 MPC Protocol Analysis
	A.4 Utility evaluation
	A.5 Efficiency evaluation

