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ABSTRACT

This paper explores the integration of ring attractors, a mathematical model in-
spired by neural circuit dynamics, into the reinforcement learning (RL) action
selection process. Ring attractors, as specialized brain-inspired structures that en-
code spatial information and uncertainty, offer a biologically plausible mechanism
to improve learning speed and predictive performance. They do so by explicitly
encoding the action space, facilitating the organization of neural activity, and en-
abling the distribution of spatial representations across the neural network in the
context of deep RL. The application of ring attractors in the RL action selection
process involves mapping actions to specific locations on the ring and decoding
the selected action based on neural activity. We investigate the application of ring
attractors by both building them as exogenous models and integrating them as part
of a Deep Learning policy algorithm. Our results show a significant improvement
in state-of-the-art models for the Atari 100k benchmark. Notably, our integrated
approach improves the performance of state-of-the-art models by half, represent-
ing a 53% increase over selected baselines.

1 INTRODUCTION

This paper addresses the challenge of efficient action selection in reinforcement learning (RL), par-
ticularly in environments with spatial structures. Our primary contribution is the novel integration of
ring attractors, theoretically proposed by Zhang (1996) and discovered by Kim et al. (2017), a neural
circuit model from neuroscience, into the RL framework. This approach improves spatial awareness
in action selection and provides a mechanism for uncertainty-aware decision-making in RL, leading
to more accurate and efficient learning in complex environments. Ring attractors offer a unique
framework to continuously and stably represent spatial information (Sun et al., 2020). In a ring at-
tractor network, neurons interconnect circularly, forming a loop with tuned connections (Blair et al.,
2014). This configuration allows for robust and localized activation patterns, maintaining accurate
spatial representations even with noise or perturbations. Applying ring attractors to the selection
of RL actions involves mapping actions to specific ring locations and decoding the selected action
based on neural activity. This spatial embedding proves advantageous for continuous action spaces,
particularly in tasks such as robotic control and navigation (Rivero-Ortega et al., 2023). Ring at-
tractors improve decision-making by exploiting spatial relations between actions, contributing to
informed transitions between actions in sequential decision-making tasks in RL.

In what follows, we summarize our contributions. Briefly, our contributions include a novel ap-
proach to RL policies based on ring attractors, the inclusion of uncertainty-aware capabilities in our
RL systems, and the development of Deep Learning (DL) modules for RL with ring attractors.

Integration of ring attractors into RL policies and spatial encoding for action selection. We
propose a novel approach for incorporating ring attractors, a neural structure use for motor control
and cognition, into RL as a lightweight, efficient and robust decision-making structure. The circular
structure of ring attractors allows the model to represent spatial information and relations between
actions. This spatial awareness significantly speeds up the learning rate of the RL agent. The relevant
methodology and experiments can be found in Sections 3.1.2 and 4.1, respectively.

Uncertainty-aware RL. Ring attractors can encode uncertainty estimation to drive the action se-
lection process. This paper utilizes Bayesian uncertainty estimation to influence the policy. The
relevant methodology and experiments can be found in Sections 3.1.3 and 4.1, respectively.
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DL module for ring attractors. We develop a reusable DL module based on recurrent neural
networks that integrates ring attractors into DL-based RL agents. Additionally, this enables the
adoption of our ring attractor approach across different RL models and tasks in various domains
of application. The relevant methodology and experiments can be found in Sections 3.2 and 4.2,
respectively.

2 RELATED WORK

The integration of ring attractors into RL systems brings together neuroscience-inspired models and
advanced machine learning techniques. Here, we review the literature on the key areas that form
the foundation of our RL research: spatial awareness in RL, biologically inspired reinforcement
learning approaches, and uncertainty quantification methods.

2.1 SPATIAL AWARENESS IN REINFORCEMENT LEARNING

Incorporating spatial awareness into RL systems has improved performance on tasks with inherent
spatial structure. Regarding relational RL, Zambaldi et al. (2019) introduced an approach using
attention mechanisms to reason about spatial relations between entities in an environment. This
method demonstrated improved sample efficiency and generalization in tasks that require spatial
reasoning. On the topic of navigation, Mirowski et al. (2017) developed a deep RL agent capable
of navigating complex city environments using street-level imagery. Their approach incorporated
auxiliary tasks, such as depth prediction and loop closure detection. Concerning explicit spatial
representations, Gupta et al. (2017) proposed a cognitive mapping and planning approach for vi-
sual navigation, combining spatial memory with a differentiable neural planner. Similarly, Bapst
et al. (2019) introduced a relational deep RL framework using graph neural networks to capture
spatial relations between objects. Although these approaches demonstrate the importance of spatial
awareness in RL, they often lack the biological plausibility found in neural circuits.

2.2 BIOLOGICALLY INSPIRED MACHINE INTELLIGENCE

Biologically inspired approaches to RL seek to leverage insights from neuroscience to improve the
efficiency, adaptability, and interpretability of RL algorithms. These methods often draw upon neu-
ral circuit dynamics and cognitive processes observed in biological systems. The work presented
in (Banino et al., 2018) demonstrated that incorporating grid-like representations, inspired by mam-
malian grid cells, into RL agents improved performance on navigation tasks. Their work showed that
these biologically inspired representations emerged naturally in agents trained on navigation tasks
and transfer well to new environments. Similarly, Cueva & Wei (2018) showed that recurrent neu-
ral networks trained on navigation tasks naturally developed grid-like representations, suggesting a
deep connection between biological and artificial navigation systems. Singh et al. (2023) demon-
strated how RL agents naturally develop insect-like behaviors and neural dynamics when solving
complex spatial navigation tasks. Wang et al. (2018) proposed a biologically inspired meta-RL
algorithm that mimics the function of the prefrontal cortex and dopamine-based neuromodulation.
Their approach demonstrated rapid learning and adaptation to new tasks, similar to the flexibility
observed in biological learning systems.

2.3 UNCERTAINTY QUANTIFICATION

Regarding exploration strategies, Osband et al. (2016) introduced bootstrapped deep Q-networks
(DQNs), addressing exploration by leveraging uncertainty in Q-value estimates by training multiple
DQNs with shared parameters. Building on this theme, Burda et al. (2018) proposed random net-
work distillation (RND), measuring uncertainty by comparing predictions between a target network
and a randomly initialized network. For efficient uncertainty quantification, Durasov et al. (2020)
and Bykovets et al. (2022) presented a novel ‘masksemble’ approach, applying masks across the
input batch during the forward pass to generate diverse predictions. Addressing risk assessment in
non-stationary environments, Jain et al. (2021) described a method to analyze sources of lack of
knowledge by adding a second Bayesian model to predict algorithmic action risks, particularly rel-
evant for multi-agent RL (MARL) systems. Kutschireiter et al. (2023) developed a Bayesian ring
attractor that outperforms conventional ring attractors by dynamically adjusting its activity based on

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

evidence quality and uncertainty. In the context of individual treatment effects, Lee et al. (2020)
performed uncertainty quantification (UQ) using an exogenously prescribed algorithm, making the
method agnostic to the underlying recommender algorithm.

Azizzadenesheli et al. (2018) developed a Bayesian approaches for RL in episodic high-dimensional
Markov decision processes (MDPs). They introduced two novel algorithms: LINUCB and
LINPSRL. These algorithms achieve significant improvements in sample efficiency and perfor-
mance by incorporating uncertainty estimation into the learning process. The extension to Deep
RL, called Bayesian deep Q-networks, BDQNs (Azizzadenesheli et al., 2018), incorporates efficient
Thompson sampling and Bayesian linear regression at the output layer to factor uncertainty esti-
mation in the action-value estimates. On a similar line, Foerster et al. (2019) proposed a Bayesian
action decoder. It is a learning algorithm based on approximate Bayesian updates to obtain a public
belief that conditions the actions taken by other agents in the environment. This creates uncertainty-
aware agents that are not biased by training data. It also generates a factorised, approximate belief
state that provides the agents with efficient learning through informed actions.

In summary, the literature reveals a growing interest in incorporating spatial awareness, biological
inspiration, and UQ into RL systems. However, there remains a gap in integrating these elements
into a cohesive framework. Our work on ring attractors aims to bridge this gap by providing a
biologically plausible model that inherently captures spatial relations and can be extended to handle
uncertainty, potentially leading to more robust and efficient RL agents.

3 METHODOLOGY

In this section, we describe two main methods: an exogenous ring attractor model using continuous-
time recurrent neural networks (CTRNNs) and a DL-based ring attractor integrated into the RL
agent. Both leverage the ring attractors’ spatial encoding capabilities to enhance action selection
and performance. We detail the ring attractor architecture, dynamics, and implementation, includ-
ing uncertainty injection in the CTRNN model for robust decision-making. CTRNNs are employed
for their ability to model continuous neural dynamics and maintain stable attractor states (Beer,
1995). The integrated approach offers end-to-end training for efficiency and scalability. Ring at-
tractors in RL maintain stable spatial information representations, preserving action relations lost in
traditional flattened action spaces. This circular spatial representation potentially yields smoother
policy gradients and more efficient learning in spatial tasks, attributed to the ring attractors’ ability
to maintain a stable representation of spatial information.

3.1 EXOGENOUS RING ATTRACTOR MODEL: CONTINUOUS-TIME RNN

During the first stage of the research, the focus is on developing a self-contained ring attractor as a
CTRNN. This will be integrated into the output of the value-based policy model to perform action
selection.

3.1.1 RING ATTRACTOR ARCHITECTURE

Ring attractors commonly consist of a configuration of excitatory and inhibitory neurons arranged
in a circular pattern. We can model the dynamics of the ring using the Touretzky ring attractor
network (Touretzky, 2005). In this model, each excitatory neuron establishes connections with all
other excitatory neurons, and an inhibitory neuron is placed in the middle of the ring with equal
weighted connections to all excitatory neurons. This creates a network that facilitates complex
information processing.

Excitatory neurons’ input signal. Let xi
n ∈ Rs denote the input signal from source number i to

the excitatory neuron n = 1, . . . , N . The total input to neuron n is defined as the sum of all input
signals I for that particular neuron: xn =

∑I
i=1 x

i
n, where xn ∈ R. To model input signals xi

n of
varying strengths, these signals are commonly viewed as Gaussian functions xi

n : Rs → Rs. These
functions allow us to represent the input to each neuron as a sum of weighted Gaussian distributions.
The key parameters of these Gaussian functions are: Ki, the magnitude variable for the input signal
in index i, which determines the overall strength of the signal; µi, which defines the mean position of
the the Gaussian curve in the ring for the input signal i, representing the central focus of the signal;
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σi, the standard deviation of the Gaussian function, which determines the spread or reliability of the
signal; and αn, which represents the preference for the orientation of the neuron n in space. These
parameters combine to the following:

xn(Ki) =

I∑
i=1

xi
n(αn) =

I∑
i=1

Ki√
2πσi

exp

(
−1

2

(αn − µi)
2

σ2
i

)
, n = 1, 2, . . . , N (1)

Neuron activation function. We employ the rectified linear unit (ReLU) function f(x) =
max(0, x + h), where h ∈ R+ as the activation function for each neuron, where h is a thresh-
old that introduces the non-linear behaviour in the ring.

Excitatory neuron dynamics. The dynamics of excitatory neurons in the ring is described as:
dvn
dt

≈ ∆vn
∆t

=
vn+∆t − vn

∆t
=

f(xn + ϵn + ηn)

τ
− vn (2)

In Eq. 2 vn ∈ R represents the activation of the excitatory neuron n, xn is previously defined in Eq. 1
is the external input to the neuron n of Eq. 1, ϵn ∈ R represents the weighted influence of the other
excitatory neurons activation, which is defined mathematically in Eq. 4. ηn ∈ R is the influence
from the weighted inhibitory neuron activation to the target excitatory neuron n, and τ = ∆t is
the time integration constant. This equation captures the evolution of neuronal activation over time,
considering both excitatory and inhibitory activations.

Inhibitory neuron dynamics. The activation of the inhibitory neuron, which regulates network
dynamics, is described by:

du

dt
≈ ∆u

∆t
=

u+∆t − u

∆t
=

f(ϵn + ηn)

τ
− u (3)

Here, u ∈ R represents the inhibitory neuron’s activation output, ϵn is the weighted sum of exci-
tatory activations where in this case n is the inhibitory neuron, and ηn ∈ R is the weighted self-
inhibition activation term. This equation models how the inhibitory neuron integrates inputs from
the excitatory population and its own state.

Synaptic weighted connections: The influence between neurons decreases with distance, as mod-
eled by the weighted connections. This weighted connection applies to both excitatory and inhibitory
neurons. For excitatory neurons: w(Em→En) = e−d2

(m,n) , where d(m,n) = |m − n| is the distance

between neurons m and n. For the inhibitory neuron: w(I→En) = e−d2
(m,n) = e−1. Note that

our model contains a single inhibitory neuron placed in the middle of the ring, with a distance of 1
unit to all excitatory neurons.The excitatory (ϵn) and inhibitory (ηn) weighted connections are also
known in the literature as neuron-proximal excitatory and inhibitory voltage or potential.These are
then defined as follows:

ϵn =

N∑
m=1

w(Em→En)
m,n vm ηn = w(I→En)u (4)

Full excitatory neuron dynamics. Combining all influences, the complete dynamics of excitatory
neurons are described by:

dvn
dt

=
1

τ

(
f

(
N∑

m=1

w(Em→En)
m,n vm + xn + w(I→En)u

))
− vn (5)

This equation updates the activation for all neurons based on recurrent excitation, external input
from the summation of the input signals for neuron n, xn; and inhibitory influence.

Full inhibitory neuron dynamics. The complete dynamics of the inhibitory neuron are given by:

du

dt
=

1

τ

(
f

(
u+

N∑
m=1

w(Em→I)
m vm

))
− u (6)

This equation models how the inhibitory neuron integrates self-inhibition and excitatory inputs from
the entire network. These equations collectively describe the complex dynamics of the ring attractor
network, capturing the interplay between excitatory and inhibitory neurons, external inputs, and
synaptic connections.
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3.1.2 RING ATTRACTOR AS BEHAVIOR POLICY IN REINFORCEMENT LEARNING

To integrate the ring attractor model with RL, we need to establish a connection between the esti-
mated value of state-action pairs and the input to the ring attractor network. This integration allows
the ring attractor to serve as a behavior policy, guiding action selection based on the values learned.
We begin by reformulating the input function for a target excitatory neuron n. The key modifi-
cation is setting the scale factor Ki to the Q-value Q(s, a) of the state-action pair (s, a), that is
Ki = Q(s, a).

This formulation ensures that actions with higher estimated values are given more weight in the ring
attractor dynamics, naturally biasing the network towards more valuable actions. The orientation of
the signal within the ring attractor is determined by the direction of movement in the action space.
We represent this as µi = αa(a), where αa(a) is the angle corresponding to the action a in the
circular action space. We define our circular action space A as a subset of R2, where each action
a ∈ A is represented by a point on the unit circle. The function α : A → [0, 2π) maps each action
to its corresponding angle on this circle, and αn which presents the preference for the orientation of
the neuron n in space. To account for uncertainty in our value estimates, we incorporate the variance
of the estimated value for each action into our model: σi = σa.

This allows the network to represent not just the expected value of actions, but also our confidence
in those estimates. Combining these elements, we arrive at the following equation for the action
signal x(a):

xn(Q) =

A∑
a=1

Q(s, a)√
2πσa

exp

(
−1

2

(αn − αa(a))
2

σ2
a

)
(7)

This equation represents the input to each neuron as a sum of Gaussian functions, where each func-
tion is centered on an action’s direction and scaled by its Q-value. The dynamics of the excitatory
neurons in the ring attractor, now incorporating the Q-value inputs, are described by:

dvn
dt

=
1

τ

(
max

(
0,

(
m=N∑
m=1

w(E−→E)
m,n vm + xn(Q) + w(I−→Eu)u

)))
− vn (8)

This equation captures how the activation of each neuron evolves over time, influenced by the action-
value functions xn(Q), and both excitatory and inhibitory feedback. This equation captures how the
activation of each neuron evolves over time, influenced by the action-value input Gaussian functions
xn(Q), the excitatory feedback en =

∑N
m=1 w

(Em→En)vm, and the inhibitory feedback in =

w(I→En)u.

To translate the ring attractor’s output into an action in the 2D space, we use the following equation:

action = argmax
n

{V} · N
(A)

N (E)
(9)

where n ∈ {1, ..., N (E)}, N (E) is the number of excitatory neurons in the ring attractor, N (A) is the
number of discrete actions in the action space A, V = [v1, v2, ..., vN(E) ].

This equation assumes that both the neurons in the ring attractor and the actions in the action space
are uniformly distributed. This approach allows for nuanced action selection that takes into account
both the spatial relations between actions and their estimated values. A visualization of the ring is
presented in Fig. 1.

3.1.3 UNCERTAINTY QUANTIFICATION MODEL

In the field of DRL, for any state-action pair (s, a), the Q-value Q(s, a) can be expressed as a
function of the input state through a function approximation algorithm Φθ(s) taking as input the
current state s. This function approximation algorithm (Φθ(s)) can be expressed as the weight matrix
of our function approximation algorithm transposed θT times the feature vector extracted from the
input state x(s): Q(s, a) = Φθ(s) = θTx(s) (Sutton & Barto, 2018). As stated in Section 3.1.2, the
variance of the Gaussian functions, input to the ring attractor, will be given by the variance of the
estimate value for that particular action σi = σa.
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Figure 1: Ring attractor Touretzky representation:
Circular arrangement of excitatory neurons (N0-
N7) with excitatory connections and central in-
hibitory neuron. Four input signals shown as col-
ored gradients. Overall activation depicted by red
outline. Includes connection weights and input
signal parameters, illustrating ring attractor dy-
namics.

Among the diverse methods to compute the un-
certainty of the action (σa) we have chosen to
compute a posterior distribution with Bayesian
linear regression (BLR). BLR acts as output
layer for our neural network (NN) of choice.
We choose a linear regression model because it
does not compromise the efficiency of the NN,
while at the same time it provides a distribu-
tion to compute the variance for the state-action
pairs. The implementation is based on Az-
izzadenesheli et al. (2018), where a Bayesian
value-based DQN model was instantiated to
output an uncertainty-aware prediction for the
state-action pairs. With this approach, the new
Q function is defined as:

Q(s, a) = Φθ(s)
Twa, (10)

where wa are the weights from the posterior
distribution of the BLR model. Eq. 10 repre-
sents the parameters of the final Bayesian linear
layer.

When provided with a state transition tuple
(s, a, r, s′), where s is the current state, a is the
action taken, r is the reward received, and s′

is the next state. This tuple represents a single
step of interaction between the agent and the
environment in the RL framework. The model learns to adjust the weights wa of the BLR and the
function approximation algorithm, i.e. neural networks (NNs) (Φθ), to align the Q values with the
optimal action a = argmax(γΦθ(s)

Twa), equation 11.

Q(s, a) = Φθ(s)
Twa −→ y := r + γΦθtarget(s

′)Twtargetâ (11)

where γ is the discount factor, y is the expected Q-value, Φθtarget are the features from the next state
s′ extracted by the function approximation algorithm Φ using the target network parameters, θtarget
refers to the parameters of the target function approximation algorithm used for learning, and â
is the predicted optimal action in the next state s′. The construction of the Gaussian BLR prior
distribution and the weights i sample wa,i collected from the posterior distribution are performed
through Thompson Sampling. This process allows us to incorporate uncertainty into our action-
value estimates. For details on the construction of the Gaussian prior distribution and the specifics
of the sampling process, we refer readers to Azizzadenesheli et al. (2018). Both the mean Q̄(s, a)
and the variance σ̄2

a from Eq. 12 are calculated from a finite number of samples I .

Q̄(s, a) =

∑i=I
i=0 Q(s, a)i

I
=

∑i=I
i=0 w

T
a,iΦθ(st)

I

σ̄2
a =

∑i=I
i=0

(
wT

a,iΦθ(st)− µa

)2
I − 1

(12)

3.2 DEEP LEARNING RING ATTRACTOR MODEL

To further enhance the ring attractor’s integration into RL frameworks and agents, we provide a
Deep Learning (DL) implementation.This approach improves model learning and integration with
DRL agents. Our implementation offers both algorithmic improvements, by benefiting from DL
training process, and software integration improvements, easing the deployment processes. Recur-
rent Neural Networks (RNNs) offer a practical approach for integrating ring attractors within DRL
agents. Recent studies by Li et al. (2015) show that RNNs perform well in modeling sequential data
and in capturing temporal dependencies for decision-making. Like CTRNNs, RNNs mirror ring at-
tractors’ temporal dynamics, with their recurrent connections and flexible architecture emulating the
interconnected nature of ring attractor neurons. This allows modeling of weighted connections for
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both forward and recurrent hidden states, as shown in the Appendix A.3. The premises for modeling
the structure of the RNN are as follows.

Attractor state as recurrent connections. RNN recurrent connections model the attractor state,
integrating information from previous time steps into the current network state, allowing retention
of information over time.

Signal input as a forward pass. Forward connections from previous layers are arranged circularly,
mimicking the ring’s spatial distribution. The attractor state encodes task context, influenced by
current input and hidden state. A learnable time constant τ , inherited from Eq. 2, controls input
contributions and temporal evolution, enabling adaptive behavior and adaptable input contribution
to the attractor state.

3.2.1 DEEP REINFORCEMENT LEARNING AGENT INTEGRATION

To shape circular connectivity within a RNN, the weighted connections in the input signal V (s) and
the hidden state or attractor state U(v) are computed as follows:

V (s)m,n =
1

τ
Φθ(s)

TwI−→H
m,n =

1

τ
Φθ(s)

T e
d(m,n)

λ

d(m,n) = min (|m− n
M

N
|, N − |m− n

M

N
|)

U(v)m,n = h(v)TwH−→H
m,n = h(Φθ)

T e
d(m,n)

λ

d(m,n) = min (|m− n|, N − |m− n|)

(13)

This circular structure mimics the arrangement of excitatory neurons in the ring attractor. Eq. 13
shows the input signal to the recurrent layer Vm,n from neuron m from the previous layer in the DL
agent to neuron n in the RNN. The hidden state, Um,n mimics an attractor state, representing the
recurrent connections in the RNN. The weighted RNN connections include fixed input-to-hidden
connections (wI−→Hm,n) to maintain the ring’s spatial structure, and learnable hidden-to-hidden
connections (wH−→Hm,n) to capture emerging action relationships. These depend on a parameter
λ that drives the decay of the potential over distance and distance between neurons d(m,n) where
N is the total number of neurons for the RNN and M is the count of neurons in the previous
layer of the NN architecture. The function ϕθ(s) : RS → RM maps the input state s of the DL
agent to a representation of characteristics that will be the input of the recurrent layer. Likewise, θ
represents the parameters of this function (i.e., the weights and biases of the NN layers preceding
the RNN layer, which extract relevant features from the input). The function h(v) : RN → RN

is a parameterized by learnable weights transformation that maps the information from previous
forward passes into the current hidden state. The learnable parameter τ is the positive time constant
responsible for the integration of signals in the ring. It defines the contribution of input states ϕθ(s)
to the current hidden state, imitating the attractor state, applied to neural networks.

Finally, the action-value function Q(s, a) is derived from the RNN layer’s output by applying the
neurons activation function to the combined input V (s) and hidden state information U(s). The
activation function of choice is a hyperbolic tangent tanh, this function is symmetric around zero,
leading to faster convergence and stability. However, the output range of tanh (-1 to 1) is not fully
compatible with value-based methods, where the DL agents needs to output action-value pairs in the
range of the environment’s reward function. To address this issue and prevent saturation of the tanh
activation function, we scale the action-value pairs by multiplying them with a learnable scalar β, as
Q(s, a) = βht = β tanh((V (s) + U(v)) = β tanh(( 1τΦθ(st)

TwI→H + ht−1(v)
TwH→H)).

4 EXPERIMENTS

This section presents the findings from our experiments that validate our proposed approach of in-
tegrating ring attractors into RL algorithms. To assess the effectiveness of our method, we conduct
comparisons across multiple baseline models and action spaces. The evaluation encompasses two
implementations: a traditional exogenous ring attractor and an innovative approach where the ring
attractor is modeled directly into a DRL agents. In both implementations, action-value pairs Q(s, a)
are evenly distributed across the ring circumference. For the exogenous model, each action is asso-
ciated with a specific angle on the ring, Section 3.1.2. In the DL implementation, each neuron in
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the RNN corresponds to one action-value. The ring attractor serves as the output layer of the DL
agent with the weights modeling the circular topology of the action space, Section 3.2.1. For both
approaches, agents are annotated with the suffix RA.

Our results demonstrate the effectiveness of ring attractors in enhancing action selection and signif-
icantly speeding up the learning process of the Reinforcement Learning agent overall.

4.1 EXOGENOUS RING ATTRACTOR MODEL PERFORMANCE ANALYSIS

To evaluate our exogenous ring attractor model integrated with BDQN (Azizzadenesheli et al., 2018)
we performed experiments in the OpenAI Super Mario Bros environment (Kauten, 2018). This
benchmark exhibits an spatially distributed complex decision-making scenario.

Figure 2: Learning speed comparison: Right OpenAI Gym Super Mario Bros environment (Kauten,
2018) with discrete action space; Left: OpenAI highway (Leurent, 2018), with a continuous 1-D cir-
cular variable. The plot shows cumulative reward over 1 million frames for three models: Standard
BDQN; BDQNRA with ring attractor behavior policy from Section 3.1.2, setting the action-value
pair variance constant to σa = π

6 , using this fix variance to enable smooth action transitions while
preventing interference with opposing actions; and BDQNRA-UA with RA and Uncertainty Aware-
ness (UA) implementing the uncertainty quantification model from 3.1.3 to feed into the variance
of the action-value pairs. Displaying mean episodic returns over 10 averaged seeds.

Fig. 2 shows that both ring attractor models (BDQNRA and BDQNRA-UA) consistently outper-
form standard BDQN. The uncertainty-aware version (BDQNRA-UA) shows the best overall per-
formance, highlighting the benefits of combining ring attractors spatial distribution of the action
space with uncertainty-aware action selection. Empirical evaluations revealed that the CTRNN-
based ring attractor models exhibited a mean computational overhead of 297.3% (SD = 14.2%)
compared to the baseline, significantly impacting runtime efficiency. To address this performance
bottleneck and integrating the ring attractor spatial understanding into the DRL, we developed a DL
implementation of the ring attractor. This DL implementation is evaluated in the subsections below.

4.2 DEEP LEARNING RING ATTRACTOR MODEL PERFORMANCE ANALYSIS

This subsection details the effects of incorporating uncertainty quantification through Bayesian Lin-
ear Regression. We evaluate the quality of uncertainty estimates and their impact on exploration
strategies and overall agent performance. Fig. 3, shows that the DDQNRA model consistently
outperforms the standard DDQN across tasks for both navigation and game-like decision-making
scenarios. This suggests that the ring attractor’s ability to encode spatial relationships in different
actions spaces contributes significantly to the agent’s learning efficiency. These results indicate that
the integration of ring attractors into DRL architectures can lead to significant improvements in both
learning speed and overall performance, especially in environments with strong spatial components.

4.3 PERFORMANCE ON ATARI 100K BENCHMARK

In this results section, we provide a comprehensive analysis of our model’s performance on the
Atari 100k benchmark (Bellemare et al., 2012). We present detailed comparisons with state-of-
the-art models, highlighting the improvements achieved by our approach. We analyze the factors
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Figure 3: Performance comparison: DDQNRA vs standard DDQN (van Hasselt et al., 2015) in
two environments. Right: OpenAI highway (Leurent, 2018), showing learning speed in spatial
navigation tasks. Left: OpenAI Super Mario Bros (Kauten, 2018), demonstrating adaptability to
complex, game-like scenarios. Displaying mean episodic returns over 10 averaged seeds.

contributing to the significant performance increase mentioned in the introduction, breaking down
results by game, and discussing notable trends or patterns observed across different types of tasks.

Table 1: Performance comparison on Atari 100k Benchmark (Bellemare et al., 2012). Benchmark
performed across all environments where actions can be layout in one or more 2D action space
planes (ring attractors). This is represented by the ring configuration column. The results are
recorded at the end of training and averaged over 10 random seeds, 3 samples per seed. We dis-
play game score and overall mean and median human-normalized scores for each algorithm.

Game Agent: Reported Implemented
Environment Ring Human CURL SPR EffZero EffZero EffZeroRA
Alien Double 7127.7 558.2 801.5 808.5 738.1 1098.8
Asterix Single 8503.3 734.5 977.8 25557.8 14839.3 31037.3
Bank Heist Double 753.1 131.6 380.9 351.0 362.8 460.5
BattleZone Double 37187.5 14870.0 16651.0 13871.2 11908.7 15672.0
Boxing Double 12.1 1.2 35.8 52.7 30.5 62.4
Chopper C. Double 7387.8 1058.5 974.8 1117.3 1162.4 1963.0
Crazy Climber Single 35829.4 12146.5 42923.6 83940.2 83883.0 100649.7
Freeway Double 29.6 26.7 24.4 21.8 22.7 31.3
Frostbite Double 4334.7 1181.3 1821.5 296.3 287.5 354.8
Gopher Double 2412.5 669.3 715.2 3260.3 2975.3 3804.0
Hero Double 30826.4 6279.3 7019.2 9315.9 9966.4 11976.1
Jamesbond Double 302.8 471.0 365.4 517.0 350.1 416.4
Kangaroo Double 3035.0 872.5 3276.4 724.1 689.2 1368.8
Krull Double 2665.5 4229.6 3688.9 5663.3 6128.3 9282.1
Kung Fu M. Double 22736.3 14307.8 13192.7 30944.8 27445.6 49697.7
Ms Pacman Single 6951.6 1465.5 1313.2 1281.2 1166.2 2028.0
Private Eye Double 69571.3 218.4 124.0 96.7 94.3 155.8
Road Runner Double 7845.0 5661.0 669.1 17751.3 19203.1 29389.3
Seaquest Double 42054.7 384.5 583.1 1100.2 1154.7 1532.8
Human–normalised Score

Mean 1.000 0.428 0.638 1.101 0.959 1.454
Median 1.000 0.242 0.434 0.420 0.403 0.531

Table 1 presents a comprehensive comparison of our ring attractor-based RL model integrated with
Efficient Zero (Ye et al., 2021), evaluating performance across multiple Atari games with a limited
training budget of 100,000 environment steps. The table includes results from baseline methods and
recent top-performing algorithms SPR (Schwarzer et al., 2020) and CURL (Srinivas et al., 2020)
for context. Our model demonstrates significant improvements over baseline methods, particularly
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in games with inherent spatial components, such as Asterix and Boxing, showing 110% and 105%
improvement respectively over the previous state-of-the-art.

The mapping between game action spaces and ring configurations reflects the fundamental structure
of each environment’s action space. Games with primarily directional movement actions, such as
Asterix and Ms Pacman, utilize a Single ring configuration where eight directional movements map
naturally to positions around the ring circumference. In contrast, games combining movement with
independent action dimensions, such as Seaquest and BattleZone, employ a Double ring configu-
ration, one ring encoding movement actions and another representing secondary mechanics such
as combat. This architecture maintains spatial relationships while preserving the independence of
different action types. Further implementation details for multiple ring dynamics can be found in
Appendix A.4.

These results reaffirm that the spatial encoding provided by ring attractors is especially beneficial
in environments where spatial relationships between actions are key. The consistent performance
improvement different games indicates that our approach provides a general enhancement that ben-
efits a wide range of RL tasks. Even in games where the improvement is less dramatic, we still see
substantial increases in performance, suggesting that the benefits of the ring attractor extend beyond
just spatially-oriented games.

To ensure a fair comparison under identical experimental conditions, we re-implemented and eval-
uated both the baseline EffZero and our proposed EffZeroRA model using the same computational
resources and experimental setup as employed throughout this study.

Ablation studies were conducted to isolate the impact of key components in our ring attractor mod-
els, detailed in Appendix A.2.1 and A.2.2. For the exogenous model, we compared performance
with correct and randomized action distributions in the ring. In the DL implementation, we removed
the circular weight distribution to assess its importance.

5 CONCLUSION

This paper presents a novel approach to RL, integrating ring attractors into action selection. Our
work demonstrates that these neuroscience-inspired ring attractors significantly enhance learning
capabilities for value-based RL agents, leading to more stable and efficient action selection, partic-
ularly in spatially structured tasks.

5.1 KEY FINDINGS AND IMPLICATIONS

The integration of ring attractors as a DL module proves particularly effective, allowing for end-to-
end training and easy incorporation into existing RL architectures. This approach improves perfor-
mance and offers potential insight into explicit spatial encoding of actions.

Our results demonstrate significant improvements in action selection and learning speed. We achieve
state-of-the-art performance on the Atari 100k benchmark, with an average 53% performance in-
crease across all games tested compared to the baseline and previous state-of-the-art models. No-
table improvements were observed in games with strong spatial components, such as Asterix (110
% improvement) and Boxing (105% improvement). Additionally, we observed improvements in
other environments tested outside the Atari benchmark, further supporting the effectiveness of our
approach across various RL tasks and agents.

5.2 FUTURE WORK

We acknowledge that our approach, while promising, has limitations and areas for potential improve-
ment. Future research should investigate the scalability of this method in high-dimensional action
spaces and explore its efficacy in domains where spatial relationships are less straightforward.

We believe that the success of this approach opens up several future research paths. The current work
can be extended to multi-agent scenarios and policy-based RL agents. In the field of uncertainty-
aware decision making, leveraging the spatial structure provided by attractor networks presents a
promising avenue to map uncertainty explicitly to the action space. Deploying the techniques pre-
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sented here into specific domains could yield performance boosts, especially in safe RL, leveraging
their stability properties to enforce constraints and ensure predictable behavior.

This approach not only improves performance but also offers potential insight into spatial encoding
of actions and decision-making processes, bridging the gap between neuroscience-inspired models
and practical RL agents.
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A APPENDIX

A.1 BACKGROUND:ATTRACTOR NETWORKS THEORETICAL FOUNDATIONS

Ring attractor networks are a type of biological neural structure that has been proposed to underlie
the representation of various cognitive functions, including spatial navigation, working memory, and
decision-making (Kim et al., 2017).

Biological intuition. In the early 1990s, the research carried out by Zhang (1996) proposed that
ring neural structures could underlie the representation of heading direction in rodents. Zhang (1996)
argued that the neural activity in an attractor network might encode the direction of the animal’s
head, with the network transitioning from one attractor state to another state as the animal turns.

Empirical evidence. There is growing evidence from neuroscience supporting the role of ring at-
tractors in neural processing. For example, electrophysiological recordings from head direction
cells (HDCs) of rodents have revealed a circular organisation of these neurons, with neighbour-
ing HDCs encoding slightly different heading directions (Taube, 1995). Furthermore, studies have
shown that HDC activity can be influenced by sensory inputs, such as visual signals and vestibular
signals, and that these inputs can cause the network to update its representation of heading direc-
tion (Taube, 2007). Xiong & Sridhar (2024) showed model internal noise biases toward accuracy
over speed, while environmental uncertainty exhibits a U-shaped effect where moderate uncertainty
favors speed and extreme uncertainty favors accuracy. Wilson (2023) demonstrated that biological
navigation networks rely on attractor dynamics while maintaining adaptability through continuous
synaptic plasticity and sensory feedback.

Sensor fusion in ring attractors. Ring attractor networks provide a theoretical foundation for un-
derstanding cognitive functions such as spatial navigation, working memory, and decision-making.
In the context of action selection in RL, sensor fusion plays a pivotal role in augmenting the
information-processing capabilities of these networks. By combining data from various sensory
modalities, ring attractors create a more nuanced and robust representation of the environment, es-
sential for adaptive behaviors (ME, 2008). Research has elucidated the relationship between ring
attractors and sensory inputs, with the circular organisation of HDCs in rodents complemented by
the convergence of visual and vestibular inputs, highlighting the integrative nature of sensory infor-
mation within the ring attractor framework (Zugaro et al., 2001).

Modulation by sensory inputs. Beyond the spatial domain, sensory input dynamically influences
the activity of ring attractor networks. Studies have shown that visual cues and vestibular signals
not only update the representation of heading direction but also contribute to the stability of attractor
states, allowing robust spatial memory and navigation (Goodridge et al., 1998).

Sensor fusion for action selection. The concept of sensor fusion within the context of ring attrac-
tors extends beyond traditional sensory modalities, encompassing diverse sources, such as proprio-
ceptive and contextual cues (McNaughton et al., 1996). Building on the foundation of ring attractor
networks discussed earlier, the integration of sensor fusion in the context of action selection involves
fusing the action values associated with each potential action within the ring attractor framework. In
particular, sensory information, previously shown to modulate the activity of ring attractor networks,
extends its influence to the representation of action values. The inclusion of sensory information re-
flects a higher cognitive process, where the adaptable nature of ring attractor networks plays a central
role in orchestrating optimal decision making and action selection in complex environments.

A.2 VALIDATING RING ATTRACTOR CONTRIBUTIONS THROUGH ABLATION STUDIES

A.2.1 EXOGENOUS RING ATTRACTOR MODEL ABLATION STUDY

To isolate the impact of the ring attractor structure, we conducted an ablation study comparing our
full BDQNRA model against versions with the action space overlay in an incorrect distribution in
the ring, Fig. 4. This incorrect distribution involves randomly rearranging the placement of actions
within the ring, disrupting the natural topology of the action space.

For instance, this could mean placing opposing or unrelated actions side by side in the ring, such
as pairing ”move left” with ”move down” instead of its natural opposite ”move right”. More gen-
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erally, this incorrect distribution breaks the inherent relationships between actions that are typically
preserved in the ring structure.

Figure 4: Ablation study comparing BDQN variants in OpenAI Gym Super Mario Bros (Kauten,
2018). The plot shows cummulative reward over 1 million frames for three models: Standard
BDQN (Azizzadenesheli et al., 2018) ; BDQNRA-UA with RA and Uncertainty Awareness (UA)
implementing both the ring attractor behavior policy from Section 3.1.2 and the uncertainty quantifi-
cation model from 3.1.3; and BDQNRA-RM, applying the same concepts from BDQNRA-UA, but
randomly distributing the action space across the ring in each experiment. Displaying mean episodic
returns over 10 averaged seeds.

A.2.2 DEEP LEARNING RING ATTRACTOR MODEL ABLATION STUDY

This ablation study focused on isolating the impact of the ring-shaped connectivity in our RNN-
based ring attractor model. The key aspect of our experiment was to remove the circular weight
distribution in both the forward pass (input-to-hidden connections) and the recurrent connections
(hidden-to-hidden), while maintaining all other aspects of the RNN architecture. This approach
allows us to directly assess the contribution of the spatial ring structure to the model’s performance.

Figure 5: Ablation study results comparing the performance of the full RNN-based ring attractor
model against a version with the circular weight distribution removed. The graph illustrates a signif-
icant performance drop for the Ms Pacman and Chopper Command environments in the Atari 100K
benchmark (Bellemare et al., 2012). This emphasises the role of the circular topology in encoding
spatial information and enhancing learning. Displaying mean episodic returns over 10 averaged
seeds.
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In our original model, the weights between neurons were determined by a distance-dependent func-
tion that created a circular topology. This function assigned stronger connections between neurons
that were close together in the ring and weaker connections between distant neurons. For the abla-
tion, we replaced this distance-dependent weight function with standard weight matrices for both the
input-to-hidden and hidden-to-hidden connections. This modification effectively transforms our ring
attractor RNN into a standard RNN, where the weights are not constrained by the circular topology.
We retained other key elements of the model, such as the learnable time constant and the non-linear
transformation, to isolate the effect of the ring structure specifically.

A.2.3 DEEP LEARNING RING ATTRACTOR MODEL EVOLUTION

In this appendix section, we analyse model dynamics with both forward pass (V (s)) and hidden-
to-hidden (U(v)) weights made trainable, rather than the standard approach of fixed forward pass
connections, as presented in Section 3.2. As shown in Fig. 6, the forward pass connections pre-
serve the ring structure over training time, with strong distance-dependent decay patterns maintained
throughout the learning process. This may indicate that the network naturally favors maintaining
spatial topology for transmitting sensory information on a per-frame basis.

The hidden-to-hidden connections, depicted in Fig. 7, demonstrate markedly different behavior.
These connections evolve beyond their initial ring structure, developing specialized patterns that
enable the encoding of environment-specific relationships between neurons in the hidden space.
This flexibility in hidden layer connectivity supports the learning of complex action relationships
while building upon the structured spatial representation from the forward pass.

These findings validate our standard implementation approach described in Section 3.2, where for-
ward pass connections are fixed and only hidden-to-hidden weights remain trainable. The natural
preservation of ring structure in trainable forward weights may suggest this topology is inherently
beneficial for processing spatial information, while adaptable hidden weights enable the task-specific
learning demonstrated in our experimental results, Section 4.2.

Figure 6: Evolution of forward pass weights showing preserved distance-dependent decay over
training time, maintaining ring structure for spatial information transmission.
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Figure 7: Development of hidden-to-hidden connections over time, demonstrating emergence of
learned relationships between neurons beyond initial ring topology.
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A.3 DEEP LEARNING RING ATTRACTOR RECURRENT NEURAL NETWORK MODELING

Figure 8: RNN modeling ring attractor synaptic connections: The left shows the forward pass (input-
to-hidden) as the agent output layer. The right depicts the hidden-to-hidden recurrent connection
between inference time steps. The weighted connections of the sample for the neuron n3 demon-
strated.

As seen before, excitatory neurons are organized in a circular pattern, with connection weights
between neurons determined by a distance-weighted function mimicking the synaptic connection of
biological neurons, as shown in Fig.8 is the structured connectivity of the RNN, which mimics the
circular topology of biological ring attractors.

A.4 DEEP LEARNING RING ATTRACTOR MODEL IMPLEMENTATION DETAILS

The implementation of the ring attractor follows the equations presented in Section 3.2, where both
the input-to-hidden connections V (s) and hidden-to-hidden connections U(v) are constructed using
the distance-dependent weight functions defined in Eq. 13. These equations establish the circular
topology of the ring attractor and determine how information flows through the network. However, a
special case arises when dealing with neutral actions in certain Atari games, requiring a modification
to the standard distance function.
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A.4.1 NEUTRAL INHIBITORY ACTION IMPLEMENTATION

For games in the Atari benchmark with neutral actions (like ’no-op’), the ring attractor maintains
its circular structure with a neutral action positioned centrally. This central position creates equal
connections of strength 1 to all other actions in the ring, as if it were a direct neighbor to each action
simultaneously. The distance between the neutral action n and any other action m is fixed at 1:

d(m,n) =

{
1, if m or n is the neutral action
d(m,n), otherwise

(14)

where d(m,n) remains as defined in Eq. 13 for all other action pairs. The weight matrices wI→H

and wH→H maintain the same exponential decay based on this distance function.

For example, in games like Seaquest or Asterix, this central positioning means the ’no-op’ action
has consistent, strong connections to all directional actions. This arrangement preserves the spatial
relationships between directional actions while ensuring the neutral action remains equally accessi-
ble from any game state. The constant distance of 1 to all other actions makes transitioning to or
from the neutral action as natural as moving between adjacent directional actions in the ring.

A.4.2 DEEP LEARNING DOUBLE RING ATTRACTOR EQUATIONS

For a double ring configuration in our DL implementation as presented in thee experiments, Section
4.2, the weighted connections are defined as follows:

Input Signal to Hidden Layer (Forward Pass)

Let Vdouble ∈ R2N×2M be the complete input-to-hidden weight matrix for both rings, where N is
the number of output neurons per ring and M is the number of input features per ring. The matrix is
structured as:

Vdouble =

[
V11 κV12

κV21 V22

]
(15)

where V11 = V22 = V12 = V21, κ = 0.1 is the cross-coupling learnable parameter initialised
to 0.1. This allows the network to learn the optimal strength of interaction between the two rings
during training.

Developing from Eq. 13, each ring maintains identical connectivity patterns, preserving the spatial
relationships of their respective action dimensions, each submatrix Vij represents:

[Vii]m,n =
1

τ
Φθ(s)

T ed(m,n)/λ (16)

where d(m,n) is defined as per the forward pass weighted connections in Eq. 13.

Similarly, let Udouble ∈ R2N×2N be the complete hidden-to-hidden weight matrix:

Udouble =

[
U11 κU12

κU21 U22

]
(17)

For primary connections (U11 and U22):

[Uii]m,n = h(v)T ed(m,n)/λ (18)

where d(m,n) is defined as per the hidden state weighted connections in Eq. 13.

The complete forward pass for both rings is given by:

Q(s, a) = β tanh

([
1
τΦθ(st)

TV11 + ht−1(v)
TU11

κ
τΦθ(st)

TV12 + κht−1(v)
TU12

κ
τΦθ(st)

TV21 + κht−1(v)
TU21

1
τΦθ(st)

TV22 + ht−1(v)
TU22

])
(19)
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whereτ is the learnable time constant; β is the learnable scaling factor; Φθ(st) is the feature rep-
resentation of state st; ht−1(v) is the previous hidden state; and κ = 0.1 is the coupling strength
between rings.

The cross-coupling matrices (κV12, κV21, κU12, and κU21) maintain a circular topology similar
to the individual rings. A neuron at a particular position in the first ring connects most strongly to
the neuron at the corresponding position in the second ring, with connection strength decreasing
based on circular distance. This structured cross-coupling preserves spatial alignment between the
two action dimensions while allowing semi-independent operation through the learnable coupling
factor κ.

The final output provides action-values for both action dimensions simultaneously, preserving the
spatial relationships within each ring while allowing for weak coupling between the rings.

A.4.3 EXTENSION TO N RING CONFIGURATIONS

The double ring implementation extends to R rings through a block matrix structure, where each
ring encodes a distinct action dimension. For R rings, the architecture uses block matrices Vmulti ∈
RRN×RM and Umulti ∈ RRN×RN , with diagonal blocks preserving individual ring dynamics and
off-diagonal blocks handling cross-ring interactions via coupling parameter κ, as seen in Section
A.4.2. While computational complexity scales as O(R2), selective coupling between only related
dimensions creates a sparse structure with effective O(R) complexity. This makes the approach
viable for complex action spaces where actions decompose into multiple semi-independent planes,
such as games combining movement, combat, and resource management dimensions.
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A.5 MODELS AND ENVIRONMENTS IMPLEMENTATION

We provide implementation details for both our models and the tested environments. For model im-
plementations, EffZeroRA was applied across the Atari benchmark suite, while BDQNRA-UA and
DDQNRA were specifically implemented for Highway and Mario Bros. Table 2 details the configu-
ration of action spaces and ring architectures for each environment. The environments required dif-
ferent ring configurations based on their control schemes, ranging from single-ring implementations
for basic movement to double-ring setups for more complex action spaces that combine movement
and specialised actions. Each ring’s topology was designed to preserve the natural relationships
between actions, with central inhibitory actions included where appropriate as ”no action”.

Table 2: Implementation details for ring attractor architectures across environments. The table
shows the environment (Env); ring configuration (Ring); number of actions or continuous 1D ac-
tion space (Actions); inhibitory neuron placed equidistant to other neurons for ”no action” term
(Inhib); whether uncertainty estimation is used (Uncert); the implemented model (Model); and type
of Neural Network used (Type).

Game Configuration Implementation
Environment Ring Actions Inhib. Uncert. Model Type
Highway Single Continuous No Yes BDQNRA-UA CTRNN
Mario Bros Single 8 No Yes BDQNRA-UA CTRNN
Highway Single 8 No No DDQNRA DL-RNN
Mario Bros Single 8 No No DDQNRA DL-RNN
Alien Double 18 Yes No EffZeroRA DL-RNN
Asterix Single 9 Yes No EffZeroRA DL-RNN
Bank Heist Double 18 Yes No EffZeroRA DL-RNN
BattleZone Double 18 Yes No EffZeroRA DL-RNN
Boxing Double 18 Yes No EffZeroRA DL-RNN
Chopper C. Double 18 Yes No EffZeroRA DL-RNN
Crazy Climber Single 9 Yes No EffZeroRA DL-RNN
Freeway Double 18 Yes No EffZeroRA DL-RNN
Frostbite Double 18 Yes No EffZeroRA DL-RNN
Gopher Double 18 Yes No EffZeroRA DL-RNN
Hero Double 18 Yes No EffZeroRA DL-RNN
Jamesbond Double 18 Yes No EffZeroRA DL-RNN
Kangaroo Double 18 Yes No EffZeroRA DL-RNN
Krull Double 18 Yes No EffZeroRA DL-RNN
Kung Fu M. Double 18 Yes No EffZeroRA DL-RNN
Ms Pacman Single 9 Yes No EffZeroRA DL-RNN
Private Eye Double 18 Yes No EffZeroRA DL-RNN
Road Runner Double 18 Yes No EffZeroRA DL-RNN
Seaquest Double 18 Yes No EffZeroRA DL-RNN
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