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ABSTRACT

We consider multi-source free domain adaptation, the problem of adapting mul-
tiple existing models to a new domain without accessing the source data. This
is a practical problem, which often arises in commercial settings but remains
an open question despite the advances in recent years. Previous methods, e.g.,
model ensemble, are effective, but they also incur significantly increased com-
putational costs. Conventional solutions for efficiency, such as distillation, are
limited in preserving source knowledge, i.e., maintaining generalizability. In this
work, we propose a novel framework called SepRep-Net, which tackles multi-
source free domain adaptation via model Separation and Reparameterization.
Concretely, SepRep-Net reassembled multiple existing models to a unified net-
work, while maintaining separate pathways (Separation). During training, sep-
arate pathways are optimized in parallel with the information exchange regularly
performed via an additional feature merging unit. With our specific design, these
pathways can be further reparameterized into a single one to facilitate inference
(Reparameterization). SepRep-Net is characterized by 1) effectiveness: com-
petitive performance on the target domain, 2) efficiency: low computational costs,
and 3) generalizability: maintaining more source knowledge than existed solu-
tions. As a general approach, SepRep-Net can be seamlessly plugged into vari-
ous methods. Extensive experiments validate the performance of SepRep-Net on
mainstream benchmarks. We promise to release our code towards reproducibility.

1 INTRODUCTION

Domain Adaptation Pan & Yang (2010) aims at adapting models from source domains to a target
domain with unlabeled target data. Previous works Tzeng et al. (2014); Long et al. (2015); Ganin
et al. (2016) mostly rely on source data, i.e., samples from the source domain, during adaptation.
However, the source data may become inaccessible due to storage and privacy concerns in commer-
cial settings, which hinders the wide applications of domain adaptation. Towards this obstacle, great
interests have been invoked to explore source-free domain adaptation (SFDA) Liang et al. (2020),
where models pre-trained on the labeled source data are adapted to the unlabeled target domain with-
out accessing source data. One extension of SFDA is to leverage knowledge from multiple existing
models that are pre-trained on different source domains, which is formulated as multi-source free
domain adaptation (MSFDA).

Among mainstream MSFDA approaches Wang et al. (2020b); Ahmed et al. (2021); Dong et al.
(2021), model ensemble Wang et al. (2020b) serves as a simple yet strong baseline, where multiple
source models are adapted to the target domain respectively. Then these models vote for correct
predictions. These methods Ahmed et al. (2021); Dong et al. (2021) based on model ensemble bring
remarkable improvements, but they inevitably lead to high computational overheads. To alleviate
such a burden, knowledge distillation is usually leveraged to train a single model via mimicking
the ensembled predictions on the target domain. Although distillation preserves the accuracy on the
target domain and reduces computation costs, it incurs another problem: severe source knowledge
forgetting, which harms the generalizability in real-world applications Yang et al. (2021).
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Figure 1: Problem Setup and Method Performance. (a) We reassemble multiple existing source
models to one target model that is adapted to a novel unlabeled target domain. The target model
is expected to be 1) effective for target data, 2) efficient in inference and 3) able to generalize well
on source data, i.e. preserving more source knowledge. (b) Compared to previous methods on
Office-Home, our framework enjoys better effectiveness, generalizability, and efficiency (H-score
2·Accsource·Acctarget

Accsource+Acctarget
(%) evaluates effectiveness and generalizability jointly).

Considering all the challenges mentioned above, this paper targets on a more practical setting, Multi-
Source Free Domain Adaptation with Effectivenss, Efficiency, and Generalizability. As shown in
Table 1, we focus on source-free domain adaptation with multiple existing source models, aiming at
preserving model efficiency and source knowledge, i.e., generalizability, as well as achieving com-
petitive target domain accuracy. To achieve this goal, an intuitive solution is to reassemble multiple
source models, which have the same network architecture, into a single model. The reassembled
model will be further adapted to the target domain. The main challenge in reassembling multiple
source models lies in the trade-off between preserving more parameters and pursuing model effi-
ciency. In this paper, we propose SepRep-Net (Figure. 1(a)), a framework for multi-source free
domain adaptation via Separation and Reparameterization. For training, SepRep-Net inherits all
the parameters from source models and reassembles them via Separation. While during inference,
thanks to our carefully designed framework, the model can be further simplified via reparameteriza-
tion.

Concretely, SepRep-Net reassembles models by formulating multiple separate pathways in parallel
(Separation). Specifically, in each Conv-BN unit, the input passes through separate pathways. The
multiple outputs are then integrated into a single one by a feature merging unit. The unified fea-
ture serves as the input of the next Conv-BN units in different pathways. With this design, during
inference, we can convert multiple pathways into a single one via reparameterization to enhance
model efficiency. In other words, we eventually convert multiple source models into a single target
model. Moreover, when ensembling final classifier outputs, previous works Ahmed et al. (2021)
adopt learnable combination weights, resulting in bias to target data. In this paper, we revise the
reweighting strategy to an uncertainty-based one to further boost generalizability. Our method is
characterized by 1) Effectiveness: reassembled model is ready to be adapted to the target data, 2)
Efficiency: largely reduces computational costs during inference via reparameterization, 3) Gener-
alizability: parameters inherited from multiple source models naturally preserve source knowledge.

Our proposed SepRep-Net can be readily integrated into various existing methods. Extensive ex-
periments are performed on several benchmarks to evaluate SepRep-Net. Experimental results (as
illustrated in Figure 1(b) as an example) show that SepRep-Net achieves a better trade-off among
effectiveness, efficiency, and generalizability.

2 RELATED WORK

Domain Adaptation Aiming at mitigating the distribution gap between the source and target do-
mains, mainstream domain adaptation methods mostly fall into two paradigms, i.e., moment match-
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Table 1: Comparison of different domain adaptation settings. Adapting multiple source domains
to a novel target domain without source data, our method takes effectiveness, efficiency, and pre-
serving source knowledge (i.e. generalizability) into consideration.

Method No source data Multiple source domains Model efficiency Source knowledge

UDA Pan & Yang (2010) % % - -
SFDA Liang et al. (2020) ! % - -
MSDA Peng et al. (2019) % ! % -
G-SFDA Yang et al. (2021) ! % - !

MSFDA Dong et al. (2021) ! ! % %

MSFDA + KD Ahmed et al. (2021) ! ! ! %

SepRep-Net (Ours) ! ! ! !

ing Gretton et al. (2012); Long et al. (2015); Tzeng et al. (2014); Long et al. (2017); Kang et al.
(2019); Lee et al. (2019) and adversarial training Ganin et al. (2016); Tzeng et al. (2017); Pei et al.
(2018); Long et al. (2018); Hoffman et al. (2018); Zhang et al. (2019). The former alleviates domain
shift by minimizing feature discrepancy while the latter borrows the spirit of Generative Adversarial
Networks (GANs) Goodfellow et al. (2014); Mirza & Osindero (2014) to learn domain invariant
features. Recent works enlighten some novel perspectives for domain adaptation, such as cluster-
ing Pan et al. (2019); Tang et al. (2020), self-training Shu et al. (2018); Zou et al. (2018; 2019);
Jin et al. (2020); Saito et al. (2020), network architecture design Carlucci et al. (2017); Li et al.
(2018); Wang et al. (2019) and feature norm Xu et al. (2019). In order to leverage the source knowl-
edge effectively, accessing source data during training is necessary for these methods, which may
be unavailable under some circumstances.

Source-free Domain Adaptation Adapting source models to a novel unlabeled target domain
without accessible source data, namely Source-free Domain Adaptation Liang et al. (2020) (SFDA),
is a highly practical problem. Recent works have explored diverse scenarios in this field, e.g. closed-
set Liang et al. (2020); Li et al. (2020); Liang et al. (2021); Yang et al. (2020b), open-set Kundu et al.
(2020b) and universal SFDA Kundu et al. (2020a). Our work is related to multi-source SFDA Ahmed
et al. (2021) (MSFDA) and Generalized SFDA Yang et al. (2021) (G-SFDA), which pay attention to
adapting multiple models to the novel target domain and the model performance on source domains,
i.e. maintaining source knowledge, respectively.

Multi-source Free Domain Adaptation Previous works Xu et al. (2018); Peng et al. (2019);
Wang et al. (2020a); Yang et al. (2020a); Nguyen et al. (2021) widely investigate multi-source do-
main adaptation Sun et al. (2015) (MSDA) which adapts multiple source domains with different
distributions. When MSDA meets the source-free setting, the problem becomes multi-source free
domain adaptation (MSFDA). Model ensemble works as a simple yet effective baseline. Recent ad-
vances Ahmed et al. (2021); Dong et al. (2021) push it to a stronger level but still suffer from heavy
computational costs. To reduce the computation overheads, knowledge distillation (KD) is adopted
as an effective solution. It preserves the target performance but leads to severe source knowledge
forgetting, harming the generalizability.

3 METHODOLOGY

This work aims at proposing a framework for adapting multiple existing models from different
source domains to a novel target domain without accessing source data. In this setting, we are given
K source models pre-trained on different source data and nt unlabeled samples Xt = {xit}

nt
i=1 from

the target domain. Both the source domains and the target domain haveC categories. Thus, it is aC-
way classification task. The kth source model consists of one feature extractor gks and one classifier
hks . And all source models are homogeneous in network architecture. Our goal is to reassemble these
multiple source models to a new model on the target domain using unlabeled target data, pursuing
effectiveness, efficiency, and generalizability.

To smooth the presentation of our framework, we start from the preliminaries. Then, we propose
SepRep-Net, an efficient framework for multi-source free domain adaption.
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Figure 2: Method Overview. Take three source models as an example . Train: In each Conv-BN
unit, separate pathways are applied in parallel, forming a structure with multiple pathways. The
outputs are then integrated into a unified output via the feature merging unit. Inference: Multiple
pathways are re-parameterized to a unique one during inference. An uncertainty-based weighting
strategy ensembles multiple classifier heads to obtain the final prediction. (Best viewed in color)

3.1 PRELIMINARIES

Model Ensemble We target on source-free domain adaptation (SFDA) from multiple models,
which is also coined Multi-Source Free Domain Adaptation (MSFDA). Some methods are designed
specifically for this problem and proved to be effective. Except for them, another simple yet ro-
bust solution for this problem is model ensemble, where we utilize the existing SFDA methods (e.g.
SHOT Liang et al. (2020)) to adapt each source model to the target data. As a result, we obtain K
adapted target models {gkt , hkt }Kk=1 and can ensemble predictions from these adapted models as the
final result,

ŷt =

K∑
k=1

αk · hkt (gkt (xt)), (1)

where αk denotes the importance weight of the kth model. We may simply take αk = 1
K . Though

effective, model ensemble passes each data sample through all K models in inference, bringing
around K times computational and parameter costs.

3.2 SEPREP-NET

In this paper, we propose a framework for integrating multiple source models, namely SepRep-Net,
to boost efficiency, generalizability, as well as effectiveness. As shown in Figure. 2, SepRep-Net
reassembles multiple source models to a single model by formulating separate pathways during
training (Separation). In each Conv-BN unit, the input data passes through multiple pathways, and
then the corresponding outputs are merged into a single one. During inference, such a design enables
us to convert the multiple pathways to a single one via reparameterization.

Train: Separation During the training period, SepRep-Net inherits the parameters from source
models and reassembles them into one network. As shown in Figure. 2, the weights from source
models (square: Conv, rectangle: BN) form multiple separate pathways for model forward. After-
ward, the outputs from different pathways are converted into a unified one via the feature merging
unit, which integrates them via weighted sum. Concretely, take one Conv-BN unit as an example,
denote the input as f input and the corresponding output as foutput, we have

foutput =
∑
k

BNk(Convk(f
input)) · wk, (2)
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where Convk and BNk indicates the convolution and normalization layer from the kth model re-
spectively, and wk is the weight hyper-parameter of the kth model. Through this framework, we can
obtain multiple classifier outputs.

Next, we need to ensemble these classifier outputs. Here, we consider that different pathways can-
not be viewed as equal during training. Therefore, a re-weighting strategy shall be introduced.
Concretely, we state that the models with lower uncertainty on the target data are more likely to
have stronger performance. To highlight these models, we first quantify the model uncertainty on
the target data by Entropy.

M(gks , h
k
s) = −ExtεXt

C∑
c=1

hks(g
k
s (xt))

clog(hks(g
k
s (xt))

c), (3)

where hks(·)c indicates the prediction on the cth category of classifier hks , and M(gks , h
k
s) is a score

that indicates the prediction uncertainty of the kth source model on target data xt. A lower score
demonstrates lower prediction uncertainty, which shows that the model is potentially more capable
of adapting to the target data.

Our proposed SepRep-Net leverages the uncertainty metric in Eq. 3 with Softmax function to re-
weight the losses on different classifiers,

Ltotal =

K∑
k=1

e−M(gks ,h
k
s )∑K

i=1 e
−M(gis,h

i
s)
Lk(fk;Xt), (4)

where Lk(fk;Xt) denotes the loss function of the kth model. The loss functions Liang et al. (2020)
in previous works for SFDA can be readily served as Lk in SepRep-Net.

Inference: Reparameterization For inference, as shown in Figure 2, our framework design en-
ables us to merge these separate pathways into a unified one with model reparameterization, which
enhances the model efficiency.

Concretely, take one Conv-BN unit as an instance, suppose one input feature feeds to this unit is
x(1) ∈ RH1×W1×C1 , where H1 × W1 shows the spatial resolution and C1 is the channel size.
For the convolution layer, take the one in the kth pathway as an instance, suppose there are C2

convolution filters in total, the jth filter can be denoted as F (k,j) ∈ RU×V×C1 , the corresponding
output of this convolution layer x(2) ∈ RH2×W2×C2 follows

x
(2)
:,:,j =

C1∑
i=1

x
(1)
:,:,i ∗ F

(k,j)
:,:,i , (5)

where x(1):,:,i is the ith channel of x(1), F (k,j)
:,:,i is the ith channel of F (k,j), and ∗ is the 2D convolution

operator. Afterward, it passes through the batch normalization layer in this pathway, and the output
o ∈ RH2×W2×C2 becomes

o:,:,j = (x
(2)
:,:,j − µ̃

k
j )
γkj
σ̃kj

+ βkj , (6)

where µ̃kj and σ̃kj are the jth element of the mean and standard deviation statistics in batch normal-
ization, γkj and βkj are the jth element of the learned scaling factor and bias respectively. Therefore,
the weighted sum of the outputs of multiple pathways is

x
(3)
:,:,j =

∑
k

wk · ((
C1∑
i=1

x
(1)
:,:,i ∗ F

(k,j)
:,:,i − µ̃

k
j )
γkj
σ̃kj

+ βkj ). (7)

We can reparameterize the output as follows,

F ′(j) =
w1γ

1
j

σ1
j

F (1,j) ⊕
w2γ

2
j

σ2
j

F (2,j) ⊕ ...⊕
wKγ

K
j

σKj
F (K,j) , (8)
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bj = −w1

µ̃1
jγ

1
j

σ̃1
j

− ...−−wK
µ̃Kj γ

K
j

σ̃Kj
+ w1β

1
j + ...+ wKβ

K
j , (9)

x
(3)
:,:,j =

C∑
k=1

x
(1)
:,:,i ∗ F

′(j)
:,:,i + bj , (10)

where ⊕ indicates element-wise addition on the corresponding positions. Now, the multiple path-
ways in one Conv-BN unit, with K convolution layers and K batch normalization layers, are con-
verted to one convolution layer, as shown in Eq. 10.

As shown in Figure. 2, multiple models are finally reassembled into a unified architecture with
multiple classifier heads. Since the parameter and computation overheads of classifier heads are
negligible compared to the feature extractor, the computation and parameter costs of SepRep-Net
are very close to a single model.

Importance Reweighting Finally, akin to the spirit of model ensemble, we take the weighted sum
of multiple classifiers as the final prediction,

ŷt =

K∑
k=1

αk · hkt (gt(xt)), (11)

where αk is the ensemble weight which plays an important role in model ensemble. A recent
work Ahmed et al. (2021) proposed to learn a combination weight during the training procedure.
However, such a strategy inevitably causes bias to target data, which hurts the model generalizabil-
ity. Here, we revise the reweighting strategy to a parameter-free one. We take the entropy of the
trained models to formulate our reweighting strategy, through which we can highlight the model that
is more certain on the test data,

αk =
e−M(gt,h

k
t )∑K

i=1 e
−M(gt,hi

t)
. (12)

Notably,M(gt, h
k
t ) is different from the entropy criterionM(gks , h

k
s) in Eq. 3 since 1) it is calculated

by adapted model instead of the source models to obtain a more accurate approximation of uncer-
tainty, 2) it is computed on-the-fly in inference, harvesting importance weights that are adaptive to
the input data.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We perform extensive evaluation of SepRep-Net on five mainstream benchmark datasets,
i.e., Office-31 Saenko et al. (2010), Office-Home Venkateswara et al. (2017), Digit5 Peng et al.
(2019), Office-Caltech Gong Boqing & Grauman (2012), and DomainNet Peng et al. (2019). Due
to the page limit, the results on Office-Caltech and detailed descriptions of the datasets are included
in Appendix.

4.2 EXPERIMENTAL RESULTS

We build SepRep-Net based on various baseline frameworks and evaluate the effectiveness, effi-
ciency, and generalizability of SepRep-Net on different benchmarks. Specifically, we plug SepRep-
Net into DECISION Ahmed et al. (2021), SHOT Liang et al. (2020) and CAiDA Dong et al. (2021),
respectively. DECISION and CAiDA are designed for MSFDA tasks. SHOT is originally designed
for SFDA, and it can be readily applied to MSFDA via model ensemble (SHOT-ens). We compare
it with the vanilla results with multiple models and results with knowledge distillation Hinton et al.
(2015) (KD). Following Yang et al. (2021), we report the average accuracy on source domains Accs
(%), the accuracy on target domain Acct (%) and the H-score 2·Accs·Acct

Accs+Acct
(%) which jointly eval-

uates effectiveness and generalizability. On efficiency, we report the FLOPs of each method. The
experiment results are reported in Table 2, Table 3, Table 4 and Table 5.
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Table 2: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Office-31 dataset. ResNet-50 is adopted in experiments. A, D, W indicate different domains (A:
Amazon, D: DSLR, W: Webcam). SHOT-ens indicates the performance of model ensemble with all
models that are adapted via SHOT. KD indicates knowledge distillation.

METHOD FLOPS D, W → A A, W → D A, D → W Average
S T H S T H S T H S T H

DECISION + KD Hinton et al. (2015) 4.1 73.4 75.4 74.4 72.5 99.6 83.9 76.7 98.1 86.1 74.2 91.0 81.4
DECISION + SepRep-Net 4.1 87.5 75.9 81.3 90.3 99.7 94.8 88.6 98.5 93.3 88.8 91.4 90.1

DECISION Ahmed et al. (2021) 8.2 92.8 75.4 83.2 81.9 99.6 89.8 83.1 98.4 90.1 85.9 91.1 88.4

CAiDA + KD Hinton et al. (2015) 4.1 84.2 75.7 79.7 85.1 99.4 91.7 84.7 98.7 91.2 84.5 91.3 87.8
CAiDA + SepRep-Net 4.1 92.0 76.1 83.3 89.3 99.7 94.2 89.2 99.0 93.8 90.2 91.6 90.9

CAiDA Dong et al. (2021) 8.2 88.9 75.8 81.8 89.1 99.8 94.1 88.6 98.9 93.5 88.9 91.6 90.2

SHOT-ens + KD Hinton et al. (2015) 4.1 85.3 74.9 79.8 86.4 97.8 91.7 85.8 94.8 90.1 85.8 89.2 87.5
SHOT + SepRep-Net 4.1 92.8 75.7 83.4 93.9 98.8 96.3 91.4 96.6 93.9 92.7 90.4 91.5

SHOT-ens Liang et al. (2020) 8.2 90.0 75.0 81.8 90.2 97.8 93.8 90.5 94.9 92.6 90.2 89.3 89.7

Table 3: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Office-Home dataset. ResNet-50 is adopted in experiments. Ar, Cl, Pr, Rw indicate different
domains (Ar: Art, Cl: Clipart, Pr: Product, Rw: Real World). The abbreviations in METHOD are
the same as Table 2.

METHOD FLOPS Cl,Pr,Rw → Ar Ar,Pr,Rw → Cl Ar,Cl,Rw → Pr Ar,Cl,Pr → Rw Average
S T H S T H S T H S T H S T H

DECISION + KD Hinton et al. (2015) 4.1 57.2 74.4 64.7 51.4 59.1 55.0 52.7 84.4 64.9 59.6 83.7 69.6 55.2 75.4 63.5
DECISION + SepRep-Net 4.1 73.2 74.6 73.9 69.5 60.2 64.5 68.8 84.0 75.6 71.8 83.8 77.3 70.8 75.7 73.2

DECISION Ahmed et al. (2021) 12.3 68.7 74.5 71.5 57.3 59.4 58.3 67.7 84.4 75.1 66.8 83.6 74.3 65.1 75.4 69.9

CAiDA + KD Hinton et al. (2015) 4.1 68.8 75.0 71.8 63.4 60.4 61.9 66.6 84.5 74.5 66.0 84.0 73.9 66.2 76.0 70.8
CAiDA + SepRep-Net 4.1 75.2 75.3 75.2 73.6 60.7 66.5 75.0 85.3 79.8 74.8 84.8 79.5 74.7 76.5 75.6

CAiDA Dong et al. (2021) 12.3 75.0 75.2 75.1 73.8 60.5 66.5 74.5 84.7 79.3 73.9 84.2 78.7 74.3 76.2 75.2

SHOT-ens + KD Hinton et al. (2015) 4.1 69.0 72.1 70.5 65.6 59.0 62.1 67.9 82.7 74.6 66.5 82.9 73.8 67.3 74.2 70.6
SHOT + SepRep-Net 4.1 82.6 72.3 77.1 75.6 59.2 66.4 75.1 83.3 79.0 77.8 83.3 80.5 77.8 74.5 76.1

SHOT-ens Liang et al. (2020) 12.3 76.5 72.2 74.3 75.5 59.3 66.4 75.4 82.8 78.9 75.3 82.9 78.9 75.7 74.3 75.0

In these tables, for SFDA methods such as SHOT, to tackle the multi-source free scenario, we
first adapt multiple models to the target domain via SHOT one by one. SHOT-ens indicates the
performance of model ensemble with all source models that are adapted via SHOT.

Office31 Table 2 shows that knowledge distillation (KD) is effective in enhancing efficiency and
maintaining target performance, but it harms generalizability (obviously low source accuracy). On
the contrary, reducing computational costs by half, SepRep-Net preserves significantly more gener-
alizability than KD, as well as achieves better results in both source and target domains.

Office-Home Table 3 demonstrates that when tackling three source models, our framework shows
consistently higher performance than other methods in both source and target domains. We note that
when compared with the vanilla methods, our method is still superior to them both in effectiveness
and generalizability, with only 33% computational costs of them.

Digit5 Moreover, we further evaluate our method on Digit5, a harder dataset with more domains
and larger domain gaps. The results in Table 4 prove that our method only requires less than 25%
of the computational costs, while consistently improving the original method with 100% costs in
both source and target accuracy. Here, we also consider previous works that have access to source
data during being adapted to the target domain. It is unfair to evaluate the source domain accuracy
of these methods. Therefore, we only consider the accuracy of these methods in the target domain.
Our method achieves a stronger target domain accuracy over these methods.

DomainNet Finally, we take DomainNet, a larger dataset in domain adaptation, with obvious do-
main gaps across the six domains. Table 5 shows that when compared with knowledge distillation,
our method shows obvious improvements in effectiveness and generalizability under equal compu-
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Table 4: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Digit5. The backbone network in Peng et al. (2019) is adopted to recognize digits. MM, MT,
UP, SV, and SY indicate different domains (MM: MNIST-M, MT: MNIST, UP: USPS, SV: SVHN,
SY: Synthetic Digits). → points to the target domain while the remaining domains serve as source
domains. The abbreviations in METHOD are the same as Table 2, and traditional domain adaptation
methods that require source data (from DAN to M3SDA) are also compared.

METHOD FLOPS → MM → MT → UP → SV → SY Avg
S T H S T H S T H S T H S T H S T H

DAN Long et al. (2015) 0.116 - 63.7 - - 96.3 - - 94.2 - - 62.5 - - 85.4 - - 80.4 -
DANN Ganin et al. (2016) 0.116 - 71.3 - - 97.6 - - 92.3 - - 63.5 - - 85.3 - - 82.0 -
MCD Saito et al. (2018) 0.116 - 72.5 - - 96.2 - - 95.3 - - 78.9 - - 87.5 - - 86.1 -
CORAL Sun & Saenko (2016) 0.116 - 62.5 - - 97.2 - - 93.4 - - 64.4 - - 82.7 - - 80.1 -
ADDA Tzeng et al. (2017) 0.116 - 71.6 - - 97.9 - - 92.8 - - 75.5 - - 86.5 - - 84.8 -
M3SDA Peng et al. (2019) 0.116 - 72.8 - - 98.4 - - 96.1 - - 81.3 - - 89.6 - - 87.6 -

DECISION + KD Hinton et al. (2015) 0.029 55.3 92.8 69.3 52.3 99.2 68.5 46.6 97.8 63.1 52.4 82.6 64.1 70.9 97.2 82.0 55.5 93.9 69.4
DECISION + SepRep-Net 0.032 61.8 93.1 74.3 57.0 99.1 72.4 65.8 98.0 78.7 62.1 83.9 71.4 73.4 97.4 83.7 64.0 94.3 76.3

DECISION Ahmed et al. (2021) 0.116 58.4 93.0 71.7 55.1 99.2 70.8 55.8 97.8 71.1 54.0 82.6 65.3 71.0 97.5 82.2 58.9 94.0 72.4

CAiDA + KD Hinton et al. (2015) 0.029 53.6 93.6 68.2 48.9 98.9 65.4 49.8 98.2 66.1 50.1 83.1 62.5 65.9 97.6 78.7 53.7 94.3 68.4
CAiDA + SepRep-Net 0.032 57.1 94.0 71.0 56.4 99.2 71.9 55.9 98.8 71.4 56.8 85.7 68.3 74.2 98.3 84.6 60.1 95.2 73.7

CAiDA Dong et al. (2021) 0.116 55.6 93.7 69.8 52.3 99.1 68.5 53.1 98.6 69.0 52.8 83.3 64.6 68.0 98.1 80.3 56.4 94.6 70.6

SHOT-ens + KD Hinton et al. (2015) 0.029 57.1 90.2 69.9 53.0 98.8 69.0 50.9 97.8 67.0 53.2 58.1 55.5 67.9 83.9 75.1 56.4 85.8 68.1
SHOT + SepRep-Net 0.032 67.6 95.8 79.3 63.1 98.6 77.0 70.7 97.6 82.0 71.2 82.9 76.6 75.9 93.1 83.6 69.7 93.6 79.9

SHOT-ens Liang et al. (2020) 0.116 60.3 90.4 72.3 56.7 98.9 72.1 60.8 97.7 75.0 54.9 58.3 56.5 68.9 83.9 75.6 60.3 85.8 70.8

Table 5: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on DomainNet dataset. ResNet-101 is adopted in experiments. C, I, P, Q, R, S indicate different
domains. (C: Clipart, I: Infograph, P: Painting, Q: Quickdraw, R: Real World, S: Sketch). The
abbreviations in METHOD are the same as Table 4.

METHOD FLOPS I,P,Q,R,S→ C C,P,Q,R,S→ I C,I,Q,R,S→ P C,I,P,R,S→ Q C,I,P,Q,S→ R C,I,P,Q,R→ S Avg
S T H S T H S T H S T H S T H S T H S T H

DAN Long et al. (2015) 39.2 - 39.1 - - 11.4 - - 33.3 - - 16.2 - - 42.1 - - 29.7 - - 28.6 -
DCTN Xu et al. (2018) 39.2 - 48.6 - - 23.4 - - 48.8 - - 7.2 - - 53.5 - - 47.3 - - 38.1 -
MCD Saito et al. (2018) 39.2 - 54.3 - - 22.2 - - 45.7 - - 7.6 - - 58.4 - - 43.5 - - 38.6 -
M3SDA Peng et al. (2019) 39.2 - 58.6 - - 26.0 - - 52.3 - - 6.3 - - 62.7 - - 49.5 - - 42.5 -

DECISION + KD Hinton et al. (2015) 7.8 25.3 61.1 35.8 31.5 21.0 25.2 32.0 53.4 40.0 2.4 18.2 4.2 29.8 67.1 41.3 29.0 50.4 36.8 25.0 45.2 30.6
DECISION + SepRep-Net 7.8 33.1 62.0 43.2 34.9 22.3 27.2 37.4 55.0 44.5 3.3 18.5 5.6 33.4 68.1 44.8 33.6 51.8 40.8 29.3 46.3 35.9
DECISION Ahmed et al. (2021) 39.2 31.4 61.5 41.6 34.3 21.6 26.5 36.2 54.6 43.5 3.1 18.9 5.3 32.4 67.5 43.8 32.8 51.0 39.9 28.4 45.9 35.1

CAiDA + KD Hinton et al. (2015) 7.8 25.1 61.3 35.6 29.8 21.8 25.2 32.2 54.6 40.5 2.5 19.1 4.4 27.6 67.8 39.2 30.0 50.9 37.8 24.5 45.9 32.0
CAiDA + SepRep-Net 7.8 32.5 62.5 42.8 33.8 22.8 27.2 36.5 55.6 44.1 3.1 20.1 5.4 32.5 68.5 44.1 34.0 51.7 41.0 28.7 46.9 35.6
CAiDA Dong et al. (2021) 39.2 29.8 61.9 40.2 32.8 22.2 26.5 34.6 55.0 42.5 3.0 19.3 5.2 29.3 68.1 41.0 31.3 51.2 38.8 26.8 46.3 33.9

SHOT-ens + KD Hinton et al. (2015) 7.8 35.3 58.2 43.9 34.6 24.9 29.0 37.4 54.8 44.5 2.2 15.4 3.9 28.9 70.0 40.9 31.7 52.1 39.4 28.4 45.9 35.1
SHOT + SepRep-Net 7.8 38.6 59.3 46.8 40.0 26.3 31.7 40.2 56.9 47.1 3.7 14.9 5.9 38.6 71.9 50.2 39.0 53.6 45.1 33.3 47.2 39.0
SHOT-ens Liang et al. (2020) 39.2 40.6 58.6 48.0 37.2 25.2 30.0 41.1 55.3 47.2 3.0 15.3 5.0 31.6 70.5 43.6 35.3 52.4 42.2 31.5 46.2 37.5

tational costs. For the vanilla methods, our method still surpasses them consistently, with only 20%
of the original computation costs.

4.3 ANALYSES

Ablation Study We investigate the components in SepRep-Net: Separation (Sep), Reparameteri-
zation (Rep), and Importance Reweighting (ReW). We mention that when taking separate pathways
alone, we adopt traditional knowledge distillation on the model with multiple pathways, which
makes the model size equal to our method for a fair comparison. H-score results are reported in
Table 6(a), justifying that the effect of each part is indispensable.

Comparison of Different Uncertainty Criteria In our method, we adopt entropy as the
uncertainty-based criterion in our re-weighting strategy. There also exist various uncertainty met-
rics, such as confidence or margin. Here we give the comparison results of utilizing these different
metrics to re-weight the multiple classifiers. Table 6(b) presents that our method performs stably
with different uncertainty metrics, while the entropy metric enjoys the highest performance.

Importance Reweighting We analyze the importance weights for ensembling outputs when the
model is evaluated on different domains respectively. As shown in Figure 3, our importance weight
has an obviously positive correlation with the accuracy of each classifier on the unlabeled target
domain. Moreover, our reweighting strategy is actually adapted to the input data during inference,
leading to improved generalizability.
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Table 6: Ablation Study of different designs in SepRep-Net and different uncertainty metrics for
importance reweighting on Office-Home with ResNet-50 backbone. We take SHOT as the base
method. H-score is used as the evaluation metric here. The meaning of→ is the same as Table 4.
(Sep: Separation, Rep: Reparameterization, ReW: Importance Reweighting)

(a) Ablation Study
FLOPs →Ar → Cl → Pr → Rw Avg

+ Sep 12.3 73.4 65.0 77.5 77.9 73.5
+ Sep (+ KD) 4.1 70.2 62.3 74.1 76.5 70.8
+ Sep + Rep 4.1 73.4 65.0 77.5 77.9 73.5
+ Sep + Rep + ReW (ours) 4.1 77.1 66.4 79.0 80.5 76.1

(b) Different Uncertainty Metrics
→ Ar → Cl → Pr → Rw Avg

Confidence 75.4 66.0 78.3 78.9 74.7
Margin 76.5 65.8 78.5 79.9 75.2
Entropy (ours) 77.1 66.4 79.0 80.5 76.1

Cl Pr Rw0.0

0.2

0.4

0.6

0.8

1.0

1.2
Output weight
Output accuracy

(a)
Ar Cl Rw0.25

0.30
0.35
0.40
0.45
0.50
0.55
0.60

Ar
Cl
Pr
Rw

(b)

Figure 3: Output Weights for different domains in Office-Home with ResNet-50 backbone when
applying SepRep-Net to SHOT. (a) The output weights calculated in our framework are positively
correlated to the classifier accuracy. (b) Our importance weights are adaptive to the input data.
Specifically, the importance weight of the input domain adaptively becomes larger than others, en-
hancing generalizability.

More Analysis on Source Accuracy The model accuracy on source domains is often taken as the
metric to evaluate the model generalizability. For source accuracy, the ensemble results of multiple
source models no doubt enjoys a strong performance. Therefore, it is interesting to compare our
method with it. From Table 7, we can observe that ensembling multiple source models (Source-ens)
shows strong performance in source domains, but poor accuracy in the target domain. The source
accuracy gap between our method and Source-ens is much smaller than the traditional knowledge
distillation, with similar computational costs. On the other hand, H-score validates that our method
keeps the best trade-off between effectiveness and generalizability among these methods.

Table 7: Source Accuracy (S) (%), Target Accuracy (T) (%), H-Score (H), and Model Efficiency
on Office-Home dataset. ResNet-50 is adopted in experiments. Ar, Cl, Pr, Rw indicate different
domains (Ar: Art, Cl: Clipart, Pr: Product, Rw: Real World). Source-ens indicates the performance
of model ensemble with all source models. The abbreviations in METHOD are the same as Table 2.

METHOD FLOPS Cl,Pr,Rw → Ar Ar,Pr,Rw → Cl Ar,Cl,Rw → Pr Ar,Cl,Pr → Rw Avg
S T H S T H S T H S T H S T H

Source-ens He et al. (2016) 12.3 90.6 58.4 71.0 91.2 43.0 58.4 88.5 67.7 76.7 89.1 70.8 78.9 89.9 60.0 72.0
SHOT-ens + KD Hinton et al. (2015) 4.1 69.0 72.1 70.5 65.6 59.0 62.1 67.9 82.7 74.6 66.5 82.9 73.8 67.3 74.2 70.6
SHOT + SepRep-Net 4.1 82.6 72.3 77.1 75.6 59.2 66.4 75.1 83.3 79.0 77.8 83.3 80.5 77.8 74.5 76.1

5 CONCLUSION

In this paper, we target on reassembling multiple existing models into a single model and adapting it
to a novel target domain without accessing source data. Towards this problem, we propose SepRep-
Net, a framework that forms multiple separate pathways during training and further merges them via
reparameterization to facilitate inference. As a general approach, SepRep-Net is easy to be plugged
into various methods. Extensive experiments prove that SepRep-Net consistently improves existing
methods in effectiveness, efficiency, and generalizability.
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