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ABSTRACT

We consider multi-source free domain adaptation, the problem of adapting mul-
tiple existing models to a new domain without accessing the source data. This
is a practical problem, which often arises in commercial settings but remains
an open question despite the advances in recent years. Previous methods, e.g.,
model ensemble, are effective, but they also incur significantly increased com-
putational costs. Conventional solutions for efficiency, such as distillation, are
limited in preserving source knowledge, i.e., maintaining generalizability. In this
work, we propose a novel framework called SepRep-Net, which tackles multi-
source free domain adaptation via model Separation and Reparameterization.
Concretely, SepRep-Net reassembled multiple existing models to a unified net-
work, while maintaining separate pathways (Separation). During training, sep-
arate pathways are optimized in parallel with the information exchange regularly
performed via an additional feature merging unit. With our specific design, these
pathways can be further reparameterized into a single one to facilitate inference
(Reparameterization). SepRep-Net is characterized by 1) effectiveness: com-
petitive performance on the target domain, 2) efficiency: low computational costs,
and 3) generalizability: maintaining more source knowledge than existed solu-
tions. As a general approach, SepRep-Net can be seamlessly plugged into vari-
ous methods. Extensive experiments validate the performance of SepRep-Net on
mainstream benchmarks. We promise to release our code towards reproducibility.

1 INTRODUCTION

Domain Adaptation Pan & Yang| (2010) aims at adapting models from source domains to a target
domain with unlabeled target data. Previous works [Izeng et al. (2014); |Long et al. (2015); |Ganin
et al.| (2016) mostly rely on source data, i.e., samples from the source domain, during adaptation.
However, the source data may become inaccessible due to storage and privacy concerns in commer-
cial settings, which hinders the wide applications of domain adaptation. Towards this obstacle, great
interests have been invoked to explore source-free domain adaptation (SFDA) [Liang et al.| (2020),
where models pre-trained on the labeled source data are adapted to the unlabeled target domain with-
out accessing source data. One extension of SFDA is to leverage knowledge from multiple existing
models that are pre-trained on different source domains, which is formulated as multi-source free
domain adaptation (MSFDA).

Among mainstream MSFDA approaches Wang et al.| (2020b); |/Ahmed et al.| (2021); [Dong et al.
(2021), model ensemble Wang et al.| (2020b)) serves as a simple yet strong baseline, where multiple
source models are adapted to the target domain respectively. Then these models vote for correct
predictions. These methods/Ahmed et al.|(2021)); Dong et al.|(2021)) based on model ensemble bring
remarkable improvements, but they inevitably lead to high computational overheads. To alleviate
such a burden, knowledge distillation is usually leveraged to train a single model via mimicking
the ensembled predictions on the target domain. Although distillation preserves the accuracy on the
target domain and reduces computation costs, it incurs another problem: severe source knowledge
forgetting, which harms the generalizability in real-world applications |Yang et al.[(2021}).
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Figure 1: Problem Setup and Method Performance. (a) We reassemble multiple existing source
models to one target model that is adapted to a novel unlabeled target domain. The target model
is expected to be 1) effective for target data, 2) efficient in inference and 3) able to generalize well
on source data, i.e. preserving more source knowledge. (b) Compared to previous methods on
Office-Home, our framework enjoys better effectiveness, generalizability, and efficiency (H-score

2-AcCsource  AcCtarget . . TP
AcConureetACCrarant (%) evaluates effectiveness and generalizability jointly).

Considering all the challenges mentioned above, this paper targets on a more practical setting, Multi-
Source Free Domain Adaptation with Effectivenss, Efficiency, and Generalizability. As shown in
Table[T] we focus on source-free domain adaptation with multiple existing source models, aiming at
preserving model efficiency and source knowledge, i.e., generalizability, as well as achieving com-
petitive target domain accuracy. To achieve this goal, an intuitive solution is to reassemble multiple
source models, which have the same network architecture, into a single model. The reassembled
model will be further adapted to the target domain. The main challenge in reassembling multiple
source models lies in the trade-off between preserving more parameters and pursuing model effi-
ciency. In this paper, we propose SepRep-Net (Figure. [1(a)), a framework for multi-source free
domain adaptation via Separation and Reparameterization. For training, SepRep-Net inherits all
the parameters from source models and reassembles them via Separation. While during inference,
thanks to our carefully designed framework, the model can be further simplified via reparameteriza-
tion.

Concretely, SepRep-Net reassembles models by formulating multiple separate pathways in parallel
(Separation). Specifically, in each Conv-BN unit, the input passes through separate pathways. The
multiple outputs are then integrated into a single one by a feature merging unit. The unified fea-
ture serves as the input of the next Conv-BN units in different pathways. With this design, during
inference, we can convert multiple pathways into a single one via reparameterization to enhance
model efficiency. In other words, we eventually convert multiple source models into a single target
model. Moreover, when ensembling final classifier outputs, previous works |Ahmed et al.| (2021)
adopt learnable combination weights, resulting in bias to target data. In this paper, we revise the
reweighting strategy to an uncertainty-based one to further boost generalizability. Our method is
characterized by 1) Effectiveness: reassembled model is ready to be adapted to the target data, 2)
Efficiency: largely reduces computational costs during inference via reparameterization, 3) Gener-
alizability: parameters inherited from multiple source models naturally preserve source knowledge.

Our proposed SepRep-Net can be readily integrated into various existing methods. Extensive ex-
periments are performed on several benchmarks to evaluate SepRep-Net. Experimental results (as
illustrated in Figure [I(b)| as an example) show that SepRep-Net achieves a better trade-off among
effectiveness, efficiency, and generalizability.

2 RELATED WORK

Domain Adaptation Aiming at mitigating the distribution gap between the source and target do-
mains, mainstream domain adaptation methods mostly fall into two paradigms, i.e., moment match-
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Table 1: Comparison of different domain adaptation settings. Adapting multiple source domains
to a novel target domain without source data, our method takes effectiveness, efficiency, and pre-
serving source knowledge (i.e. generalizability) into consideration.

Method No source data  Multiple source domains Model efficiency ~ Source knowledge
UDA |[Pan & Yang|(2010) X X -

SFDA |Liang et al.|(2020) v X -

MSDA [Peng et al.|(2019) X v X -
G-SFDA |Yang et al.|(2021) v X - v
MSFDA Dong et al.|(2021) v v X X
MSFDA + KD|Ahmed et al.|(2021) v v v X
SepRep-Net (Ours) v v v v

ing |Gretton et al.| (2012); Long et al| (2015); Tzeng et al.| (2014); Long et al| (2017); Kang et al.
(2019); |Lee et al.|(2019) and adversarial training \Ganin et al.|(2016)); Tzeng et al.|(2017); [Pei et al.
(2018);|Long et al.|(2018); Hoffman et al.|(2018));|Zhang et al.[|(2019). The former alleviates domain
shift by minimizing feature discrepancy while the latter borrows the spirit of Generative Adversarial
Networks (GANSs) |Goodfellow et al.| (2014); Mirza & Osindero| (2014} to learn domain invariant
features. Recent works enlighten some novel perspectives for domain adaptation, such as cluster-
ing [Pan et al| (2019); Tang et al.| (2020), self-training |Shu et al.| (2018); |Zou et al.| (2018}, [2019);
Jin et al.| (2020); [Saito et al.| (2020), network architecture design |Carlucci et al.| (2017); L1 et al.
(2018);|Wang et al.| (2019)) and feature norm Xu et al.|(2019). In order to leverage the source knowl-
edge effectively, accessing source data during training is necessary for these methods, which may
be unavailable under some circumstances.

Source-free Domain Adaptation Adapting source models to a novel unlabeled target domain
without accessible source data, namely Source-free Domain Adaptation|Liang et al.|(2020) (SFDA),
is a highly practical problem. Recent works have explored diverse scenarios in this field, e.g. closed-
set|Liang et al.[(2020); Li et al.|(2020); Liang et al. (2021));|Yang et al.|(2020b)), open-set/Kundu et al.
(2020b)) and universal SFDA [Kundu et al.|(2020a)). Our work is related to multi-source SFDA |Ahmed.
et al.[(2021) (MSFDA) and Generalized SFDA |Yang et al.[(2021) (G-SFDA), which pay attention to
adapting multiple models to the novel target domain and the model performance on source domains,
i.e. maintaining source knowledge, respectively.

Multi-source Free Domain Adaptation Previous works [Xu et al| (2018); [Peng et al| (2019);
Wang et al.| (2020a); [Yang et al.| (2020a); Nguyen et al.| (2021) widely investigate multi-source do-
main adaptation [Sun et al.| (2015) (MSDA) which adapts multiple source domains with different
distributions. When MSDA meets the source-free setting, the problem becomes multi-source free
domain adaptation (MSFDA). Model ensemble works as a simple yet effective baseline. Recent ad-
vances |Ahmed et al.[(2021);|Dong et al.|(2021)) push it to a stronger level but still suffer from heavy
computational costs. To reduce the computation overheads, knowledge distillation (KD) is adopted
as an effective solution. It preserves the target performance but leads to severe source knowledge
forgetting, harming the generalizability.

3 METHODOLOGY

This work aims at proposing a framework for adapting multiple existing models from different
source domains to a novel target domain without accessing source data. In this setting, we are given
K source models pre-trained on different source data and n; unlabeled samples X; = {z}1', from
the target domain. Both the source domains and the target domain have C' categories. Thus, itis a C-
way classification task. The k*" source model consists of one feature extractor g¥ and one classifier
h%. And all source models are homogeneous in network architecture. Our goal is to reassemble these
multiple source models to a new model on the target domain using unlabeled target data, pursuing
effectiveness, efficiency, and generalizability.

To smooth the presentation of our framework, we start from the preliminaries. Then, we propose
SepRep-Net, an efficient framework for multi-source free domain adaption.
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Figure 2: Method Overview. Take three source models as an example . Train: In each Conv-BN
unit, separate pathways are applied in parallel, forming a structure with multiple pathways. The
outputs are then integrated into a unified output via the feature merging unit. Inference: Multiple
pathways are re-parameterized to a unique one during inference. An uncertainty-based weighting
strategy ensembles multiple classifier heads to obtain the final prediction. (Best viewed in color)

3.1 PRELIMINARIES

Model Ensemble We target on source-free domain adaptation (SFDA) from multiple models,
which is also coined Multi-Source Free Domain Adaptation (MSFDA). Some methods are designed
specifically for this problem and proved to be effective. Except for them, another simple yet ro-
bust solution for this problem is model ensemble, where we utilize the existing SFDA methods (e.g.
SHOT [Liang et al|(2020)) to adapt each source model to the target data. As a result, we obtain K
adapted target models {gF, hf}szl and can ensemble predictions from these adapted models as the
final result,

K
o=y - hi(gf (@), ()
k=1

where oy, denotes the importance weight of the k¥ model. We may simply take v, = % Though
effective, model ensemble passes each data sample through all K models in inference, bringing
around K times computational and parameter costs.

3.2 SEPREP-NET

In this paper, we propose a framework for integrating multiple source models, namely SepRep-Net,
to boost efficiency, generalizability, as well as effectiveness. As shown in Figure. 2| SepRep-Net
reassembles multiple source models to a single model by formulating separate pathways during
training (Separation). In each Conv-BN unit, the input data passes through multiple pathways, and
then the corresponding outputs are merged into a single one. During inference, such a design enables
us to convert the multiple pathways to a single one via reparameterization.

Train: Separation During the training period, SepRep-Net inherits the parameters from source
models and reassembles them into one network. As shown in Figure. 2] the weights from source
models (square: Conv, rectangle: BN) form multiple separate pathways for model forward. After-
ward, the outputs from different pathways are converted into a unified one via the feature merging
unit, which integrates them via weighted sum. Concretely, take one Conv-BN unit as an example,
denote the input as fi"P"! and the corresponding output as f°*“*?"! we have

foutput _ Z BNk(Convk(finput)) W, 2)
k
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where C'onvy, and BN}, indicates the convolution and normalization layer from the k" model re-
spectively, and wy, is the weight hyper-parameter of the k" model. Through this framework, we can
obtain multiple classifier outputs.

Next, we need to ensemble these classifier outputs. Here, we consider that different pathways can-
not be viewed as equal during training. Therefore, a re-weighting strategy shall be introduced.
Concretely, we state that the models with lower uncertainty on the target data are more likely to
have stronger performance. To highlight these models, we first quantify the model uncertainty on
the target data by Entropy.

C
M(gh,hE) = —Eapex, > hE(gh (1)) log(RE (g (24))°), 3)

c=1

where h¥(-)¢ indicates the prediction on the c‘* category of classifier h¥, and M (g¥, h*) is a score
that indicates the prediction uncertainty of the k' source model on target data x;. A lower score
demonstrates lower prediction uncertainty, which shows that the model is potentially more capable
of adapting to the target data.

Our proposed SepRep-Net leverages the uncertainty metric in Eq. [3] with Softmax function to re-
weight the losses on different classifiers,

K —M(gknh)
Liotat = Y, = Li(fi; &), )

K —M(gi,hi
gsiltg
k=1 Ei:1 e~ Mgz,hy)

where Ly (fy; X;) denotes the loss function of the £** model. The loss functions Liang et al.|(2020)
in previous works for SFDA can be readily served as Ly, in SepRep-Net.

Inference: Reparameterization For inference, as shown in Figure 2| our framework design en-
ables us to merge these separate pathways into a unified one with model reparameterization, which
enhances the model efficiency.

Concretely, take one Conv-BN unit as an instance, suppose one input feature feeds to this unit is
1 e RE XWixCr - where Hy x Wi shows the spatial resolution and C] is the channel size.
For the convolution layer, take the one in the k*" pathway as an instance, suppose there are Cs
convolution filters in total, the jth filter can be denoted as F(#:9) € RUXVXC1_the corresponding
output of this convolution layer z(2) € RH2xW2xC2 follows

2, Zx,z (5)

where x( ) ; 1s the it" channel of z(V), F( J) is the i*" channel of F(*+7) and * is the 2D convolution
operator. Afterward it passes through the batch normalization layer in thlS pathway, and the output
o0 € RH2XW2xC2 pecomes
o
0., =(x? — ’“)jk +pE, 6)

HiyJ

where ﬁ? and 5;“ are the j*" element of the mean and standard deviation statistics in batch normal-

ization, fyf and /6’;?' are the j" element of the learned scaling factor and bias respectively. Therefore,
the weighted sum of the outputs of multiple pathways is

7
s = 2wl Zx w )+ ) ™
We can reparameterize the output as follows,

o wryt L wey? . wiyK .
PO = 20 pd) g 20 pa) g g K;J PO ®)
o; o; o;
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~1.1 ~K. K
bj = —w1 ilj —— — —WK JNKJ —|—w15]1- + ...+ wKﬁJK, 9
9 9
C .
w0y = Do w s B+ by, (10)
k=1

where @ indicates element-wise addition on the corresponding positions. Now, the multiple path-
ways in one Conv-BN unit, with /K convolution layers and K batch normalization layers, are con-
verted to one convolution layer, as shown in Eq. [I0}

As shown in Figure. [2| multiple models are finally reassembled into a unified architecture with
multiple classifier heads. Since the parameter and computation overheads of classifier heads are
negligible compared to the feature extractor, the computation and parameter costs of SepRep-Net
are very close to a single model.

Importance Reweighting Finally, akin to the spirit of model ensemble, we take the weighted sum
of multiple classifiers as the final prediction,

K
ge =Y ar - hf(ge(x)), (1)
k=1

where «y is the ensemble weight which plays an important role in model ensemble. A recent
work |Ahmed et al.| (2021) proposed to learn a combination weight during the training procedure.
However, such a strategy inevitably causes bias to target data, which hurts the model generalizabil-
ity. Here, we revise the reweighting strategy to a parameter-free one. We take the entropy of the
trained models to formulate our reweighting strategy, through which we can highlight the model that
1S more certain on the test data,

e—M(g: )

—_—. 12
ST 2

ap =

Notably, M (g;, h¥) is different from the entropy criterion M (g, h¥) in Eq.[3]since 1) it is calculated
by adapted model instead of the source models to obtain a more accurate approximation of uncer-
tainty, 2) it is computed on-the-fly in inference, harvesting importance weights that are adaptive to
the input data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We perform extensive evaluation of SepRep-Net on five mainstream benchmark datasets,
i.e., Office-31 |Saenko et al.[(2010), Office-Home |Venkateswara et al.| (2017)), Digit5 Peng et al.
(2019), Office-Caltech \Gong Boqing & Grauman| (2012), and DomainNet |Peng et al.| (2019). Due
to the page limit, the results on Office-Caltech and detailed descriptions of the datasets are included
in Appendix.

4.2 EXPERIMENTAL RESULTS

We build SepRep-Net based on various baseline frameworks and evaluate the effectiveness, effi-
ciency, and generalizability of SepRep-Net on different benchmarks. Specifically, we plug SepRep-
Net into DECISION |Ahmed et al.| (2021)), SHOT Liang et al.[{(2020) and CAiDA Dong et al.[(2021),
respectively. DECISION and CAiDA are designed for MSFDA tasks. SHOT is originally designed
for SFDA, and it can be readily applied to MSFDA via model ensemble (SHOT-ens). We compare
it with the vanilla results with multiple models and results with knowledge distillation [Hinton et al.
(2015) (KD). Following Yang et al|(2021)), we report the average accuracy on source domains Acc;
(%), the accuracy on target domain Acc, (%) and the H-score % (%) which jointly eval-
uates effectiveness and generalizability. On efficiency, we report the FLOPs of each method. The
experiment results are reported in Table 2] Table 3] Table ] and Table[3]
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Table 2: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Office-31 dataset. ResNet-50 is adopted in experiments. A, D, W indicate different domains (A:
Amazon, D: DSLR, W: Webcam). SHOT-ens indicates the performance of model ensemble with all
models that are adapted via SHOT. KD indicates knowledge distillation.

D,W— A AW —D A,D—>W Average

METHOD ‘ FLOPS ‘ T H ‘ S T H ‘ S T H ‘ S T H

DECISION + KD Hinton et al.|(2015) 4.1 734 754 744 | 725 996 839 | 767 98.1 86.1 | 742 91.0 814
DECISION + SepRep-Net 4.1 875 759 813|903 99.7 948 | 886 985 933 | 888 914 90.1
DECISION|Ahmed et al.|(2021) ‘ 8.2 ‘ 928 754 832 ‘ 819 99.6 89.8 ‘ 83.1 984 90.1 ‘ 859 O9l.1 884
CAiDA + KD Hinton et al.|(2015) 4.1 842 757 79.7 | 85.1 994 91.7 | 847 987 912 | 845 913 878
CAiDA + SepRep-Net 4.1 920 76.1 833 | 893 99.7 942|892 99.0 938 | 90.2 91.6 909
CAiDA Dong et al.|[(2021) \ 8.2 \ 889 758 818 \ 89.1 99.8 94.1 \ 88.6 989 935 \ 889 91.6 902
SHOT-ens + KD |Hinton et al. [(2015) 4.1 853 749 798 | 864 978 91.7 | 858 948 90.1 | 85.8 892 875
SHOT + SepRep-Net 4.1 928 757 834|939 988 963|914 966 939 | 927 904 915
SHOT-ens|Liang et al.|(2020) ‘ 8.2 ‘ 90.0 75.0 81.8 ‘ 90.2 97.8 93.8 ‘ 90.5 949 926 ‘ 90.2 893 89.7

Table 3: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Office-Home dataset. ResNet-50 is adopted in experiments. Ar, Cl, Pr, Rw indicate different
domains (Ar: Art, Cl: Clipart, Pr: Product, Rw: Real World). The abbreviations in METHOD are
the same as Table 2]

CL,Pr,Rw — Ar Ar,PrRw — Cl Ar,CLLRw — Pr Ar,ClL,Pr - Rw Average
METHOD FLOPS ‘ s T H ‘ s T H ‘ S T H ‘ S T H ‘ s T H
DECISION + KD Hinton et al. (2015}

4.1 572 744 647 | 514 59.1 550 | 527 844 649|596 837 69.6 | 552 754 635
4.1 732 746 739 | 695 602 645 | 688 840 756 | 71.8 838 773|708 757 732

DECISION + SepRep-Net
DECISION |Ahmed et al. (2021}

12.3 ‘68.7 74.5 71.5‘57.3 59.4 58.3‘67.7 844 75.1 ‘66.8 83.6 74.3‘65.] 754 699

CAIDA + SepRep-Net 4.1 752 753 752 | 73.6 60.7 665 | 750 853 79.8 | 748 848 795|747 765 756
CAiDA Dong et al.|(2021} 123 | 750 752 751|738 605 665|745 847 793|739 842 787|743 762 752

SHOT-ens + KD|Hinton et al. (2015}
SHOT + SepRep-Net

SHOT-ens|Liang et al.|(2020}

4.1 826 723 77.1 | 756 592 664|751 833 790|778 833 805|778 745 76.1
123 | 765 722 743|755 593 664|754 828 789|753 829 789|757 743 750

4.1 ‘69.0 72.1 70.5‘65,6 59.0 62,1‘679 82.7 746‘66.5 82.9 73.8‘673 742 70.6

|

CAIiDA + KD Hinton et al. (2015} ‘ 4.1 ‘ 68.8 750 718 ‘ 634 604 619 ‘ 66.6 845 745 ‘ 66.0 84.0 739 ‘ 66.2 760 70.8
|
\

In these tables, for SFDA methods such as SHOT, to tackle the multi-source free scenario, we
first adapt multiple models to the target domain via SHOT one by one. SHOT-ens indicates the
performance of model ensemble with all source models that are adapted via SHOT.

Office31 Table [2] shows that knowledge distillation (KD) is effective in enhancing efficiency and
maintaining target performance, but it harms generalizability (obviously low source accuracy). On
the contrary, reducing computational costs by half, SepRep-Net preserves significantly more gener-
alizability than KD, as well as achieves better results in both source and target domains.

Office-Home Table[3|demonstrates that when tackling three source models, our framework shows
consistently higher performance than other methods in both source and target domains. We note that
when compared with the vanilla methods, our method is still superior to them both in effectiveness
and generalizability, with only 33% computational costs of them.

DigitS Moreover, we further evaluate our method on Digit5, a harder dataset with more domains
and larger domain gaps. The results in Table [4| prove that our method only requires less than 25%
of the computational costs, while consistently improving the original method with 100% costs in
both source and target accuracy. Here, we also consider previous works that have access to source
data during being adapted to the target domain. It is unfair to evaluate the source domain accuracy
of these methods. Therefore, we only consider the accuracy of these methods in the target domain.
Our method achieves a stronger target domain accuracy over these methods.

DomainNet Finally, we take DomainNet, a larger dataset in domain adaptation, with obvious do-
main gaps across the six domains. Table [5] shows that when compared with knowledge distillation,
our method shows obvious improvements in effectiveness and generalizability under equal compu-
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Table 4: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Digit5. The backbone network in |Peng et al.| (2019) is adopted to recognize digits. MM, MT,
UP, SV, and SY indicate different domains (MM: MNIST-M, MT: MNIST, UP: USPS, SV: SVHN,
SY: Synthetic Digits). — points to the target domain while the remaining domains serve as source
domains. The abbreviations in METHOD are the same as Table[2] and traditional domain adaptation
methods that require source data (from DAN to M3SDA) are also compared.

— MM — MT — UP - SV —SY Avg
METHOD ‘ FLOPS ‘ s T H ‘ s T H ‘ S T H ‘ S T H ‘ s T H ‘ s T H
DAN|Long etal J2015 0116 | - 637 - - 9%3 - - M2 - - 625 - - 854 - - 804
DANN[Ganin et al [(2016] 0116 | - 713 - - 96 - -3 - - 635 - 853 - - 820
MCD|Saito et al {2018 0116 | - 725 - -9%2 - - 953 - -89 - | - 815 - - 861
CORAL[Sun & Saenko(2016] 0116 | - 625 - -2 - - 934 - -oe44 - | - 827 - - 80
ADDA[17zeng et al. (2017 0116 | - 716 - - 99 - -o2s - - 755 - | - 865 - - 848
M3SDA[Peng et al. (2019 0116 | - 728 - - 984 - - %61 - - 813 - | - 896 - - 876
DECISION + KD|Hinton et al.|(2015] ‘ 0.029 ‘ ‘ 524 826 641 ‘

553 928 69.3‘52.3 99.2 68.5‘46.6 97.8  63.1 709 972 82.0‘55.5 939 694

DECISION + SepRep-Net 0.032 | 61.8 93.1 743|570 99.1 724|658 98.0 787|621 839 714|734 974 837|640 943 763
DECISION|Ahmed et al. (2021} | 0116 | 584 930 717|551 992 708|558 978 711|540 826 653|710 975 822589 940 724
CAIDA + KD|Hinton et al. |(2015) ‘ 0.029 ‘ 536 936 682 ‘ 489 989 654|498 982 66.1 ‘ 50.1 83.1 625 ‘ 659 976 787 ‘ 537 943 684
CAIiDA + SepRep-Net 0.032 | 57.1 940 710 | 564 992 719 | 559 988 714|568 857 683|742 983 846 |60.1 952 737
CAiDA|Dong et al.[(2021] | 0116 | 556 937 698|523 99.1 685|531 986 690|528 833 646|680 98.1 803|564 946 70.6

SHOT-ens + KD|Hinton et al.|(2015} 0.029 | 57.1 902 69.9 | 53.0 988 69.0 | 509 978 67.0 | 532 581 555|679 839 751|564 858 68.1
SHOT + SepRep-Net 0.032 | 676 958 793 | 63.1 98.6 770|707 976 820|712 829 766|759 93.1 836|697 93.6 799

SHOT-ens|Liang et al. {2020 | 0116 | 603 904 723|567 989 721|608 977 750 | 549 583 565 | 689 839 756|603 858 708

Table 5: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on DomainNet dataset. ResNet-101 is adopted in experiments. C, I, P, Q, R, S indicate different
domains. (C: Clipart, I: Infograph, P: Painting, Q: Quickdraw, R: Real World, S: Sketch). The
abbreviations in METHOD are the same as Table 4]

CAiDA|Dong et al. {2021} 392 298 619 402|328 222 265|346 550 425[3.0 193 52]293 681 410|313 512 388268 463 339

78 353 582 439|346 249 290|374 548 445 . 154 39289 700 409 |31.7 521 394|284 459 351
7.8 386 593 468|400 263 317|402 569 47. |37 149 59386 719 502|390 536 451|333 472 390

392 | 40.6 58.6 480|372 252 300|411 553 472[3.0 153 50316 705 436|353 524 422|315 462 375

SHOT-ens + KD|Hinton et al. {2015}
SHOT + SepRep-Net

SHOT-ens|Liang et al. (2020}

IPQRS>C | CPQRS—1 | CLQRS—+P | CIPRS—+Q | CIPQS R | CIPQR—S Ave

METHOD ‘FLOPS‘S T H‘S T H‘S T H‘S T H‘S T H‘S T H‘S T H
DAN Long et al. (2015 39.2 - 39.1 - - 11.4 - - 333 - - 16.2 - - 42.1 - - 29.7 - - 28.6
DCTN|Xu et al. €20 187 39.2 - 48.6 - - 234 - - 48.8 - - 72 - - 53.5 - - 47.3 - - 38.1
MCD]Saito et al. (2018 392 s43 - | - 22 - | - 457 - |- 76 - | - 84 - | - 435 - | - 386
M3SDA{Peng et al_{2019] 392 586 260 523 63 627 495 125
DECISION + KD[Hinton otal [2015] | 78 | 253 6.1 358 | 315 210 252 | 320 534 400 |24 182 42298 G671 413|290 504 368|250 452 306
DECISION + SepRep-Net 78 |31 620 432|349 23 272|374 550 445 185 56|334 681 448|336 518 408|293 463 359
DECISION|Ahmed et al. {2021 | 392 [314 615 416|343 216 265|362 546 435 |31 189 53 |324 675 438|328 510 399 | 284 459 35
CAIDA + KD|Hinton et al {2015 78 | 251 613 356|298 218 252|322 546 405 191 44276 678 392|300 509 378|245 459 320
CAIDA + SepRep-Net 78 | 325 625 428|338 228 272|365 556 441 |31 201 54325 685 441|340 517 410|287 469 356

I

I

tational costs. For the vanilla methods, our method still surpasses them consistently, with only 20%
of the original computation costs.

4.3 ANALYSES

Ablation Study We investigate the components in SepRep-Net: Separation (Sep), Reparameteri-
zation (Rep), and Importance Reweighting (ReW). We mention that when taking separate pathways
alone, we adopt traditional knowledge distillation on the model with multiple pathways, which
makes the model size equal to our method for a fair comparison. H-score results are reported in
Table[6(a)] justifying that the effect of each part is indispensable.

Comparison of Different Uncertainty Criteria In our method, we adopt entropy as the
uncertainty-based criterion in our re-weighting strategy. There also exist various uncertainty met-
rics, such as confidence or margin. Here we give the comparison results of utilizing these different
metrics to re-weight the multiple classifiers. Table presents that our method performs stably
with different uncertainty metrics, while the entropy metric enjoys the highest performance.

Importance Reweighting We analyze the importance weights for ensembling outputs when the
model is evaluated on different domains respectively. As shown in Figure [3 our importance weight
has an obviously positive correlation with the accuracy of each classifier on the unlabeled target
domain. Moreover, our reweighting strategy is actually adapted to the input data during inference,
leading to improved generalizability.
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Table 6: Ablation Study of different designs in SepRep-Net and different uncertainty metrics for
importance reweighting on Office-Home with ResNet-50 backbone. We take SHOT as the base
method. H-score is used as the evaluation metric here. The meaning of — is the same as Table [4]
(Sep: Separation, Rep: Reparameterization, ReW: Importance Reweighting)

(a) Ablation Study (b) Different Uncertainty Metrics
FLOPs —Ar —Cl —Pr —Rw Avg —Ar —Cl —Pr — Rw Avg
:gep KD {42»13 ;Sg ?gg ;Z? ;gg ;(3)3 Confidence 754 660 783 789 747
P : - o : - - Margin 765 658 785 799 752
S R 4.1 734 65.0 71.5 719 73.5
1s§51aii+new (ours) 4.1 771 664 790 805 761 Entropy (ours) 77.1 664  79.0  80.5  76.1
2 Output weight 0.60
—=— QOutput weig .
1.0 0.55 Ar
Output accuracy cl
0.8 0.50 —— Pr
0.45 —— Rw
0.6
0.40
0.4
0.35
0.2 0.30
0.0 0.25
Cl Pr Rw Ar Cl Rw
(@) (b)

Figure 3: Output Weights for different domains in Office-Home with ResNet-50 backbone when
applying SepRep-Net to SHOT. (a) The output weights calculated in our framework are positively
correlated to the classifier accuracy. (b) Our importance weights are adaptive to the input data.
Specifically, the importance weight of the input domain adaptively becomes larger than others, en-
hancing generalizability.

More Analysis on Source Accuracy The model accuracy on source domains is often taken as the
metric to evaluate the model generalizability. For source accuracy, the ensemble results of multiple
source models no doubt enjoys a strong performance. Therefore, it is interesting to compare our
method with it. From Table[7] we can observe that ensembling multiple source models (Source-ens)
shows strong performance in source domains, but poor accuracy in the target domain. The source
accuracy gap between our method and Source-ens is much smaller than the traditional knowledge
distillation, with similar computational costs. On the other hand, H-score validates that our method
keeps the best trade-off between effectiveness and generalizability among these methods.

Table 7: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Office-Home dataset. ResNet-50 is adopted in experiments. Ar, Cl, Pr, Rw indicate different
domains (Ar: Art, Cl: Clipart, Pr: Product, Rw: Real World). Source-ens indicates the performance
of model ensemble with all source models. The abbreviations in METHOD are the same as Table[2]

CLPr,Rw — Ar Ar,Pr,Rw — Cl Ar,CLRw — Pr Ar,CL,Pr — Rw Avg
METHOD ‘ FLOPS ‘ S T H ‘ S T H ‘ S T H ‘ S T H ‘ S T H
Source-ens|He et al. (2016} 123 90.6 584 710|912 430 584 |85 677 767 |8.1 708 789|899 600 720
SHOT-ens + KD|Hinton et al. [(2015] 4.1 69.0 721 705 | 656 59.0 62.1 | 679 827 746 | 665 829 738|673 742 706

SHOT + SepRep-Net 4.1 826 723 711 | 756 592 664 | 751 833 790 | 77.8 833 805|778 745 76.1

5 CONCLUSION

In this paper, we target on reassembling multiple existing models into a single model and adapting it
to a novel target domain without accessing source data. Towards this problem, we propose SepRep-
Net, a framework that forms multiple separate pathways during training and further merges them via
reparameterization to facilitate inference. As a general approach, SepRep-Net is easy to be plugged
into various methods. Extensive experiments prove that SepRep-Net consistently improves existing
methods in effectiveness, efficiency, and generalizability.
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