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ABSTRACT

Due to the rise of privacy concerns, in many practical applications, the training
data is aggregated before being shared with the learner to protect the privacy of
users’ sensitive responses. In an aggregate learning framework, the dataset is
grouped into bags of samples, where each bag is available only with an aggregate
response, providing a summary of individuals’ responses in that bag. In this pa-
per, we study two natural loss functions for learning from aggregate responses:
the bag-level loss and the instance-level loss. In the former, the model is learned
by minimizing a loss between the aggregate responses and aggregate model pre-
dictions, while in the latter, the model aims to fit individual predictions to the
aggregate responses. In this work, we show that the instance-level loss can be per-
ceived as a regularized form of the bag-level loss. This observation allows us to
compare the two approaches with respect to the bias and variance of the resulting
estimators and to introduce a novel interpolating estimator that combines the two
approaches. For linear regression tasks, we provide a precise characterization of
the risk of the interpolating estimator in an asymptotic regime where the size of the
training set grows in proportion to the feature dimension. Our analysis enables us
to theoretically understand the effect of different factors, such as bag size, on the
model’s prediction risk. Additionally, we propose a mechanism for differentially
private learning from aggregate responses and derive the optimal bag size in terms
of the prediction risk-privacy trade-off. We also carry out thorough experiments
to corroborate our theory and show the efficacy of the interpolating estimator.

1 INTRODUCTION

Machine learning has revolutionized many industries and aspects of our lives, but its widespread
use has also raised concerns about privacy. One way to address these concerns is to use aggregate
labels, which are labels assigned to groups of data points rather than to individual data points (Criteo
Privacy Preserving ML Competition, 2021). Since even before the machine learning era, aggregate
labels have been commonly used in group testing, a method that combines samples from various
individuals or objects to maximize the use of limited resources (Wein & Zenios, 1996; Sunjaya &
Sunjaya, 2020). For example, group testing is used to screen for HIV in donated blood products and
to identify viral epidemics, such as COVID-19. In recent years, there has been growing interest in
using aggregate labels to train machine learning models (Papernot et al., 2016; Al-Rubaie & Chang,
2019; De Cristofaro, 2020). This approach has the potential to preserve privacy while still allowing
for the development of accurate and effective models. The SKAdNetwork API from Apple is an
example of how aggregate labels can be used to preserve privacy in machine learning (Apple Devel-
oper Documentation, 2023). SKAdNetwork provides advertisers with insights into the effectiveness
of their ad campaigns without compromising the privacy of users. This is achieved by using aggre-
gate labels to represent groups of users who have interacted with an ad. For example, an advertiser
might receive a report indicating that 10% of users who saw their ad installed their app. However,
the advertiser would not be able to see the specific identities of those users. Another example is the
Private Aggregation API of Chrome Privacy Sandbox. This API collects instance-label pairs from
users, but it protects their privacy by providing apps and services with bags of instances that are
labeled in an aggregated way. The aggregate label can be further perturbed to ensure differential
privacy, which is a mathematical guarantee that the data cannot be used to identify individuals.
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To formally describe the setup, consider a dataset consisting of n samples (xi, yi), for i ∈ [n], with
xi ∈ Rd being the features vector and y ∈ R being the response variable. Motivated by applications
where the response variables yi carry private information, instead of sharing individual responses
with the learner, only aggregate responses are shared as follows: A set of m non-overlapping bags
Ba ⊆ [n], for a ∈ [m], is formed, each of size k. For each bag, the average response ȳa =
(
∑
i∈Ba yi)/k is shared with the learner, along with the individual features vectors xi.

There are two common choices for learning from aggregated data:

• Bag-level loss: The model is learned by minimizing a loss function that measures the distance be-
tween aggregate responses and the aggregate model predictions. Namely, θ̂ = arg minθ Lbag(θ)
with

Lbag(θ) =
1

m

m∑
a=1

`
(
ȳa,

1

k

∑
i∈Ba

fθ(xi)
)
, (1)

where `(·, ·) : R× R→ R≥0, and fθ is a family of models parameterized by θ.

• Instance-level loss: The model is learned by minimizing the loss between the aggregate responses
and individual model predictions. Namely, θ̂ = arg minθ Lins with

Lins(θ) :=
1

mk

m∑
a=1

∑
i∈Ba

`(ȳa, fθ(xi)) . (2)

An advantage of bag-level loss is that since it involves aggregate model predictions, it provides a
layer of protection for the features, in addition to responses. For example, in the case of linear
models, the learner can still minimize the bag-level loss, given only access to the aggregate responses
and the aggregate features.

Despite the common use of bag-level loss and instance-level loss, we still lack a clear understanding
of the performance of models learned by each approach, as measured in terms of model general-
ization error. One of our contributions in this paper is to establish a connection between the two
losses and shed light on when one outperforms the other in terms of model generalization. We
build a strong intuitive understanding through precise quantitative statements. The key observation
is that employing a bag-level loss leads to models with reduced bias but increased variance, as op-
posed to models trained with instance-level loss. Therefore, in scenarios with diverse responses,
instance-level loss is more effective. Conversely, for use cases with more homogeneous responses,
the bag-level loss is preferable, as it proves more effective in reducing bias.

1.1 SUMMARY OF CONTRIBUTIONS AND ORGANIZATION OF THE PAPER

Our contributions are summarized as follows:

(i) We show that the instance-level loss can be perceived as the bag-level loss with an additive
regularization term. While the regularization penalty introduces bias into the estimator, it also
serves to reduce variance when the sample size (n) is comparable to the feature dimension (d).
Depending on the interplay between bias and variance, one loss may outweigh the other, resulting
in a model with better generalization. Motivated by this observation, we propose a new estimator
that includes a tuning parameter ρ ∈ [0, 1] to control the strength of the regularization and, hence,
the bias-variance trade-off. The case of ρ = 0 corresponds to the bag-level loss, and the case of
ρ = 1 corresponds to the instance-level loss. However, by optimally tuning ρ, we can obtain
models that outperform both of these cases.

(ii) We next focus on the so-called proportional regime where the sample size (n) and the feature
dimension (d) are of the same order, i.e., n/d → ψ, for some arbitrary bounded constant ψ ∈
(0,∞), as n → ∞. This asymptotic regime has attracted significant interest in recent years due
to its relevance in practice, where the classical population regime (n/d→∞) fails to capture the
behavior of overparametrized machine learning models (see e.g., Hastie et al. (2022); Javanmard
et al. (2020); Hassani & Javanmard (2022); Mei & Montanari (2022)). In Section 2.2, we focus
on linear models and derive a precise characterization of model generalization error for both
the bag-level and the instance-level losses. Our precise theory captures the effect of different
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quantities of interest, such as bag size k, overparametrization, signal-to-noise ratio of the data,
and the regularization parameter ρ on the model performance. It also allows us to compare the
two approaches in terms of bias and variance and theoretically find the optimal regularization
parameter ρ, as described in the previous item.

(iii) In Section 4, we propose a differentially private mechanism for learning from aggregate data. It is
based on the Laplace mechanism, which adds Laplace noise to the aggregate responses to ensure
ε-(label) differential privacy. For a given privacy loss ε, our theory in Section 2.2 allows us to
derive the optimal size of the bags that results in the best model generalization. Interestingly,
the singleton bags are not always the optimal choice, which implies that applying the Laplace
mechanism to aggregate data gives a better privacy-model generalization trade-off compared to
directly applying the Laplace mechanism to individual responses.

1.2 RELATED WORK

There is a rich body of prior work on learning with label proportions (LLP) (Shi et al., 2018; 2019;
Cui et al., 2017; Xiao et al., 2020; Li & Wang, 2018; Quadrianto et al., 2008; Patrini et al., 2014;
Musicant et al., 2007; Zhang et al., 2020; Qi et al., 2017; 2016; Chen et al., 2017; Lu et al., 2019;
Chen et al., 2023; Javanmard et al., 2024). In what follows, we categorize previous work into bag-
level, instance-level and other methods.

Bag-level methods. Rueping (2010) proposed a large-margin support vector regression (SVR)
method for learning with label proportions (LLP). The proposed approach models the mean of each
bag as a “super-instance” with a soft label equal to the label proportion of the bag. Yu et al. (2014)
introduced the Empirical Proportion Risk Minimization (EPRM) framework, which minimizes the
bag-level loss function. Yu et al. (2014) also derived a VC-dimension-based uniform convergence
bound for the gap between the empirical and population bag-level loss functions. Ardehaly & Cu-
lotta (2017) applied the aggregated cross-entropy loss to deep learning and classification problems.

Instance-level methods. Yu et al. (2013) proposed a method that also uses the idea of support vector
regression (SVR), but models the probability of each instance rather than each bag, in contrast to
Rueping (2010). The proposed loss function has two components: (1) the sum of the hinge losses
between the unknown individual label and the predicted label of each instance, and (2) the sum of
the losses between the label proportion of the unknown individual labels of each bag and the true
label proportion of that bag. Dulac-Arnold et al. (2019) uses a similar idea to (Rueping, 2010) and
considers relaxation to make the optimization problem more tractable. For classification problems,
Busa-Fekete et al. (2023) derived an unbiased estimator of the individual labels of the data examples.
This estimator is a function of the label proportion of the bag to which the example belongs and the
probability distribution of all labels in the population. By using this estimator of the individual
labels, one can apply the usual supervised learning methods.

Other related works. Quadrianto et al. (2008) proposed a kernelized conditional exponential model
for inferring the individual labels of unseen examples based on training examples grouped in bags
and the label proportion of the bags. The method is based on maximizing the log-likelihood of the
model. A key assumption of the model is that the features of an example are conditionally indepen-
dent of the bag to which it belongs, given the example’s label. Fish & Reyzin (2017) formally defines
the class of functions that can be learned from label proportions (LLP Learnable) and resolves foun-
dational questions about the computational complexity of LLP and its relationship to PAC learning.
Scott & Zhang (2020) solves the LLP problem through reduction to mutual contamination models
(MCMs). Saket (2021) investigated the learnability of linear threshold functions (LTFs) from la-
bel proportions. Saket et al. (2022) proposed a method for combining bag distributions to improve
learning from label proportions. While in this work we focus on random bagging, other bagging
schemes based on features are proposed recently by Chen et al. (2023) and Javanmard et al. (2024).

2 MAIN RESULTS

2.1 INTUITION: INSTANCE-LEVEL LOSS ACTS AS A REGULARIZED BAG-LEVEL LOSS

In this work we establish a connection between bag-level and instance-level losses, showing that the
latter can be perceived as a regularized version of the former. We first show this claim for quadratic
loss and then discuss an extension to general convex losses.

3



Published as a conference paper at ICLR 2024

Lemma 2.1. Consider the quadratic loss `(x, y) = (x − y)2. For the bag-level loss (1) and the
instance-level loss (2) we have

Lins(θ) = Lbag(θ) +R(θ) ,

where the regularization termR(θ) is given by

R(θ) :=
1

k

m∑
a=1

∑
i,j∈Ba

(fθ(xi)− fθ(xj))
2 . (3)

Note that the regularization term R(θ) does not depend on the responses, but it does depend on
the feature vectors. While traditional regularization techniques only depend on model parameters,
there is also a growing body of work on data-dependent regularization. This type of regularization
explicitly takes into account the training data during the regularization process, which can lead to
improved generalization performance in certain settings (Shivaswamy & Jebara, 2010; Zhao et al.,
2019; Mou et al., 2018). In addition, R(θ) captures the within cluster variations of the model
predictions. While the additive regularization induces bias to the estimator minimizing the instance-
level loss, it can reduce the variance when the sample size and features dimension are comparable.

Also note that when the bag-level loss does not have a unique minimizer, the regularization term
promotes solutions with smaller R(θ). Therefore, if the true model also has small penalty value,
this will help to impose this structure on the estimator.

Motivated by Lemma 2.1, we introduce an interpolating loss Lint(θ) which keeps the same form
of the regularization but includes a tuning parameter to control the strength of the regularization,
namely

Lint(θ) := Lbag(θ) + ρR(θ), ρ ∈ [0, 1] . (4)

In practice, the optimal value of ρ can be set via cross-validation to obtain the best model perfor-
mance. In the next section, we provide a theory for linear models which also allows us to analytically
derive the optimal choice of ρ.

We conclude this section by extending lemma 2.1 to other loss functions.
Lemma 2.2. Consider the loss function ` : R×R→ R≥0 with continuous second derivative in the
second argument. Also suppose that | ∂

2

∂b2 `(a, b)| ≤ C for a constant C. We then have the following
relation between the bag-level loss (1) and instance-level loss (2):

Lins(θ) ≤ Lbag(θ) + CR(θ), (5)
where the regularizationR(θ) is given by (3). In addition, if `(·, ·) is convex in the second argument
we have Lbag(θ) ≤ Lins(θ) for any model θ.

We refer to the supplementary for the proof of Lemmas 2.1 and 2.2.

2.2 LINEAR MODELS: A PRECISE THEORY

Consider a dataset of n i.i.d pairs (xi, yi), for i ∈ [n], with xi ∈ Rd a feature vector and yi ∈ R a
response variable. We assume the following linear model for the responses:

yi = xTi θ0 + wi,

where wi are i.i.d noise with E(wi) = 0 and Var(wi) = σ2. We collect the responses into a vector
y ∈ Rn and the features in a matrixX ∈ Rn×d (with rows xi ∈ Rd).

We consider a setting where the features are i.i.d Gaussian vectors xi ∼ N(0, Id). Consider a model
θ, trained on the dataX,y and a test point xtest ∼ N(0, Id), independent of the training dataX,y.
The prediction risk of θ is defined by

RiskX(θ) = E[(xTtestθ − xTtestθ0)2|X] = E[‖θ − θ0‖2|X] .

Note that our definition of the risk is conditional on X and is made explicit in our notation RiskX .
In addition, the bias-variance decomposition of the risk is given by

RiskX(θ) = BiasX(θ) + VarX(θ), (6)

BiasX(θ) = ‖θ0 − E[θ|X]‖2, VarX(θ) = tr(Cov(θ|X)) .
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Recall our interpolating loss given by (4). Specializing to linear model fθ(x) = xTθ and quadratic
loss, we arrive at

Lint(θ) = Lbag(θ) + ρR(θ)

= Lbag(θ) + ρ(Lins(θ)− Lbag(θ))

=
1

2mk

m∑
a=1

∑
i∈Ba

(
(1− ρ)(ȳa − xTa θ)2 + ρ(ȳa − xTi θ)2

)
, (7)

with ya and xa respectively denoting the average response and average of feature vectors in bag a.
We also define θ̂int := arg minθ Lint(θ).

In this section, we derive a precise characterization of the bias and variance of θ̂int. Our theory pro-
vides a precise understanding on the role of different factors, such as bags size k, overparametriza-
tion, and signal-to-noise ratio of the data. It also allows us to theoretically derive optimal regular-
ization parameter ρ.

We next describe the the asymptotic regime of interest and our assumptions.
Assumption 2.3. (Asymptotic Setting) We focus on the so-called ‘proportional’ regime where the
sample size n and the features dimension d grow in proportion as d→∞. Formally for an arbitrary
but fixed constant ψ ∈ (1,∞), we have n/d → ψ. We further assume that the size of bags (k)
remains fixed as d → ∞, and the model norm ‖θ0‖ converges. For the sake of normalization and
without loss of generality, we assume limd→∞ ‖θ0‖ = 1.

We next state our assumption on the bagging structure.
Assumption 2.4. We assume that the bagging configuration is independent from the training data
(X,y). In addition, we assume that the bags are non-overlapping, so that each sample appears in
exactly one bag.
Theorem 2.5. Consider data generated according to linear model in an asymptotic regime de-
scribed in Assumption 2.3. Also suppose that the bags are of size k and are non-overlapping as
described in Assumption 2.4. The bias and variance of θ̂int are characterized below:

• Bias: For k > 1 and ρ > 0, let α∗ be the nonnegative fixed point of the following equation:

ρ+
ψ

k(1− α∗)
− 1 =

ψ

kα∗
ρ(k − 1) .

The bias of θ̂int converges in probability to

BiasX(θ̂int)
(p)→ α2

∗ +
α2
∗

(k−1)ψ
k2(1−α∗)2 − ( α∗

1−α∗ )2 1
k −

k−1
k

. (8)

If k = 1 or ρ = 0, then θ̂int is unbiased.

• Variance: Let (v∗, u∗) be the solution of the following system of equations:
ψ

1 + u
+
ρψ(k − 1)

ρ+ u
= k ,

ψ(1 + v)

(1 + u)2
+
ρ2ψ(k − 1)

(ρ+ u)2
= k .

We then have

VarX(θ̂int)
(p)→ σ2

v∗
. (9)

3 DISCUSSION

3.1 COMPARISON BETWEEN BAG-LEVEL AND INSTANCE-LEVEL ESTIMATORS

We next specialize the result of Theorem 2.5 to ρ = 0 (corresponding to the bag-level loss) and
ρ = 1 (corresponding to the instance-level loss). Note that the bag-level loss is the ordinary least
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square estimator with m = n/k samples and d parameters and therefore is well-defined only for
n ≥ kd. In the asymptotic regime of Assumption 2.3, this implies that ψ = limd→∞ n/d ≥ k.)

The following corollary characterizes the bias and variance of the bag-level and the instance-level
estimators.
Corollary 3.1. The followings hold:

• Bag-level loss: Suppose ψ ≥ k. For the bag-level estimator θ̂bag := arg minθ Lbag(θ), we
have

BiasX(θ̂bag)
(p)→ 0, VarX(θ̂bag)

(p)→ σ2

ψ
k − 1

.

• Instance-level loss: For the instance-level estimator θ̂ins := arg minθ Lins(θ), we have

BiasX(θ̂ins)
(p)→
(

1− 1

k

)(
1 +

2− ψ
k(ψ − 1)

)
, VarX(θ̂ins)

(p)→ σ2

k(ψ − 1)
.

As we see from the above characterization, while the bag-level loss is unbiased, it has higher variance
compared to the instance-level loss. The dominance of one estimator over the other in terms of
prediction risk (6) depends on the relative magnitudes of bias and variance.

In the next lemma, we provide a threshold on the model signal-to-noise ratio (SNR), defined as
SNR = ‖θ0‖2/σ2, under which the bag-level estimator has the smaller risk and above it the
instance-level loss has the smaller risk.
Lemma 3.2. Suppose ψ ≥ k > 1. Then, RiskX(θ̂ins) ≤ RiskX(θ̂bag) if and only if

SNR :=
‖θ0‖2

σ2
≤ (k + 1)ψ − k

(ψ − k)(ψ(1− 1
k )− 1 + 2

k )
.

For k = 1, we have θ̂ins = θ̂bag and so they have the same risk.

Intuitively, when the SNR is low it means that the variance of the samples is large relative to the
model strength. In this case, the instance-level loss which aims to decrease the variance, at the cost
of increasing bias, obtains a lower prediction risk than the bag-level estimator.

3.2 ROLE OF DIFFERENT FACTORS ON MODEL RISK

Our theory allows to precisely characterize the effect of different factors, namely the bag size, SNR,
overparametrization and the regularization parameter on the bias, variance and risk of the estimator.
In Figure 1 we plot the theoretical curves derived in Theorem 2.5 versus ρ. As we see by increasing
ρ (stronger regularization), the bias increases and the variance decreases. The curves for the risk
(rightmost panel) exhibits an optimal ρ that balances the trade-off between bias and variance. The
first row of plots shows the effect of SNR on the curves. As expected, higher SNR reduces the model
variance, but has no effect on the bias, and so reduces the risk. The second row of plots shows the
effect of bag size k. Larger k induces more bias. For small ρ, larger k increases the variance, but
at large ρ, increasing k reduces the variance. The last row of figures shows the effect of ψ = n/d.
Larger ψ decreases bias, variance and the risk since it corresponds to more samples relative to the
number of parameters to be estimated.

4 DIFFERENTIALLY PRIVATE AGGREGATE LEARNING

As we discussed aggregate learning framework provides some layer of privacy protections by ob-
fuscating the individual responses and only revealing aggregate responses in each bag. In particular,
when the bags are non-overlapping and each are of size at least k, replacing individual responses
with the aggregate ones offers k-anonymity, a privacy notion, stating that any record is indistinguish-
able from at least k−1 other records, in terms of response. One can also argue about the information
leakage in aggregate learning through the notion of mutual information between individual and ag-
gregate responses, conditional on the features vectors.
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Figure 1: Effect of SNR, bag size (k) and overparametrization (1/ψ = d/n) on the bias, variance
and the risk of the model. The curves are the theoretical curves given by Theorem 2.5.

Another widely used privacy notion is differential privacy (DP), put forward by Dwork et al.
(2006b;a). Informally speaking, a mechanism (data processing algorithm) is called DP, if its out-
put distribution does not change significantly if a single record is changed in the input dataset. We
focus on the notion of label differential privacy, introduced by Chaudhuri & Hsu (2011), in which
the changes only happen on the ‘response’ of a single record. Label DP is also widely used for
applications where only the privacy of the responses are concerned, in opposite to all features. For
example, in a medical test, the demographic features of patients may be far less private than the re-
sponses (medical test results). We recall the formal definition of label DP from (Chaudhuri & Hsu,
2011).
Definition 4.1. (Label Differential Privacy) Consider a randomized mechanismM : D → O that
takes as input a dataset D and outputs into O. A mechanismM is called ε- label DP, if for any two
datasets (D, D′ ) that differ in the label of a single example and any subset O ⊆ O we have

P[M(D) ∈ O] ≤ eεP[M(D′) ∈ O] ,

where ε is the privacy budget.

It is easy to observe that the framework of learning from aggregate data, alone does not provide
(label) differential privacy. In this section we propose a mechanism which adds noise to the aggre-
gate (truncated) responses to ensure label DP guarantee. The procedure is outlined in Algorithm 1.
The truncation level is of order

√
log n, so that with high probability it does not happen. But this

truncation step provides us an upper bound on the responses which we use to bound the sensitivity
of aggregate responses and decide on the noise variance needed to ensure DP.
Lemma 4.2. The mechanism described in Algorithm 1 is ε-label DP.

With slight abuse of notation, we let θ̂int be the minimizer of the interpolating loss, when the learner
uses the privatized aggregate responses ỹa, a ∈ [m] provided by Algorithm 1. By Lemma 4.2 and
the post-processing property of differential privacy, θ̂int is also ε-label DP. In the next theorem, we
use our theoretical result from Section 2.2 to characterize the risk of θ̂int in terms of privacy loss ε
and the bags size k, among other factors.
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Algorithm 1 Label differentially private learning from ag-
gregate data

Input: individual responses {yi}ni=1, bags {Ba}ma=1 each
of size k, truncation level C.

Output: Privatized aggregate responses ỹ1, . . . , ỹm
1: // Clip the responses
2: for i = 1, 2, . . . , n do
3: yci ← max(min(yi, C

√
log n),−C

√
log n)

4: end for
5: for a = 1, 2, . . . ,m do
6: ȳa ← 1

k

∑
i∈Ba yi

7: ỹa ← ȳa + za where za ∼ Laplace
(
C
√

logn
kε

)
.

8: end for

-4 -3 -2 -1 0
1

2

3

4

5
= 5
= 15
= 25
= 35

Figure 2: Optimal bag size k as a func-
tion of log(ρ), for label DP learning
from aggregate data. We observe a
phase transition, where for some ρ∗ if
ρ < ρ∗, k = 1 is the best choice while
for ρ > ρ∗ the largest k is optimal.

Theorem 4.3. Let θ̂int ∈ arg minθ Lint(θ) using the privatized aggregate responses from Algo-
rithm 1, with C2 > 2(1 + σ2). Let (v∗, u∗) be the solution of the following system of equations:

ψ

1 + u
+
ρψ(k − 1)

ρ+ u
= k ,

ψ(1 + v)

(1 + u)2
+
ρ2ψ(k − 1)

(ρ+ u)2
= k .

We then have

1

log n
RiskX(θ̂int)

(p)→ 2C2

kε2

1

v∗
. (10)

A virtue of Theorem 4.3 is that it allows to decide on the optimal bag size k, which minimizes the
risk of the estimator θ̂int. On the one side, large bag sizes allow the aggregate responses to be less
sensitive to each individual response, which means smaller noise is needed to ensure ε-DP. On the
other hand, at small ρ, larger k can cause larger instability because it amounts to fewer bags and
hence fewer (aggregate) labels. As ρ increases, the regularization becomes stronger and brings more
stability. In Figure 2 we plot optimal k∗ (from the bounded set {1, . . . , 5}) versus ρ. Interestingly,
we observe a phase transition in the sense that for some ρ∗, if ρ < ρ∗ then k∗ = 1, due to the
instability effect explained above, while for ρ > ρ∗ the regularization mitigates the stability issue
and the first effect (DP noise) outweighs, making k∗ = 5 the optimal choice. We also see that the
phase transition threshold ρ∗ increases as ψ decreases. Recall that ψ = n/d, and so the instability
due to sample size is stronger at smaller ψ. Hence, a larger regularization is needed to control it.
Also note that if we optimize jointly over (k, ρ), the risk is minimized at ρ = 1 and k = 5, i.e., the
instance-level loss with the largest possible value of k in the predetermined range.

5 NUMERICAL EXPERIMENTS

Numerical verification of the theory In our first set of experiments, we corroborate our theory
derived in Section 2.2 with simulations. We set d = 100 and generate θ0 to have i.i.d normal entries
and then scale it to be unit norm. The sample size is set as n = ψd and the noise standard deviation
is set as σ = ‖θ0‖/SNR = 1/SNR. The solid curves in Figure 3 are the theoretical curves and
the dots correspond to the simulation. Although the derived theory is in an asymptotic regime, we
already see a perfect match for d = 100.

Boston Housing dataset. To investigate the optimal value of the regularization parameter ρ in
the interpolating loss, for different bag sizes, we conduct numerical experiments on the Boston
Housing dataset. Recall that ρ = 0 corresponds to the bag-level loss and ρ = 1 corresponds to the
instance-level loss. The Boston Housing dataset is a regression dataset that predicts the median value
of owner-occupied homes in Boston, Massachusetts, in the mid-1970s (Harrison Jr & Rubinfeld,
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Figure 3: Solid curves correspond
are the theoretical curves (Theo-
rem 2.5) and the dots (symbols) cor-
respond to simulations. Here d =
100, and we already see a perfect
match between the (asymptotic) the-
ory and the simulations.
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Figure 4: Test loss versus the regu-
larization parameter ρ for different
bag sizes, on the Boston Housing
dataset. The values on the lines rep-
resent the mean of the test loss and
the error bars represent the standard
deviation of the test loss. The red
dots denote the optimal value of ρ
that achieves the minimum test loss.

1978). The dataset contains 13 features, including the crime rate, per capita income, and the number
of rooms per dwelling. We use a feed-forward neural network to learn the housing prices in this
dataset. The network has four hidden layers, each with 64 neurons. The activation function for all
hidden layers is ReLU. The output layer has one neuron which outputs the predicted housing price.

We experiment with bag sizes ranging from 80 to 240. For each bag size, we plot the test loss
against the regularization parameter ρ. For each value of ρ in [0, 1], we train 20 models and compute
the mean and the standard deviation of their test loss. The results are shown in Figure 4, where
the values on the lines represent the mean of the test loss and the error bars represent the standard
deviation of the test loss. We also use red dots to denote the optimal value of ρ that achieves the
minimum test loss.

From Figure 4, we have the following observations: First, for a fixed bag size, smaller ρ values
(which means that the loss is closer to the bag-level loss) yield larger variance, while larger ρ values
(which means that the loss is closer to the instance-level loss) yield smaller variance. This confirms
our theory that the instance-level loss actually has a regularization effect (as shown in Lemma 2.1).
Second, as the bag size increases, the optimal ρ value increases. For example, when the bag size
is 80, the optimal ρ value is 0, while when the bag size is 240, the optimal ρ value is 1. For bag
sizes between 80 and 240, the optimal ρ value is achieved in (0, 1). In other words, larger bag sizes
require stronger regularization (larger ρ) to achieve the minimum test loss.

6 CONCLUSION

In this paper, we studied the problem of learning from aggregate responses, a privacy-preserving
machine learning technique. We compared two loss functions for aggregate learning and proposed a
novel interpolating estimator. We also provided a theoretical analysis of the interpolating estimator
for linear regression tasks and proposed a mechanism for differentially private learning from aggre-
gate responses. Finally, we conducted experiments to corroborate our theory and show the efficacy
of the interpolating estimator.
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A PROOF OF THEOREMS AND TECHNICAL LEMMAS

A.1 PROOF OF LEMMA 2.1

Recall the shorthand ȳa = (
∑
i∈Ba yi)/k, for a ∈ [m]. We have,

Lins(θ) =
1

mk

m∑
a=1

∑
i∈Ba

(ȳa − fθ(xi))
2

=
1

mk

m∑
a=1

∑
i∈Ba

(
ȳa −

1

k

∑
j∈Ba

fθ(xj) +
1

k

∑
j∈Ba

fθ(xj)− fθ(xi)
)2

=
1

mk

m∑
a=1

∑
i∈Ba

(
ȳa −

1

k

∑
j∈Ba

fθ(xj)
)2

+
1

mk

m∑
a=1

∑
i∈Ba

(1

k

∑
j∈Ba

fθ(xj)− fθ(xi)
)2

+
2

mk

m∑
a=1

∑
i∈Ba

(
ȳa −

1

k

∑
j∈Ba

fθ(xj)
)(1

k

∑
j∈Ba

fθ(xj)− fθ(xi)
)

Note that the first term can be written as

1

mk

m∑
a=1

∑
i∈Ba

(
ȳa −

1

k

∑
j∈Ba

fθ(xj)
)2

=
1

k

m∑
a=1

(
ȳa −

1

k

∑
j∈Ba

fθ(xj)
)2

= Lbag(θ) .

For the second term, we have∑
i∈Ba

(1

k

∑
j∈Ba

fθ(xj)− fθ(xi)
)2

=
1

k

∑
i,j∈Ba

(fθ(xi)− fθ(xj))
2 = R(θ) ,

where we used the following identity for a1, . . . , ak and ā = (
∑k
i=1 ai)/k:

k∑
i=1

(ai − ā)2 =
1

k

k∑
i,j=1

(ai − aj)2 . (11)

Finally, the third term works out at zero because
m∑
a=1

∑
i∈Ba

(
ȳa −

1

k

∑
j∈Ba

fθ(xj)
)(1

k

∑
j∈Ba

fθ(xj)− fθ(xi)
)

=

m∑
a=1

(
ȳa −

1

k

∑
j∈Ba

fθ(xj)
)[ ∑

i∈Ba

(1

k

∑
j∈Ba

fθ(xj)− fθ(xi)
)]

= 0,

since ∑
i∈Ba

(1

k

∑
j∈Ba

fθ(xj)− fθ(xi)
)

=
∑
j∈Ba

fθ(xj)−
∑
i∈Ba

fθ(xi) = 0 .

Combining the three terms together we arrive at Lins(θ) = Lbag(θ) +R(θ).

A.2 PROOF OF LEMMA 2.2

We use the shorthand f̄a = (
∑
i∈Ba fθ(xi))/k, for a ∈ [m]. By Taylor’s expansion of the loss ` on

its second argument we have

`(ȳa, fθ(xi)) = `(ȳa, f̄a) +
∂

∂b
`(ȳa, f̄a)(fθ(xi)− f̄a) +

1

2

∂2

∂b2
`(ȳa, f)(fθ(xi)− f̄a)2 ,

for some f between f̄a and fθ(xi) and ∂/∂b, ∂2/∂2
b indicate the first and second derivative of `(a, b)

with respect to the second input b.
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Summing both sides of the above equation over i ∈ Ba, the second term works out at zero since∑
i∈Ba(fθ(xi)− f̄a) = 0. Using the bound on the second derivative we arrive at∑

i∈Ba

`(ȳa, fθ(xi)) ≤ k`(ȳa, f̄a) +
∑
i∈Ba

C(fθ(xi)− f̄a)2 .

Next, summing both sides of the above equation over bags a ∈ [m], and dividing by mk, we get

Lins(θ) ≤ Lbag(θ) +
1

k

m∑
a=1

∑
i∈Ba

C(fθ(xi)− f̄a)2 .

By invoking identity (11) in the above we arrive at (5).

We are now ready to prove the second part of the statement. If the loss `(·, ·) is convex in the second
input, by the Jensen’s inequality we have

1

k

∑
i∈Ba

`(ȳa, fθ(xi)) ≥ `
(
ȳa,

1

k

∑
i∈Ba

fθ(xi)
)

Taking the average of both side over the bags a ∈ [m], we obtain that Lins(θ) ≥ Lbag(θ), which
completes the proof of lemma.

B PROOF OF THEOREM 2.5

Recallm as the number of bags, and n as the number of samples. Since the bags are non-overlapping
and each of size k, we have m = n/k. Define S ∈ Rm×n, as a matrix the encodes the bagging
structure, with Sia = 1/

√
k1{j∈Ba} where Ba indicates a-th bag, for a ∈ [m].

We next write the bag-level loss function and the instance-level loss function in terms of S as
follows:

Lbag(θ) =
1

km
‖S(y −Xθ)‖22 ,

Lins(θ) =
1

km
‖S>Sy −Xθ‖22 .

The interpolating loss function (7) then reads as

Lint(θ) =
1

mk

(
(1− ρ)‖SXθ − Sy‖22 + ρ

∥∥Xθ − S>Sy∥∥2

2

)
.

This can equivalently be written as

Lint(θ) =
1

mk

∥∥∥∥( √
ρI√

1− ρS

)
Xθ −

(√
ρS>Sy√
1− ρSy

)∥∥∥∥2

2

.

The minimizer of the above loss admits a closed-from solution given by θ̂int = By, with

B =
(
X>

(
ρI + (1− ρ)S>S

)
X
)−1

X>S>S .

We define the shorthand E := ρI + (1 − ρ)S>S ∈ Rn×n, which is non-singular for ρ > 0, and
M = (X>EX)−1X> ∈ Rd×n. We then haveB = MS>S.

We next recall the bias-variance decomposition (6), where the bias and variance are given by

BiasX(θ̂int) = ‖(BX − I)θ0‖22
= ‖(MS>SX −MEX)θ0‖22
= ‖M(S>S −E)Xθ0‖22 , (12)

VarX(θ̂int) = σ2‖MS>S‖2F , (13)

with ‖ · ‖F indicating the matrix Frobenius norm.

We continue by treating the bias and the variance separately.
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B.1 CALCULATING THE BIAS

Since the distribution of the features matrixX is invariant under rotation, we can assume that θ0 =
‖θ0‖ei, where ei ∈ Rd is the vector with one at i-th entry and zero everywhere else. By taking
average on i ∈ [d] we obtain

BiasX(θ̂int)
(d)
=
‖θ0‖22
d

∑
i∈[d]

‖M(S>S −E)Xei‖22

=
‖θ0‖22
d

tr
(
M(S>S −E)X

(∑
i∈[p]

eie
>
i

)
X>(S>S −E)M>

)
=
‖θ0‖22
d

∥∥M(S>S −E)X
∥∥2

F
.

Let us define Λ ∈ Rn×n as follows:

Λ := −(S>S −E)

= −(S>S − (ρI + (1− ρ)S>S))

= ρ(I − S>S) . (14)

The bias can then be written in terms of Λ as BiasX(θ) = 1
d‖MΛX‖2F . In our next lemma, we

characterize the asymptotic behavior of the bias.

Lemma B.1. Under the asymptotic regime of Assumption 2.3, we have

1

d
‖MΛX‖2F

(p)→ α2
∗ +

α2
∗

(k−1)ψ
k2(1−α∗)2 − ( α∗

1−α∗ )2 1
k −

k−1
k

,

where α∗ is the nonnegative fixed point of the following equation:

ρ+
ψ

k(1− α∗)
− 1 =

ψ

kα∗
ρ(k − 1) .

Since ‖θ0‖ → 1, the result (8) follows from Lemma B.1.

We refer to the supplementary D.1 for the proof of Lemma B.1.

B.2 CALCULATING THE VARIANCE

Since the bags are non-overlapping we have SS> = Im. Therefore S>S is a projection matrix and
can be written as S>S = UU>, with U ∈ Rn×m an orthogonal matrix. Recall that the variance
is given by VarX(θ̂int) = σ2‖MS>S‖2F . We use the next lemma to characterize the asymptotic
behavior of the variance.

Lemma B.2. Under the asymptotic regime of Assumption 2.3, for any vector a ∈ Rm we have

n

‖a‖2
‖MUa‖22

(p)→ k

v∗
,

where v∗ is given as the fixed point of the following system of equations in (v, u):{
ψ

1+u + ρψ(k−1)
ρ+u = k,

ψ(1+v)
(1+u)2 + ρ2ψ(k−1)

(ρ+u)2 = k .

Proof of Lemma B.2 is given in the supplementary D.2.

We next use the above lemma for each row of U separately (as the vector a) and add them together.

Using the fact that ‖U‖2F = m and m/n = k, we get that ‖MUU>‖2F
(p)→ 1/v∗, which completes

the variance calculation.
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B.3 PROOF OF LEMMA 4.2

We use the idea of (Dwork et al., 2014, Theorem 3.6) to prove this lemma. Given a database D =
(y1, y2, . . . , yn), Algorithm 1 (we denote this mapping by A : Rn → Rm) outputs m real numbers
(ỹ1, ỹ2, . . . , ỹm). Given the databaseD, we define the map f : Rn → Rm byD 7→ (ȳ1, ȳ2, . . . , ȳm),
which computes the mean of labels in each bag. Fix any pair of neighboring databases D,D′ that
differ in the label of a single example. We have ‖f(D)− f(D′)‖1 :=

∑
a∈[m] |f(D)a− f(D′)a| ≤

∆f := C
√

logn
k . In this argument, we used Assumption 2.4 that assumes non-overlapping bags,

and therefore, changing a certain yi in D leads to a change in only one of ȳa by at most ∆f . Let
pA(D)(z) and pA(D′)(z) denote the probability density function of A(D) and A(D′). We have

pA(D)(z)

pA(D′)(z)
=

∏
a∈[m]

exp
(
− ε|f(D)a−za|

∆f

)
exp

(
− ε|f(D′)a−za|

∆f

)
=

∏
a∈[m]

exp

(
ε (|f(D′)a − za| − |f(D)a − za|)

∆f

)

≤
∏
a∈[m]

exp

(
ε|f(D′)a − f(D)a|

∆f

)

= exp

(
ε‖f(D)− f(D′)‖1

∆f

)
≤ eε ,

which completes the proof.

C PROOF OF THEOREM 4.3

Recall that in Algorithm 1, the individual responses are first truncated by C
√

log n and then after the
aggregate responses are computed, a Laplace noise is added to them to ensure label DP. We define
E is the event that no truncation happens, namely:

E := 1{|yi|≤C
√

logn, ∀i∈[n]} . (15)

Since yi ∼ N(0, ‖θ0‖2 + σ2), ‖θ0‖ = 1, by using Gaussian tail bound along with union bounding
we arrive at

P(E) ≥ 1− n exp
(
− C2

2(1 + σ2)
log n

)
= 1− n−c , (16)

with c = C2

2(1+σ2) − 1 > 0.

We next bound the risk of estimator θ̂int as follows:

RiskX(θ̂int) = E[‖θ̂int − θ0‖21{E}|X] + E[‖θ̂int − θ0‖21{Ec}|X] . (17)

For the first term, note that on the instance E (no truncation), the privatized aggregate responses are
just the aggregate responses with an additive zero mean noise with variance 2C2 log n/(kε)2. So
we can use the analysis in the proof of Theorem 2.5 with the inflated noise variance. Let θ̂nt

int be the
estimator using untruncated responses in Algorithm 1. We then have This gives us

1

log n
E[‖θ̂int − θ0‖21{E}|X] =

1

log n
E[‖θ̂nt

int − θ0‖21{E}|X]

=
1

log n
E[‖θ̂nt

int − θ0‖2|X]− 1

log n
E[‖θ̂nt

int − θ0‖21{Ec}|X]

=
1

log n
BiasX(θ̂nt

int) +
1

log n
VarX(θ̂nt

int)−
1

log n
E[‖θ̂nt

int − θ0‖21{Ec}|X] ,

(18)
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where the bias is given by (8) and variance is given by (9), where σ2/k is replaced with the inflated
variance σ2/k+2C2 log n/(kε)2. Since BiasX(θ̂nt

int) has a finite limit, the first term above vanishes
as n→∞. For the second term we have

1

log n
VarX(θ̂nt

int)
(p)→ 2C2

kε2

1

v∗
.

since σ2/ log n→ 0. For the third term, by Cauchy–Schwarz inequality we have

E[‖θ̂nt
int − θ0‖21{Ec}|X] ≤ E[‖θ̂nt

int − θ0‖4|X]1/2 P(Ec) . (19)

Using the high probability bound on the minimum singular value of the Gaussian matrix X (Ver-
shynin, 2018, Theorem 4.6.1), we can show that E[‖θ̂nt

int − θ0‖4|X] is bounded in probability and
since P(Ec) ≤ n−c, we conclude that the third term in (18) also vanishes as n→∞, in probability.
Combining these together we arrive at

1

log n
E[‖θ̂int − θ0‖21{E}|X]

(p)→ 2C2

kε2

1

v∗
. (20)

Similar to (19) we can also show that

1

log n
E[‖θ̂int − θ0‖21{Ec}|X]

(p)→ 0 ,

which along with (20) and (17) implies that

1

log n
RiskX(θ̂int)

(p)→ 2C2

kε2

1

v∗
,

completing the proof.

D PROOF OF INTERMEDIATE LEMMAS

D.1 PROOF OF LEMMA B.1

Write X = [x1, . . . ,xd] with xi representing the i-th column. We then have ‖MΛX‖2 =∑d
i=1 ‖MΛxi‖2. We compute the asymptotic behavior of each of the summand separately. In-

deed, by symmetry of the distributions of xi, we will see that all summands converge to the same
limit.

Recall thatM = (X>EX)−1X>. Consider the following optimization problem:

αi = arg minα∈Rd
1

d
‖E1/2Xα−E−1/2Λxi‖22 . (21)

It is easy to see that by the KKT condition, αi = (X>EX)−1X>Λxi = MΛxi. Therefore, we
are interested in characterizing ‖αi‖ in the asymptotic regime, described in Assumption 2.3.

We write α as (αi,α∼i) to separate its i-th entry form the rest. Likewise we writeX = [xiX∼i] to
separate the i-th columns from the rest. We then have

min
α∈Rd

1

d
‖E1/2Xα−E−1/2Λxi‖22

= min
α∈Rp

1

d
‖E1/2xiαi +E1/2X∼iα∼i −E−1/2Λxi‖22

= min
α∈Rd

1

d
‖E1/2X∼iα∼i + (αiE

1/2 −E−1/2Λ)xi‖22

= min
α∈Rd

max
v∈Rn

2

d

(
v>(αiE

1/2 −E−1/2Λ)xi + v>E1/2X∼iα∼i −
1

2
‖v‖22

)
, (22)

where in the last step we used the identity maxv(v>x− ‖v‖2/2) = ‖x‖2/2 for any vector x.
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We next note that SS> = I since the bags are non-overlapping. Therefore we can write S>S =
UU> for an orthogonal matrix U ∈ Rn×m. We then have

E := ρI + (1− ρ)S>S = UU> + ρU⊥U
>
⊥ , Λ = ρ(I − S>S) = ρU⊥U

>
⊥ .

where U⊥ is an orthogonal matrix representing the orthogonal space to the column space of U .
We next decompose the vector v in the above optimization as v = Uv1 + U⊥v2 and therefore
‖v‖2 = ‖v1‖2 + ‖v2‖2.

We introduce the change of variable ṽ = E1/2v in optimization (22). Note that ṽ = Uv1 +√
ρU⊥v2. Continuing with (22) in terms of ṽ we have

min
α∈Rd

max
ṽ∈Rn

2

d

(
ṽ>(αiI −E−1Λ)xi + ṽ>X∼iα∼i −

1

2
‖E−1/2ṽ‖22

)
. (23)

To analyze the asymptotic behavior of the solution to the above minimax optimization, we use
the Convex-Gaussian-Minimax-Theorem (CGMT) (Thrampoulidis et al., 2015, Theorem 3), which
is a power extension of the classical Gordon’s Gaussian min-max theorem Gordon (1988), under
additional convexity assumptions. According to CGMT, the above optimization is equivalent to the
following auxiliary optimization problem:

min
α∈Rd

max
ṽ∈Rn

2

d

(
ṽ>(αiI −E−1Λ)xi + ‖α∼i‖ṽ>g + ‖ṽ‖h>α∼i −

1

2
‖E−1/2ṽ‖22

)
, (24)

with g ∼ N(0, In) and h ∼ N(0, Id−1) independent Gaussian vectors. We next write the above
optimization in terms of the components v1 and v2, noting that E−1Λ = U⊥U

>
⊥ , as follows:

min
α∈Rd

max
v1,v2∈Rn

2

d

(
αiv
>
1 U

>xi +
√
ρv>2 U

>
⊥ (αiI −U⊥U>⊥ )xi + ‖α∼i‖(v>1 U>g +

√
ρv>2 U

>
⊥ g)

+
√
‖v1‖2 + ρ‖v2‖2h>α∼i −

1

2
‖v1‖2 −

1

2
‖v2‖2

)
. (25)

Define the shorthand

x1 := U>xi ∼ N(0, Im),

x2 := U>⊥xi ∼ N(0, In−m),

g1 := U>g ∼ N(0, Im),

g2 := U>⊥ g ∼ N(0, In−m).

Then optimization (25) can be rewritten as

min
α∈Rd

max
v1,v2∈Rn

2

d

(
αiv
>
1 x1 +

√
ρ(αi − 1)v>2 x2 + ‖α∼i‖(v>1 g1 +

√
ρv>2 g2)

+
√
‖v1‖2 + ρ‖v2‖2h>α∼i −

1

2
‖v1‖2 −

1

2
‖v2‖2

)
. (26)

We fix ‖v1‖ = β1 and ‖v2‖ = β2 and first optimize over the directions of v1, v2 and then over the
norms β1 and β2. This brings us to

min
α∈Rd

max
β1,β2≥0

2

d

(
β1‖αix1 + ‖α∼i‖g1‖+ β2‖

√
ρ(αi − 1)x2 + ‖α∼i‖

√
ρg2‖

+
√
β2

1 + ρβ2
2h
>α∼i −

1

2
β2

1 −
1

2
β2

2

)
. (27)

In order to optimize over α∼i, we first fix its norm to η := ‖α∼i‖ and optimize over its direction,
and then optimize over η, which results in:

min
η≥0,αi

max
β1,β2≥0

2

d

(
β1‖αix1 + ηg1‖+ β2‖

√
ρ(αi − 1)x2 + η

√
ρg2‖

+ η
√
β2

1 + ρβ2
2‖h‖ −

1

2
β2

1 −
1

2
β2

2

)
. (28)
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The next step in the CGMT framework is to compute the pointwise limit of the objective functions.
Using the concentration of Lipschitz functions of Gaussian vectors we have

1√
d
‖αix1 + ηg1‖

(p)→
√

(α2
i + η2)

ψ

k
,

1√
d
‖√ρ(αi − 1)x2 + η

√
ρg2‖

(p)→
√

(ρ(αi − 1)2 + ρη2)ψ
(

1− 1

k

)
,

where we used Assumption 2.3, by which n/d→ ψ and m = n/k.

We also have 1√
d
‖h‖ (p)→ 1.

We therefore arrive at the following deterministic optimization problem

min
η≥0,αi

max
β1,β2≥0

(
β1

√
(α2
i + η2)

ψ

k
+ β2

√
(ρ(αi − 1)2 + ρη2)ψ

(
1− 1

k

)
+
√
β2

1 + ρβ2
2 −

1

2
β2

1 −
1

2
β2

2

)
, (29)

where we made the change of variables 2β1/
√
d→ β1 and 2β2/

√
d→ β2.

By writing the stationary conditions for the above optimization, and simplifying the resulting system
of equations by solving for β1, β2, and substituting for them in the other two equations, we arrive at
the following two equations for αi and η:{

ρ+ ψ
k(1−α∗) − 1 = ψ

kα∗
ρ(k − 1)

η2
∗ +

kα2
∗

k−1 +
η2∗α

2
∗

(1−α∗)2(k−1) = ψ
k

η2∗
(1−α∗)2 .

As the final step, recall that by definition η := ‖α∼i‖ and therefore, ‖αi‖2
(p)→ α2

∗ + η2
∗. As we see

it is independent of the index i and therefore,

1

d
‖MΛX‖2 =

1

d

d∑
i=1

‖MΛxi‖2 =
1

d

d∑
i=1

α2
i

(p)→ α2
∗ + η2

∗ .

This completes the proof.

D.2 PROOF OF LEMMA B.2

Recall thatM = (X>EX)−1X>. Consider the following optimization problem:

α = arg minα∈Rd
1

d
‖E1/2Xα−E−1/2Ua‖22 . (30)

The solution to the above optimization problem has a closed-form solution given by α =
(X>EX)−1X>Ua = MUa. So we are interested in characterizing the norm of the optimal
solution to the above optimization problem.

Similar to the proof of Lemma B.1, we use the framework of CGMT to characterize ‖α‖ in the
asymptotic regime described in Assumption 2.3.

Using the identity ‖x‖/2 = maxv(v>x− ‖v‖2/2), we rewrite the above optimization as:

min
α∈Rd

1

d
‖E1/2Xα−E−1/2Ua‖22

= min
α∈Rd

max
v∈Rn

2

d

(
v>E1/2Xα− v>E−1/2Ua− 1

2
‖v‖22

)
, (31)

By using Convex-Gaussian-Minimax-Theorem (Thrampoulidis et al., 2015, Theorem 3), the above
optimization is equivalent to the following auxiliary optimization problem:

min
α∈Rd

max
v∈Rn

2

d

(
‖α‖v>E1/2g + ‖E1/2v‖h>α− v>E−1/2Ua− 1

2
‖v‖22

)
, (32)
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with g ∼ N(0, In) and h ∼ N(0, Id) independent Gaussian vectors.

We also recall that S>S = UU> and so

E := ρI + (1− ρ)S>S = UU> + ρU⊥U
>
⊥ ,

with U⊥ ∈ Rn×(n−m) denotes the orthogonal matrix, whose column space is orthogonal to the
column space of U . We decompose v to its component in the column space of U and U⊥ as

v = Uv1 +U⊥v2, ‖v‖2 = ‖v1‖2 + ‖v2‖2 .

Therefore, E1/2v = Uv1 +
√
ρU⊥v2 and so the above optimization (32) can be written as

min
α∈Rd

max
v1,v2∈Rn

2

d

(
‖α‖v>1 U>g +

√
ρ‖α‖v>2 U>⊥ g +

√
‖v1‖2 + ρ‖v2‖2h>α

− v>1 a−
1

2
‖v1‖2 −

1

2
‖v2‖2

)
. (33)

We next introduce the following change of variables:

g1 := U>g ∼ N(0, Im),

g2 := U>⊥ g ∼ N(0, In−m).

Rewriting the optimization in terms of g1 and g2 we get

min
α∈Rd

max
v1,v2∈Rn

2

d

(
‖α‖v>1 g1 +

√
ρ‖α‖v>2 g2 +

√
‖v1‖2 + ρ‖v2‖2h>α

− v>1 a−
1

2
‖v1‖2 −

1

2
‖v2‖2

)
. (34)

We next do the maximization on v1 and v2 by first fixing the norms to β1 := ‖v1‖ and β2 := ‖v2‖
and maximize over the directions and then maximize over β1, β2. This gives us

min
α∈Rd

max
β1,β2≥0

2

d

(
β1‖‖α‖g1 − a‖+ β2

√
ρ‖α‖‖g2‖+

√
β2

1 + ρβ2
2h
>α− β2

1 + β2
2

2

)
. (35)

For minimization over α, we first fix its norm to η := ‖α‖ and optimize over its direction, and then
over η:

min
η≥0

max
β1,β2≥0

2

d

(
β1‖ηg1 − a‖+ β2

√
ρη‖g2‖ − η

√
β2

1 + ρβ2
2 ‖h‖ −

β2
1 + β2

2

2

)
. (36)

The next step in the CGMT framework is to compute the pointwise limit of the objective function.
By concentration of Lipschitz functions of Gaussian vectors we have

1√
d
‖ηg1 − a‖

(p)→
√
‖a‖2
d

+ η2
ψ

k
,

1√
d
‖g2‖

(p)→
√
ψ
(

1− 1

k

)
,

1√
d
‖h‖ (p)→ 1 ,

where we used Assumption 2.3 by which n/d→ ψ, and Assumption 2.4 by whichm = n/k. Using
these limits in (36), we arrive at the following deterministic optimization problem:

min
η≥0

max
β1,β2≥0

β1

√
‖a‖2
d

+ η2
ψ

k
+ β2

√
ρη

√
ψ
(

1− 1

k

)
− η
√
β2

1 + ρβ2
2 −

β2
1 + β2

2

2
, (37)

where we applied the change of variables 2β1/
√
d→ β1 and 2β2/

√
d→ β2.

In order to find the optimal solution we solve the stationary conditions. By setting derivative with
respect to η to zero we obtain

β1η
ψ
k√

‖a‖2
d + η2 ψ

k

+ η

√
ρψ
(

1− 1

k

)
−
√
β2

1 + ρβ2
2 = 0 . (38)
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In addition by setting the derivative with respect to β1 and β2 to zero, we obtain√
‖a‖2
d

+ η2
ψ

k
=
( η√

β2
1 + ρβ2

2

+ 1
)
β1 ,

η

√
ρψ
(

1− 1

k

)
=
( ρη√

β2
1 + ρβ2

2

+ 1
)
β2 .

(39)

By substituting for β1 and β2 from (39) into (38) we get

ηψk
η + c

− 1 +
ρηψ(1− 1

k )

ρη + c
= 0 , (40)

where c =
√
β2

1 + ρβ2
2 .

Also by substituting for β1 and β2 from (39) into the definition c =
√
β2

1 + ρβ2
2 , we have

‖a‖2
d + η2 ψ

k

(η + c)2
+
ρ2η2ψ(1− 1

k )

(ρη + c)2
= 1 . (41)

We next make the change of variable: c = ηu, and rewriting equations (40 and 41) as follows:
ψ

1+u + ρψ(k−1)
ρ+u = k ,

k‖a‖2

dη2
+ψ

(1+u)2 + ρ2ψ(k−1)
(ρ+u)2 = k .

Defining v := k‖a‖2
ψdη2 we get the system of equations given in the lemma statement.

As the final step, recall that as we discussed at the beginning of the proof, α∗ = MUa. Therefore,

n

‖a‖2
‖MUa‖22 =

n

‖a‖2
‖α∗‖22

(p)→ n

‖a‖2
η2
∗ =

k

v∗
,

which completes the proof.
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