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ABSTRACT

State-of-the-art deep learning models often fail to generalize in the presence of dis-
tribution shifts between training (source) data and test (target) data. Domain adap-
tation techniques have been developed to address this challenge, leveraging either
labeled data (supervised domain adaptation) or unlabeled data (unsupervised do-
main adaptation). The careful selection of target domain samples can significantly
enhance model performance and robustness, while also reducing the overall data
requirements. Active learning aims to maximize performance with fewer annota-
tions. In this paper, we introduce an innovative method for active learning in the
presence of domain shifts. We propose a novel feature disentanglement approach
to decompose image features into domain-specific and task-specific components.
Thereafter we define multiple novel cost functions that identify informative sam-
ples under domain shift. We test our proposed method for medical image clas-
sification using one histopathology dataset and two chest x-ray datasets. Exper-
iments show our proposed approach achieves state-of-the-art performance when
compared to both domain adaptation methods and other active domain adaptation
techniques.

1 INTRODUCTION

Deep neural networks (DNNs) demonstrate state-of-the-art (SOTA) results for many medical image
analysis applications. Although they excel at learning from large labeled datasets, it is challenging
for DNNs to generalize the learned knowledge to new target domains (Saenko et al., 2010; Torralba
& Efros, 2011). This limits their real-world utility, as it is impractical to collect large datasets for
every novel application with the aim of retraining the network. It is impractical to annotate every
data point and include them as part of the training set since annotating medical images requires high
clinical expertise. Considering a supervised domain adaptation setting, all available samples from
the target class are not equally informative, and annotating every sample may result in a waste of
time and effort. As such, it makes sense to select the most informative target domain samples for
labeling. Additionally, in an unsupervised domain adaptation setting where sample annotation is not
required, informative sample selection identifies the most important samples that are used for model
training leading to improved performance than conventional approaches.

Active Learning (AL) methods enable an expert to select informative samples and add them to a
training set for incremental training. This allows a model to obtain high performance with mini-
mal labeled samples (i.e., high learning rates) and is particularly suitable for medical image analysis
tasks where AL methods must adapt to varying conditions like device vendor, imaging protocol, ma-
chine learning model, etc. While conventional AL methods (Ash et al., 2019; Ducoffe & Precioso,
2018; Sener & Savarese, 2018) have extensively studied the problem of identifying informative in-
stances for labeling, they typically choose samples from the same domain and hence do not account
for domain shift. Thus conventional AL models are not very effective for domain adaptation ap-
plications. In many practical scenarios, models are trained on a source domain and deployed in a
different target domain. This can be a common occurrence for medical image analysis applications
where target domain data is scarce, or a result of different image-capturing protocols, parameters,
devices, scanner manufacturers, etc. Domain shift is also observed when images of the dataset are
from multiple facilities. Consequently, some domain adaptation techniques have to be used for such
scenarios (Ganin & Lempitsky, 2015; Hoffman et al., 2018; Saenko et al., 2010).
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Despite the existence of domain adaptation methods, the primary challenge of obtaining labeled
data is accessing the right experts. In this scenario, it is appropriate that we make optimal use of
the experts’ time and use AL to obtain maximal information from minimal annotations. Hence it is
beneficial to have a technique that can choose informative samples despite the observed domain shift.
This will lead to different trained models being adapted for a wide variety of tasks in supervised and
unsupervised domain adaptation.

In this work, we study the problem of active learning under such a domain shift, called Active Do-
main Adaptation (Kirsch et al., 2019) (ADA). Given i) labeled data in a source domain, ii) unlabeled
data in a target domain, and iii) the ability to obtain labels for a fixed budget of target instances, the
goal of ADA is to select target instances for labeling and learn a model with high accuracy on the
target test set. We specifically apply our method to medical imaging datasets since domain shift is a
common problem for medical diagnosis tasks.

2 PRIOR WORK

Domain Adaptation In Medical Image Analysis: Domain adaptation (DA) has attracted increas-
ing attention in machine learning based medical image analysis (Ghafoorian et al., 2017; Raghu
et al., 2019; Kamnitsas et al., 2017b). Its practical use includes segmenting cardiac structures from
MR and CT images (Zhuang & Shen, 2016), and stain normalization of histopathology images from
different hospitals (Bandi et al., 2019). The survey paper of (Guan & Liu, 2021) categorizes DA
methods under 6 types. However, since our work focuses on supervised, and unsupervised DA we
briefly review related works and refer the reader to (Guan & Liu, 2021) for more details.

Supervised Domain Adaptation: One of the first SDA methods for medical images (Kumar et al.,
2017) used ResNet as the feature extractor and applied to mammography images. Huang et al.
(Huang et al., 2017) propose to use LeNet-5 to extract features of histological images from different
domains for epithelium-stroma classification, project them onto a subspace(via PCA) and align them
for adaptation. Ghafoorian et al. (Ghafoorian et al., 2017) evaluate the impact of fine- tuning
strategies on brain lesion segmentation, by using CNN models pre-trained on brain MRI scans.
Their experimental results reveal that using only a small number of target training examples for
fine-tuning can improve the transferability of models.

Unsupervised Domain Adaptation: UDA for medical image analysis has gained significance in
recent years since it does not require labeled target domain data. Prior works in UDA focused on
medical image classification (Ahn et al., 2020), object localisation, lesion segmentation (Heimann
et al., 2013; Kamnitsas et al., 2017a), and histopathology stain normalization (Chang et al., 2021).
Heimann et al. (Heimann et al., 2013) used GANs to increase the size of training data and demon-
strated improved localisation in X-ray fluoroscopy images. Likewise, Kamnitsas et al. (Kamnit-
sas et al., 2017a) used GANs for improved lesion segmentation in magnetic resonance imaging
(MRI). Ahn et al. (Ahn et al., 2020) use a hierarchical unsupervised feature extractor to reduce
reliance on annotated training data. Chang et al. (Chang et al., 2021) propose a novel stain mix-up
for histopathology stain normalization and subsequent UDA for classification. Graph networks for
UDA (Ma et al., 2019; Wu et al., 2020) have been used in medical imaging applications (Ahmedt-
Aristizabal et al., 2021) such as brain surface segmentation (Gopinath et al., 2020) and brain image
classification (Hong et al., 2019a;b). However, none explore DA with active learning.

Deep Active Learning In Medical Image Analysis: (Wang et al., 2017a) use sample entropy, and
margin sampling to select informative samples while (Zhou et al., 2016) use GANs to synthesize
samples close to the decision boundary and annotate it by human experts. (Mayer & Timofte, 2018)
use GANs to generate high entropy samples which are used as a proxy to find the most similar
samples from a pool of real annotated samples. (Yang et al., 2017) propose a two-step sample
selection approach based on uncertainty estimation and maximum set coverage similarity metric.
Test-time Monte-Carlo dropout (Gal et al., 2017) has been used to estimate sample uncertainty, and
consequently select the most informative ones for label annotation (Gal et al., 2017; Bozorgtabar
et al., 2019). The state-of-the-art in active learning is mostly dominated by methods relying on
uncertainty estimations. However, the reliability of uncertainty estimations has been questioned
for deep neural networks used in computer vision and medical imaging applications due to model
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calibration issues (Abdar et al., 2021; Jungo et al., 2020). Recent work (Budd et al., 2021; Mahapatra
et al., 2021) has highlighted the importance of interpretability for medical imaging scenarios.

Active Domain Adaptation ADA can be cost-effective solution when the quantity or cost (e.g.
medical diagnosis) of labeling in the target domain is prohibitive. Despite its practical utility, ADA
is challenging and has seen limited exploration since its introduction (Chattopadhyay et al., 2013;
Kirsch et al., 2019). (Kirsch et al., 2019) first applied ADA to sentiment classification from text data
by sampling instances based on model uncertainty and a learned domain separator. (Chattopadhyay
et al., 2013) select target instances and learn importance weights for source points through a convex
optimization problem.

In a traditional AL setting informative sample selection does not focus on addressing domain shift.
Thus, AL methods based on uncertainty or diversity sampling are less effective for ADA. Uncer-
tainty sampling selects instances that are highly uncertain under the model’s beliefs (Gal et al.,
2017), which under a domain shift leads to miscalibration and selection of uninformative, outlier,
or redundant samples for labeling (Ovadia et al., 2019). AL based on diversity sampling selects
instances dissimilar to one another (Gissin & Shalev-Shwartz, 2019; Sener & Savarese, 2018; Sinha
et al., 2019). In ADA this can lead to sampling uninformative instances from regions of the feature
space that are already well-aligned across domains (Prabhu et al., 2021). Although using uncertainty
or diversity sampling exclusively is suboptimal for ADA, their combination can be very effective as
shown by AADA (Su et al., 2020a). (Ash et al., 2019) perform clustering in a hallucinated “gra-
dient embedding” space, but rely on distance-based clustering in high-dimensional spaces, which
often leads to suboptimal results. (Prabhu et al., 2021) propose a label acquisition strategy, termed
as Clustering Uncertainty-weighted Embeddings (CLUE), for ADA that combines uncertainty and
diversity sampling without the need for complex gradient or domain discriminator-based diversity
measures.

Our contributions: While domain adaptation and active learning have been well explored in med-
ical image analysis, their combination has not seen much work. Our work is one of the first to look
at active domain adaptation in the medical image analysis setting. This paper makes the following
contributions: 1) We propose one of the first applications of active domain adaptation in medical
image analysis. 2) We propose a feature disentanglement approach that extracts class specific and
class agnostic features from a given image. 3) Using the different feature components we propose
novel metrics to quantify the informativeness of samples across different domains. 4) We demon-
strate that the novel feature disentanglement components are able to identify informative samples
across different domains.

3 METHOD

We aim to show the relevance of ADA in supervised domain adaptation (SDA) and unsupervised
domain adaptation (UDA). While active SDA (ASDA) requires selecting the target samples to be
labeled, in active UDA (AUDA) we select the unlabeled target samples that will go into the pool for
training along with labeled samples from the source domain. Both ASDA and AUDA are related
tasks requiring the selection of informative samples, and hence can be solved within a common
framework. Although the individual components of ADA - addressing domain shift and informative
sample selection - have been explored in detail, their combination presents a different challenge. In
prior work much effort has gone into exploring properties such as transferable diversity, uncertainty,
etc, wherein the common criteria for informative sample selection is adapted to ensure it does equally
well for samples from a new domain. In our approach we propose to use feature disentanglement to
extract different types of features from the labeled source data and unlabeled target data such that
samples with the same label are projected to the same region of the new feature space.

Prior work on feature disentanglement for domain adaptation decompose the latent feature vector
into domain specific and domain agnostic features. These approaches are sub-optimal for ADA
because : 1) the domain agnostic features are usually segmentation maps that encode the structural
information. However selecting informative images onthis basis is challenging due to different
appearance and field of views captured by the target domain images. 2) domain specific features
usually encode information such as texture, intensity distributions, etc, which are not generally
useful in selecting informative samples from a different domain.
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Figure 1: Workflow of the proposed method. (a) Feature Disentanglement: Training data goes
through an autoencoder to obtain different components zdom, ztask and they are used to obtain differ-
ent loss functions. After training is complete we get the disentangled features. (b) For informative
sample selection we obtain disentangled feature representations of the unlabeled data and calculate
the informativeness score of each sample in the batch. Thereafter the most informative samples are
added to the labeled samples to initiate the domain adaptation steps.

Given source and target domains S and T , an ideal domain independent feature’s classification
accuracy on domain S is close to those obtained using features from a optimal classifier. At the same
the features should be similar for samples having same labels from domains S, T . The resulting
feature space can be used to train a classifier on domain S, and use conventional active learning
techniques to select informative samples from domain T . In Active DA, the learning algorithm has
access to labeled instances from the source domain (XS , YS), unlabeled instances from the target
domain XUT , and a budget B which is much smaller than the amount of unlabeled target data. The
learning algorithm may query an oracle to obtain labels for at most B instances from XUT , and add
them to the set of labeled target instances XLT . The entire target domain data is XT = XLT

⋃
XUT .

The task is to learn a function h : X −→ Y (a convolutional neural network (CNN) parameterized
by θ) that achieves good predictive performance on the target domain. The samples xS ∈ XS and
xT ∈ XT are images, and labels yS ∈ YS , yT ∈ YT are categorical variables y ∈ 1, 2, · · · , C.

3.1 FEATURE DISENTANGLEMENT NETWORK:

Figure 1 shows the workflow of our proposed method. The feature disentanglement network (FDN)
consists of an autoencoder each for source and targer domains. The FDN consists of two encoders
(ES(·), ET (·)) and two decoder networks (GS(·), GT (·)), for the source and target domains respec-
tively. Similar to a classic autoencoder, each encoder, E•(·), produces a latent code zi for image
x•
i ∼ p•. Each decoder, G•(·), reconstructs the original image from zi. Furthermore, we divide

the latent code, zi, into two components: a domain specific component, zdom, and a task specific
component, ztask. The disentanglement network is trained using the following loss function:

LDisent = LRec + λ1L1 + λ2L2 + λ3L3 + λbaseLbase (1)
LRec, is the commonly used image reconstruction loss and is defined as:

LRec = ExS
i ∼pS

[∥∥xS
i −GS(ES(x

S
i ))

∥∥]+ ExT
j ∼pT

[∥∥xT
j −GT (ET (x

T
j ))

∥∥] (2)

The disentangled features from both domains are denoted as zsdom, zstask for source domain and
ztdom, zttask for the target domain. zsdom, zstask are combined and input to the source decoder GS

to get back the original source domain image, while ztdom, zttask are combined and input the source
decoder GT to get back the original target domain image. Since domain specific features encode
information unique to the domain, they will be different for source and target domains. Hence the
semantic similarity between ztdom and zsdom will be low. This is captured using

L1 = ⟨zsdom, ztdom⟩ (3)
where ⟨·⟩ denotes the cosine similarity of the two feature vectors. Additionally, we expect that the
task specific features of the two domains will have high similarity which is incorporated using:

L2 = 1− ⟨zstask, zttask⟩ (4)
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We want the two components of the features to be as dissimilar as possible in order to capture
mutually complementary information, and this is achieved using the following loss term

L3 = ⟨zsdom, zstask⟩+ ⟨ztdom, zttask⟩ (5)

Additionally, since the task specific features encode information specific to the task, they should
be such that when using it to train a classifier it should give performance levels similar to those
obtained using the original image features. Our approach is to ensure that the task specific features
are such that they do not result in a performance drop. We first train a baseline classification model
Mbase using the original image features of source domain data (since labels are available only for
the source domain data). For a given sample i from source domain, we pass it through Mbase to
obtain a feature vector zi. The task specific component is denoted as zstask. Their cosine similarity
should be high to ensure it captures highly relevant information and the corresponding loss term is

Lbase = 1− ⟨zstask, zi⟩ (6)

Note that the feature vector zi is obtained from a pre-trained classifier and can be considered as
the optimal feature vector (although that depends upon the chosen classifier model Mbase) whereas
the task specific feature vector zstask is obtained as part of the training process. Our objective is to
ensure that zstask is very close to zi in terms of semantic similarity. Lbase is named as such to denote
its comparison with Mbase. We use a DenseNet-121 as Mbase.

3.2 INFORMATIVE SAMPLE SELECTION

We train two classifiers, Msource
task on zstask, and Msource

dom on zsdom. By design zstask has high simi-
larity zttask which ensures that Msource

task trained with zstask can be used with zttask to obtain similar
performance levels, and also identify informative samples. We use the following criteria to choose
informative samples: 1) Uncertainty: - We take Msource

task trained on zstask and use it to calculate the
uncertainty of the target domain samples with zttask. To measure informativeness we use predictive
entropy H(Y |x) (Wang & Shang, 2014) which for C-way classification, is defined as:

QUnc = H(Y |x) = −
C∑

c=1

pθ(Y = c|x) log pθ(Y = c|x) (7)

2) Domainness: determines whether a sample is from the same domain as a reference sample (e.g.,
source domain). Recent active learning or ADA methods (Huang et al., 2018; Su et al., 2020b)
consider samples with higher distinctiveness from source domain samples as informative since they
capture the unique characteristics in the target domain. This approach is susceptible to choosing
outliers. For a given target domain sample we obtain zttask, z

t
dom. ztdom is compared with zsdom of

each label. If the cosine similarity is below a threshold then the sample is determined as different
from the source domain data, and hence not considered for labeling. Fu et al (Fu et al., 2021) show
that too low similarity scores between source and target domain samples denotes outliers and too
high similarity scores indicate uninformative samples since the target domain sample has already
been included within the training set.Thus we define a score

Qdom =


0 if ⟨zsdom, ztdom⟩ < η1
⟨zsdom, ztdom⟩ if η1 ≤ ⟨zsdom, ztdom⟩ ≤ η2
0 if ⟨zsdom, ztdom⟩ > η2

(8)

To set the thresholds η1 and η2 we plot a distribution of the cosine similarity values and η1 equals
the 30th percentile value while η2 corresponds to the 75th percentile.

3) Density: - determines whether a sample represents other samples which are similar in the feature
space. The number of annotations can be reduced by labeling samples which are representative of
many other samples. If a sample lies in a dense region of the feature space then it is representative
of many other samples. We cluster the target domain samples into N clusters using the task specific
features zttask where N is the number of classes of the source domain data. For each sample we
calculate the feature distance with respect to other samples in the batch, and take the average distance
over the top K closest samples. A higher average feature distance indicates that the sample is more
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similar to other samples and is in a dense region of the feature space. We set K = 20. We define a
density score as this average feature distance:

Qdensity =
1

K

∑
k=1,··· ,K

⟨zitask, zktask⟩ (9)

4) Novelty:- This criterion checks whether the selected target sample for labeling is similar or differ-
ent to previously labeled target samples. For a given target domain sample i with feature vector zitask
we calculate its cosine similarity with previously annotated samples zjtask. If the similarity is high
then the informativeness score of sample i is low and vice-versa. Thus we define a “novelty-score”:

Qnovel =
∑
j

1− ⟨zitask, z
j
task⟩ (10)

The cosine similarities of i with other previously annotated samples j are summed to get the
“novelty-score”. The final informativeness score of a sample is the sum of all the above scores:

QInf = λUncQUnc + λDomQDom + λDensityQDensity + λNovelQNovel (11)

Higher values of QInf indicates greater informativeness. The top N informative samples are se-
lected in every batch and added to the training set, and the classifier is updated. Informative sample
selection continues till there is no further change in the performance of a separate validation set.

4 EXPERIMENTAL RESULTS

Baseline Methods: We compare our proposed method against several state-of-the art methods for
Active DA and Active Learning such as: 1) AADA: Active Adversarial Domain Adaptation (AADA)
(Su et al., 2020a); 2) Entropy (Wang & Shang, 2014): Selects instances for which the model has
highest predictive entropy; 3) BADGE (Ash et al., 2019): a state-of-the-art AL using KMeans++ on
“gradient embeddings” to incorporate model uncertainty and diversity. 4) CLUE method of (Prabhu
et al., 2021) - Clustering Uncertainty-weighted Embeddings (CLUE) using uncertainty-weighted
clustering. under the model and diverse in feature space. 5) (Ma et al., 2021)’s active universal
domain adaptation. 6) (Fu et al., 2021)’s method using transferable uncertainty.

Ablation Studies: We also show the results for ablation with the following methods: 1)
AUDAw/L1

: Our proposed method used for AUDA without the loss term L1 in Eqn.3; 2)
AUDAw/L2

: AUDA without the loss term L2 in Eqn.4; 3) AUDAw/L3
: AUDA without the loss

term L3 in Eqn.5; 4) AUDAw/Lbase
: AUDA without the loss term Lbase in Eqn.6; 5) AUDAw/QUnc

:
AUDA without the informativeness term QUnc in Eqn.7; 6) AUDAw/Qdom

: AUDA without the do-
mainness term Qdom in Eqn.8; 7) AUDAw/Qdensity

: AUDA without the density term Qdensity in
Eqn.9; 8) AUDAw/Qnovel

: AUDA without the novelty term Qnovl in Eqn.10;

4.1 EXPERIMENTAL SETTINGS

We use the source domain and part of the target dataset to train our feature disentanglement method,
and use it on the remaining target domain samples to obtain zttask and ztdom. Selected informative
samples from the target domain are added to the training set which initially consists of only source
domain samples. After each addition the classifier is updated and evaluated on a separate test set
from the target domain. In the unsupervised setting there are no samples to label. We adapt our
active domain adaptation method such that instead of using the entire unlabeled dataset, we select
informative samples from target domain to use for training the classifier.

Since our goal is to demonstrate the effectiveness of our active learning method under domain shift
and not to propose a new domain adaptation method, we show results of our method integrated with
existing SOTA methods for SDA and UDA. We adopt the following experimental setup: 1) Train
a benchmark method in a fully-supervised manner with training, validation and test data from the
same hospital/dataset. This setting gives the upper-bound performance expectation for a SDA model,
which depends upon the network architecture. We refer to this benchmark as FSL−SameDomain
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(fully supervised learning based method on same domain data). 2) Train a SOTA domain adaptation
method (either supervised DA or unsupervised DA) using the available source and target domain
data, and without informative sample selection - SDASOTA (SOTA supervised domain adaptation)
or UDASOTA (SOTA unsupervised domain adaptation). We observe that SDASOTA is obtained
by taking the FSL− SameDomain and fine tuning the network using labeled target domain sam-
ples. 3) We use our active domain adaptation (ADA) method to select informative samples and
incrementally add to the training set. We investigate its effectiveness in selecting the best possible
set of samples for labeling, and explore their degree of success in reducing the required number of
annotated samples. As we add samples to the training set we report the test accuracy for every 10%
increase of the training set. 4) We also report the performance of other active learning methods-
including domain adaption based and conventional methods that do not address the domain shift.

4.2 RESULTS ON HISTOPATHOLOGY DATASETS

Dataset Description: We use the CAMELYON17 dataset (Bandi et al., 2019) to evaluate the per-
formance of the proposed method on tumor/normal classification. In this dataset, a total of 500
H&E stained WSIs are collected from five medical centers (denoted as C1, C2, C3, C4, C5 re-
spectively). 50 of these WSIs include lesion-level annotations. All positive and negative WSIs are
randomly split into training/validation/test sets and provided by the organizers in a 50/30/20% split
for the individual medical centers to obtain the following split: C1:37/22/15, C2: 34/20/14, C3:
43/24/18, C4: 35/20/15, C5: 36/20/15. 256 × 256 image patches are extracted from the annotated
tumors for positive patches and from tissue regions of WSIs without tumors for negative patches.
We use λ1 = 0.8, λ2 = 1.05, λ3 = 0.85, λbase = 0.95, λUnc = 0.9, λDom = 0.75, λDensity =
1.0, λNovel = 1.0, η1 = 0.21, η2 = 0.82.

Since the images have been taken from different medical centers their appearance varies despite
sharing the same disease labels. This is due to slightly different protocols of H&E staining. Stain
normalization has been a widely explored topic which aims to standardize the appearance of images
across all centers, which is equivalent to domain adaptation. Recent approaches to stain normal-
ization/domain adaptation favour use of GANs and other deep learning methods. We compare our
approach to recent approaches and also with (Chang et al., 2021) which explicitly performs UDA
using MixUp. The method by (Chang et al., 2021) is denoted as UDASOTA

To evaluate our method’s performance: We use C1 as the source dataset and train a ResNet-101
classifier (He et al., 2016) (ResNetC1). Each remaining dataset from the other centers are, separately,
taken as the target dataset. We select informative samples add them to training set and update
ResNetC1. As a baseline, we perform the experiment without domain adaptation denoted as No −
ADA where ResNetC1 is used to classify images from other centers. All the above experiments are
repeated using each of C2, C3, C4, C5 as the source dataset. We report in Table 1 a center wise and
also an average performance performance for different UDA methods. The results in Table 1 show
that UDA methods are better than conventional stain normalization approaches as evidenced by the
superior performance of (Chang et al., 2021). In Table 2 we report performance of different active
domain adaptation methods. The numbers are compared against the average for all 5 centers.

No ADA MMD CycleGAN Chang FSL-Same SDASOTA

(UDASOTA) Domain
C1 0.8068 0.8742 0.9010 0.964 0.976 0.969
C2 0.7203 0.6926 0.7173 0.933 0.957 0.941
C3 0.7027 0.8711 0.8914 0.931 0.95 0.938
C4 0.8289 0.8578 0.8811 0.95 0.971 0.957
C5 0.8203 0.7854 0.8102 0.927 0.942 0.933
Avg. 0.7758 0.8162 0.8402 0.941 0.959 0.948

Table 1: Classification results in terms of AUC measures for different domain adaptation methods
on CAMELYON17 dataset. FSL− SD is a fully-supervised model trained on target domain data.

4.3 RESULTS ON CHEST XRAY DATASET

Dataset Description: We use the following chest Xray datasets: NIH Chest Xray Dataset: The
NIH ChestXray14 dataset (Wang et al., 2017b) has 112, 120 expert-annotated frontal-view X-rays
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100% p-
FSL-SD 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 < 0.001
Random 0.693 0.71 0.75 0.794 0.821 0.858 0.891 0.914 0.928 0.938 < 0.001

Unc 0.706 0.733 0.772 0.812 0.845 0.891 0.922 0.931 0.939 0.943 < 0.001
AADA 0.712 0.742 0.791 0.841 0.872 0.903 0.924 0.939 0.945 0.948 0.001

BADGE 0.707 0.728 0.768 0.803 0.847 0.885 0.903 0.924 0.932 0.940 0.005
CLUE 0.715 0.746 0.786 0.839 0.878 0.911 0.921 0.934 0.941 0.947 0.007

Fu 0.714 0.739 0.775 0.813 0.849 0.883 0.914 0.925 0.935 0.944 0.001
Su 0.721 0.754 0.793 0.825 0.858 0.889 0.914 0.929 0.941 0.95 0.02

OurASDA 0.73 0.775 0.801 0.831 0.872 0.895 0.927 0.937 0.946 0.964 0.04
OurAUDA 0.721 0.762 0.793 0.828 0.863 0.893 0.915 0.927 0.941 0.952 -

Ablation Studies
Feature Disentanglement

AUDAw/L1
0.702 0.734 0.772 0.842 0.872 0.885 0.896 0.902 0.911 0.921 0.001

AUDAw/L2
0.711 0.729 0.765 0.802 0.854 0.867 0.881 0.898 0.914 0.928 0.005

AUDAw/L3
0.692 0.724 0.768 0.813 0.843 0.869 0.884 0.896 0.901 0.914 0.0009

AUDAw/Lbase
0.671 0.703 0.734 0.771 0.81 0.848 0.866 0.881 0.895 0.908 0.0008

Informative Sample Selection
AUDAw/QUnc

0.705 0.74 0.778 0.852 0.881 0.898 0.906 0.913 0.924 0.932 0.001
AUDAw/Qdom

0.691 0.724 0.761 0.812 0.857 0.884 0.898 0.904 0.916 0.923 0.001
AUDAw/Qdensity

0.693 0.719 0.753 0.788 0.814 0.861 0.878 0.896 0.908 0.919 0.0001
AUDAw/Qnovel

0.682 0.711 0.746 0.779 0.817 0.856 0.869 0.882 0.897 0.912 0.0001

Table 2: Active Domain Adaptation Results For Camelyon17 dataset. AUC values for different
baselines and proposed approach along with ablation studies.

from 30, 805 unique patients and has 14 disease labels. Original images were resized to 256× 256,
and we use λ1 = 0.85, λ2 = 1.1, λ3 = 0.95, λbase = 1.2, λUnc = 1.1, λDom = 0.9, λDensity =
1.05, λNovel = 1.25, η1 = 0.24, η2 = 0.78. CheXpert Dataset: This datset (Irvin et al., 2019)
has 224, 316 chest radiographs of 65, 240 patients labeled for the presence of 14 common chest
conditions. Original images were resized to 256 × 256, and we use λ1 = 0.95, λ2 = 1.0, λ3 =
1.1, λbase = 1.0, λUnc = 1.2, λDom = 1.1, λDensity = 0.95, λNovel = 1.0, η1 = 0.29, η2 = 0.8.
These two datasets have the same set of disease labels.

We divide both datasets into train/validation/test splits on the patient level at 70/10/20 ratio, such
that images from one patient are in only one of the splits. Then we train a DenseNet-121 (Rajpurkar
et al., 2017) classifier on one dataset (say NIH’s train split). Here the NIH dataset serves as the
source data and CheXpert is the target dataset. We then apply the trained model on the training
split of the NIH dataset and tested on the test split of the same domain the results are denoted as
FSL − Same. When we apply this model to the test split of the CheXpert data without domain
adaptation the results are reported under No-UDA.

Table 3 show classification results for different DA techniques on NIH dataset as source domain
and CheXpert as target domain. The reverse scenario results are shown in the Supplementary. UDA
methods perform worse than FSL − Same since it is very challenging to perfectly account for
domain shift. However all UDA methods perform better than fully supervised methods trained on
one domain and applied on another without domain adaptation. The DANN architecture (Ganin
et al., 2016) outperforms MMD and cycleGANs, and is on par with graph convolutional methods
GCAN (Ma et al., 2019) and GCN2 (Hong et al., 2019b). However our method outperforms all
compared methods due to the combination of domain adaptation and informative sample selection.

Atel. Card. Eff. Infil. Mass Nodule Pneu. Pneumot. Consol. Edema Emphy. Fibr. PT. Hernia
No DA 0.697 0.814 0.761 0.652 0.739 0.694 0.703 0.781 0.704 0.792 0.815 0.719 0.728 0.811
MMD 0.741 0.851 0.801 0.699 0.785 0.738 0.748 0.807 0.724 0.816 0.831 0.745 0.754 0.846

CycleGANs 0.765 0.874 0.824 0.736 0.817 0.758 0.769 0.832 0.742 0.838 0.865 0.762 0.773 0.864
DANN 0.792 0.902 0.851 0.761 0.849 0.791 0.802 0.869 0.783 0.862 0.894 0.797 0.804 0.892

FSL−SD 0.849 0.954 0.903 0.814 0.907 0.825 0.844 0.928 0.835 0.928 0.951 0.847 0.842 0.941
SDASOTA 0.854 0.965 0.914 0.824 0.918 0.835 0.856 0.937 0.845 0.936 0.963 0.861 0.852 0.952

GCN2 (UDASOTA) 0.809 0.919 0.870 0.765 0.871 0.807 0.810 0.882 0.792 0.883 0.921 0.817 0.812 0.914

Table 3: Classification results on the CheXpert dataset’s test split using NIH data as the source
domain. Note: FSL− SD is a fully-supervised model trained on target domain data.
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100% p-
FSL-SD 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 0.814 < 0.001
Random 0.639 0.671 0.709 0.741 0.775 0.784 0.797 0.810 0.818 0.821 < 0.001

Unc 0.648 0.687 0.725 0.763 0.797 0.809 0.819 0.835 0.842 0.851 < 0.001
AADA 0.655 0.694 0.735 0.773 0.808 0.829 0.845 0.858 0.876 0.88 < 0.001

BADGE 0.643 0.678 0.716 0.757 0.789 0.81 0.824 0.843 0.849 0.858 0.005
CLUE 0.648 0.688 0.729 0.763 0.793 0.815 0.837 0.849 0.863 0.869 0.007

Fu 0.652 0.689 0.732 0.775 0.805 0.827 0.845 0.855 0.872 0.879 0.001
Su 0.656 0.688 0.732 0.779 0.810 0.823 0.843 0.861 0.869 0.881 0.02

OurASDA 0.669 0.702 0.743 0.787 0.825 0.851 0.872 0.889 0.899 0.914 0.039
OurAUDA 0.661 0.694 0.735 0.777 0.818 0.837 0.861 0.873 0.883 0.898 -

Ablation Studies
Feature Disentanglement

AUDAw/L1
0.615 0.639 0.687 0.719 0.781 0.809 0.819 0.832 0.843 0.851 0.01

AUDAw/L2
0.621 0.649 0.698 0.725 0.788 0.816 0.824 0.836 0.849 0.859 0.02

AUDAw/L3
0.606 0.637 0.678 0.707 0.772 0.796 0.808 0.819 0.828 0.841 0.009

AUDAw/Lbase
0.604 0.629 0.664 0.685 0.731 0.77 0.785 0.806 0.818 0.829 0.008

Informative Sample Selection
AUDAw/QUnc

0.625 0.657 0.699 0.729 0.795 0.821 0.832 0.839 0.852 0.866 0.01
AUDAw/Qdom

0.618 0.635 0.689 0.714 0.778 0.813 0.821 0.828 0.841 0.851 0.008
AUDAw/Qdensity

0.610 0.631 0.685 0.717 0.77 0.805 0.812 0.822 0.831 0.846 0.009
AUDAw/Qnovel

0.600 0.624 0.682 0.710 0.767 0.801 0.809 0.818 0.829 0.842 0.004

Table 4: For NIH data as the source domain. AUC values for different baselines and proposed
approach along with ablation studies. We focus on Infiltration condition.

4.4 HYPERPARAMETER SETTINGS

For our method we have two sets of hyperparameter values: for the feature disentanglement (Eqn. 1)
and for informative sample selection (Eqn. 11). To set the hyperparameters for feature disentan-
glement we adopt the following steps using the NIH Xray dataset. For λ1 we varied the values
from [0, 1.3] in steps of 0.05, keeping λ2 = 0.45, λ3 = 0.5, λbase = 0.6. The best classifi-
cation results on a separate validation set not part of training or test datasets were obtained for
λ1 = 0.85, which was our final value. Then we vary λ2 in a similar range with constant values of
λ1 = 0.85, λ3 = 0.5, λbase = 0.6 to get the best results for λ2 = 1.1. We repeat the above steps to
get λ3 = 0.95, λbase = 1.2. We repeat the entire sequence of steps for the parameters of Eqn. 11 and
finally set λUnc = 1.1, λDom = 0.9, λDensity = 1.05, λNovel = 1.25. To address the challenge of
optimizing multiple parameters we take extra precautions of multiple cross checks and using fixed
seed values for reproducibility. Similar steps were followed to get parameters for CAMELYON17
and CheXpert.

5 DISCUSSION AND CONCLUSION

We present a novel approach for active domain adaptation that combines active learning and domain
adaptation. The key motivation is to reduce the annotation cost for supervised settings, and the
number of samples in unsupervised domain adaptation. We propose a novel feature disentanglement
approach to obtain task specific and domain specific features. The task specific features of source
and target domain are projected to a common space such that a classifier trained on one domain’s
features can perform equally well on the other domain. Thus active learning strategies can be used
to select informative target domain samples using a classifier trained on source domain samples.
We propose a novel informativeness score that selects informative samples based on the criteria of
uncertainty, domainness, density and novelty. Our proposed method yields better results than SOTA
methods for active learning and domain adaptation. Subsequent ablation studies also highlight the
importance of each term in the loss function and justifies their inclusion. We observe that Lbase is
the most important comnponent of the feature disentanglement stage whereas the novelty component
Qnovel has the most contribution to selecting informative target domain samples. In future work,
we aim to test our model on other medical image datasets. We also aim to test its robustness and
generalizability to different classification architectures.
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