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ABSTRACT

Large Language Models (LLMs) are being increasingly deployed in real-world
applications, but they remain susceptible to hallucinations, which produce flu-
ent yet incorrect responses and lead to erroneous decision-making. Uncertainty
estimation is a feasible approach to detect such hallucinations. For example, se-
mantic entropy estimates uncertainty by considering the semantic diversity across
multiple sampled responses, thus identifying hallucinations. However, seman-
tic entropy relies on post-softmax probabilities and fails to capture the model’s
inherent uncertainty, causing it to be ineffective in certain scenarios. To ad-
dress this issue, we introduce Semantic Energy, a novel uncertainty estimation
framework that leverages the inherent confidence of LLMs by operating di-
rectly on logits of penultimate layer. By combining semantic clustering with a
Boltzmann-inspired energy distribution, our method better captures uncertainty
in cases where semantic entropy fails. Experiments across multiple benchmarks
show that Semantic Energy significantly improves hallucination detection and un-
certainty estimation, offering more reliable signals for downstream applications
such as hallucination detection. The code and intermediate data are available at
https://anonymous.4open.science/submit4iclr.

1 INTRODUCTION

Large Language Models (LLMs) have been widely deployed in various aspects of production and
daily life, demonstrating strong capabilities in different fields (Schlegel et al., 2025; Xiang et al.,
2025). However, LLMs are still prone to being influenced by hallucinations and are prone to gen-
erate incorrect answers in situations where they lack knowledge, thus misleading users into making
errors (Zhou et al., 2024; Farquhar et al., 2024). Recently, uncertainty estimation has been shown
to be a reliable indicator for detecting hallucinations, reflecting the tendency of an LLM to generate
hallucinations (Xiao & Wang, 2021; Huang et al., 2024). When the uncertainty of an LLM response
is high, it often suggests a greater likelihood that the response is a hallucination, prompting fur-
ther actions such as self-reflection (Renze & Guven, 2024; Kirchhof et al., 2025), regenerating of
answers (Xu et al., 2025), or intervention by human experts (Liu et al., 2025; Hopkins et al., 2025).

Entropy is a commonly used metric for estimating uncertainty in LLM (Cheng et al., 2025; Duan
et al., 2024). Similarly to traditional discriminative models, high entropy indicates high uncertainty
because it means that the model cannot confidently select a particular outcome. However, due to the
nature of natural language, the entropy of a single response cannot accurately reflect the reliability
of LLMs. Specifically, even though LLMs may not confidently generate the next token, the semantic
meaning of any generated token can still be the same. In such cases, we cannot identify an unreliable
response simply attributing to its low probability of being generated. To accurately describe the
uncertainty of responses composed of natural language, semantics must be considered.

Semantic entropy (Farquhar et al., 2024) is a typical method to characterize the semantic uncer-
tainty of responses, effectively representing the probability that an LLM generates hallucinations.
Given a question, semantic entropy involves sampling multiple responses, clustering them based
on their semantic meaning, and then replacing individual responses with clusters to calculate en-
tropy, thus achieving semantic-aware uncertainty characterization. Based on this method, a wide
range of downstream applications have been developed, such as guiding Chain-of-Thought (CoT)
reasoning (Ye et al., 2025) and parallel thinking (Xu et al., 2025). However, semantic entropy has
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significant drawbacks stemming from entropy itself: it fails to capture the model’s inherent uncer-
tainty, leading to its ineffectiveness in some scenarios.

A representative case occurs when the model produces identical responses in multiple sampling
instances for a given question, as illustrated in Fig. 1. According to semantic entropy, the resulting
value is 0, which is considered a reliable response. However, even answering incorrectly, LLMs
might also provide responses with the same semantics. Among samples with consistently semantic
responses across multiple responses, the proportion of incorrect responses (like Question3 in
Fig. 1) approaches 50% in some datasets. In such cases, it is necessary to leverage the model’s
inherent uncertainty for differentiation: even if the LLM provides multiple responses with the same
semantics for two different questions, their corresponding reliability still differs. In scenarios with a
higher inherent uncertainty in the model, the likelihood of the LLM making mistakes is greater.

Several previous studies have shown that logits exhibit stronger inherent capabilities to characterize
uncertainty compared to probabilities, and the magnitude of logits can indicate whether the model
has undergone adequate training in a given scenario (Liu et al., 2020; Fu et al., 2025; Zhang et al.,
2024). For example, in out-of-distribution (OOD) detection, studies have highlighted that the logit
values for in-distribution (InD) samples are significantly higher than those for OOD samples (Liu
et al., 2020). Recent work named LogToKU (Ma et al., 2025) points out that probabilities lose the in-
tensity information of logits during normalization, thus limiting their ability to represent the inherent
uncertainty of LLM. From this insight, we propose a new method to improve the failure cases of Se-
mantic Entropy, termed Semantic Energy. Specifically, for a given prompt, we first perform multiple
response samplings, followed by semantic sampling. When calculating the final uncertainty, rather
than relying on probability as in Semantic Entropy, we estimate the response uncertainty based on
logits, enabling the estimated uncertainty to reflect the model’s inherent uncertainty. Our proposed
metric significantly outperforms Semantic Entropy in evaluating the reliability of LLM responses,
particularly in scenarios where Semantic Entropy fails. The main contributions are as follows:

• We expose the limitations of current uncertainty estimation methods based on probability
and identify the failure cases in Semantic Entropy.

• We introduce Semantic Energy, a novel framework to evaluate the uncertainty of LLM
responses, which indicates potential errors in the responses.

• We instantiate Semantic Energy using the Boltzmann formulation, and in the hallucina-
tion detection task, it achieves an average performance improvement of more than 13%
compared in terms of AUROC to Semantic Entropy in cases where the latter is confident.

2 PRELIMINARIES

2.1 ESTIMATING LLM UNCERTAINTY WITH TOKEN-LEVEL ENTROPY

Let q denote a natural language query provided as input to the LLM. Given the prompt q, a single
response sequence is generated in an auto-regressive manner. This response can be represented as:

x = [x1, x2, . . . , xT ], (1)
where x denotes a complete token sequence of variable length T . At each decoding step t, the
model calculates a probability distribution across its entire vocabulary V , assigning a conditional
probability p(xt | x<t, q) to each candidate token given the preceding context and the original
query. To quantify the uncertainty in the LLM predictions at each generation step, the token-level
entropy for position t is formally defined as:

Ht = −
∑
x∈V

p(x | x<t, q) log p(x | x<t, q), (2)

where V is the model vocabulary. A higher value of Ht indicates a more uniform probability distri-
bution and thus greater uncertainty in the model choice for the t-th token.

To estimate the overall uncertainty associated with the entire generated response x, a common and
straightforward strategy is to aggregate these local token-level entropy values. The most common
aggregation method is to compute the arithmetic mean across all tokens in the sequence:

Havg(x) =
1

T

T∑
t=1

Ht, (3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Answer 1: The last U.S. state to reintroduce alcohol … was **Kentucky**.

Answer 2: The last U.S. state to reintroduce alcohol … was **Kentucky**.

Answer 3: The last U.S. state to reintroduce alcohol … was **Wyoming**.

Answer 4: The last U.S. state to reintroduce alcohol … was **Wyoming**.

Answer 5: The last U.S. state to reintroduce alcohol … was **Mississippi**.

Answer 1: There are **3, 600 seconds** in an hour.

Answer 2: There are **3600 seconds** in an hour.

Answer 3: There are **3, 600 seconds** in an hour.

Answer 4: There are **3600 seconds** in an hour.

Answer 5: There are **3600 seconds** in an hour.

Ground truth: Utah

Question1: What was the last US state to reintroduce alcohol 

after prohibition?

Question2 : How many seconds are there in an hour?

Ground truth: 3600

High uncertainty cases in Semantic Entropy

Low uncertainty cases in Semantic Entropy
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Answer 1: The Huron Falls … **Huron Mountains** of **Michigan**, USA. 

Answer 2: The Huron Falls … **Huron River** in **Michigan**, United States.

Answer 3: The Huron Falls … **Huron River** in **Michigan**, USA.

Answer 4: The Huron Falls … **Huron River** in **Michigan**, United States.

Question3: Where are the Huron Falls? 

Ground truth: Ricketts Glen State Park, Pennsylvania

Answer 5: The Huron Falls … **Huron Mountains** of **Michigan**, … 
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Figure 1: An intuitive comparison between Semantic Entropy and Semantic Energy in their ability to
characterize uncertainty. Both approaches first sample and perform semantic clustering over distinct
clusters of activity. The difference lies in the computation: Semantic Entropy is calculated based
on normalized probabilities, while Semantic Energy is derived from logits. This enables Semantic
Energy to distinguish cases when Semantic Entropy fails.

where Havg(x) serves as a proxy for the total uncertainty of the response, with a higher average
entropy suggesting a more uncertain generation process. However, this approach implicitly assumes
that each token contributes equally to the overall uncertainty, which may not hold in practice.

Recognizing that different tokens can carry varying levels of importance for the meaning and cor-
rectness of the final response, some recent studies (Duan et al., 2024) have proposed a refinement
employing a weighted average. This method aims to amplify the contribution of critical or pivotal
tokens (e.g., those conveying key facts or decisive information) to the final uncertainty score:

Hwavg(x) =

T∑
t=1

wtHt, where
T∑

t=1

wt = 1, (4)

where weights wt can be determined based on heuristic rules (such as focusing on entities) or learned
mechanisms designed to identify semantically important tokens.

Although token-level entropy offers a fine-grained, local perspective on the uncertainty during the
auto-regressive generation process, it possesses an inherent limitation: it operates purely on a syn-
tactic or surface level. Quantifies the model’s hesitation in choosing the next token, but does not
necessarily reflect uncertainty over the underlying meaning or intent of the full response. This is be-
cause vastly different token sequences can express the same semantic content, while highly similar
token-level probability distributions might lead to responses with divergent meanings. Consequently,
token-level metrics may not fully capture the diversity in the semantic content of different possible
responses. This critical shortcoming motivates the need for a more holistic, higher-level notion of
uncertainty that operates on the distribution of semantically distinct outputs, leading to the concept
of semantic entropy (Kuhn et al., 2024).
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2.2 SEMANTIC ENTROPY AND RESPONSE CLUSTERING

To capture semantic-level uncertainty, semantic entropy samples a set of n candidate responses to
the query q from LLM:

X = {x(1),x(2), . . . ,x(n)}, x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
Ti
], (5)

where x(i) indicates the i-th sampled response and Ti indicates the number of tokens in this re-
sponse. Each response x(i) has an associated likelihood in the model:

p(x(i) | q) =
Ti∏
t=1

p(x
(i)
t | x

(i)
<t, q), p̄(x(i)) =

p(x(i) | q)∑n
j=1 p(x

(j) | q)
. (6)

where p̄(x(i)) indicates a normalized distribution over the sampled responses. Due to surface-level
variability in language, semantically similar responses may have different forms. Therefore, seman-
tic entropy clusters the responses into K semantically coherent groups:

C = {C1,C2, . . . ,CK}, Ck ⊆ X, (7)

where each cluster Ck contains responses that are semantically equivalent. The probability mass
assigned to each cluster is defined as the sum over its members:

p(Ck) =
∑

x(i)∈Ck

p̄(x(i)). (8)

Finally, semantic entropy (HSE) is computed by applying the standard Shannon entropy formula to
this distribution over semantic clusters:

HSE = −
K∑

k=1

p(Ck) log p(Ck), (9)

which quantifies the model’s uncertainty over distinct meanings conveyed by its responses. How-
ever, semantic entropy fails in some scenarios due to the limitations of entropy-based uncertainty
estimation.

3 MODELING UNCERTAINTY VIA SEMANTIC ENERGY

3.1 LIMITATIONS OF ENTROPY-BASED UNCERTAINTY ESTIMATION

While HSE captures semantic variability, it only reflects aleatoric uncertainty—uncertainty arising
from intrinsic randomness in the generation process. However, it fails to capture epistemic uncer-
tainty—uncertainty stemming from the model’s lack of knowledge. For example, as illustrated by
the pair of instances in Low uncertainty cases in Semantic Entropy (see Fig. 1):

(1) Consider two queries q2 and q3, where the model has been extensively trained on data
related to q2 (thus confident), but has limited exposure to q3 (thus uncertain).

(2) Assume that each query is sampled to obtain 5 responses, which were subsequently grouped
into a certain cluster based on their semantic similarity (K = 1), respectively.

(3) In this case, HSE = 0 for both, despite the LLM outputs 5 incorrect answers on q3 with the
same semantic.

This means that if an LLM gives a wrong answer, and the semantics of multiple sampled results
are all aligned with that wrong answer, then semantic entropy will mistakenly identify it as reliable.
Unfortunately, LLMs are very good at “steadfastly” repeating the same wrong response. In some
datasets, nearly half of the samples with repeated identical semantics are actually incorrect answers,
making this limitation impossible to ignore.

The reason behind this is that the entropy calculated based on probabilities only reflects the rela-
tive likelihood of a particular LLM response compared to other possible responses generated by the

4
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model, rather than the actual probability of that response to the question in the real world. However,
when computing the probability of the next token, the model approximates the partition function
as the sum of probabilities over its vocabulary. Therefore, for entropy to accurately represent un-
certainty, two assumptions must hold: (1) the model has seen all possible responses (that is, the
training distribution matches the real-world distribution perfectly), and (2) the model has fit the
training distribution without bias (that is, the model output distribution matches the training dis-
tribution exactly). Clearly, neither of these assumptions holds. Worse still, the LLM response is
based on the joint probability prediction of many tokens, rather than the single word classification
of traditional discriminative models, which causes the error of the approximated partition function
to accumulate to a degree that can no longer be ignored.

3.2 ENERGY-BASED CONFIDENCE ESTIMATION

To address this limitation, we introduce an energy-based formulation that complements semantic en-
tropy and captures epistemic uncertainty. In thermodynamics of physics, lower energy corresponds
to a more stable and less random state. Drawing on thermodynamic analogies, we treat lower-energy
states as higher-confidence predictions, following the intuition that physical systems evolve toward
minimal-energy configurations.

3.2.1 BOLTZMANN DISTRIBUTION

The classical Boltzmann distribution defines the probability that a system occupying a state is capa-
ble of generating x

(i)
t as:

p(x
(i)
t ) =

e−E
(i)
t /kτ

Zt
, (10)

where k is the Boltzmann constant, τ is the temperature, and E
(i)
t is the token energy x

(i)
t , and Zt is

the partition function. Specifically, for LLMs, Zt =
∑

x∈V e−Et(x) is the normalization value across
the entire vocabulary V (the difference between V and V is that V is the vocabulary in the predefined
tokenizer of a specific LLM, while V is the space of possible next tokens in the real world, which is
infinite and intractable). For simplicity, we assume that Zt is constant across t. The probability of a
complete sequence and the average sequence-level energy can be represented as:

p(x(i)) =

Ti∏
t=1

p(x
(i)
t ) =

e−
∑Ti

t=1 E
(i)
t∏Ti

t=1 Zt

, E(x(i)) =
1

Ti

Ti∑
t=1

E
(i)
t . (11)

Suppose that we want to evaluate the total energy of a set C. According to the Boltzmann equation,
the total energy of C is the sum of its different states:

EBolt(C) =
∑

x(i)∈C

E(x(i)). (12)

Lower energy indicates that the cluster containing this response is more stable, i.e., it has lower
uncertainty and thus higher reliability.

3.2.2 SPECIFIC IMPLEMENTATION IN LLMS

For a LLM parameterized by θ with a vocabulary V , we can formulate the token-level energy distri-
bution within the energy-based modeling framework. Specifically, each token x

(i)
t is associated with

an energy value E(x
(i)
t ,θ), and the probability of generating this token is obtained via a Boltzmann

distribution. The partition function Zθ serves as the normalization term, summing over all possi-
ble tokens in the vocabulary V . This ensures that the resulting distribution is valid and comparable
across tokens:

p(x
(i)
t ,θ) =

e−E(x
(i)
t ,θ)/kτ

Zθ
, Zθ =

∑
x
(i)
t ∈V

e−E(x
(i)
t ,θ)/kτ , (13)

5
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where kτ corresponds to the temperature parameter that controls the sharpness of the distribution.
The partition function Zθ reflects the dependence of the probability distribution on the model pa-
rameters θ.

From a Bayesian perspective, the total predictive uncertainty of the model should account for uncer-
tainty in the parameters θ themselves. This requires marginalizing over the posterior distribution of
θ given the training data D. The marginal likelihood of generating a token x

(i)
t under this treatment

is expressed as:

p(x
(i)
t ,D) =

∫
θ

p(x
(i)
t ,θ) · p(θ | D) dθ. (14)

However, we cannot obtain all possible θ, but we can only estimate uncertainty under specific mod-
els. For any given θ, the conditional probability of generating a token from a subset vocabulary
V ⊆ V is:

p(Zθ,t | Zt) =

∑
x
(i)
t ∈V e−E(x

(i)
t ,θ)/kτ∑

x
(i)
t ∈V e−E(x

(i)
t ,θ)/kτ

. (15)

By combining this subset-based probability with Eq. 14, we can approximate the marginal distribu-
tion using the current model parameters. The resulting sampled approximation is given by:

p̃(x
(i)
t ,D) = p(x

(i)
t , θ) · p(Zθ,t | Zt) =

e−E(x
(i)
t ,θ)/kτ

Zt
, (16)

where p̃(x(i)
t ,D) indicates a sampled approximation of p(x(i)

t ,D). Similarly to softmax-based prob-
ability modeling, the probability of a complete sequence is the joint probability of all tokens in the
entire sequence:

p̃(x(i)) =

Ti∏
t=1

p̃(x
(i)
t ) =

e−
∑Ti

t=1 Ẽ
(i)
t /kτ∏Ti

t=1 Zt

, Ẽ(x(i)) =
1

Ti

Ti∑
t=1

Ẽ
(i)
t , (17)

where Ẽ(x(i)) indicates the average sequence-level energy, which can also be interpreted as the
energy per unit volume in thermodynamics, that is, the free energy density (Callen, 1993). To
extend to semantic clusters, we treat each cluster Ck energy as a scaled joint energy:

ẼBolt(Ck) =
1

n

∑
x(i)∈Ck

Ẽ(x(i)), (18)

where n are the sampling times for every question.

For an LLM trained with cross-entropy loss, we represent E(x
(i)
t ,θ) as the negative value of the

logit, that is, E(x
(i)
t ,θ) = −zθ(x(i)

t ), and kτ is by default the temperature used during LLM train-
ing, that is, kτ = 1. The final uncertainty is defined as:

U(x(i)) =
1

n

∑
x(j)∈Ck

1

Tj

Tj∑
t=1

−zθ(x(j)
t ), ∀x(i) ∈ Ck, (19)

which captures the average negative logit across tokens and samples. The lower energy corresponds
to the lower uncertainty, thus establishing a direct connection between model confidence and energy-
based representation. The uncertainty of a single reply is represented by the uncertainty of the
semantic cluster to which it belongs. That is, for all replies that belong to the same semantic cluster,
their uncertainty is identical.

4 EXPERIMENTS

4.1 SETUP

Model & Baseline. We conduct experiments using the Qwen3-8B model (Yang et al., 2025), and
the ERNIE-21B-A3B model (MOE architecture) (Baidu, 2025). Our primary goal is to highlight the
differences between probability-based methods and energy-based approaches. Therefore, we use
the semantic entropy (Farquhar et al., 2024) as a baseline.

6
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Datasets & Metrics. Experiments are performed on standard open-domain QA datasets in both
Chinese and English: the Chinese dataset CSQA (He et al., 2024) and the English dataset Triv-
iaQA (Joshi et al., 2017). To assess whether the estimated uncertainty can capture the risk that
the model makes errors, we estimate the AUROC between uncertainty scores and correctness (i.e.,
whether the answer is correct).

4.2 MAIN RESULTS

Table 1: Uncertainty estimation performance on OpenQA Datasets.

Model Dataset Semantic Entropy Semantic Energy
AUROC AUPR FPR95 AUROC(↑) AUPR(↑) FPR95(↓)

Qwen3-8B CSQA 71.6% 53.6% 77.0% 76.1% ⇑4.5% 61.4% ⇑7.8% 74.6% ⇑2.4%
TriviaQA 69.6% 73.5% 79.1% 74.8% ⇑5.2% 79.2% ⇑5.7% 74.7% ⇑4.4%

ERNIE-21B-A3B CSQA 77.4% 73.2% 70.9% 80.2% ⇑2.8% 77.5% ⇑4.3% 65.0% ⇑5.9%
TriviaQA 75.1% 85.0% 69.9% 81.0% ⇑5.9% 89.9% ⇑4.9% 63.7% ⇑6.2%

Table 1 summarizes the performance of uncertainty estimation methods on the CSQA and TriviaQA
datasets. We evaluate models using standard metrics: AUROC, AUPR, and FPR@95, based on
whether the uncertainty score can discriminate correct from incorrect responses.

In both models and datasets, semantic energy consistently outperforms semantic entropy. On CSQA,
the Boltzmann energy improves AUROC from 71.6% to 76.1% on Qwen3-8B and from 77.4% to
80.2% on ERNIE-21B-A3B. Similar trends are observed on TriviaQA, where Boltzmann energy
yields AUROC gains of more than 5% compared to the semantic entropy. Improvements are also
reflected in AUPR and FPR@95, indicating better calibration and reduced false positive rates.

These results highlight the robustness of energy-based uncertainty estimation, particularly in low-
diversity scenarios where entropy becomes degenerate (details in Table 2). By incorporating internal
model states via logits, semantic energy captures a richer signal for uncertainty estimation beyond
probability-based entropy.

4.3 ABLATION STUDIES

4.3.1 RESULTS ON QUESTIONS WITH SINGLE CLUSTER

Table 2: Uncertainty estimation performance on questions with single cluster.

Model Dataset Semantic Entropy Semantic Energy
AUROC AUPR FPR95 AUROC(↑) AUPR(↑) FPR95(↓)

Qwen3-8B CSQA 50.0% 55.8% 95.0% 66.7% ⇑16.7% 67.6% ⇑11.8% 80.3% ⇑14.7%
TriviaQA 50.0% 75.1% 95.0% 62.1% ⇑12.1% 81.6% ⇑6.5% 86.9% ⇑8.1%

ERNIE-21B-A3B CSQA 50.0% 77.0% 95.0% 58.9% ⇑8.9% 81.9% ⇑4.9% 88.4% ⇑6.6%
TriviaQA 50.0% 85.9% 95.0% 65.8% ⇑15.8% 91.4% ⇑5.5% 83.4% ⇑11.6%

In Table 2, we present the case where all responses share the same semantics, that is, all responses are
clustered into a single group as described in Sec. 3.1. In this scenario, semantic entropy completely
fails, whereas semantic energy is still able to provide a certain level of distinction, resulting in
semantic energy achieving an average performance improvement of more than 13% compared in
terms of AUROC to semantic entropy in cases where the latter is confident. It is important to note
that the value of semantic entropy in such cases is always zero, meaning that its performance reflects
the expected performance when the uncertainty indicator is meaningless, for example, the AUPR
corresponds to the number of positive samples (i.e. correct responses).

4.3.2 ADVANTAGES OF SEMANTIC CLUSTER

Inspired by semantic entropy, we incorporate semantic influence when computing energy. If se-
mantics are not considered and the energy of a single response is directly used to characterize the

7
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reliability of an LLM’s reply, such as in LogTokU (Ma et al., 2025), a clear problem arises: a single
response having high energy does not necessarily mean that the entire cluster of responses sharing
the same semantics also has high energy. This is because different responses belonging to the same
semantic cluster can still have varying energy values. Therefore, we represent the energy of a re-
sponse by the energy of the cluster to which it belongs. As shown in Fig. 2, we conduct an ablation
study on whether to include semantics. The experimental results demonstrate that incorporating
semantics significantly improves the accuracy of uncertainty estimation.

High LowSingle Response Energy
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

AUROC = 69.1

Distribution of Energy by Answer Correctness

Correct
Incorrect

(a) TriviaQA (w/o semantic)

High LowSingle Response Energy
0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

AUROC = 63.0

Distribution of Energy by Answer Correctness

Correct
Incorrect

(b) CSimpleQA (w/o semantic)

High LowSemantic Energy
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
en

si
ty

AUROC = 74.8

Distribution of Energy by Answer Correctness

Correct
Incorrect

(c) TriviaQA (with semantic)

High LowSemantic Energy
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
D

en
si

ty
AUROC = 76.1

Distribution of Energy by Answer Correctness

Correct
Incorrect

(d) CSimpleQA (with semantic)

Figure 2: Comparison of semantic vs. non-semantic uncertainty modeling on TriviaQA and CSim-
pleQA datasets.

4.3.3 RESULTS ON THINK MODE

To validate the performance of the proposed method on the thinking model, we conduct experiments
on Qwen-8B using the CSQA dataset and explore the case where the think mode is enabled. Specif-
ically, we activate the think mode but discard the content within <think>...<think> during
evaluation, considering only the response portion. The final results, shown in Fig. 3, are consistent
with the observations in Table 1. This indicates that even when the LLM undergoes a lengthy think-
ing process during output generation, its final results can still accurately capture the uncertainty of
the model’s responses through logits, thereby reflecting the reliability of the answers. Additionally,
we observe that both semantic entropy and semantic energy demonstrate significantly improved un-
certainty characterization capabilities in the think mode compared to the performance reported in
Table 1. This suggests that the context during the deep thinking process may positively contribute
to characterizing the distributional uncertainty of the final responses.

5 RELATED WORK

Uncertainty estimation methods. Recently, numerous uncertainty estimation methods for LLMs
have been proposed. These include methods that utilize natural language for uncertainty feedback,
including heuristically designed and trained approaches (Tao et al., 2025; Xiong et al., 2023; Lin
et al., 2023); methods that estimate uncertainty based on model states, including those leveraging
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(a) Semantic Entropy (b) Semantic Energy

Figure 3: Comparison of semantic entropy vs. semantic energy on CSQA datasets with think mode
on.

prior knowledge or statistical observations of model states (Kostenok et al., 2023; Li et al., 2025;
Liu et al., 2024), or observing changes under perturbations (Zhang et al., 2025b; Gao et al., 2024);
and methods that take into account the semantics of the response, including consistency-based un-
certainty characterizations (Lyu et al., 2025; Bartsch et al., 2023; Xiao et al., 2025) and approaches
that integrate semantics with model states (Kuhn et al., 2024; Grewal et al., 2024).

Uncertainty-guided applications. The utilization of uncertainty estimation is widely applied in
both the post-train and inference phases of LLMs. For example, minimizing entropy during the rein-
forcement learning process helps reduce uncertainty (Zhang et al., 2025a; Agarwal et al., 2025) and
encourages exploration of critical positions with higher uncertainty (Zheng et al., 2025; Cheng et al.,
2025). In the inference phase, uncertainty has emerged as a powerful signal for guiding LLMs and
related systems. For example, Ye et al. (2025) introduce CoT Entropy to quantify the uncertainty of
a PRM in stepwise verification, while Wang et al. (2022) demonstrate that monitoring uncertainty
across multiple reasoning paths helps select more reliable outputs. In retrieval-augmented gener-
ation (RAG). Guo et al. (2025) propose empowering retrieval decisions with model confidence,
and Chen & Varoquaux (2025) provide internal confidence to improve RAG on factual QA and
mathematical reasoning tasks. In multi-agent and collaborative systems, Dey et al. (2025) propose
uncertainty-aware fusion to reduces hallucinations by strategically combining multiple LLM based
on their accuracy and self-assessment abilities, Kruse et al. (2025) propose multi-LLM uncertainty
via subset ensembles that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated
subsets of LLMs. Uncertainty can also be used to determine when to stop or skip reasoning. Xu
et al. (2025) design adaptive stopping criteria where the model halts reasoning once confidence ex-
ceeds a threshold, reducing unnecessary computation, and Zhu et al. (2025) propose UnCert-CoT
that uncertainty-aware skipping prevents overthinking by allowing the model to bypass low-value
reasoning steps.

6 DISCUSSION AND CONCLUSION

In this paper, we introduce the concept of semantic energy as an enhancement of semantic entropy,
an uncertainty modeling method that substitutes entropy with energy (derived from logits). Semantic
energy can effectively compensate for the shortcomings of semantic entropy and better capture the
inherent uncertainty within models. We also clarify the limitations imposed by probability normal-
ization and demonstrate the potential to overcome these constraints. Although logits are not strictly
equivalent to energy, they exhibit energy-like characteristics solely due to the implicit constraints
arising from network initialization and regularization during training. This property of logits has
been leveraged in many previous studies, such as in the field of OOD detection. Furthermore, fu-
ture LLM development should consider the limitations associated with probability-based training to
mitigate performance degradation caused by factors such as training data distribution.

9
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A PROMPTS FOR DIFFERENT EXPERIMENTS

Prompt for Response Sampling

According to official recommendations, we adopted the following prompts for Qwen3
and ERNIE respectively.

Qwen-3 Prompt:
<|im start|>user\n {question} Give a short answer:
<|im end|>\n <|im start|>assistant\n

ERNIE-4.5 Prompt:
<|begin of sentence|>User: {question} Give a short answer:\n
Assistant:

Prompt for Semantic Cluster

We utilize the TIGER-Lab/general-verifier model for semantic clustering,
which analyzes whether different answers convey the same meaning for a given ques-
tion.

<|im start|>system Please reason step by step, and put your
final answer within \\boxed.<|im end|>\n <|im start|>user\n
{question} \n\n{answer a} \n\n{answer b} \n\nFor the above
question, please verify if the student’s answer is equivalent
to the ground truth answer.\nDo not solve the question by
yourself; just check if the student’s answer is equivalent to
the ground truth answer.\nIf the student’s answer is correct,
output "Final Decision: Yes". If the student’s answer
is incorrect, output "Final Decision: No". Assistant:
<|im end|>\n <|im start|>assistant

Prompt for Judgment

During the judgement process, TIGER-Lab/general-verifier is employed to de-
termine whether the model’s response aligns with the ground truth answer.

<|im start|>system Please reason step by step, and put your
final answer within \\boxed.<|im end|>\n <|im start|>user\n
{question}\n\n{llm response}\n\n{ground truth}\n\nFor the above
question, please verify if the student’s answer is equivalent
to the ground truth answer.\nDo not solve the question by
yourself; just check if the student’s answer is equivalent to
the ground truth answer.\nIf the student’s answer is correct,
output "Final Decision: Yes". If the student’s answer
is incorrect, output "Final Decision: No". Assistant:
<|im end|>\n <|im start|>assistant

B DETAILS FOR COMPARISON METHODS

In this paper, we primarily compare our method with the well-known approach, semantic entropy.
Since both methods require response sampling and semantic clustering, we use identical data for
these parts. That is, the only difference lies in the final uncertainty calculation process, in which
the responses and clusters are generated from the same set of data. For the TriviaQA dataset, due to
its large number of entries, we only estimate results for the first 5,000 samples. Note that this is a
commonly adopted practice. Additionally, the sampling temperature is set to 0.6, as recommended
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in the official documentation, and the random seed is set to values from 1 to 10 to sample ten distinct
responses.

It is important to note that the value of semantic entropy in table 2 is always zero, meaning that its
performance reflects the expected result when the uncertainty indicator is meaningless; for example,
the AUPR corresponds to the number of positive samples (i.e. correct responses).

C PSEUDO CODE

Algorithm 1: Semantic Energy–based Uncertainty Estimation
Input: Natural language query q, LLM with parameters θ, sampling times n
Output: Semantic clusters C = {C1, . . . ,CK} and their uncertainties U(Ck)

1 Step 1: Response Sampling
2 for i = 1 to n do
3 Sample response x(i) = [x

(i)
1 , . . . , x

(i)
Ti
] from LLM;

4 for t = 1 to Ti do
5 Record logit zθ(x

(i)
t );

6 Record probability p(x
(i)
t | x

(i)
<t, q);

7 end
8 end
9 Step 2: Semantic Clustering

10 Initialize C← ∅;
11 foreach pair (x(i),x(j)) do
12 Use semantic verifier to test equivalence;
13 if equivalent then
14 Assign x(i),x(j) to the same cluster;
15 end
16 end
17 Obtain C = {C1, . . . ,CK};
18 Step 3: Energy-Based Reliability
19 foreach response x(i) do
20 Compute average energy:

Ẽ(x(i)) =
1

Ti

Ti∑
t=1

−zθ(x(i)
t )

21 end
22 foreach cluster Ck do
23 Compute cluster uncertainty:

U(Ck) =
1

|Ck|
∑

x(i)∈Ck

Ẽ(x(i))

24 end
25 foreach response x(i) ∈ Ck do
26 Assign uncertainty U(x(i)) = U(Ck);
27 end

D THE USE OF LLMS

After completing the paper, we used an LLM to check for grammatical errors in the text, thereby
ensuring that the paper was free of writing issues. At the same time, we continuously submitted
updated versions to different LLMs, such as ChatGPT, for simulated review, which helped supple-
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ment additional experiments and related work analyses. It is worth noting that although our final
version satisfied the LLMs, our goal was not to make the LLMs happy with the revisions. Instead,
we engaged in additional discussions and made modifications based on the potential shortcomings
pointed out by the LLMs, continually refining the paper into its final form. While ensuring it meets
the approval of peers, we also made sure the LLM considered this paper an outstanding piece of
work.

E ATTEMPTS ON THE FERMI-DIRAC DISTRIBUTION

E.1 FERMI-DIRAC DISTRIBUTION

To account for potential dependencies among samples, we generalize to the expected energy:

E(Ck) =
∑

x(i)∈Ck

p(x(i))E(x(i)). (20)

Since exact Z is intractable in Boltzmann distribution, we also consider the Fermi–Dirac distribu-
tion:

p(x(i)) =
1

e(E(x(i))−µ)/kT + 1
, (21)

where µ (chemical potential) is approximated as the mean of all logits across tokens and samples.
This form reflects saturation effects and confidence plateauing.

The corresponding energy is defined as:

EFermi(Ck) =
∑

x(i)∈Ck

E(x(i))

e(E(x(i))−µ)/kT + 1
. (22)

E.2 HYPER-PARAMETERS IN FERMI-DIRAC DISTRIBUTION

In the Fermi–Dirac-based uncertainty formulation, the chemical potential µ plays a critical role in
shaping the distribution and consequently in estimating model confidence. To investigate its effect,
we empirically examined how the quality of uncertainty estimation varies with different choices of
µ. When µ is initially set to match the Boltzmann distribution regime (that is, very negative val-
ues), the Fermi–Dirac model behaves similarly to the exponential Boltzmann case. As µ increases,
the performance first improves and reaches a peak, after which it drops rapidly, indicating a sharp
sensitivity to this parameter.

From a physical perspective, the chemical potential µ in the Fermi–Dirac distribution determines the
energy level at which the probability of occupation is 1/2. In our setup, we interpret µ as a learned
threshold separating high-confidence and low-confidence generations. To avoid manual tuning and
leverage the thermodynamic grounding of the method, we solve for the optimal µ analytically by
enforcing the self-consistency condition.

1

n

n∑
i=1

1

e(E(x(i))−µ)/kT + 1
= µ, (23)

which is derived from the condition that the mean value of the Fermi-Dirac occupation function is
equal to µ itself. This fixed-point equation,

Ex∼X

[
1

e(E(x)−µ)/kT + 1

]
= µ,

yields the system-consistent value of µ, ensuring that the modeled uncertainty distribution reflects a
stable equilibrium in the energy landscape. Numerically, we solve Eq. 23 using root-finding meth-
ods (e.g., bisection or Newton-Raphson), producing an interpretable and data-adaptive setting of µ
without requiring heuristic tuning. However, these observations are not consistently manifested in
all models and require further exploration.
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