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ABSTRACT

In many reinforcement learning (RL) applications one cannot easily let the agent
act in the world; this is true for autonomous vehicles, healthcare applications, and
even some recommender systems, to name a few examples. Offline RL provides a
way to train agents without real-world exploration, but is often faced with biases
due to data distribution shifts, limited coverage, and incomplete representation
of the environment. To address these issues, practical applications have tried to
combine simulators with grounded offline data, using so-called hybrid methods.
However, constructing a reliable simulator is in itself often challenging due to
intricate system complexities as well as missing or incomplete information. In
this work, we outline four principal challenges for combining offline data with
imperfect simulators in RL: simulator modeling error, partial observability, state
and action discrepancies, and hidden confounding. To help drive the RL community
to pursue these problems, we construct “Benchmarks for Mechanistic Offline
Reinforcement Learning” (B4MRL), which provide dataset-simulator benchmarks
for the aforementioned challenges. Our results show that current algorithms fail
to synergize these sources, often performing worse than using one source alone,
especially when faced with hidden confounding.

1 INTRODUCTION

Reinforcement learning (RL) is a learning paradigm in which an agent explores an environment in
order to maximize a reward Sutton & Barto (2018). However, in many applications exploration can
be costly, risky, slow, or impossible due to legal or ethical constraints. These challenges are evident
in fields such as healthcare, autonomous driving, and recommender systems.

To overcome these obstacles, two principal methodologies have emerged: using offline data, and
incorporating simulators of real-world dynamics. Both approaches have distinct advantages and
drawbacks. While offline data is sampled from real-world dynamics and often represents expert
policies and preferences, it is limited by exploration and finite data Levine et al. (2020); Fu et al.
(2020); Jin et al. (2021). Furthermore, offline data often suffers from confounding bias, which occurs
when the agent whose actions are reflected in the offline dataset acted based on information not fully
present in the available data: For example, a human driver acting based on eye-contact with another
driver, or a clinician acting based on an unrecorded visual inspection of the patient. Confounding can
severely mislead the learning agent Zhang & Bareinboim (2016); Gottesman et al. (2019); De Haan
et al. (2019); Wang et al. (2021), as we demonstrate in our paper. We refer to these sources of error
as offline2real.

In contrast to learning from offline data, simulators allow nearly unlimited exploration, and have been
the bedrock of several recent triumphs of RL (Mnih et al., 2013; Vinyals et al., 2019; Wang et al.,
2023). However, utilizing simulators brings its own set of challenges, most notably – modeling error.
This error often arises due to the complexity of real-world dynamics and the inevitability of missing or
incomplete information. Although simplified simulators are widely used, any discrepancies between
their dynamics and real-world dynamics can lead to unreliable predictions. These so-called sim2real
gaps may range from misspecifications in the transition and action models to biases in the observation
functions (Abbeel et al., 2006; Serban et al., 2020; Kaspar et al., 2020; Ramakrishnan et al., 2020;
Arndt et al., 2020).
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Figure 1: An illustration of the discrepancies and biases arising when training RL agents. Modeling
error refers to the discrepancy between the real world dynamics and the simulator, e.g. transition error.
Confounding error refers to bias due to the dataset not including factors affecting the behavioral policy.
Other challenges include limited exploration, partial observability and state and action discrepancies,
as detailed in Section 2.

In recent years, there has been a growing recognition of the complementary strengths and limitations
of offline data and simulation-based approaches in RL (Nair et al., 2020; Song et al., 2022; Niu
et al., 2022; 2023). Recent work has merged these two approaches to leverage their respective
advantages and mitigate their drawbacks; namely, offline data, which provides real-world expertise
and preferences, with simulators which offer extensive exploration capabilities. These hybrid methods
hold promise for addressing the challenges posed by costly or limited exploration in various domains.

However, evaluating hybrid RL methods requires standardized benchmarks that systematically capture
the distinct biases inherent in both offline data and simulators. A recent effort in this direction is
ODRL (Lyu et al., 2024b), which introduced a benchmark suite incorporating dataset variants with
different simulator misspecifications to assess offline, online, and hybrid RL performance. While
ODRL represents a significant step forward, it focuses only on simulator discrepancies and does not
comprehensively cover the full spectrum of challenges encountered in hybrid RL.

In this work, we present four key challenges for merging simulation and offline data in RL: modeling
error, partial observability, state and action discrepancies, and confounding error. We propose a set of
benchmarks to systematically explore hybrid RL approaches, termed “Benchmarks for Mechanistic
Offline Reinforcement Learning” (B4MRL). Each benchmark reflects differences between simulators
and offline data. Table 2 compares B4MRL to existing benchmarks, highlighting their limitations
and showing that B4MRL uniquely addresses all four challenges (see Appendix A for details). We
demonstrate how contemporary hybrid and offline RL approaches can fail when confronted with
these challenges, suggesting the necessity of our benchmarks for future research.

2 CHALLENGES OF COMBINING OFFLINE DATA WITH SIMULATORS

In this section, we outline the four key challenges. We present a systematic taxonomy of these
discrepancies in Table 1, organizing them by their nature and primary source.

2.1 MODELING ERROR (SIM2REAL)

Simulators, as computational representations of real-world systems, inherently contain modeling
errors. These errors arise from simplifications and assumptions made during the simulator’s design
and construction to render the simulation manageable and computationally tractable, a process which
often introduces systemic differences or biases between the simulator’s dynamics and the real-world
system. For example, a weather simulation may be biased due to an imperfect understanding of
atmospheric dynamics, and a diabetes simulation might not accurately simulate the complexities of the
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Table 1: A Summary of the Four Core Challenges in B4MRL. This taxonomy categorizes the
discrepancies we study.

Challenge Definition Source Concrete Example

1. Modeling Error* The simulator’s dynamics do not
perfectly match the real world.

Sim2Real A diabetes simulation fails to
accurately model the human body’s
complex reaction to exercise.

2. State Discrepancy The state representation differs
between sources or is
incomplete (partial
observability).

Sim2Real Offline2Real An autonomous driving simulator omits
subtle pedestrian gestures that signal
intent to cross the road.

3. Action Discrepancy The action representation differs
between sources.

Sim2Real A simulator has a discrete
lane_change action, while real data
has continuous steering angles.

4. Hidden Confounding Unobserved factors in offline
data influenced both the actions
and outcomes.

Offline2Real A doctor’s treatment choice is based on
a visual cue not recorded in the
patient’s electronic health record.

*Modeling Error can manifest as flawed dynamics (our experimental focus) or a flawed reward function.

body’s reaction to exercise. Consequently, these biases can influence the decisions and actions taken
by a reinforcement learning agent trained on such simulators, leading to suboptimal performance
when transferred to the real world.

2.2 PARTIAL OBSERVABILITY AND STATE DISCREPANCY (SIM2REAL, OFFLINE2REAL)

Simulators are often designed to abstract and simplify real-world complexities, selectively modeling
aspects of a problem that are most relevant to the intended application. This selective modeling can
create blind spots as parts of the real-world observation space are omitted or oversimplified. For
example, consider an autonomous driving simulator. It might accurately model the dynamics of
vehicles and pedestrian movement. However, to keep the simulator manageable and tractable, it may
exclude details such as subtleties of human behavior, including facial expressions or gestures that
could signal an intent to cross the road. Despite these omissions, the simulator remains a valuable
tool for training autonomous driving systems. However, its partial state description can lead to biases
in the learned policy, which might be suboptimal or even erroneous in the real world.

Similarly, in Offline2Real scenarios, data collected from real-world environments might suffer from
partial observability due to constraints in the data collection process or limitations in sensor technology.
For instance, in healthcare settings, electronic health records might not capture information about
a patient’s mental state or genetics, which can significantly influence health outcomes. Partial
observability in offline data may or may not lead to confounding bias, as we discuss in Section 2.4.

2.3 ACTION DISCREPANCY (SIM2REAL)

One of the substantial challenges in merging simulation and offline data lies in inconsistencies
between action definitions in simulation environments and offline data. Every action taken by an
agent in the real environment can be nuanced and multifaceted. Simulators, on the other hand, have
to abstract these complexities into a more manageable and computationally feasible representation.
As a result, there can be a disconnect in how actions are represented in these two different systems.
For example, in an autonomous driving system, the action might be discrete and only choose between
moving a lane to the left or staying in the current lane. However, in real-world data, the actions might
also include more specific information like the exact amount of torque change, and the steering angle.

2.4 CONFOUNDING BIAS (OFFLINE2REAL)

The presence of unobserved (hidden) confounding variables poses a significant challenge when
using observational data for decision-making. Hidden confounding occurs when in the process that
generated the offline data, unobserved factors influenced both the outcome and the decisions made by
the agent. This can lead to unbounded bias, a result which is well known from the causal inference
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Table 2: Comparison of benchmarks in terms of suitability for online/offline algorithms and their
ability to model various real-world challenges. There are only two benchmarks that deal with Hybrid-
RL scenarios, and this work is the only one that deals with all four challenges.

Benchmark Online/
Offline

Simulator
Modeling Error

State
Discrepancies

Action
Discrepancies

Hidden
Confounding

B4MRL (This Work) Hybrid ✓ ✓ ✓ ✓

D4RL Fu et al. (2020) Offline ✗ ✗ ✗ ✗

VD4RL Lu et al. (2022) Offline ✗ ✓ ✗ ✗

ODRL Lyu et al. (2024b) Hybrid ✓ ✗ ✗ ✗

CARL Benjamins et al.
(2021)

Online ✓ ✓ ✗ ✗

Gym-extensions Henderson
et al. (2017)

Online ✓ ✗ ✗ ✗

RLBench James et al. (2019) Online ✗ ✗ ✗ ✗

DMC Suite Tassa et al.
(2018)

Online ✗ ✗ ✗ ✗

Continual World Wołczyk
et al. (2021)

Online ✗ ✗ ✗ ✗

Meta-World Yu et al. (2020a) Online ✗ ✗ ✗ ✗

literature Pearl (2009); Zhang & Bareinboim (2016); Tennenholtz et al. (2020; 2022); Uehara et al.
(2022); Hong et al. (2023). This issue becomes particularly pertinent in sequential decision-making
scenarios and can substantially impact the performance of learned policies. Hidden confounding is
prevalent in diverse real-world applications, including autonomous driving, where unobserved factors
like road conditions affect the behavior of the human driver, and healthcare, where for example
unrecorded patient information or patient preferences may influence the decisions made by physicians
as well as patient outcome. In Figure 2 we show a POMDP with hidden confounding.

Effectively addressing hidden confounding in offline RL is paramount to ensure the reliability and
effectiveness of learned policies. Research has attempted to develop methodologies to account for
confounding bias, including: the identification of hidden confounders using interventions or extra
data sources (Angrist et al., 1996; Jaber et al., 2018; Lee & Bareinboim, 2021; von Kügelgen et al.,
2023; Kallus et al., 2018; Zhang & Bareinboim, 2019; Tennenholtz et al., 2021; Lee et al., 2020),
and the quantification and integration of uncertainty arising from confounding into the learning
process (Pace et al., 2023). We believe there is a crucial need for benchmarks and datasets designed
to address this issue, enabling researchers to compare and evaluate different methods for handling
confounding bias in offline RL. We emphasize that hidden confounding and partial observability are
distinct concepts. While they intersect in some cases, it is crucial to recognize their differences to
effectively address their challenges, as we demonstrate in the following example.

To demonstrate the impact of hidden confounding bias in offline RL, consider the following single-
state decision problem with two actions {a0, a1}. We let z ∈ {0, 1} such that P (z = 0) = 1

3 , and
P (z = 1) = 2

3 . Additionally, let the reward r ∈ {0, 1}, such that P (r = 1|z = 1, a = a1) =
1
2 ,

P (r = 1|z = 1, a = a0) =
1
3 , P (r = 1|z = 0, a = a1) =

1
4 and P (r = 1|z = 1, a = a0) =

1
6 .

Note that action a1 dominates, and with or without access to z at decision time the optimal action is
given by a∗ = a1 = argmaxa Ez∼P (z)P (r = 1|z, a).

Next, let πb(a|z) be some behavioral policy (with access to z), which deterministically se-
lects action a1 when z = 0 and selects action a0 when z = 1. We ask, can data
generated by πb be used to learn a good policy if z is not provided in the data? That
is, can we learn a policy which maximizes Ez∼P (z)[P (r = 1|a, z)]? Unfortunately, z acts
as a hidden confounder, which significantly biases our results, even in the limit of in-
finite data. Indeed, our data is sampled from Pπb(r, a) = Ez∼P (z)[P (r|a, z)πb(a|z)],
and thus Pπb(r = 1|a = a0) =

Ez∼P (z)[P (r=1|a0,z)πb(a0|z)]
Ez∼P (z)[πb(a0|z)] = P (r = 1|a0, z = 1) = 1

3 . Similarly,

Pπb(r = 1|a = a1) = P (r = 1|a1, z = 0) = 1
4 . Therefore, even in the limit of infinite data, the

standard empirical estimator π̂ ∈ argmaxa P
πb(r = 1|a) would yield a suboptimal result of select-
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(b) No Confounding Bias

Figure 2: Two causal graphs of POMDPs. While in both cases the state s is not observed, only in
figure (a) s acts as confounder, as actions in the data were taken w.r.t. the unobserved s.

ing action a0. This error is due to the dependence of both a and r on the hidden confounder z, and
not only the fact that it is unobserved. Moreover, this bias cannot be mitigated with increasing the
number of samples, unlike the statistical uncertainty induced by finite data.

In the next section, we shift our focus to developing benchmarks that serve as a rigorous testing ground
for RL algorithms. These benchmarks were designed to illuminate the aforementioned challenges,
helping researchers devise strategies to mitigate them, thereby promoting the advancement of robust,
reliable, and high-performing RL systems that effectively utilize both offline data and simulations.

3 BENCHMARKS FOR MECHANISTIC OFFLINE REINFORCEMENT LEARNING
(B4MRL)

In this section, we outline the “Benchmarks for Mechanistic Offline Reinforcement Learning”
(B4MRL), designed for evaluation of RL methods using both offline data and simulators, which we re-
fer to as hybrid algorithms. The proposed datasets and simulators encompass a range of discrepancies
between the true dynamics, the simulator, and the observed data.

Given the four principal challenges delineated in Section 2 – namely, modeling error, partial observ-
ability, discrepancies in states and actions, and confounding bias – we created benchmarks based on
the MuJoCo robotic environment (Todorov et al., 2012), and the Highway environment (Leurent,
2018). The MuJoCo tasks are popular benchmarks used to compare both offline RL and online RL
algorithms, including multiple environments: HalfCheetah, Hopper, Humanoid, Walker2D. These
environments provide the agent observations of variables describing the controlled robot such as the
angle and angular-velocity of the robot joints, and the position and velocity of the different robotic
parts (e.g., an observation in HalfCheetah consists of 17 variables). The acting agent can perform
actions at a given time by applying different torques to each joint (e.g. in HalfCheetah there are 6
joints, hence an action consists of 6 continuous variables). The reward function differs between the
different tasks, and relies mainly on the speed and balance of the robot. The Highway environment
simulates the behavior of a vehicle aiming to maintain a high speed while avoiding collisions. The
observations include the current position and velocity of the controlled vehicle and the other vehicles
on the road, and lets the agent control the throttle and steering angle of the controlled vehicle.

In recent years several MuJoCO-based offline-RL benchmarks and datasets emerged, offering different
characteristics and challenges. The most common one, and the one we build upon in this paper,
is the Datasets for Deep Data-Driven Reinforcement Learning benchmark, or D4RL (Fu et al.,
2020). These datasets are categorized by scores achieved by an underlying data-generating-agent,
ranging from completely random agents, to “medium” level agents, through expert agents, and
further provide datasets with heterogeneous policy mixtures (e.g., medium-expert). We note that
by construction, these datasets do not suffer from hidden confounding. Our work builds upon and
expands these datasets by implementing imperfect simulators and the other challenges outlined in
Section 2. While the aim of this paper is to provide benchmarks for hybrid-RL algorithms, we stress
that the benchmarks we provide in some of the challenges could also be used to test offline-RL and
online-RL algorithms. We constructed these benchmarks such that researchers can easily create new
benchmarks for evaluating the various challenges. Exhaustive details in Section B.
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Challenge 1: Modeling Error. We induce modeling error by introducing changes in simulator dy-
namics which directly influence the transition function over time. Small errors in transition dynamics
could aggregate to produce completely wrong state predictions over long horizons. Specifically, in
this benchmark we propose changing one of the environment parameters that affects the simulator’s
dynamics. For example, in the HalfCheetah and Walker environments, we propose two benchmarks:
changing the gravitation parameter to gsim = 19.6 instead of 9.81, and changing the friction parameter
by multiplying it by a factor of 0.3.

Challenge 2: Partial Observability and State Discrepancy. We implement this challenge with two
primary mechanisms: (1) Structural Discrepancy, where key variables are hidden from the agent’s
observation. We provide two such benchmarks (hlow and hhigh), chosen after an ablation study (see
Figure 4), which remove a specific variable from the observations. (2) Observational Noise, a simpler,
non-structural case where we add Gaussian noise (σlow and σhigh) to the full state. Combining these
options with the four D4RL datasets yields 16 benchmarks per environment.

In addition to benchmarks with partial observability in the simulator, we add a complementary
benchmark with partial observability in the dataset. This is achieved by creating a new dataset with
a data generating agent that trains and collects data on partially observed environment states. To
form this benchmark we created two new datasets, each missing a different variable. Specifically,
we removed the same variables hlow and hhigh, as described above. For the hybrid-RL algorithms we
combine the new datasets with a simulator suffering from transition error, resulting in a total of two
benchmarks. Importantly, while these datasets suffer from partial observability, they do not suffer
from hidden confounding, as the data-generating agent decides on its next action based on the same
observation that is registered in the data; see Figure 2b.

Challenge 3: Action Discrepancy. The third challenge centers around the issue of discrepancies
between actions. To allow evaluation of the impact of action errors we altered how actions taken
by the agent in the simulator state dictate the transition to the next state. To that end, we integrate
Gaussian noise into the action implemented by the agent to the simulator’s present state, whereas the
dataset’s actions remain without noise, creating a discrepancy between the simulator and the data
in the effect of actions on the state. We benchmark the models on two noise levels: noise with low
variance σlow, and noise with high variance σhigh. As before, the choice of values was done based on
the results of the SAC algorithm on the noisy simulator. The benchmark includes the combination of
the 4 D4RL datasets and a simulator with action discrepancy (low noise, high noise) resulting in 8
different datasets.

Challenge 4: Confounding Bias. For this challenge, we assume we do not have complete access to
the state that the data generating agent utilized when determining its actions. This is a special and
important case of partial observability which occurs in offline data and can induce bias due to the
behavior policy’s dependence on the unobserved factors, see Section 2.4.

For this benchmark we build on the D4RL datasets as follows: We either add Gaussian noise to
the observations in the data, or we omit a dimension recorded in the dataset observations. This
is fundamentally different from the partial observability in Challenge 2. Here, the unobserved
information was used by the data-generating agent to make decisions, creating a spurious correlation
between the (incomplete) observations and the actions, as shown in Figure 2. Thus, the data generating
agent decided on action ai based on the full system state si, but we have access only to a noisy or
projected observation oi; see Figure 2a. This creates a dataset with hidden confounding, where we do
not have full information on why a specific action was chosen.

As established in causal inference (Pearl, 2009; Zhang & Bareinboim, 2016; Tennenholtz et al., 2020;
2022; Uehara et al., 2022; Hong et al., 2023), this confounding can incur arbitrary bias, which we
now demonstrate experimentally. We used the same settings as the observation-error benchmark: low
and high Gaussian noise on the observations in the data (σlow and σhigh), and missing dimensions
(hlow and hhigh) from the observations in the data, resulting in 16 benchmarks.

Finally, we provide a benchmark for confounding by creating a new dataset where the data-generating-
agent acts based on a history of three observations, instead of the last one. Hiding the fact that the
dataset actions were history-aware can induce hidden confounding. For this benchmark we create
history-aware dataset with hidden variables (hlow and hhigh), and use a simulator with transition error.
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(a) Simulator with transition error
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(b) Partially observed simulator

Figure 3: Results on HalfCheetah environment for modeling error and partial observability. In
both figures, the algorithms have access to the standard D4RL datasets, but use different types of
imperfect simulators. For modeling error (a) we introduced an error in the transition function by
setting the gravitational parameter to g = 19.6 instead of 9.81, and for partial observations (b) we
added Gaussian noise (σ = 0.05) to the full state.

As explained above, the proposed set of benchmarks can be used to evaluate offline-RL algorithms
as well as hybrid-RL algorithms, as it poses the problem of confounded datasets that do not have a
standardized benchmark. For hybrid-RL algorithms, we use an imperfect simulator with transition
error (as described in challenge 1), along with the dataset benchmarks described in this challenge.

4 EXPERIMENTS

In this section we present empirical evaluations following the procedures described in Section 3 above.
We used online, offline, and hybrid RL methods to showcase challenges and limitations in current RL
approaches for hybrid tasks. Our array of methods represents a cross-section of state-of-the-art RL
approaches in both model-based and model-free paradigms, providing a broad look at how diverse
techniques perform in the face of our hybrid RL benchmarks. For demonstration purposes, the
experiments in the main text focus on the HalfCheetah environment; however, we also conducted
experiments on additional environments, yielding similar results, which can be found in section F.

4.1 BASELINES

To evaluate the effectiveness of our proposed benchmarks, we selected a set of online, offline, and
hybrid RL algorithms. These algorithms have been used extensively in numerous RL papers, and
shown to successfully achieve high and reliable rewards. For online RL we used TD3 (Fujimoto
et al., 2018) and SAC (Haarnoja et al., 2018). For offline-RL algorithms, we used the model-based
MOPO (Yu et al., 2020b), as well as the model-free approaches TD3-BC (Fujimoto & Gu, 2021)
and IQL(Kostrikov et al., 2021). Finally, to test hybrid-RL algorithms, we used three algorithms
that can jointly use both a simulator and offline data: the H2O (Niu et al., 2022) algorithm, a
behavioral-cloning variant of the PAR (Policy Adaptation by Representation mismatch) algorithm
named PAR-BC (Lyu et al., 2024a), and a variation of MOPO we term HyMOPO, for Hybrid-
MOPO (model based offline policy optimization). H2O adaptively adjusts Q-values on simulated
data according to the dynamics gap evaluated against real data. PAR penalizes the source domain
(the simulator in our case) data by measuring the representation mismatch between two domains (the
simulator, and the data domains), and its BC variant introduces an additional BC term. HyMOPO
is similar to MOPO but includes several key modifications: Standard MOPO trains a dynamics
model on the offline dataset D to predict the next observation o′ and reward r given the current
observation o and action a. HyMOPO can also access a simulator, so it first queries the simulator for
its prediction of the next observation o′sim for each observation-action tuple in D. Next, HyMOPO
learns a dynamics model f such that o′ = o′sim(a, o) + f(a, o). Thus, HyMOPO’s goal is to learn
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an additive function that corrects the gap between the simulator’s prediction and the dataset’s next
observation. The remaining steps are the same as in MOPO. For full details, see Section C.
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Figure 4: Results of offline (TD3-BC) and online
(SAC) algorithms on the HalfCheetah environment
with a single missing variable. TD3-BC runs on
the medium-expert dataset. For each label on the x-
axis, SAC trained on partially observed simulator
that lacks that variable, and TD3-BC trained on a
dataset that did not have any information about that
variable, despite it being used by the agent which
generated the dataset.

This selection of algorithms is designed to ex-
plore the critical distinction between data qual-
ity and data synergy. Significant prior work in
Robust Offline RL focuses on the data quality
problem: how to learn from a single, static, and
corrupted dataset. Our benchmark, in contrast,
evaluates the data synergy problem: how can
an agent best arbitrate between two imperfect
sources, a flawed simulator and flawed offline
data? To this end, our baselines include IQL, an
algorithm known to be highly robust to data cor-
ruption, to demonstrate that even strong offline-
only methods are insufficient by themselves to
solve the unique, synergistic challenges of the
hybrid setting.

4.2 RESULTS

We benchmarked the challenges detailed above
on the MuJoCo-HalfCheetah environment, and
present here the main results. Full details and
more results can be found in Section F. We re-
port results as mean and standard deviation of
the normalized rewards (scaling raw rewards to a scale of 0 (random) to 100 (expert) as in D4RL)
across three random seeds.

In Figure 3 we show how different RL approaches perform on the modeling error challenge. Both
hybrid algorithms, HyMOPO and H2O, demonstrate an interesting phenomenon. First, as expected,
on the medium and medium-replay datasets both methods score better than SAC (online-RL), which
uses only the simulator, and TD3-BC (offline-RL) which uses only the datasets. However, when
using the simulator with observation error and the random dataset, we observed both hybrid-RL
algorithms scored worse than only using SAC on the simulator – unexpectedly, using the offline
dataset negatively impacted the hybrid approaches. We observed the same phenomenon in other cases
as well. For example, in the medium-expert dataset with a partially observable simulator, HyMOPO
scored less than TD3-BC trained on the data alone, and H2O scored even worse, being inferior to
both SAC on the simulator alone and TD3-BC on the dataset alone.

In Figure 4, we demonstrate the effect of hidden confounders by comparing an online algorithm
(SAC) on a partially observable simulator and an offline algorithm (TD3-BC) on the medium-expert
dataset with hidden confounders. In the online case, the algorithm has access to the full state except
for a single dimension, and in the offline case, we remove the exact same variable from the dataset,
even though it was used by the agent generating the data. Note that algorithms that do not use offline
data cannot suffer from hidden confounding, though they may suffer from partial observability. We
trained both algorithms with each possible variable removed (one at a time) and compared the results.
While one might expect the importance of a variable v for performance in the online algorithm to
be similar to its importance in offline learning, we show that some variables are more important
in the offline case. For example, pos-root-z (the z coordinate of the front tip) significantly
affects offline TD3-BC, while v-root-x (the x coordinate velocity of the front tip) significantly
affected online SAC. This suggests that variable pos-root-z induces strong hidden confounding,
significantly affecting the reward as well as the choice of actions by the data-generating-agent.

To evaluate the impact of hidden confounding, our most complex challenge, we combine a flawed
simulator (with gravity error) with confounded offline datasets. To provide a high-level summary of
these results, Figure 5(a) plots the average performance degradation for our key algorithms on the
challenging medium-expert dataset.

This aggregated view provides a quantitative summary of the key findings. It clearly visualizes the
severe performance degradation that most offline and hybrid algorithms suffer, a central conclusion
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Figure 5: The Impact of Hidden Confounding. (a) Average performance drop across three MuJoCo en-
vironments when moving from simple modeling error to high-impact hidden confounding (Challenge
4 + 1). (b) A detailed breakdown on HalfCheetah, showing that while algorithms handle Challenge
1 (modeling error) and 2 (partial obs.) reasonably, they suffer a severe performance collapse when
faced with Challenge 4 (confounding).

of our work. Furthermore, it highlights the more nuanced results, such as the surprising average
robustness of TD3-BC and the complex, environment-specific interactions exhibited by hybrid
methods like H2O and PAR-BC.

We further demonstrate the importance of data confounding in Figure 5(b), in which we compare
two of the hybrid algorithms on 3 different challenges. Both HyMOPO and H2O achieve decent
results on challenges 1 and 2, but suffer severely when encountering data confounding in challenge
4. While some degradation is expected (as the algorithms face two challenges), the severity of the
collapse demonstrates the crucial effect of hidden confounding on the algorithms. Especially when
both algorithms have already shown to bypass the transition error when it is present in the simulator,
and that the exact same σhigh and hhigh were used as in challenge 2 and in challenge 4 (missing in the
simulator and in the dataset respectively).

For the online simulator we used a simulator with transition error in the gravitational parameter
(g = 19.6). Under low confounding, HyMOPO scored best across all options except the random
dataset with hlow, where the simulator alone performed slightly better. Under high-confounding, both
hybrid models and MOPO suffered severely. Interestingly, on the medium-expert dataset, which is
twice as big as the medium dataset and has access to optimal trajectories, these algorithms’ scores
diminish, emphasizing the negative effects of hidden confounders in the data even on hybrid methods.

While hybrid algorithms are expected to perform at least as well as the best between online and offline
approaches, our results reveal this can be far from reality. We further identify hidden confounding as
a significant issue for the performance of offline methods.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we provide insights into the challenges encountered when combining offline data with
imperfect simulators in reinforcement learning (RL). Our newly introduced B4MRL benchmarks
facilitate the evaluation and understanding of these complexities, highlighting four main challenges:
simulator-modeling error, partial observability, state-action discrepancies, and confounding bias.

Our results reveal that current hybrid methods that combine simulators and offline datasets do not
always lead to superior performance, pointing to an important future research direction. In addition,
hidden confounders in the dataset can significantly affect the performance of all tested methods,
including hybrid ones. In light of these results, we suggest that future work focus on developing more
robust hybrid RL algorithms that can better handle modeling errors and hidden confounders, and
that perform at least as well as either simulator-based methods or offline learning alone. We further
discuss limitations and broader impact in Section D and Section E, respectively.
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A COMPARISON TO OTHER BENCHMARKS

Prior benchmark suites for reinforcement learning typically focus on either the online or offline setting,
often isolating specific challenges such as modeling error or partial observability, as summarized in
Table 2. For example, D4RL Fu et al. (2020) and VD4RL Lu et al. (2022) are exclusively designed
for offline RL and do not address discrepancies between simulation and real-world data. VD4RL
provides pixel-based observations, which can be used in conjunction with simulators that expose
ground-truth state features, allowing for limited exploration of state discrepancies—though this is not
an intended feature of the benchmark.

Gym-extensions Henderson et al. (2017) was designed for multi-task transfer learning and includes
a range of related tasks. It could be adapted to introduce modeling error by adding perturbations
to simulator dynamics or parameters. Similarly, CARL Benjamins et al. (2021) allows the user to
control contextual variables at each episode, and could be modified to simulate modeling error by
introducing parameter shifts between training and evaluation. However, neither benchmark was
designed to evaluate modeling error, and neither addresses offline RL or supports hybrid scenarios
that combine simulators and offline data in a principled manner.

ODRL Lyu et al. (2024b) is the only prior benchmark that explicitly targets hybrid RL, but it
focuses solely on modeling error and does not systematically incorporate state discrepancies, action
mismatches, or hidden confounding—factors that, as we demonstrate in Section 4, have a substantial
impact on performance. It continues the line of work introduced in H2O Niu et al. (2022), which
proposed an algorithm for hybrid RL and included a small set of modeling error benchmarks. ODRL
expands on this by providing a broader suite of modeling error scenarios, though it still does not
address the other key challenges.

In contrast, B4MRL is the first benchmark suite designed to comprehensively evaluate hybrid RL
methods by simultaneously addressing four critical challenges: modeling error, state discrepancy,
action discrepancy, and hidden confounding. This breadth enables B4MRL to more faithfully reflect
the complexities of real-world decision-making systems, where simulators and offline data could be
jointly leveraged, and sets a new standard for evaluating hybrid RL algorithms.

B BENCHMARK IMPLEMENTATION DETAILS

In this section we provide further details regarding our benchmarks, and discuss how different
benchmarks could be customized using B4MRL. Each of our hybrid RL benchmarks consists of
two components: (1) an imperfect simulator with sim2real error, and (2) an offline dataset with a
offline2real error. Motivation, explanation and examples for these errors are discussed thoroughly in
Section 3.

We now provide a list of possible sim2real errors that can be used in any MuJoCo environment, a
list of offline2real that can be introduced to the D4RL MuJoCo datasets, and a list of new datasets
that have offline2real errors. For the offline2real errors, we chose the same parameters we used for
sim2real, in order to be able to compare. In addition we provide information regarding the Highway
environment, where the agent’s goal is to drive fast enough and avoid collisions on a multi-lane road.

Sim2Real. We chose the specific parameters for each type of error according to how well did SAC
perform on that simulation, aiming to provide two levels of errors per category. A list and details of
all sim2real errors (summarised in Table 3):

• Transition error (challenge 1 – modelling error): For MuJoCo environments, we create a
simulator with transition error by modifying the environment’s XML file provided by the
gym package. Additional simulators can be easily created by adding new modified XML
files to the relevant directory. For the Highway environment, the modelling error is the
difference between the amount of vehicles on the road during train and during test. This
difference could make the agent learn a more cautious policy in order to avoid collisions,
but when the road is free it might not achieve optimal reward.

• Observation noise (challenge 2 – partial observability): The environment’s dynamics
are unchanged, but we add Gaussian noise to the observation, and return only the noisy
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observation to the user. We denote the two noise levels by their standard deviation σlow for
low added noise, and σhigh for high added noise.

• Hidden variables (challenge 2 – partial observability): The environment’s dynamics are
unchanged, but we fix a specific observation dimension to zero before returning it to the user.
The reason we zero the dimension and not remove it entirely is that we do not want to change
the observation-space definition of the environment. This should make implementing hybrid
algorithms easier, since using two sources of data (simulator and dataset) with different
dimensionality of variables might result in two different observation-spaces. We denote the
two choices of hidden dimension by hlow for low effect and hhigh for high effect.

• Action noise (challenge 3 – action discrepancy): When a user selects a specific action
and sends it to the simulator (e.g., via the step method), we modify the action by adding
Gaussian noise.

Offline2Real. For each type of error, we used the same parameters as in the sim2real errors (as
summarised in Table 3). A list and details of all offline2real errors:

• Observation noise (challenge 4 – hidden confounders): We go over all the observations
in the D4RL dataset, and add Gaussian noise to each observation, and for each observation
dimension. That means that a value sampled from a zero mean unit variance Gaussian
distribution is added independently to each entry in the observation matrix. Note that we
sample the noise matrix once per dataset, and run all experiments on the same noisy dataset
(e.g., a different noise matrix is used for HalfCheetah-medium, for HalfCheetah-medium-
expert, and for every other dataset). To obtain different noise levels, we multiply the sampled
noise by a magnitude scalar σlow or σhigh, using the same values as in the sim2real. We
provide the noise matrices and code for generating the noise, so that users can experiment
with more settings as well.

• Hidden variables (challenge 4 – hidden confounders): We go over all the observations in
a given dataset, and zero the chosen dimensions dimension. A user can select any dimension
they wish to zero (or a list of them), and any dataset. We chose for our benchmark the same
dimensions used in the sim2real hidden-variable benchmark. Note that in this case, the agent
that generated the data saw the hidden variable when making its decisions.

In addition to the modified D4RL datasets, we also provide new complementary datasets, that were
generated by an agent trained on a noisy environment. The agent was trained using the SAC algorithm
provided by the stable-baselines package on the simulators listed below. Here too we used
the same parameters as sim2real (as shown in Table 3). We provide the datasets, the agent that made
the datasets, and code to recreate the agent, so that users can follow the same process and create new
agents on different noisy environments.

• Hidden variables Similarly, to the sim2real hidden-variables error, the agent was trained on
a simulator with a zeroed variable. To generate the data, we used the agent that scored as
close as possible to the medium dataset in D4RL. For example, in HalfCheetah we selected
the agent that scored as close to a normalized score of 40 as possible.

• Action delay The agent was trained on the action-delay environment described in sim2real,
and was used to collect a dataset of trajectories. Note that in this case, unlike the dataset
mentioned above and the D4RL datasets, we collected a dataset of full trajectories, and not
tuples of a single step in time.

Combining sim2real and offline2real for Hybrid-RL algorithms. The above sim2real and
offline2real environments can be easily combined to form any hybrid-RL benchmark desired. We
propose a representative set of benchmarks that cover most aspects discussed throughout the paper.
For results we refer the readers to Section F.

C BASELINE IMPLEMENTATION DETAILS

In this section we provide further details on the baselines used for the experiments in Section 4,
including more information for HyMOPO.
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Table 3: Sim2real errors on online simulatros. g is the gravitational parameter, f is the friction
parameter, ‘leg’ is the leg length, vx, vy are the velocities, y is the position in the y axis. ‘cars’ signify
the amount of cars on the road for the highway environment, where in test time there were only only
3 cars on the road. The partial observability row refers to variables that were hidden from the agent
by the simulator.

Error type Amount HalfCheetah Hopper Walker2D Highway

Transition error -
gsim = 2g gsim = 2g gsim = 2g

#carssim = 15
fsim = 0.3f legsim = 0.8 fsim = 0.3f

Observation
noise

σlow 0.01 0.001 0.01 0.5

σhigh 0.05 0.02 0.03 1.0

Partial
observability

hlow #16 #10 #16 (vx, vy)

hhigh #9 #9 #9 (y, vx, vy)

Action noise
σlow 0.2 0.5 0.2 0.5

σhigh 0.5 1.0 0.5 1.0

Table 4: SAC results on the different environments with the parameters described in Table 3. Results
on MuJoCo environemnts are normalized as in D4RL. Results on the Highway enviroment are not
normalized (range of the reward is approximately between 0 and 22).

Error type HalfCheetah Hopper Walker2D Highway

Transition error
65.9± 11.7 67.3± 35.1 50.6± 5.5

12.5± 5.7
35.1± 2.4 32.3± 11.5 70.6± 17.5

Observation
noise

80.0± 1.4 81.3± 23.2 81.8± 7.5 19.4± 4.5

45.7± 1.8 59.7± 24.7 46.6± 9.4 18.4± 6.3

Partial
observability

83.3± 3.3 77.5± 13.7 83.5± 5.2 18.6± 4.9

64.0± 1.1 55.1± 33.8 51.1± 29.4 10.5± 7.9

Action noise
82.4± 4.2 82.3± 19.5 91.2± 2.2 17.9± 2.8

62.7± 0.5 44.9± 22.4 63.9± 29.2 9.7± 1.9

In the paper we implement, or use prior implementations of two online-RL algorithms: TD31, and
SAC2, three offline-RL algorithms: TD3-BC3, MOPO4 and IQL5, and three hybrid-RL algorithms:
H2O6, PAR-BC7 and HyMOPO. For each algorithm we used the hyperparameters used in the
respective paper. We argue that the errors discussed in this paper are not known in advance to the

1Code available at https://github.com/sfujim/TD3
2Stable-baselines implementation https://stable-baselines3.readthedocs.io/
3Code available at https://github.com/sfujim/TD3_BC
4Code for the original paper avialable at https://github.com/tianheyu927/mopo. However,

we used a different implementation that is simpler to use and achieves the same results, found at https:
//github.com/junming-yang/mopo

5Code for the original paper available at https://github.com/ikostrikov/implicit_q_
learning/. We used the pytorch version which achieves the same results at https://https://github.
com/Manchery/iql-pytorch/

6Code available at https://github.com/t6-thu/H2O
7The code for the BC version of the PAR algorithm is available at https://github.com/

OffDynamicsRL/off-dynamics-rl
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algorithm, therefore, searching for the hyperparameters that obtain the best reward on the real world
environment is not reasonable. For HyMOPO, we used the same hyperparameters as in MOPO, with
λ = 0.0, and h = 5 on HalfCheetah.

The HyMOPO algorithm is a model-based, dynamics-aware, policy optimization algorithm. In this
approach, we first train a correction function f that learns to fix the discrepancy between observed
data and the simulator’s outputs: This is done by running each observation-action tuple (oi, ai)
through the simulator and collecting its outputs, i.e., the simulator’s computed next observations
o′i,sim. The correction function’s goal is to learn an additive function that fixes the gap between
the simulator’s next observation and the next observation registered in the dataset. This is done by
minimizing the following loss: L(f) = 1

N

∑
i ∥o′i − (o′i,sim + f(oi, ai))∥, where N is the number of

observations in the dataset. We note that in the worst case, when the simulator is completely incorrect,
the correcting function should learn to output o′i,sim − o′, which would typically be as difficult as
learning the transition function directly from data (i.e., learning a model that outputs the next state
given the current state and action) as seen in other offline-RL algorithms such as MOPO.

To train the agent, we first initialize the state by randomly selecting one from the given dataset. Then
the transition function, which consists of a simulator Tsim and a correction function fθ, is used to
determine the next observations up to a predetermined horizon. Finally, the reward is penalized by the
amount of uncertainty in the transition model evaluations. These last steps are similar to the MOPO
algorithm, with the difference that HyMOPO can combine the given dataset with a given simulator. In
Algorithm 1 we provide full algorithmic description of HyMOPO. Parts of our algorithm are similar
to MBPO (Janner et al., 2019) and MOPO, with the modifications needed for becoming a hybrid-RL
algorithm that can use a simulator together with a given dataset.

Algorithm 1 HyMOPO algorithm for hybrid-RL

Input: offline dataset D, simulator Tsim, an ensemble of N learnable correction functions {f i
θ}Ni=1,

reward penalty coefficient λ, rollout horizon h, rollout batch size b.
Init: random weights θ for each in fθ from 1...N .
Evaluate o′sim = Tsim(o, a), for each tuple in D and add to D
for each correction function f i

θ in i = 1...N do
Train a probabilistic correction function on D batches:
f i
θ(o, a, o

′
sim) = o′sim +N (µi(o, a),Σi(o, a))

end for
Initialize policy π and empty replay buffer Dmodel.
for epoch 1,2,... do

Sample initial rollout state o1 from D
for j=1,2,...,h do

Sample an action aj ∼ π(oj)
Evaluate o′sim = Tsim(oj , aj)
Randomly select f i

θ and sample an observation correction and reward (∆o′, rj) ∼ f i
θ(oj , aj)

Evaluate next state oj+1 = o′sim +∆o′

Evaluate penalized reward r̃j = rj − λmaxNi=1 ∥Σi(oj , aj)∥F
Add tuple (oj , aj , r̃j , oj+1) to Dmodel

end for
Draw samples from D ∪Dmodel to update π using SAC

end for

D LIMITATIONS

While B4MRL introduces a comprehensive set of challenges for hybrid RL, it does not exhaustively
cover all possible combinations of discrepancies and domains. We focus on representative and
practically meaningful scenarios. To this end, we use synthetic datasets, which are well-known and
widely used in the community (mainly based on D4RL Fu et al. (2020)), and which are also easily
configurable in order to control and isolate different types of discrepancies – for example, adding
confounding errors to the data. Although real-world data would provide the most realistic testbeds,
separating the effects of confounding errors and other challenges, and cleanly comparing multiple
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online, offline and hybrid methods would be much more difficult. The benchmarks are designed to be
modular and easy to use, enabling the community to explore additional combinations beyond those
evaluated here (more details on benchmark implementation in Section B). We hope this paper serves
as a starting point for future research in hybrid RL and that B4MRL provides a shared foundation for
evaluating new algorithms under realistic conditions.

E BROADER IMPACT

While our benchmarks provide valuable tools for evaluating and improving offline, online, and hybrid
RL algorithms, it is important to recognize their limitations. Strong performance on these controlled
benchmarks does not guarantee reliable results across all real-world scenarios, which may feature
more complex simulator discrepancies, dataset biases, and confounding factors. Our benchmarks
are designed to foster transparency and robustness in RL research by enabling systematic testing of
key challenges, but they represent only one step in the broader process of developing and validating
RL methods. We encourage researchers and practitioners to interpret benchmark results carefully
and conduct thorough testing in diverse real-world environments before deploying RL algorithms
in critical applications. Additionally, while our work aims to advance safer and more reliable RL
systems that could benefit domains such as robotics and healthcare, there remain potential risks if
these technologies are misused or deployed without adequate safeguards. By understanding both the
capabilities and limits of our benchmarks, the community can better drive responsible innovation in
reinforcement learning.

F EXPERIMENTS

In this section we provide extra experimental results on all baselines and benchmarks for the
MuJoCo-HalfCheetah environment, complementing the results displayed in Section 4. Moving
forward, we see B4MRL as a dynamic benchmark that will develop and expand with new datasets
and new tasks to evaluate the four challenges. Full implementations, datasets and more results will
be made available on the project page on GitHub, which will be made available upon acceptance.
However, the code is also provided in the supplementary material. As for compute, we utilized a
single NVIDIA A40 GPU for each of the experiments. We divide the results by the four challenges
described in Section 3, on the benchmarks described in Section B.

Modelling error. In Table 5, in Table 11, and in Table 13, we provide results on the HalfCheetah, the
Walker2D, and the Hopper environments respectively, for the modelling-error challenge (challenge
1), which is modeled by changing one of the simulator’s parameters in charge of the dynamics. In
this experiment we observe that the friction discrepancy had a smaller effect on the ability of the
online-RL algorithms to achieve higher rewards, when compared to the gravity modeling error. We
also observe that in HalfCheetah, HyMOPO achieves higher rewards when compared to all other
baselines, except when using random dataset with friction discrepancy, suggesting that in this setting
HyMOPO is able to effectively use the information from both online and offline sources. We stress
that HyMOPO is not suitable for the current MuJoCo implementation of Walker-2D and Hopper
because the environment clips the observations to the range of [−10, 10]. In the correction function
learning phase, HyMOPO takes an observation from the offline dataset, and uses the simulator to
evaluate the next observation. However, the observations in the offline dataset are already clipped
in the data gathering process, so when HyMOPO queries the simulator for the next observation,
it returns an observation that is far from the true next observation. This discrepancy introduces
significant noise into the simulator, which we found severely degrades the performance of HyMOPO.

Partial observability. In Table 6, in Table 14, and in Table 10, we provide results on the HalfChee-
tah, the Walker2D, and the Hopper environments respectively for the partial-observability challenge
(challenge 2), which is modeled by either removing a variable from the simulator’s observation, or by
adding Gaussian noise to the simulator’s observations. Similarly to the modelling-error experiment,
in the HalfCheatah environment, HyMOPO obtains better results than other baselines in most cases.
However, as also discussed in Section 4, we see that in some cases it is better to use a single source
of information than both. For instance, on the medium dataset, with hlow discrepancy, SAC achieves
mean reward of 83.3± 3.3 on the imperfect simulator, and MOPO achieves reward of 66.1± 0.3 on
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Table 5: Results on HalfCheetah with modeling error (challenge 1).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O PAR-BC HyMOPO

Random
Friction 45.0 ± 9.5 65.9 ± 11.7

36.2 ± 0.9 12.2 ± 0.5 14.7 ± 3.2
30.4 ± 12.2 36.5 ± 15.0 40.0 ± 2.0

Gravity 35.3 ± 1.9 35.1 ± 2.4 36.7 ± 2.4 36.9 ± 2.2 36.1 ± 2.5

Medium
Friction 45.0 ± 9.5 65.9 ± 11.7

66.1 ± 0.3 48.3 ± 0.1 48.5 ± 0.4
55.7 ± 5.9 78.1 ± 9.2 73.9 ± 0.4

Gravity 35.3 ± 1.9 35.1 ± 2.4 51.0 ± 10.4 43.7 ± 1.2 72.9 ± 0.8

Medium replay
Friction 45.0 ± 9.5 65.9 ± 11.7

67.8 ± 2.4 42.8 ± 2.9 44.4 ± 0.1
49.8 ± 3.6 39.7 ± 11.1 68.6 ± 1.4

Gravity 35.3 ± 1.9 35.1 ± 2.4 54.8 ± 3.3 40.7 ± 0.9 66.5 ± 0.6

Medium expert
Friction 45.0 ± 9.5 65.9 ± 11.7

49.2 ± 14.5 84.3 ± 5.2 94.3 ± 0.3
18.9 ± 1.8 95.2 ± 0.5 99.2 ± 5.1

Gravity 35.3 ± 1.9 35.1 ± 2.4 41.2 ± 2.9 89.8 ± 1.6 95.1 ± 2.0

Table 6: Results on HalfCheetah with partial observations (challenge 2).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O PAR-BC HyMOPO

Random

σlow 75.1 ± 12.4 80.0 ± 1.4

36.2 ± 0.9 12.2 ± 0.5 14.7 ± 3.2

44.4 ± 12.2 38.6 ± 29.5 37.8 ± 2.8

σhigh 49.0 ± 1.9 45.7 ± 1.8 33.0 ± 5.3 25.0 ± 16.1 33.2 ± 3.1

hlow 47.8 ± 6.5 83.3 ± 3.3 25.2 ± 2.4 35.7 ± 1.0 35.7 ± 1.0

hhigh 62.8 ± 2.5 64.0 ± 1.1 21.9 ± 1.2 39.6 ± 0.2 39.6 ± 0.2

Medium

σlow 75.1 ± 12.4 80.0 ± 1.4

66.1 ± 0.3 48.3 ± 0.1 48.5 ± 0.4

60.1 ± 1.4 76.4 ± 1.0 76.8 ± 0.6

σhigh 49.0 ± 1.9 45.7 ± 1.8 54.0 ± 0.2 46.4 ± 0.0 55.9 ± 1.0

hlow 47.8 ± 6.5 83.3 ± 3.3 51.7 ± 8.8 76.1 ± 2.0 76.1 ± 2.0

hhigh 62.8 ± 2.5 64.0 ± 1.1 44.0 ± 2.0 52.5 ± 6.7 52.5 ± 6.7

Medium replay

σlow 75.1 ± 12.4 80.0 ± 1.4

67.8 ± 2.4 42.8 ± 2.9 44.4 ± 0.1

53.8 ± 2.8 70.4 ± 3.0 73.8 ± 2.2

σhigh 49.0 ± 1.9 45.7 ± 1.8 50.1 ± 0.4 45.1 ± 0.5 54.8 ± 0.4

hlow 47.8 ± 6.5 83.3 ± 3.3 53.6 ± 0.8 66.0 ± 3.8 66.0 ± 3.8

hhigh 62.8 ± 2.5 64.0 ± 1.1 46.2 ± 0.8 65.4 ± 4.3 65.4 ± 4.3

Medium expert

σlow 75.1 ± 12.4 80.0 ± 1.4

49.2 ± 14.5 84.3 ± 5.2 94.3 ± 0.3

44.8 ± 9.5 95.1 ± 0.3 101.6 ± 0.3

σhigh 49.0 ± 1.9 45.7 ± 1.8 33.9 ± 0.3 77.2 ± 5.9 56.2 ± 0.7

hlow 47.8 ± 6.5 83.3 ± 3.3 47.8 ± 4.5 101.6 ± 1.0 101.6 ± 1.0

hhigh 62.8 ± 2.5 64.0 ± 1.1 33.8 ± 5.6 79.9 ± 7.0 79.9 ± 7.0

the medium offline dataset. Notably, both hybrid-RL algorithms are inferior to both MOPO and SAC,
suggesting that combining sources of information does not guarantee results that are better than both.

In Table 7 we provide additional results on datasets we created that were generated by an agent
that only has access to partial observations, which is modeled by removing variables from the
observations. For the simulator, we used a simulator with gravity transition error. These results
suggest that removing variables from the dataset has a stronger effect on performance compared to
removing those same variables from the simulators.

Confounding error In Table 9, in Table 12, and in Table 15, we provide results on the HalfChee-
tah, the Walker2D, and the Hopper environments respectively for the confounding error challenge
(challenge 4), which is modeled similarly to the partial observability challenge, by either removing
observations from the dataset or by adding Gaussian noise the the entire dataset observations. creating
a discrepancy between what the agent generating the dataset used and what the offline method can use.
For the simulator, in all environments, we used a simulator with gravity transition error. Continuing
the discussion from Section 4, and addressing the added experiments we provide here, we observe the
same phenomenon, where hidden confounding can have a very strong negative impact on the results.
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Table 7: Results on HalfCheetah on datasets with partial observations, but without confounding
(challenge 2). Online and hybrid RL models have access to a simulator with modeling error as well.

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset TD3 SAC MOPO TD3-BC IQL H2O HyMOPO

hlow

35.3 ± 1.9 35.1 ± 2.4

55.1 ± 0.4 45.9 ± 0.1 47.5 ± 0.1 45.8 ± 5.1 72.4 ± 1.5
hlow-history 56.5 ± 0.8 51.7 ± 0.3 52.1 ± 0.2 52.5 ± 0.8 71.2 ± 1.3

hhigh 0.7 ± 0.4 50.4 ± 0.5 48.1 ± 0.1 14.1 ± 11.2 37.1 ± 1.4
hhigh-history 3.0 ± 1.1 49.8 ± 0.3 48.1 ± 0.2 48.5 ± 1.8 32.0 ± 1.5

Table 8: Results on HalfCheetah with action error (challenge 3).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O PAR-BC HyMOPO

Random
σlow 78.7 ± 9.1 82.4 ± 4.2

36.2 ± 0.9 12.2 ± 0.5 14.7 ± 3.2
32.7 ± 2.4 37.1 ± 27.6 41.4 ± 2.7

σhigh 67.7 ± 1.3 62.7 ± 0.5 23.5 ± 1.6 59.4 ± 1.1 36.9 ± 1.9

Medium
σlow 78.7 ± 9.1 82.4 ± 4.2

66.1 ± 0.3 48.3 ± 0.1 48.5 ± 0.4
57.7 ± 0.5 67.3 ± 1.4 75.4 ± 2.9

σhigh 67.7 ± 1.3 62.7 ± 0.5 60.3 ± 0.9 47.5 ± 0.3 54.3 ± 1.0

Medium replay
σlow 78.7 ± 9.1 82.4 ± 4.2

67.8 ± 2.4 42.8 ± 2.9 44.4 ± 0.1
54.7 ± 0.6 60.0 ± 1.3 68.5 ± 4.7

σhigh 67.7 ± 1.3 62.7 ± 0.5 58.0 ± 1.7 45.5 ± 0.3 48.0 ± 0.2

Medium expert
σlow 78.7 ± 9.1 82.4 ± 4.2

49.2 ± 14.5 84.3 ± 5.2 94.3 ± 0.3
36.0 ± 3.8 95.9 ± 0.5 89.0 ± 2.8

σhigh 67.7 ± 1.3 62.7 ± 0.5 38.1 ± 12.7 90.0 ± 3.7 52.7 ± 1.4

Table 9: Normalized reward on HalfCheetah environment, on four types of datasets, all with con-
founding errors. Online and Hybrid models also have access to a simulator with a transition error in
the gravitational parameter.

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Confounding TD3 SAC MOPO TD3-BC IQL H2O PAR-BC HyMOPO

Random

σlow

35.3 ± 1.9 35.1 ± 2.4

36.6 ± 2.6 11.4 ± 1.8 11.7 ± 3.5 31.0 ± 1.0 37.8 ± 2.4 38.3 ± 1.8

σhigh 24.1 ± 1.4 10.3 ± 0.8 2.6 ± 0.1 30.1 ± 2.1 9.6 ± 0.7 33.6 ± 1.6

hlow 37.4 ± 1.0 11.7 ± 0.6 12.4 ± 3.0 34.2 ± 1.1 2.2 ± 0.0 31.5 ± 3.3

hhigh 26.2 ± 3.3 9.0 ± 0.9 6.6 ± 3.0 31.0 ± 2.1 2.2 ± 0.0 29.9 ± 0.6

Medium

σlow

35.3 ± 1.9 35.1 ± 2.4

29.6 ± 13.8 47.5 ± 0.5 48.4 ± 0.2 42.5 ± 7.2 42.4 ± 1.0 74.9 ± 3.9

σhigh -0.1 ± 0.7 41.0 ± 0.7 37.1 ± 2.1 17.3 ± 7.0 36.4 ± 0.8 9.8 ± 2.6

hlow 60.6 ± 7.1 48.2 ± 0.2 48.4 ± 0.2 54.3 ± 2.5 44.8 ± 0.8 73.4 ± 0.9

hhigh 29.4 ± 4.1 46.1 ± 0.5 46.5 ± 0.1 34.5 ± 3.4 42.3 ± 0.4 35.2 ± 1.7

Medium replay

σlow

35.3 ± 1.9 35.1 ± 2.4

53.6 ± 5.6 44.4 ± 0.4 44.3 ± 0.0 47.0 ± 8.8 39.9 ± 0.2 73.2 ± 1.2

σhigh 14.7 ± 4.5 38.4 ± 1.4 35.3 ± 3.3 21.8 ± 4.4 37.3 ± 0.5 38.9 ± 0.4

hlow 58.7 ± 8.0 44.6 ± 0.3 43.8 ± 1.1 49.9 ± 4.9 43.1 ± 0.4 65.2 ± 0.4

hhigh 32.9 ± 1.1 41.6 ± 1.9 42.5 ± 0.0 22.7 ± 7.5 38.3 ± 2.3 37.1 ± 1.4

Medium expert

σlow

35.3 ± 1.9 35.1 ± 2.4

-0.1 ± 0.6 78.6 ± 4.3 67.2 ± 6.4 34.6 ± 3.4 66.1 ± 2.7 80.7 ± 5.8

σhigh -1.0 ± 1.1 33.5 ± 2.8 28.3 ± 5.7 13.0 ± 9.1 35.4 ± 2.0 16.8 ± 3.0

hlow 52.7 ± 4.4 91.4 ± 2.0 90.7 ± 3.0 34.3 ± 7.7 92.5 ± 2.1 99.2 ± 0.8

hhigh 2.9 ± 0.8 74.3 ± 4.1 64.0 ± 3.4 18.7 ± 4.7 60.0 ± 1.8 27.0 ± 2.0
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Table 10: Results on Walker2D with partial observations (challenge 2).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O

Random

σlow 73.2 ± 13.8 81.8 ± 6.2

3.1 ± 2.2 3.4 ± 1.9 4.9 ± 1.7

10.6 ± 2.7

σhigh 30.4 ± 12.7 46.6 ± 7.7 12.6 ± 3.7

hlow 21.9 ± 12.4 83.6 ± 4.2 7.8 ± 2.3

hhigh 45.5 ± 25.2 51.1 ± 24.0 6.0 ± 4.8

Medium

σlow 73.2 ± 13.8 81.8 ± 6.2

-0.1 ± 0.0 83.7 ± 3.1 75.4 ± 4.3

40.1 ± 9.7

σhigh 30.4 ± 12.7 46.6 ± 7.7 20.3 ± 11.3

hlow 21.9 ± 12.4 83.6 ± 4.2 25.7 ± 5.4

hhigh 45.5 ± 25.2 51.1 ± 24.0 16.7 ± 16.9

Medium replay

σlow 73.2 ± 13.8 81.8 ± 6.2

72.1 ± 13.3 83.5 ± 0.9 81.2 ± 2.7

70.3 ± 17.0

σhigh 30.4 ± 12.7 46.6 ± 7.7 69.2 ± 18.7

hlow 21.9 ± 12.4 83.6 ± 4.2 32.7 ± 14.4

hhigh 45.5 ± 25.2 51.1 ± 24.0 16.4 ± 4.8

Medium expert

σlow 73.2 ± 13.8 81.8 ± 6.2

24.9 ± 27.7 110.0 ± 0.1 112.0 ± 0.3

39.5 ± 36.7

σhigh 30.4 ± 12.7 46.6 ± 7.7 22.6 ± 7.4

hlow 21.9 ± 12.4 83.6 ± 4.2 70.6 ± 19.6

hhigh 45.5 ± 25.2 51.1 ± 24.0 22.3 ± 15.5

Table 11: Results on Walker2D with modeling error (challenge 1).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O

Random
Friction 69.4 ± 7.9 71.9 ± 17.6

3.1 ± 2.2 3.4 ± 1.9 4.9 ± 1.7
7.4 ± 3.2

Gravity 45.6 ± 20.2 50.7 ± 4.5 12.3 ± 6.7

Medium
Friction 69.4 ± 7.9 71.9 ± 17.6

-0.1 ± 0.0 83.7 ± 3.1 75.4 ± 4.3
31.5 ± 3.2

Gravity 45.6 ± 20.2 50.7 ± 4.5 41.1 ± 26.1

Medium replay
Friction 69.4 ± 7.9 71.9 ± 17.6

72.1 ± 13.3 83.5 ± 0.9 81.2 ± 2.7
82.5 ± 7.5

Gravity 45.6 ± 20.2 50.7 ± 4.5 48.7 ± 22.8

Medium expert
Friction 69.4 ± 7.9 71.9 ± 17.6

24.9 ± 27.7 110.0 ± 0.1 112.0 ± 0.3
37.0 ± 30.1

Gravity 45.6 ± 20.2 50.7 ± 4.5 40.7 ± 30.3

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Normalized reward on Walker2D environment, on four types of datasets, all with confound-
ing errors. Online and Hybrid models also have access to a simulator with transition error in the
gravitational parameter.

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Conf. TD3 SAC MOPO TD3-BC IQL H2O PAR-BC

Random
hlow 45.6 ± 20.2 50.7 ± 4.5

6.7 ± 9.2 3.5 ± 1.9 4.7 ± 0.3 7.5 ± 3.2 24.5 ± 18.4

hhigh 14.3 ± 9.1 2.6 ± 3.1 4.9 ± 0.2 4.9 ± 4.0 21.8 ± 0.0

Medium
hlow 45.6 ± 20.2 50.7 ± 4.5

-0.1 ± 0.0 84.5 ± 0.3 72.7 ± 6.4 25.5 ± 5.0 82.9 ± 2.0

hhigh -0.1 ± 0.0 75.7 ± 3.4 72.7 ± 6.2 41.7 ± 20.3 79.4 ± 1.2

Medium replay
hlow 45.6 ± 20.2 50.7 ± 4.5

39.1 ± 16.9 58.8 ± 37.5 68.6 ± 2.4 45.1 ± 13.5 66.3 ± 5.8

hhigh 15.3 ± 0.8 7.3 ± 2.1 63.6 ± 6.4 19.3 ± 8.2 62.6 ± 14.0

Medium expert
hlow 45.6 ± 20.2 50.7 ± 4.5

1.4 ± 2.2 109.7 ± 0.4 95.7 ± 23.0 16.6 ± 4.0 97.6 ± 8.1

hhigh 8.7 ± 0.7 105.8 ± 6.0 102.9 ± 4.4 17.8 ± 3.1 91.0 ± 1.9

Table 13: Results on Hopper with modeling error (challenge 1).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O PAR-BC

Random
Leg 67.4 ± 33.5 67.4 ± 28.7

11.2 ± 3.9 8.8 ± 0.5 7.5 ± 0.4
14.6 ± 5.5 62.0 ± 30.4

Gravity 13.8 ± 4.9 10.4 ± 3.8 19.5 ± 9.3 10.9 ± 1.9

Medium
Leg 67.4 ± 33.5 67.4 ± 28.7

34.5 ± 19.5 58.9 ± 1.9 62.6 ± 6.7
49.5 ± 36.5 28.5 ± 1.7

Gravity 13.8 ± 4.9 10.4 ± 3.8 7.9 ± 1.9 42.4 ± 3.1

Medium replay
Leg 67.4 ± 33.5 67.4 ± 28.7

27.6 ± 4.9 72.7 ± 28.9 84.7 ± 14.7
87.0 ± 11.9 55.1 ± 21.5

Gravity 13.8 ± 4.9 10.4 ± 3.8 58.0 ± 37.3 39.8 ± 25.4

Medium expert
Leg 67.4 ± 33.5 67.4 ± 28.7

19.9 ± 8.5 103.2 ± 9.5 88.5 ± 27.5
89.2 ± 11.4 99.3 ± 3.9

Gravity 13.8 ± 4.9 10.4 ± 3.8 19.6 ± 11.6 88.8 ± 4.3

Table 14: Results on Hopper with partial observations (challenge 2).

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Discrepancy TD3 SAC MOPO TD3-BC IQL H2O PAR-BC

Random

σlow 98.8 ± 2.6 81.3 ± 18.9

11.2 ± 3.9 8.8 ± 0.5 7.5 ± 0.4

67.8 ± 34.6 81.4 ± 28.5

σhigh 39.2 ± 24.8 37.0 ± 21.3 20.8 ± 1.7 45.4 ± 34.7

hlow 7.2 ± 5.1 55.1 ± 27.6 23.2 ± 6.3 30.7 ± 1.0

hhigh 14.0 ± 15.4 77.5 ± 11.2 4.8 ± 3.0 14.3 ± 6.0

Medium

σlow 98.8 ± 2.6 81.3 ± 18.9

34.5 ± 19.5 58.9 ± 1.9 62.6 ± 6.7

83.9 ± 6.8 75.3 ± 29.7

σhigh 39.2 ± 24.8 37.0 ± 21.3 36.5 ± 5.6 18.8 ± 0.8

hlow 7.2 ± 5.1 55.1 ± 27.6 38.1 ± 19.8 35.9 ± 6.5

hhigh 14.0 ± 15.4 77.5 ± 11.2 30.1 ± 2.8 25.2 ± 2.9

Medium replay

σlow 98.8 ± 2.6 81.3 ± 18.9

27.6 ± 4.9 72.7 ± 28.9 84.7 ± 14.7

74.1 ± 17.8 54.9 ± 31.6

σhigh 39.2 ± 24.8 37.0 ± 21.3 69.5 ± 25.1 26.5 ± 2.9

hlow 7.2 ± 5.1 55.1 ± 27.6 17.4 ± 10.9 18.1 ± 4.1

hhigh 14.0 ± 15.4 77.5 ± 11.2 33.2 ± 2.6 42.9 ± 12.2

Medium expert

σlow 98.8 ± 2.6 81.3 ± 18.9

19.9 ± 8.5 103.2 ± 9.5 88.5 ± 27.5

47.8 ± 3.5 34.9 ± 3.7

σhigh 39.2 ± 24.8 37.0 ± 21.3 41.6 ± 7.5 18.9 ± 1.0

hlow 7.2 ± 5.1 55.1 ± 27.6 27.8 ± 18.4 62.5 ± 31.9

hhigh 14.0 ± 15.4 77.5 ± 11.2 60.1 ± 23.5 52.5 ± 30.3
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Table 15: Normalized reward on Hopper environment, on four types of datasets, all with confounding errors.
Online and Hybrid models also have access to a simulator with transition error in the gravitational parameter.

Online-RL (sim) Offline-RL (data) Hybrid-RL

Dataset Conf. TD3 SAC MOPO TD3-BC IQL H2O PAR-BC

Random
hlow 13.8 ± 4.9 10.4 ± 3.8

14.5 ± 12.3 8.5 ± 0.2 7.3 ± 0.3 23.3 ± 9.1 31.3 ± 0.1

hhigh 26.1 ± 7.8 8.4 ± 0.3 7.2 ± 0.3 19.3 ± 8.5 31.5 ± 0.0

Medium
hlow 13.8 ± 4.9 10.4 ± 3.8

24.3 ± 11.5 48.8 ± 4.4 51.0 ± 2.5 38.4 ± 12.7 45.1 ± 4.3

hhigh 2.4 ± 0.4 55.9 ± 2.6 50.0 ± 1.7 13.3 ± 10.8 46.8 ± 2.2

Medium replay
hlow 13.8 ± 4.9 10.4 ± 3.8

16.6 ± 2.5 59.0 ± 27.9 73.2 ± 20.3 26.3 ± 11.0 26.9 ± 15.8

hhigh 15.9 ± 2.3 49.8 ± 3.3 54.0 ± 11.9 9.0 ± 0.3 41.2 ± 20.7

Medium expert
hlow 13.8 ± 4.9 10.4 ± 3.8

24.3 ± 9.0 102.8 ± 4.3 54.2 ± 35.8 33.3 ± 35.8 75.7 ± 12.0

hhigh 23.3 ± 3.9 51.9 ± 13.5 53.2 ± 32.3 20.8 ± 9.0 44.1 ± 9.7
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