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Differentially Private Selection from Secure Distributed
Computing

Anonymous Author(s)

ABSTRACT
Given a collection of vectors 𝒙 (1) , . . . , 𝒙 (𝑛) ∈ {0, 1}𝑑 , the selec-
tion problem asks to report the index of an “approximately largest”

entry in 𝒙 =
∑𝑛

𝑗=1
𝒙 ( 𝑗 ) . Selection abstracts a host of problems,

for example: Recommendation of a popular item based on user

feedback; releasing statistics on the most popular web sites; hyper-

parameter tuning and feature selection in machine learning. We

study selection under differential privacy, where a released index

guarantees privacy for individual vectors. Though selection can

be solved with an excellent utility guarantee in the central model

of differential privacy, the distributed setting where no single en-

tity is trusted to aggregate the data lacks solutions. Specifically,

strong privacy guarantees with high utility are offered in high trust

settings, but not in low trust settings. For example, in the popular

shuffle model of distributed differential privacy, there are strong

lower bounds suggesting that the utility of the central model cannot

be obtained. In this paper we design a protocol for differentially

private selection in a trust setting similar to the shuffle model—with

the crucial difference that our protocol tolerates corrupted servers

while maintaining privacy. Our protocol uses techniques from se-

cure multi-party computation (MPC) to implement a protocol that:

(i) has utility on par with the best mechanisms in the central model,

(ii) scales to large, distributed collections of high-dimensional vec-

tors, and (iii) uses 𝑘 ≥ 3 servers that collaborate to compute the

result, where the differential privacy guarantee holds assuming an

honest majority. Since general-purpose MPC techniques are not

sufficiently scalable, we propose a novel application of integer secret
sharing, and evaluate the utility and efficiency of our protocol both

theoretically and empirically. Our protocol improves on previous

work by Champion, shelat and Ullman (CCS ’19) by significantly

reducing the communication costs, demonstrating that large-scale

differentially private selection with information-theoretical guar-

antees is feasible in a distributed setting.

ACM Reference Format:
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1 INTRODUCTION
Differentialy private selection of the largest entry in a vector en-

ables data analysis on sensitive datasets—for example announcing
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the winning candidate in a vote, or identifying a common genetic

marker from a set of DNA sequences. While there exist solutions

to the selection problem with strong guarantees scaling logarithmi-

cally with dimension and independent of the size of vector entries

(e.g., [MS20]), they operate in the central model of differential pri-
vacy, which requires trust in a single party to perform the computa-

tion. Existing solutions with weaker trust assumptions, on the other

hand, scale poorly or require significantly more noise to maintain

privacy.

A pragmatic solution is to aim for a middle ground: distributing

trust among multiple parties. This setting is natural when a person

trusts a party (e.g., their local hospital) with their data, but not

every party (e.g., they may not want to share their data with every

hospital). In principle, every mechanism in the central model of dif-

ferential privacy could be simulated in such a distributed setting us-

ing techniques for secure multi-party computation (MPC), but that

approach is not viable in general because MPC is not yet practical

for large-scale general-purpose computations. Steinke [Ste20] intro-

duced a more restricted class of protocols working in the so-called

multi-central model, in which data holders submit information to 𝑘

servers, which then communicate and compute the output of the

mechanism. An attractive property of this model is that data holders

only need to submit a single message to each server, after which no

involvement is needed. Nevertheless, techniques such as additive

secret sharing allow protocols that have high utility and protect

privacy even if 𝑘 − 1 servers share their information. However,

MPC protocols tolerating 𝑘 −1 corruptions require computationally

heavy public-key encryption techniques and are not very efficient.

In this work we will therefore work with a slightly weaker notion

of privacy: the information gained by any minority of the servers

is differentially private. This allows the MPC solution to be much

more efficient and to achieve unconditional, information-theoretic

security requiring no computational assumptions – this makes our

protocol immediately secure even against the threats of quantum

computing.

A popular approach to differentially private protocols in dis-

tributed settings is the shuffle model [BEM+17, CSU+19b] in which

scalable techniques from cryptography are combined with tech-

niques from differential privacy, often allowing utility close to what

is possible in the central model. However, existing protocols for

selection use private summation, which is known to require much

more noise than selection. It is likely that there is a fundamental

obstacle to achieving better utility for selection in the shuffle model,

due to the lower bound of [CU21] which holds for a wide class

of mechanisms in the shuffle model. Another general tool for dis-

tributed differential privacy, secure aggregation [GX17], faces the

same problem, namely that the magnitude of noise needs to grow

polynomially with the dimension 𝑑 of the input vectors. Finally, we

mention local differential privacy (LDP) [DJW13], in which each in-

put vector is independently made differentially private, and where
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the magnitude of noise grows polynomially in the number 𝑛 of

input vectors.

Given that existing distributed methods for the selection problem

are far from matching what is possible in the central model, and

since we know that in principle it is possible to simulate the cen-

tral model with MPC techniques, Steinke [Ste20] suggests to solve

selection via an MPC implementation of argmax on secret-shared

sums, but states that further investigation about the practicality is

needed. In this work we perform such an investigation, modifying

the approach in several ways to achieve the best fit with scalable

MPC techniques. The contributions of this work are as follows:

• We present the Noise-and-round mechanism (Section 3), a

distributed differentially private selection algorithm with

utility guarantees close to the best algorithms in the central

model.

• We introduce the first demonstration of the multi-central

model for the selection problem using MPC techniques

(Section 4).

• We design a new combination of integer secret sharing

and existing MPC techniques which is tailored to perform a

secure and efficient distributed computation of differentially

private selection. In particular, this allows non-interactive

truncation of input data so that approximate comparisons

can be performed more efficiently than previously known.

• We provide an empirical evaluation of the utility and scal-

ability of Noise-and-round using both synthetic and real-

world data for the 3-servers case (Section 5).

2 TECHNICAL OVERVIEW
Problem formulation. The selection problem is perhaps the sim-

plest instance of “heavy hitters,” a problem ubiquitous in data analy-

sis andmachine learning. Given a collection of vectors 𝒙 (1) , . . . , 𝒙 (𝑛) ∈
{0, 1}𝑑 it asks to report the index of an “approximately largest” en-

try in 𝒙 =
∑𝑛

𝑗=1
𝒙 ( 𝑗 ) . More precisely, the task is to report an index 𝑖

such that 𝑥𝑖 ≥ maxℓ (𝑥ℓ ) −𝛼𝑛, where 𝛼 ∈ (0, 1) is an approximation

parameter specifying the (additive) error within which 𝑥𝑖 is largest.

This problem is a special case of general heavy hitters problems,

which asks for the most frequently occurring elements in a multiset.

Differential privacy. Differential privacy [DMNS06] formalizes

theworst-case information leakage of any output from an algorithm.

Given two neighboring datasets as input differential privacy limits

how much the output distributions can differ. We say that a pair of

datasets are neighboring, denoted 𝒙 ∼ 𝒙′, if and only if 𝒙 and 𝒙′

differ on exactly one element. In this paper, we work in the bounded

setting where the dataset’s size is fixed.

Definition 2.1 ([DMNS06] (𝜀, 𝛿)-differential privacy). A random-

ized mechanismM satisfies (𝜀, 𝛿) − differential privacy if and only

if for all pairs of neighboring datasets 𝒙 ∼ 𝒙′ and all set of outputs

𝑍 we have Pr[M(𝒙) ∈ 𝑍 ] ≤ 𝑒𝜀 Pr[M(𝒙′) ∈ 𝑍 ] + 𝛿 . IfM satisfies

(𝜀, 0)-DP we say that it satisfies 𝜀-differential privacy.

Our Approach. We first describe our approach in the central

model and then extend to the distributed setting. The technique is

rather standard, butwith a couple of deviations: following [DKS
+
21]

we use one-sided noise when computing the noisy argmax, though

Algorithm 1 Noise-and-round

1: Input: 𝒙 (1) , . . . , 𝒙 (𝑛) ∈ {0, 1}𝑑
2: Parameters: 𝜀 > 0, 𝛾 ≥ 1, Δ ≥ 0

3: sample 𝜼 ∼ Geometric(1 − 𝑒−𝜀/2)𝑑
4: 𝒘 ← roundΔ ((

∑𝑑
𝑗=1

𝒙 ( 𝑗 ) + 𝜼)/𝛾)
5: return arg max𝑖 (𝒘𝑖 )

we replace the exponential distribution with a geometric distribu-

tion that works directly in the integer domain. Second, we show

that the protocol is robust to scaling and rounding before taking

argmax, which helps the efficiency of the MPC protocol.

The bottleneck in the secure computation protocol is the compar-

isons required to compute argmax. For this we use state-of-the-art

protocols from [EGK
+
20]. These must be supplied initially with

correlated randomness and are constructed as protocols for dishon-

est majority. However, we assume 𝑘 servers with 𝑡 semi-honest

corruptions where 𝑡 < 𝑘/2. Therefore, with the help of all servers,

we can preprocess the correlated randomness using the honest ma-

jority protocol from [ACD
+
19], after which the first 𝑡 + 1 servers

run the protocol from [EGK
+
20]. Finally, we let data owners supply

inputs as secret shares over the integers. This allows the servers

to truncate the input without interaction while introducing only

a small error; then the comparisons can work over fewer bits and

hence be more efficient.

We believe that the semi-honest threat model is a realistic se-

curity model in many settings. For instance, when the main issue

is not that the parties fear attacks from the others, but rather that

no one wants to be responsible for storing the private data (and be

liable if something leaks). This is a setting which often occurs in real

life, and where semi-honest security provides sufficient gurantees.

However, it is possible to upgrade our approach to be secure

against malicious servers. A server would then need to commit to

its secret state and prove in zero-knowledge that it did the correct

computation. Using modern techniques for this, the communication

complexity would be essentially the same, but the computational

load would be significantly larger.

3 ALGORITHM IN THE CENTRAL MODEL
In this section we analyze Algorithm 1, which solves selection in the

central model and is well-suited for being extended to an efficient

secure multi-party computation protocol (described in Section 4).

The algorithm is a variant of the well-known “report noisy argmax”

approach to selection, which has been proposed as a candidate

algorithm on which to base an MPC implementation [Ste20].

Compared to a plain noisy argmax approach we make two mod-

ifications that will improve efficiency of the MPC protocol: 1) Use

one-sided, geometric error, and 2) allow the argmax to be based

on rounded values. Rounding is controlled by a parameter Δ, such
that for a rational number𝑤 , roundΔ (𝑤) denotes an integer value

(possibly the output of a randomized algorithm) that differs from𝑤

by at most Δ, and for inputs
𝑥+𝜂
𝛾 and

𝑥+𝜂
𝛾 with |𝑥 − 𝑥 | ≤ 1, using

the same internal randomness for both inputs, satistifies:����roundΔ (
𝑥 + 𝜂
𝛾

)
− roundΔ

(
𝑥 + 𝜂
𝛾

)���� ≤ 1 . (1)
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Algorithm 2 Relaxed-noise-and-round (The “Ideal Functionality”)

1: Input: 𝒙 (1) , . . . , 𝒙 (𝑛) ∈ {0, 1}𝑑
2: Parameters: 𝑝 (noise parameter), 𝑐 (bits to truncate),𝑘 (number

of servers), 𝑡 (upper bound on corrupted servers),

3: for all 𝑗 ∈ [𝑘] sample 𝒓 ( 𝑗 ) ∼ NB
𝑑 (1/(𝑘 − 𝑡), 𝑝)

4: 𝒛 ← ∑
𝑖∈[𝑛] 𝒙

(𝑖 ) +∑𝑗∈[𝑘 ] 𝒓
( 𝑗 )

5: 𝒘 ← roundΔ (𝒛/2𝑐 )
6: Output: arg max𝑖 (𝑤𝑖 )
7: Leakage: 𝒓 ( 𝑗 ) for 𝑗 ∈ [𝑡] (capturing that the corrupted parties

contribution to the noise are known to the adversary.)

When applied to a vector 𝒙 , roundΔ (𝒙) is computed by rounding

independently on each coordinate. Looking ahead to the distributed

implementation of the algorithm, allowing this rounding error will

allow us to perform truncation using a simple and efficient method.

Proof in supplementary material.

Lemma 1. Algorithm 1 is 𝜀-differentially private.

Lemma 2. Algorithm 1 has error at most 2𝛾Δ + 4 ln(𝑑)/𝜀 with
probability at least 1 − 1/𝑑 .

Proof. By a union bound, Pr[∥𝜼∥∞ > 4 ln(𝑑)/𝜀] ≤ 𝑑 Pr[𝜼𝑖 >
4 ln(𝑑)/𝜀] < 1/𝑑 . Let M(𝒙) denote the output of Algorithm 1,

where 𝒙 =
∑𝑑

𝑗=1
𝒙 ( 𝑗 ) is the sum of the input vectors. We want to

argue that the error |𝒙M(𝒙 ) −maxℓ (𝒙ℓ ) | is not too large. Abbrevi-

ating 𝑖 =M(𝒙), 𝑗 = arg maxℓ (𝒙ℓ ), and using that entries in 𝜼 are

non-negative, we have

roundΔ

(𝒙 𝑗 + 𝜼 𝑗

𝛾

)
≤ roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
⇒

𝒙 𝑗 + 𝜼 𝑗

𝛾
− Δ ≤

𝒙𝑖 + 𝜼𝑖
𝛾

+ Δ

⇒ 𝒙 𝑗 + 𝜼 𝑗 − (𝒙𝑖 + 𝜼𝑖 ) ≤ 2𝛾Δ

⇒ |𝒙M(𝒙 ) −max

ℓ
(𝒙ℓ ) | ≤ 2𝛾Δ + ∥𝜼∥∞ . □

4 SECURE COMPUTATION OF
DIFFERENTIALLY PRIVATE SELECTION

As it is common in the MPC literature, we first describe what we
want to achieve in the form of an idealized algorithm, as it if was

executed by some trusted third party—usually referred to as the

“ideal functionality”. This algorithm formally captures the compu-

tation that the distributed protocol will perform, as well as what

kind of information is leaked to the adversary, while hiding the

details on how the distributed protocols achieves this result. This

ideal functionality, provided in Algorithm 2, has a small deviation

from Algorithm 1; in particular, it adds a larger amount of noise

sampled from a negative binomial distribution (some of which is

leaked). Such distributed addition of noise has been used before in

similar settings [GX17]. The increased level of noise allows us to

perform a very simple and efficient distributed noise generation.

Moreover, the noise leaked by the functionality is used to capture

the fact that, in the distributed implementation of the algorithm,

up to 𝑡 servers might be corrupted by a semi-honest adversary. We

use [𝑛] to denote the set {1, . . . , 𝑛}.

Lemma 3. Algorithm 2 with 𝑝 = 1 − 𝑒−𝜀/2 and 𝛾 = 2
𝑐 is 𝜀-

differentially private, even if the leakage is considered part of the
output. It has error at most 2𝛾Δ + 16 ln(𝑑)/𝜀 with probability at least
1 − 2/𝑑 .

Proof. By symmetry we can assume that the leakage consists of

the noise added by the first 𝑡 parties, i.e., 𝒓 ( 𝑗 ) for 𝑗 ∈ [𝑡]. Consider
any fixed value of the leaked noise vectors—we will argue that the

algorithm is 𝜀-differentially private under the distribution induced

by the remaining 𝑘 − 𝑡 noise vectors. As before, let 𝒙 =
∑𝑑

𝑗=1
𝒙 ( 𝑗 ) .

After Line 4 we have

𝒛 = 𝒙 +
∑︁
𝑗∈[𝑘 ]

𝒓 ( 𝑗 ) = ©­«𝒙 +
∑︁
𝑗∈[𝑡 ]

𝒓 ( 𝑗 )ª®¬ +
∑︁

𝑗∈[𝑘 ]\[𝑡 ]
𝒓 ( 𝑗 ) ,

where𝜼 =
∑

𝑗∈[𝑘 ]\[𝑡 ] 𝒓
( 𝑗 ) ∼ Geometric(𝑝)𝑑 since it is a sum of𝑘−𝑡

negative binomials NB( 1

𝑘−𝑡 , 𝑝) (see e.g. [GX17]). Since 𝑝 = 1−𝑒−𝜀/2
this means that Algorithm 2 has the same output distribution as

Algorithm 1 applied to an input with sum 𝒙̃ = 𝒙 + 𝜼̃, where 𝜼̃ =∑
𝑗∈[𝑡 ] 𝒓

( 𝑗 )
is the additional noise added by the first 𝑡 parties. Since

neighboring input sums 𝒙 ∼ 𝒙′ translate to neighboring input sums

𝒙̃ ∼ 𝒙̃′ we conclude that Algorithm 2 is 𝜀-differentially private.

Abbreviating 𝑖 =M(𝒙̃) and 𝑗 = arg maxℓ (𝒙ℓ ) we have, similar

to the proof of Lemma 2,

roundΔ

( 𝒙̃ 𝑗 + 𝜼 𝑗

𝛾

)
≤ roundΔ

(
𝒙̃𝑖 + 𝜼𝑖

𝛾

)
⇒ 𝒙̃ 𝑗 − 𝒙̃𝑖 ≤ 2𝛾Δ + 𝜼𝑖 − 𝜼 𝑗

⇒ 𝒙 𝑗 − 𝒙𝑖 ≤ 2𝛾Δ + 𝜼𝑖 − 𝜼 𝑗 − 𝜼̃ 𝑗 + 𝜼̃′𝑖
⇒ |𝒙M(𝒙 ) −max

ℓ
(𝒙ℓ ) | ≤ 2𝛾Δ + 2 ∥𝜼∥∞ + 2 ∥𝜼̃∥∞ .

Since ∥𝜼∥∞ > 4 ln(𝑑)/𝜀 and ∥𝜼̃∥∞ > 4 ln(𝑑)/𝜀 each happen with

probability at most 1/𝑑 (the latter because the sum is dominated by

a geometric distribution with parameter 𝑝) we are done. □

4.1 Secret-sharing: notation and techniques
Our distributed protocol is performed by 𝑘-servers denoted by

S = {𝑆1, . . . , 𝑆𝑘 }. We assume that at most 𝑡 of them are corrupted by

a semi-honest adversary (i.e., they follow the protocol specifications

but then will try to infer more information by collecting their data)

with 𝑘 = 2 · 𝑡 +1. We let ℎ = 𝑘 − 𝑡 = 𝑡 +1 be the minimum number of

guaranteed honest servers. As it is common in the secure multipary

computation literature, we assume a single, monolithic adversary

that controls all corrupted parties and collects all their internal

states. This can be thought of as an adversary who has installed

“spyware” on the corrupted servers: the adversary is able to observe

everything that the servers observe, but not to change the code

they are running. Finally, the servers will have slightly asymmetric

roles in the protocol. The first ℎ servers are called the computation
servers, whereas the last 𝑡 servers are called the supporting servers
(note that by our assumptions on 𝑘 and 𝑡 , at least one computation

server is guaranteed to be honest, while we can tolerate that all the

supporting servers might be dishonest).

We use an additive integer secret sharing scheme among the com-

puting servers 𝑆1, 𝑆2, . . . , 𝑆ℎ . We use [𝑥]Z to denote a secret sharing
of some integer 𝑥 , consisting of shares 𝑥1, . . . , 𝑥ℎ ∈ Z such that∑ℎ
𝑖=1

𝑥𝑖 = 𝑥 . For every 𝑖 ∈ [ℎ], 𝑆𝑖 has 𝑥𝑖 . In order to securely share

3
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Algorithm 3 Primitives for Integer Secret Sharing

1: Addition. [𝑧]Z ← [𝑥]Z+[𝑦]Zmeans that each server 𝑆𝑖 locally

adds their shares, i.e., 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 leading to 𝑧 = 𝑥 + 𝑦.
2: Truncation. [𝑦]Z ← truncΔ ( [𝑥]Z, 𝑐) means that each server

𝑆𝑖 locally computes 𝑦𝑖 = ⌊𝑥𝑖/2𝑐 ⌉ for all 𝑖 ∈ [ℎ], removing the

least significant 𝑐 bits from each share 𝑥𝑖 and rounding, leading

to 𝑥/2𝑐 − Δ ≤ 𝑦 ≤ 𝑥/2𝑐 + Δ, for a value Δ analyzed below.

3: Conversion. [𝑦]
2
𝑎 ← convert( [𝑥]Z) means that each server

𝑆𝑖 locally computes 𝑦𝑖 = 𝑥𝑖 mod 2
𝑎
, leading to 𝑦 = 𝑥 assuming

𝑥 ≤ 2
𝑎
This is correct because

∑
𝑖∈[ℎ] (𝑥𝑖 mod 2

𝑎) mod 2
𝑎 =∑

𝑖∈[ℎ] 𝑥𝑖 mod 2
𝑎 = 𝑥 mod 2

𝑎
.

an ℓ-bit long secret, we need that the shares are chosen uniformly

at random among integers with ℓ + 𝜅 bits. This results in statistical

security with negligible security error 2
−𝜅

against any adversary,

even if computationally unbounded. That is, the security of our

distributed protocol does not rely on any computational assump-

tion. Our distributed protocol performs additions and truncation of

integer secret sharings, which are detailed in Algorithm 3.

Truncation error. Here we analyze Δ = |𝑥/2𝑐 −∑𝑖∈[ℎ] ⌊𝑥𝑖/2𝑐 ⌉ |,
the possible error incurred by truncation. The error depends on ℎ,

the number of shares of the secret. Consider the case of ℎ = 2: if

the input is secret shared among two servers, at most one carry bit

may be missed when truncating the lower order bits. To generalize

to larger ℎ, first observe that division and rounding incurs an error

of at most 𝑒𝑖 = |𝑥𝑖/2𝑐 − ⌊𝑥𝑖/2𝑐 ⌉ | ≤ 1/2. For shared integer 𝑥 and

shares 𝑥1, . . . , 𝑥ℎ , when we divide 𝑥/2𝑐 , we can write the result

as 𝑥1/2𝑐 + 𝑥2/2𝑐 + · · · + 𝑥ℎ/2𝑐 . Then we can formulate the total

error Δ = |∑𝑖∈[ℎ] 𝑥𝑖/2𝑐 − ⌊𝑥𝑖/2𝑐 ⌉ | ≤
∑
𝑖∈[ℎ] 𝑒𝑖 ≤ ℎ/2 by the

triangle inequality and then applying our bound for 𝑒𝑖 . Notice that

truncΔ ( [𝑥]Z, 𝑐) exactly implements roundΔ (𝑥/2𝑐 ) with Δ = ℎ/2.

4.2 A secure and differentially private
distributed protocol for selection

We are finally ready to describe, in Algorithm 4, a secure distributed

implementation of the differentially private mechanism from Algo-

rithm 2 (the “ideal functionality”). The protocol proceeds as follows:

In Line 4, all servers (computing and supporting) locally sample

noise according to the negative binomial distribution, with param-

eter inversely proportional to the number of honest parties. The

supporting servers need now to share their noise contribution to

the computing servers in Line 5 (this can be done assuming using

shares of size 𝜅 + log(𝑛) assuming log(𝑛) as an upper bound on the

noise magnitude). This assumption is reasonable, since the bound

holds with high probability based on tail bound analysis. If the sam-

pled noise were to exceed the bound the protocol can, for example,

report that the computation failed without compromising privacy.

Alternatively, we can add this small probability to the differential

privacy parameter delta. In Line 6 the computing servers exploit the

linear nature of the secret sharing scheme to locally aggregate the

input vectors and all noise contributions, in secret shared form. To

do so, they each add all input shares and noise shares received from

the supporting parties, as well as their own randomly generated

noise. To increase efficiency the result is then truncated in Line 7,

Algorithm 4 Distributed-noise-and-round (The MPC Protocol)

1: Input: Integer secret-sharings
[
𝒙 (1)

]
Z
, . . . ,

[
𝒙 (𝑛)

]
Z
represent-

ing values in {0, 1}𝑑
2: Parameters: 𝑝 (noise parameter), 𝑐 (bits to truncate),𝑘 (number

of servers), 𝑡 (upper bound on corrupted servers), 𝜅 (security

parameter used in integer secret sharing), 𝑎 = log(𝑛) − 𝑐 + 1

(bits for modular secret sharing)

3: [corr]
2
𝑎 ← preprocessing(𝑆1, . . . , 𝑆𝑘 )

4: ∀𝑗 ∈ [𝑘], 𝑆 𝑗 samples 𝒓 ( 𝑗 ) ∼ NB
𝑑 (1/(𝑘 − 𝑡), 𝑝)

5: ∀𝑗 ∈ [𝑡 + 2, 𝑘], 𝑆 𝑗 secret-shares 𝒓 ( 𝑗 ) as
[
𝒓 ( 𝑗 )

]
Z
and send the

corresponding shares to 𝑆1, . . . , 𝑆ℎ .

6: 𝑆1, . . . , 𝑆ℎ evaluate [𝒛]Z =

[∑
𝑖∈[𝑛] 𝒙

(𝑖 ) +∑𝑗∈[𝑘 ] 𝒓
( 𝑗 )

]
Z
.

7: 𝑆1, . . . , 𝑆ℎ compute [𝒚]Z = truncΔ ( [𝒛]Z, 𝑐)
8: 𝑆1, . . . , 𝑆ℎ convert [𝒚]

2
𝑎 ← convert( [𝒚]Z)

9: 𝑆1, . . . , 𝑆ℎ execute [𝑜]
2
𝑎 ← ArgMax( [𝒚]

2
𝑎 , [corr]

2
𝑎 ).

10: Output: Open and output 𝑜 = argmax𝑗∈[𝑑 ] [𝒚]2𝑎

by removing the lowest 𝑐 bits (essentially dividing every value by

2
𝑐
). The secret-sharing are then converted from integer to modular

form in Line 8, to be compatible with the the secure ArgMax proto-

col which is invoked in Line 9. This protocol consumes correlated

randomness which is generated by all servers during a preprocess-

ing phase in Line 4. More details on how the ArgMax protocol and
its preprocessing are implemented are given in Section 4.3.

Correctness. We argue that the output of Algorithm 4 has the

same distribution as the one in the ideal functionality specified in

Algorithm 2. First, note that the inputs are a secret shared version

of the same inputs for the ideal functionality. In Line 4, noise is

drawn according to the same distribution specified in Line 3 of

Algorithm 2. Secret sharing and addition performed in Lines 5

and 6 correctly add the input values and random samples. In Line 7

we truncate using the secret shared version of trunc with the same

output in secret shared form, and in Line 8 the conversion to secret

sharing over a ring from Algorithm 3 is applied, and 𝑎 is chosen

to be of appropriate size for this conversion to be lossless. Lastly,

correctness of the ArgMax protocol used in Line 9 guarantees that

the algorithm outputs the correct argmax value.

Security. Intuitively, security of the distributed protocol follows

from the fact that the entire computation is performed over secret-

shared values and that all employed sub-protocols are secure. More

precisely, as it is common in the MPC literature, we can prove that

the protocol is secure by providing a simulator that, given access to

the input/output of the ideal functionality (including the leakage)

simulates the view of the corrupted servers in the execution of the

protocol. In our case the simulator, which takes as input the set of

corrupted servers, and their inputs/outputs, will simulate the view

of the corrupted servers essentially by running an execution of the

real protocol but where the shares of all the honest parties are set

to some dummy value (e.g., 0). The view of the corrupted servers

contains all their shares and all the messages that they receive from

the honest servers. This includes the messages that they receive

from the honest servers in the preprocessing phase which, by

4
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assumption on the security of the preprocessing protocol, can

be efficiently simulated. The view contains also the shares of the

noise generated by honest supporting servers in Line 4 which can be

simulated (with statistical security 2
−𝜅

) by picking uniform random

shares of the same size log(𝑛) +𝜅 bits as in the protocol. The Lines 6-

8 only consist of local computation and can therefore be trivially

simulated. Note however that, due to the local addition of the noise

by the computing servers, the shares of [𝒚]
2
𝑎 at the end of Line 8

might not be uniformly random. This does not matter, since the

shares are never revealed but instead used as input in the secure

ArgMax sub-protocol, which secure as shown in [EGK
+
20] (and

in particular, internally, only reveals results of secure comparison

protocols). Overall, the protocol in Algorithm 4 can be efficiently

simulated with statistical error 2
−𝜅

(due to the statistical security

of the integer secret-sharing scheme) having access to the ideal

functionality specified in Algorithm 2. This leads to the following:

Corollary 4.1. Algorithm 4with 𝑝 = 1−𝑒−𝜀/2 is (𝜀, 2−𝜅 )-differentially
private in the view of an adversary that semi-honestly corrupts any 𝑡
servers. It has the same error as Algorithm 2.

4.3 Details on the ArgMax protocol and
preprocessing

There are multiple possible approaches for computing the exact

argmax within an MPC protocol. We choose the state-of-the-art

solution, which is to use a tree data structure, where the maximum

of two values is compared to the maximum of two other values in

each step. This approach requires O(𝑑) comparisons when finding

the argmax of 𝑑 values. To perform the comparisons we use in turn

the integer comparison protocol of [EGK
+
20], which requires that

the parties hold som correlated random variables generated in the

precomputation phase.

We proceed now to describe the necessary correlated random-

ness to execute the comparison from [EGK
+
20], and how to gen-

erate it: we let all 𝑘 servers collaborate in producing the corre-

lated randomness. This allows us to achieve unconditional security

(thanks to the honest majority assumption) but also to achieve high

efficiency using the the protocol from [ACD
+
19]. This protocol

allows us to perform MPC over Z2
𝑎 . In a nutshell, their idea is to

consider a so called Galois extension 𝑅 of Z2
𝑎 . In the ring 𝑅 we can

do Shamir-style secret sharing (of values in Z2
𝑎 ) and follow the

standard blueprint for honest majority MPC, to perform secure ad-

dition and multiplication. This implies an overhead factor log
2
(𝑘),

which is necessary as Shamir-style secret sharing cannot be done

over Z2
𝑎 directly.

The correlated randomness needed by the protocol from [EGK
+
20]

consists of additively shared random numbers modulo 2
𝑎
, together

with the bits in these numbers, also in shared form. Concretely,

this means that the shares add modulo 𝑎 to the secret in question.

Clearly, if we can create shared random bits [𝑏0]2𝑎 , ..., [𝑏2
𝑎−1 ]2𝑎 ,

this would be sufficient. Namely, if we let 𝑟 be the number with

binary expansion 𝑏0, 𝑏1, ..., 𝑏2
𝑎−1 , then using only local computation

we can construct

[𝑟 ]2𝑎 =

𝑎−1∑︁
𝑖=0

2
𝑖 · [𝑏𝑖 ]2𝑎 .

In order to get a random shared bit, we can use a trick suggested

in [DEF
+
19]. It was shown there how to generate a random shared

bit using secure arithmetic modulo a 2-power, at the cost of a

constant number of secure multiplications. Using their algorithm,

and the protocol from [ACD
+
19] to do the secure arithmetic, we

can generate a sharing [𝑐]𝑅 , where 𝑐 is the random bit and [·]𝑅
refers to the secret-sharing scheme from [ACD

+
19]

1

Finally, [𝑐]𝑅 can be converted to [𝑐]2𝑎 using only local compu-

tation. Namely, if we let 𝜆1, ..., 𝜆ℎ be the Lagrange coefficients one

would use to reconstruct a secret over 𝑅, and 𝑠1, ..., 𝑠ℎ be the shares

of 𝑐 held by the first ℎ servers, we would have 𝑐 =
∑ℎ
𝑖=1

𝜆𝑖𝑠𝑖 . So

we can think of the 𝜆𝑖𝑠𝑖 -values as additive shares of 𝑐 . Each such

share is an element from 𝑅, but it can be represented as a vector of

log
2
(𝑘) numbers from Z2

𝑎 . Since addition in 𝑅 is component-wise

addition, it turns out that each server can keep only one number

from its additive share, discard the rest, and the result will be [𝑐]2𝑎 .
To conclude, note that all three protocols in [DEF

+
19], [EGK

+
20]

and [ACD
+
19] were originally presented for the malicious secu-

rity setting, but since we deal with semi-honest corruptions their

protocol can be greatly simplified in our setting.

The 3 servers case. We note that our protocol can be highly sim-

plified in the case of 𝑘 = 3. Under the assumption of honest majority

this gives ℎ = 2 and 𝑡 = 1. Thus we have 2 computing servers and a

single supporting server. This means that in Line 4 of the protocol

we can simply have the supporting server act as a “dealer” and

produce the correlated randomness locally, and then secret share it

among the computation servers, instead of having to run a secure

protocol among all 3 servers to generate the correlated randomness.

This still guarantees security since if the dealer is corrupted then

both of the computing servers must be honest (by assumption on

𝑡 ≤ 1).

5 EMPIRICAL EVALUATION
Inspired by the evaluation of the state-of-the-art differentially pri-

vate selection algorithmPermute-and-flip [MS20], we run our bench-

marks on the real-world data from DPBench [HMM
+
16]. Specifi-

cally, we use the same five representative datasets (Table 1, full table

in Appendix A.4), and discretize them to 𝑑 = 1024 as in [MS20] .

To show the scalability of our MPC protocol, we also benchmark

performance using synthetic data.

Utility. We implement and run our utility benchmarks using

Python 3.11.3, measuring error for 1000 runs as the absolute dif-

ference between the true argmax value, and the one chosen by

the algorithm. As there are no direct comparisons of differentially

private algorithms that use the same trust model (the multi-central

model), we compare to differentially private algorithms from both

the central model (with stronger trust assumptions), and the lo-

cal model (with weaker trust assumptions). Representing the best

known error for the centralized model, we show Permute-and-flip,

as well as the Exponential mechanism [MT07]. For the local model,

we compare to bitwise Randomized respone [War65], as used in

RAPPOR [EPK14]. As a worst case comparison we also show the

error of uniformly at random reporting an index as argmax. Lastly,

1
An different preprocessing, suggested in [EGK

+
20], is less efficient, as it requires a

super-constant number of secure multiplications per bit.
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we show the error of using MPC to compute argmax, without

guaranteeing differential privacy, via the use of Secure aggrega-

tion [GX17].

In Figure 1, we highlight the error by varying 𝜀 and 𝑟 on three

of the datasets from DPBench, for all datasets see Appendix A.4.

We expect Noise-and-round to perform similar to the centralized

algorithms (Permute-and-flip, Exponential mechanism) due to a low

value of 𝑘 (𝑘 = 3), and better than the local algorithm (Randomized

respone) and a purely random choice. As we can see, Noise-and-

round performs similar to Permute-and-flip, and better than the

Exponential mechanism. When 𝜀 increases, error decreases and

subsequently reaches 0 (note that the line disappears because of

the log-scale). Interestingly, low values for 𝜀 cause Randomized

respone and Secure aggregation aggregation to perform similar to

the completely random choice.

Additionally, we further show the impact of varying the remain-

ing bits 𝑟 on the different datasets in Figure 2. The results show

as expected that the effect of rounding is data dependent. HEPTH

produces accurate results even when dropping a significant amount

of bits, e.g., 𝑟 ≥ 2 (dropping 9 bits or more) gives similar accuracy

in low privacy regimes (notice a change starting at 𝜀 = 0.18) as

no rounding. SEARCHLOGS achieves similar accuracy for 𝑟 ≥ 4

(dropping 10 bits or less) and no rounding at all, and PATENT has

a similar behavior for 𝑟 ≥ 6 (also dropping 10 bits or less). These

results indicate that rounding can indeed be used to save commu-

nication overhead of the MPC protocol, while still maintaining

accurate results.

Runtime and communication. The bottleneck for MPC in both

time and communication lies in the computation of argmax using

comparison operations, so we benchmark this part of the protocol.

All benchmarks were carried out on AWS t3.xlarge instances, us-

ing MP-SPDZ [Kel20] to implement the protocol in the 3 servers

case. In our experiments we vary the input dimensions (𝑑), and the

remaining bits (𝑟 ). We report our results including preprocessing

such as multiplication triples, and all time measurements reported

are the average of ten executions for the same computation.

For each of three datasets from DPBench, we report the maxi-

mum value in each dataset, the number of bits necessary to repre-

sent integers in this range, as well as the runtimes and data sent

in Table 1. Notice that while communication scales linearly in the

number of bits necessary to represent the data, the time necessary

for the evaluations are very close, and the variance in measure-

ments is quite high. The last row in the table reports the necessary

time and data necessary when truncating every entry in the dataset

to 5 bits using our approach. Note that, due to security of MPC

protocols, the runtime of the protocol cannot depend on the actual

values that are being computed upon, but only their size. Therefore,

the benchmarks after truncation are agnostic of which dataset we

start from. The time and communication reported in the last line of

the table correspond to the utility reported for 𝑟 = 5 in Figure 1, and

the utility of the approach without truncation is reported as well.

We observe that by truncating values, the time and communication

necessary for these comparisons is significantly reduced. Practition-

ers may choose howmany bits to truncate based on their utility and

time requirements, as well as the available computational resources.

Table 1: Benchmark results for given input

Results

Dataset Max

value

(𝑛)

# Bits Time

(s)

Data

sent

(MB)

PATENT 59602 16 1.74,

std=0.12

2.97

SEARCHLOGS 11160 14 1.81,

std=0.18

2.70

HEPTH 1571 11 1.73,

std=0.07

2.29

Truncated, 𝛼 = 0.125 31 5 1.38,

std=0.20

1.39

The average time required per data point 𝑑 and power of two in

the range 𝑟 is 0.15 ms, and the average communication is 0.22 kB.

Note that while the communication scales linearly in 𝑑 and 𝑟 , time

scales linearly in 𝑑 but logarithmically in 𝑟 . For the chosen range,

the complexity can be approximated as linear in 𝑟 as well.

For synthetic data, the evaluated ring moduli 2
5, 210, 215, 220, and

2
25

could correspond either to different value ranges in a dataset

before truncation or the resulting range of values after truncation.

Based on experiments using synthetic data with sizes 16, 1024, 2048,

4096, and 8192, Figure 3 confirms the linear growth of necessary

time and communication in 𝑑 , as well as the logarithmic growth

of time and linear growth in required communication in 𝑟 . As

expected, the savings in cost and communication by performing

truncation increases with the size of the dataset and the range of

values. Truncating even a few bits results in significant savings in

communication and time, particularly when the dataset has several

thousands of entries.

6 RELATEDWORK
The exponential mechanism, as well as “report-noisy-max” [DR14],

offer asymptotically optimal solutions to the selection problem in

the central model. A mechanism with better constant factors is

permute-and-flip introduced by [MS20]. We compare with their

work by evaluating selection on the same benchmarking datasets

and achieve comparable utility using the weaker trust assumptions

of multi-central differential privacy.

The setting where data is not, and cannot, be gathered by a cen-

tral entity, was a motivation for local differential privacy [DJW13],

where a differentially private function of each participant’s data is

released. One such protocol for binary data is the classical random-
ized response protocol by Warner [War65]. We can apply random-

ized response to each bit of a binary vector (splitting the privacy

budget), as seen for example in [EPK14], which allows us to esti-

mate the sum of vectors with an error proportional to

√
𝑛, where 𝑛

is the number of vectors.

Recent work [BEM
+
17, EFM

+
19, CSU

+
19b, Ste20] has increas-

ingly focused on models of differential privacy that lie between the

central and local models. The shuffle model [BEM
+
17, CSU

+
19b] is

built on trust assumptions that are weaker than the central model,

6
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Figure 1: Impact of 𝜀 on accuracy displayed in log-log scale. Error is measured as the absolute difference between the real max,
and the value of the privately chosen argmax. Lower distance is better. Notice log scale means 0 is not included, which causes
some of the lines to disappear from the plot when error reaches 0.
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in particular a trusted shuffler, while achieving good utility for

some classes of functions. However, [CU21] show an exponential

separation between the central and (robust) shuffle models for the

selection problem, motivating the need for alternative models.

Compared to the shuffle model, the multi-central model dis-

tributes the computation between multiple servers, as opposed

to relying on the inputs being sent using an anonymous chan-

nel (e.g., using onion routing [DMS04]). [CY23] provide lower

bounds for non-interactive multi-server mechanisms. The first

work to consider the combination of differential privacy and MPC

is [DKM
+
06], which focuses on distributed noise generation; how-

ever, their original work focuses on malicious adversaries, while

we operate in the semi-honest security model. Some related works

focus on replacing the trusted aggregator in DP with an MPC pro-

tocol for a variety of computations, while we focus on selection.

[AMFD12, EKM
+
14, BK20] implement the exponential mechanism

with the goal of selection, yet they they perform sampling in MPC

using standard techniques, a step which we avoid by allowing

computing servers to sample noise locally. [BK21] focus on heavy

hitters in their work. One particularly prominent application is

secure aggregation [GX17, BIK
+
17, MPBB19, AG21], used for ex-

ample in federated learning, which lends itself to the use of MPC

for differentially private computations and has been implemented

in practice. Secure aggregation reveals a noisy sum of inputs and

requires larger error than our approach, which reveals only the

output. A work closely related to ours is that of Champion, shelat

and Ullman [CsU19a]: here the authors design an efficient circuit

for sampling a large batch of independent coins with a given bias.

As an application of their sampling technique, they provide a se-

cure distributed implementation of the differentially private report-

noisy-max mechanism. They report on an implementation for the

setting of two-parties, with semi-honest security, using garbled
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Figure 3: MPC overhead, scaling with dimensions and remaining bits; lower is better

circuits. As the security models of the two implementations are dif-

ferent (3 parties in our case vs. 2 parties in their case, in both cases

tolerating at most one semi-honest corruption), using different un-

derlying technologies (secret-sharing vs. garbled circuits) making a

meaningful direct comparison of the benchmarks results is some-

how challenging. However, we note that our solution uses between

1 − 5% of their communication (depending on our rounding factor).

For instance, at 𝑑 = 8192, their solution communicates 600𝑀𝐵2

while ours communicates between 5 − 30𝑀𝐵. As both solutions

scale identically with𝑑 , the comparison does not change at different

levels of 𝑑 . The main reason for this significant difference in band-

width consumption is the fact that we can generate secret-shared

samples from a geometric distribution without any interaction,

by having the parties sample noise locally and then adding these

samples to the secret-shared data. In contrast [CsU19a] performs

the noise sampling by evaluating a binary circuit securely using

garbled circuits. In terms of running times, the times are essentially

equivalent but the comparison is made even less meaningful since

the two implementations are developed on top of different MPC

frameworks (Obliv-C for them and MP-SPDZ for us).
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A SUPPLEMENTARY MATERIAL
A.1 Sensitivity of Rounding
Our privacy analysis will need the property (2), repeated here for

convenience:����roundΔ (
𝑥 + 𝜂
𝛾

)
− roundΔ

(
𝑥 + 𝜂
𝛾

)���� ≤ 1 . (2)

This bound follows from how the rounding function is implemeted

in our MPC protocol. Note in particular that in this case we are not

interested in the rounding error (i.e., the difference between the

rounded value and the result of our approximate rounding function)

but the sensitivity of the rounding function (i.e., the difference

between the result of the approximate rounding function on two

neighbouring inputs, regardless of their actual accuracy).

First remember that the users secret share 𝑥 to the computing

servers by picking ℎ − 1 uniformly random integers 𝑥1, . . . , 𝑥ℎ−1

from an appropriately large interval) and finally defining 𝑥ℎ =

𝑥−∑𝑖∈[ℎ−1] 𝑥𝑖 (resp. 𝑥ℎ = 𝑥−∑𝑖∈[ℎ−1] 𝑥𝑖 ), defining sharings [𝑥]Z
and [𝑥]Z. Note that it is crucial that in this phase of the analysis

we are fixing the randomness of both 𝜂 and the random shares, and

we are only varying the input. Now remember that the rounding

function is being implemented by having each computing server

locally rounding their value which leads to

roundΔ

(
𝑥 + 𝜂
𝛾

)
=

∑︁
𝑖∈[ℎ]

⌊(𝑥𝑖 + 𝜂)/𝛾⌉ .

Thus we get that����roundΔ (
𝑥 + 𝜂
𝛾

)
− roundΔ

(
𝑥 + 𝜂
𝛾

)����
=

������ ∑︁𝑖∈[ℎ] ⌊(𝑥𝑖 + 𝜂)/𝛾⌉ −
∑︁
𝑖∈[ℎ]

⌊(𝑥𝑖 + 𝜂)/𝛾⌉

������
= | ⌊(𝑥ℎ + 𝜂)/𝛾⌉ − ⌊(𝑥ℎ + 𝜂)/𝛾⌉ | ≤ 1

Where the last inequality follows noticing that 𝑥, 𝑥 are at most 1

apart.

A.2 Privacy Analysis
As a warm-up we analyze an easier special case, after which we

handle the general case.

Lemma 4. If Δ = 0 and 𝛾 = 1, Algorithm 1 is 𝜀-differentially
private.

Proof. LetM(𝒙) denote the output of Algorithm 1 on input

with sum 𝒙 ∈ Z𝑑 . Notice thatM(𝒙) = 𝑖 if and only if

𝒙𝑖 + 𝜼𝑖 ≥ max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]), (3)

where [𝑖′ > 𝑖] equals 1 if the condition 𝑖′ > 𝑖 holds and 0 otherwise.

Consider a neighboring dataset with sum 𝒙̄ . By definition of the

neighboring relation it follows that both the left and right hand

side of (3) change by at most 1 when replacing 𝒙 with 𝒙̄ . Using
independence and the tail bound on the geometric distribution, we
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Table 2: Complexity Analysis, 𝑘 > 3

Bits sent Rounds

Offline O(𝑑𝑎2𝑘 log𝑘) O(1)
Online O(𝑎𝑘𝑑) O(log𝑑 log𝑎)

Table 3: Complexity Analysis, 𝑘 = 3

Bits sent Rounds

Offline O(𝑑𝑎2) O(1)
Online O(𝑎𝑑) O(log𝑑 log𝑎)

bound

Pr[M(𝒙) = 𝑖]

=
∑︁
𝑦

Pr[max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]) = 𝑦] Pr[𝒙𝑖 + 𝜼𝑖 ≥ 𝑦]

≤
∑︁
𝑦

Pr[max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]) = 𝑦] Pr[𝒙𝑖 + 𝜼𝑖 ≥ 𝑦 + 2] 𝑒𝜀

= 𝑒𝜀 Pr[𝒙𝑖 + 𝜼𝑖 ≥ max

𝑖′≠𝑖
(𝒙𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖]) + 2]

≤ 𝑒𝜀 Pr[𝒙̄𝑖 + 𝜼𝑖 ≥ max

𝑖′≠𝑖
(𝒙̄𝑖′ + 𝜼𝑖′ + [𝑖′ > 𝑖])]

= 𝑒𝜀 Pr[M(𝒙̄) = 𝑖] .

By symmetry we also have Pr[M(𝒙̄) = 𝑖] ≤ 𝑒𝜀 Pr[M(𝒙) = 𝑖], as
desired. □

We are ready to prove Lemma 1, which generalizes Lemma 4 to

any value of the parameters:

Proof. The key difference to the proof of Lemma 4 is that while

𝒙𝑖 + 𝜼𝑖 and 𝒙̄𝑖 + 𝜼𝑖 differ by at most 1, we now use (2) to bound

Pr[M(𝒙) = 𝑖] by∑︁
𝑦

Pr

[
max

𝑖′≠𝑖

(
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)
= 𝑦

]
Pr

[
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
≥ 𝑦

]
≤
∑︁
𝑦

Pr

[
max

𝑖′≠𝑖

(
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)
= 𝑦

]
Pr

[
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
≥ 𝑦 + 2

]
𝑒𝜀

= 𝑒𝜀

Pr

[
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
≥ max

𝑖′≠𝑖

(
roundΔ

(
𝒙𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)
+ 2

]
≤ 𝑒𝜀 Pr

[
roundΔ

(
𝒙̄𝑖 + 𝜼𝑖

𝛾

)
≥ max

𝑖′≠𝑖

(
roundΔ

(
𝒙̄𝑖 + 𝜼𝑖

𝛾

)
+ [𝑖′ > 𝑖]

)]
= 𝑒𝜀 Pr[M(𝑥) = 𝑖] .

By symmetry we also have Pr[M(𝒙̄) = 𝑖] ≤ 𝑒𝜀 Pr[M(𝒙) = 𝑖],
completing the proof. □

A.3 MPC Protocol Analysis
We offer an analysis of the complexity associated with the oper-

ations performed by the servers in Algorithm 4, in terms of the

number of necessary communication rounds and the number of

bits communicated during the protocol. The local generation of

noise by each server and the generation of shares of this noise by

supporting servers incur no communication. However, one round

of communication is necessary in order for all supporting servers to

distribute their noise shares to the computing servers. Adding the

shared values and the noise vectors, as well as locally truncating the

resulting shares and converting them to shares over a ring, require

no communication. Since the argmax is clearly the bottleneck, we

will analyze that.

In order to run the ArgMax protocol, the preprocessing step in-

volves generating additive shares modulo 2
𝑎
for 𝑎(𝑑 − 1) random

bits, because each of 𝑑 − 1 comparisons requires shares of 𝑎 bits.

Specifically in the case of 3 servers, the dealer can generate these

shares locally, so only one round of communication to distribute

the shares is necessary, and the number of bits to communicate will

be O(𝑑𝑎2).
Preprocessing of each secret shared bit with more than 3 servers

is done using the techniques from [ACD
+
19]. This involves generat-

ing a random shared value and a constant number of multiplications.

This can be done while communicating O(𝑘) elements of the ring

over which the preprocessing is done. Due to the fact that we need

“Shamir-style” secret sharing for the multiplications, we need to use

a ring extension of Z2
𝑎 , where elements have size 𝑎 log(𝑘) bits, so

we get communication of O(𝑎𝑘 log(𝑘)) bits per shared random bit

and so a total of O(𝑎2𝑘 log(𝑘)) because we need 𝑎 random shared

bits. Since all these bits can be created in parallel, we can do them

all in a constant number of rounds. We also need O(𝑎) multipli-

cation triples for multiplying bits, these can be done in the same

complexity using the same techniques.

After precomputation is complete, running the ArgMax proto-

col requires O(𝑑) comparisons in a circuit structure with depth

O(log𝑑). Each comparison requires opening two secret shared val-

ues and executing two binary LT circuits. The LT circuit consists of

2𝑎 − 2 multiplications, including two share openings each, and can

be done using a circuit of depth log𝑎, where the depth indicates

the number of necessary rounds. Therefore, this step incurs O(𝑎𝑑)
share openings and multiplications, and O(log𝑎 log𝑑) rounds of
communication. Since 𝑘 servers are involved, these share open-

ings and multiplications require communication O(𝑎𝑘𝑑), which is

O(𝑎𝑑) if 𝑘 = 3.

In total, the total communication and number of rounds when

𝑘 > 3 is summarized in Table 2 and when 𝑘 = 3 is summarized in

Table 3.

A.4 Utility evaluation
Here we present an individual plot for running the algorithms on

each of the five datasets from DPBench. We pick the values of 𝜀 to

be as small as possible to capture when the most of the algorithms

converge to an error of 0.
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Figure 4: HEPTH dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower is better.
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Figure 5: SEARCHLOGS dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower
is better.
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Figure 6: PATENT dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower is
better.
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Figure 7: MEDCOST dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower is
better.
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Figure 8: ADULTFRANK dataset. Absolute difference between the real max value, and chosen argmax on a log-log scale. Lower
is better.
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A.5 Efficiency evaluation
All efficiency results for the five chosen datasets from DPBench are

reported in Table 4, including the maximum value in each dataset,

the number of bits necessary to represent integers in this range, as

well as the runtimes and data sent. The five datasets are the same

datasets chosen for evaluation by [MS20] in the Permute-and-flip

mechanism: PATENT, ADULTFRANK, SEARCHLOGS, MEDCOST,

and HEPTH.

Table 4: Benchmark results for given input

Results

Dataset Max

value

(𝑛)

# Bits Time

(s)

Data

sent

(MB)

PATENT 59602 16 1.74,

std=0.12

2.97

ADULTFRANK 16836 15 1.83,

std=0.15

2.83

SEARCHLOGS 11160 14 1.81,

std=0.18

2.70

MEDCOST 2885 12 1.73,

std=0.12

2.43

HEPTH 1571 11 1.73,

std=0.07

2.29

Truncated, 𝛼 = 0.125 31 5 1.38,

std=0.20

1.39
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