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ABSTRACT

Building generalist models has recently demonstrated remarkable capabilities in
diverse scientific domains. Within the realm of molecular learning, several studies
have explored unifying diverse tasks across diverse domains. However, negative
conflicts and interference between molecules and knowledge from different do-
main may have a worse impact in threefold. First, conflicting molecular represen-
tations can lead to optimization difficulties for the models. Second, mixing and
scaling up training data across diverse tasks is inherently challenging. Third, the
computational cost of refined pretraining is prohibitively high. To address these
limitations, this paper presents Omni-Mol, a scalable and unified LLM-based
framework for direct instruction tuning. Omni-Mol builds on three key compo-
nents to tackles conflicts: (1) a unified encoding mechanism for any task input; (2)
an active-learning-driven data selection strategy that significantly reduces dataset
size; (3) a novel design of the adaptive gradient stabilization module and anchor-
and-reconcile MoE framework that ensures stable convergence. Experimentally,
Omni-Mol achieves state-of-the-art performance across most of the 15 molecular
tasks, demonstrates the presence of scaling laws in the molecular domain, and is
supported by extensive ablation studies and analyses validating the effectiveness
of its design. The dataset, code and weights of the AI-driven chemistry generalist
are open-sourced.

1 INTRODUCTION

Large language models (LLMs), especially multimodal LLMs, have achieved significant break-
throughs in various scientific tasks due to their powerful representational capabilities and general
reasoning abilities, spanning domains such as medicine (Jee et al., 2024; Zhou et al., 2024), chem-
istry (Boiko et al., 2023), and biology (Zhang et al., 2024b). This cutting-edge technology has also
sparked an increasing number of studies exploring how to align molecular representation spaces with
textual representation spaces (Cao et al., 2025; Chen et al., 2024; Fang et al., 2024; Cao et al., 2024).
These works hold great promise to build powerful AI chemist for advancing molecule captioning,
property/structure prediction, and text-conditioned de novo drug design.

The first step in creating an AI chemist is to develop a generalist model with universal capabilities,
enabling it to understand diverse molecular structures and their interactions under multiple chemical
domains. Pioneering works, such as Text+Chem T5 (Christofidellis et al., 2023), introduces the first
multi-domain, multi-task language model capable of unifying molecular and textual representations.
Following this, PRESTO (Cao et al., 2024) further enhances performance by progressively improv-
ing multimodal LLMs through cross-modal alignment and multi-graph understanding. Similarly, in
the field of general LLMs, the platonic representation (Huh et al., 2024) introduces the concept of
the multitask scaling hypothesis, which suggests that as models are trained on an increasing number
of tasks, they are driven to develop representations capable of addressing all tasks. They highlight
the potential of constructing the generalist model capable of handling diverse molecular tasks.

However, we have yet to observe a model that achieves outstanding performances across as many
tasks as possible, nor have we seen a clear trend toward scalability in this direction. For instance,
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Figure 1: (Left[1]) Illustration of the universal convergent representation space for omni-molecule tasks.
(Left[2]) Conflict between tasks from different domains makes vanilla models fail to converge. (Right[1])
Gradient norm of unified training on 15 tasks. Due to the conflicts of multiple tasks, the gradient norm of
InstructMol competes and shows a significant increase, while the gradient norm of Omni-Mol remains relatively
stable. (Right[2]) The scaling trend with task numbers on reagent prediction. As the number of tasks increases,
Omni-Mol is benefited and achieves better performances averagely, while InstructMol fails to scale up.

InstructMol (Cao et al., 2025) attempts to scale up large language models but yields negligible gains,
while PRESTO relies on a complex training strategy and requires extensive computational resources
for pre-training. We propose that the fundamental challenge is conflict collapse, illustrated in Fig-
ure 1 left, which limits the emergence of truly generalist model in three key ways. First, potential
conflicts may arise among various functional groups within a molecule and across the entire molec-
ular structure, making it difficult to optimize the semantic relationships among different molecular
representations. Second, data with conflicts from different domains often exhibit divergent distribu-
tions and interfere with each other, rendering it elusive to determine an ideal training data mixture.
Third, the complexity of multi-task conflicts grows explosively as the volume of molecular data in-
creases, requiring models with limited capacity to consume significantly greater resources in order
to resolve these conflicts.

The recognition of the existing limitations naturally raises a pivotal question:

Is it possible to develop a generalist model that converges to a universal representation
space for omni-molecular tasks?

It drives us to develop Omni-Mol, a scalable and unified LLM-based framework for direct instruction
tuning. Omni-Mol is the first generalist to effectively mitigate conflict collapse in three respects: (1)
Omni-Mol proposes a unified encoding mechanism applicable to any task input, leveraging the most
comprehensive instruction-following omni-molecular dataset to date, which comprises 1.8M sam-
ples across 15 tasks. (2) From the perspective of data, Omni-Mol employs an active learning-based
dynamic data selection after recognizing that not all tasks are equally important. We significantly
reduced the dataset size to 40% of its original volume while maintaining comparable performance
with the full dataset. (3) Our novel designed adaptive gradient stabilization successfully mitigate the
rapid gradients growth caused by task conflicts (shown in Figure 1 right). Besides, our anchor-and-
reconcile mixture-of-expert (MoE) architecture reduces interference by dynamically routing tasks
to reconcile experts and capturing common knowledge through anchor experts.

Extensive experiments show that we achieve significant improvements across 15 tasks simultane-
ously, setting new state-of-the-art results among LLM-based models. Additionally, we observe that
Omni-Mol scales effectively with increases in data volume, model size, and the number of tasks, in-
dicating the model’s great potential under larger computational budgets. Furthermore, by analyzing
the representations of models trained with progressively more tasks, we discover that the represen-
tations become increasingly similar as the number of tasks grows. This provides robust evidence
supporting our hypothesis of convergence space toward a universal molecular representation.

2 METHOD

Omni-Mol is a multimodal LLM framework to handle K diverse molecular tasks simultaneously.
It comprises a language model, a graph encoder fG , and a projector fp. The inputs include a text
instruction XI , a SELFIES string XS , and the graph data XG corresponding to the input molecules,
where XG is converted from XS using RDKit (Landrum et al., 2013). We model the response Y

as the probability of the next token as: P (Y|XI ,XS ,HG) =
∏L
i=1 Pθ(Yi|XI ,XS ,HG,Y<i),

where HG = fp(fG(XG)), and θ is the parameter. The graph encoder encodes the molecule graph
into its representation hg ∈ Rn×d1 , where n is the length of the representation, the projector then
projects its dimension to the LLM’s hidden size and obtain HG ∈ Rn×d2 .
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Figure 2: Overview of our proposed Omni-Mol, a scalable and unified LLM-based framework for
direct instruction tuning.

2.1 UNIFIED ENCODING FOR INSTRUCTION TUNING

Unified Input format. We collect and format the data of any task into the following structure.

• Instruction XI : A brief, clear, and distinguishable guidance for what task to perform.
• Input XS : A sequence of molecules represented using SELFIES separated by a dot.
• Output Y: The output corresponding to the task, which may be a number, a SELFIES representa-

tion, or a textual description, all in text string.

The data will be processed according to a specific template, details can be found in Appendix K.

Unified Encoding. To unify tokens from diverse tasks and modalities, and to enable parallel training
on samples of varying lengths, we apply uniform padding to the mini-batch samples. First, padding
tokens are added to the right side of the text input, and the batch is then passed through an embedding
layer to obtain text embeddings. Next, since the number of atoms in each molecule varies, the
number of graph tokens per sample differs as well. After inserting the graph tokens, we continue to
add padding token embeddings to the right end of the sequence, ensuring the mini-batch becomes a
well-formed tensor. We then generate an attention mask based on the padded tensor and assign an
‘ignore index’ in the labels to prevent Omni-Mol from learning to generate padding tokens.

2.2 ACTIVE LEARNING-BASED DATA SELECTION

To facilitate effective unified tuning, we systematically screen data from multiple tasks to minimize
redundancy and conflicts, while determining an optimal mixing ratio. Actually, not all task-specific
data is equally crucial. Inspired by Yu et al. (2024b), we employ an iterative task-centric data
filtering approach to actively screen multiple datasets, substantially reducing training costs.

Given K task collections T =
⋃K
q=1 Tq , along with a total budget B and a maximum iteration count

J . For the j-th iteration
(
1 ≤ j ≤ J

)
, we select a data portion of size αj = B/J . Assume

the initial parameters of the model is θ0. For the K subsets, we first initialize the distribution
π0 =

(
π0
1 , π

0
2 , . . . , π

0
K

)
, such that π0

q = 1/K, Then, we sample each task dataset Tq to a subset

T (1)
q according to the distribution and create the sampled training set T (1). We then finetune θ0 on

T (1) for M epochs, yielding the updated parameter θ1.

After obtaining θ1, we perform inference on the sampled dataset T (1), we collect sample pair
(up,+, up,−) indexed by p, where up,+ is the ground truth and up,− is the answer generated by
the model. For each sample pair, we calculate the score of the sample by:

ν(up,+, up,−) = max{ρ(·, ·)} − ρ(up,+.up,−) (1)

where ρ(·, ·) is a normalized metric function for each respective task. For each sample pair
(up,+, up,−) in the task dataset Tq , we define the average rating as:

µq =
1∣∣Tq∣∣ ∑

(up,+,up,−)∈Tq

ν
(
up,+, up,−

)
. (2)
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A larger µq indicates higher complexity, implying that samples in this task are more instrumental
for the model. At the end of the j-th iteration, we reweight the distribution via:

π′(j)
q =

µq∑K
r=1 µr

π(j−1)
q , π(j)

q =
π
′(j)
q∑K

r=1 π
′(j)
r

(3)

We then select an additional batch of size αj+1 = B/J denoted T (j+1), from the unused portion
of the dataset. We concatenate it with the previously chosen data for further training. This sample–
train–evaluate–reweight routine continues until J total iterations are reached.

2.3 STABLE & MOE EXPANDED FRAMEWORK

Adaptive Gradient Stabilization. During unified training, each mini-batch consists of samples
from several tasks. The resulting loss and gradients will be a combination of contributions from
each task. Let Bk denotes the number of samples for task k, and T the sequence length. The total
loss for the model can then be formulated as:

Ltotal =
1

B

K∑
k=1

Bk∑
b=1

Tk∑
t=1

L(m(k)
b,t , o

(k)
b,t ) (4)

where m(k)
b,t and o(k)b,t are the predicted logits and label for batch element b at time step t in task k.

Actually, we observe a noticeable increase in gradient norms (shown in Figure 1 right), which leads
to training instability and hindered faster loss convergence. We attribute the main cause of these
divergences to issues arising from the softmax operation when handling tasks drawn from different
domains with substantially varied entropy, stemming from softmax’s translation invariance (i.e.,
softmax (z) = softmax (z + c)). Since all model parameters are shared among multiple tasks,
each task competes by incrementally growing its norms. while this is not immediately detrimental,
it leads to divergence once norms extend beyond the effective range of bf16 (Kalamkar et al., 2019).
To mitigate this problem, we employ an adaptive coefficient γθ = αθ

||r||p + βθ during the parameter-
efficient fine-tuning with LoRA (Hu et al., 2021), where αθ and βθ are learnable variables as scaling
factors and r represents the rank of LoRA. Through this mechanism, gradients can be adaptively
stabilized on data D:

∇∆W =
∂Ltotal (D;W0 + γθ ·∆W)

∂∆W (5)

where ∆W is the updated parameters to the pre-trained W0. More details are in Appendix D.3.

Anchor-and-Reconcile Experts Expansion. Omni-Mol needs to learn a wide range of tasks and
handle multiple modalities, including graph features, text, and SELFIES. While SELFIES is treated
as regular text input to the LLM, it inherently differs significantly from natural language semantics,
requiring the model to separately learn how to understand and generate SELFIES expressions.

We aim for the model to simultaneously learn general knowledge while also differentiating for dif-
ferent modalities and tasks. Hence, we borrow the idea of MoE (Dai et al., 2024) and perform upcy-
cling (Komatsuzaki et al., 2023; Lin et al., 2024). We first construct N reconcile experts, each target-
ing specialized knowledge areas, and dynamically balances conflicting signals among these experts
to effectively mitigate task-level conflicts. Besides, we introduce an additional anchor expert to learn
the common knowledge that underpins fundamental understanding across tasks, by consistently cap-
turing and aligning shared features to maintain a stable global representation. To be specific, for a
regular decoder layer l = 1 . . . L from a pre-trained LLM, h′l = hl−1 + MHAϕ(LN(hl−1)) and
hl = h′l + FFNγ(LN(h′l)), where ϕ and γ are parameters of the pre-trained LLM, MHA and FFN
refers to Multi-Head Attention and Fully Forward Network respectively. We convert the decoder
layer into:

h′l = hl−1 + MHA
ϕ′(LN(hl−1))

hl =

h
′
l + FFN

γ′(LN(h′l)), l = 1 . . . lMoE

h′l + MoE
γi, ψ

(LN(h′l)), l = lMoE . . . L

(6)

where lMoE represents the layer starts to utilize MoE. The converted ϕ′ = ϕ + ∆ϕ(MHA)
LoRA , γ′ =

γ + ∆γ(FFN)
LoRA . For MoE layer, we initialize N + 1 experts with the weight of the pre-trained FFN
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γ. Here, it concludes N reconcile experts to learn specialized knowledge and 1 anchor experts to
learn the common knowledge. Let Eγi denotes the i-th expert, i = 1 . . .N + 1. And γi is the
parameter of the i-th expert, at the beginning of the training, these experts have identical weights,
i.e., γ1 = γ2 = · · · = γ. Router Rψ is random initialized, where ψ is the parameter of the router.

Let s denote the output of the router logits for the i-th expert, assume E experts are chosen the output
of the MoE layer can be written as: x′

t =
∑N
i=1 TopK(s, E)Eγi(xt) + EγN+1

(xt).

2.4 OPTIMIZATION

Training strategy of Omni-Mol consists of two stages.

Stage 1: We perform multimodal alignment on PubChem (Kim et al., 2022), learning to describe
molecules through graph modality features. The input consists of instructions and graph data, ex-
cluding SELFIES. Only the multimodal projector fp is trainable.

Stage 2: We fine-tune Omni-Mol by freezing the pre-trained parameters that are wrapped by PEFT
(Parameter Efficient Fine-Tuning) adapters, while the adapters, the MoE layers and the multimodal
projector stay active.

Training loss of both stages for language modeling is LLM = −
∑
i logPθ(Yi|XI ,XS ,HG,Y<i).

For stage 2, we incorporate an additional auxiliary load balancing loss for the MoE layers, assume
an input tensor x ∈ RB×T×d, and Top-K experts out of N is selected, the load balancing loss
is: Laux = 1

B

∑B
i=1

∑N
j=1 Cij · s̄ij , where Cij = N

TE
∑TE
t=1 1{t’th token selects expert j}, sij =

1
T

∑T
t=1 si,j,t and 1{·} is an indicator function. This load balancing loss used in Liu et al. (2024a)

additionally considers the sequence-level information.

The total loss is a combination of LLM and Laux with a coefficient λ: L = LLM + λLaux.

2.5 THEORETICAL ANALYSIS

In theory, the regularization effect of omni-molecular tasks training can enable Omni-Mol to learn
more general representations. However, demonstrating this phenomenon empirically remains chal-
lenging. Our key insight is that as more tasks are learned together, the solution space of the problems
becomes progressively smaller. Assume the hypothesis space V of the model, and the solution of a
task i is Fi, where Fi ⊆ V , for omni-molecular tasks learning with n different tasks, the solution
space will be: F (n)

general =
⋂n
i=1 Fi.

Theorem 2.1. For m > n,m, n ∈ Z+, we have F (m)
general ⊆ F (n)

general. If ∀n ≤ i, j ≤ m, i ̸= j, we

have Fi ̸= Fj , then F (m)
general ⊊ F (n)

general.

The proof of Theorem 2.1 can be found in Appendix I.1 Therefore, as the number of tasks n
increases, the similarity between the representations learned from the solution space of n − 1

tasks and the solution space of n tasks will become increasingly higher. Let Rn ∈ F (n)
general de-

notes the representation learned from a solution space, consider a series of learned representation
SR = {R1, R2, . . . , Rn} learned from SF = {F (1)

general, F
(2)
general, . . . , F

(n)
general}. Assume function

Γ(·, ·) measures the similarity between two representations. we expect that, ∃N ∈ Z+, such that
∀n > N , ∃i < N , we have Γ(Rn, Rn+1) > Γ(Ri, Ri+1).

In our experimental validation, we construct a series of mixed datasets comprising 1, 2, 4, and 8
tasks to form the solution space sequence SF . on each of these datasets and subsequently extract
representations for a specific task. Finally, we calculate the similarity between representations Ri
and Rj for i, j = 0, . . . , 3. See Appendix D.5 for the calculation of similarity.

3 EXPERIMENTS
We aim to address the following concerns: (1) Compared with existing baselines, can Omni-Mol
achieve the best performances on the comprehensive omni-molecular datasets with 15 tasks simul-
taneously? (2) Is Omni-Mol a scalable framework with the capacity and potential to solve complex
molecular tasks? (3) Are all key components of Omni-Mol essential for solving conflict collapse?
(4) How can we verify that Omni-Mol converges reliably and progressively refines its representa-
tions toward a universal convergent space? We begin by describing the experimental setup, then
answer all the questions in the subsequent sections.
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Model Type #Param Exact ↑ BLEU ↑ Levenshtein ↓ RDK ↑ MACCS ↑ Morgan ↑ Validity ↑
Forward Reaction Prediction Task
Vicuna (Zheng et al., 2023b) In-Context Learning 6.7B 0.000 0.057 41.690 0.007 0.016 0.006 0.059
LLaMA2 (Touvron et al., 2023) Specialist(PEFT) 6.7B 0.012 0.804 29.947 0.499 0.649 0.407 1.000
Mol-Instruction (Fang et al., 2024) Specialist(PEFT) 6.7B 0.045 0.654 27.262 0.313 0.509 0.262 1.000
HIGHT (Chen et al., 2024) Specialist(PEFT) 6.7B 0.293 0.935 16.687 0.774 0.618 0.566 1.000
InstructMol (Cao et al., 2025) Specialist(PEFT) 6.7B 0.536 0.967 10.851 0.776 0.878 0.741 1.000
PRESTO∗ (Cao et al., 2024) Generalist 3.2B 0.691 0.976 6.525 0.871 0.931 0.841 1.000
Omni-Mol Generalist 1.7B 0.718 0.981 6.528 0.878 0.934 0.854 1.000
Retrosynthesis Task
Vicuna (Zheng et al., 2023b) In-Context Learning 6.7B 0.000 0.057 46.877 0.025 0.030 0.021 0.017
LLaMA2 (Touvron et al., 2023) Specialist(PEFT) 6.7B 0.000 0.283 53.510 0.136 0.294 0.106 1.000
Mol-Instruction (Fang et al., 2024) Specialist(PEFT) 6.7B 0.009 0.705 31.227 0.283 0.487 0.230 1.000
HIGHT (Chen et al., 2024) Specialist(PEFT) 6.7B 0.202 0.914 20.194 0.772 0.623 0.577 0.999
InstructMol (Cao et al., 2025) Specialist(PEFT) 6.7B 0.407 0.941 13.967 0.753 0.852 0.714 1.000
PRESTO∗ (Cao et al., 2024) Generalist 3.2B 0.531 0.958 10.298 0.823 0.887 0.790 1.000
Omni-Mol Generalist 1.7B 0.559 0.961 9.263 0.840 0.900 0.809 1.000
Reagent Prediction Task
Vicuna (Zheng et al., 2023b) In-Context Learning 6.7B 0.000 0.010 27.948 0.038 0.002 0.001 0.007
LLaMA2 (Touvron et al., 2023) Specialist(PEFT) 6.7B 0.000 0.283 53.510 0.136 0.294 0.106 1.000
Mol-Instruction (Fang et al., 2024) Specialist(PEFT) 6.7B 0.044 0.224 23.167 0.237 0.364 0.213 1.000
HIGHT (Chen et al., 2024) Specialist(PEFT) 6.7B 0.067 0.482 27.167 0.462 0.346 0.303 1.000
InstructMol (Cao et al., 2025) Specialist(PEFT) 6.7B 0.129 0.610 19.664 0.444 0.539 0.400 1.000
PRESTO∗ (Cao et al., 2024) Generalist 3.2B 0.212 0.712 16.313 0.544 0.607 0.479 1.000
Omni-Mol Generalist 1.7B 0.257 0.763 13.558 0.601 0.660 0.556 1.000

Table 1: Comprehensive comparisons on three reaction tasks. PEFT is short for parameter-efficient
fine-tuning. PRESTO∗ represents our re-implementation based on source codes.

Figure 3: Scaling trend of Omni-Mol. (Left) The scaling trend respect to dataset proportion, metrics
are averaged across tasks, (Right) The scaling trend respect to model size, the metrics of Quantum
Mechanics Property Prediction task are normalized. we observed a clear log scaling behavior.

3.1 SETUP AND BASELINES

Datasets. To construct a general-purpose model, we select 15 tasks across 4 categories to cover as
many diverse tasks as possible. Details of datasets can be found in Appendix B.

Baselines. To ensure a fair comparison, we first choose representative LLM-based models such
as InstructMol and HIGHT, and also report several previous baselines, including Mol-Instruction,
Llama, Vicuna, among others, some of which are derived through In-Context Learning. For datasets
with fewer models, we re-implement PRESTO as baseline.

Backbone. We utilize LLaMA 3.2-1B (Dubey et al., 2024) as the backbone, a single linear layer as
the projector, and MoleculeSTM (Mustafa et al., 2022) as the graph encoder for processing molecu-
lar graphs. For MoE expansion, we set lmoe = 1/4L and number of experts to 3. More details about
model implementation can be found in Appendix D.

Training Details. We use PyTorch (Paszke et al., 2019) with DeepSpeed ZeRO-2 (Rajbhandari
et al., 2020) for more efficient parallel training. For unified tuning, we train 15 epochs with LoRA
rank of 64. For separate tuning, Omni-Mol is trained for 10 epochs with the same LoRA con-
figuration. The learning rate is set to 8e-5 from grid search for all experiments. For experiment
consistency, random seed is set to 0. More details can be found in Appendix E.

3.2 MAIN RESULTS

Here, we obtain the answer that Omni-Mol can achieve the best performance across almost all tasks.
As the results shown in Table 2.5, we have the following observations. Omni-Mol significantly
outperforms all specialist baselines while utilizing only 25% of the parameters. Furthermore, Omni-
Mol surpasses the corresponding state-of-the-art generalist baseline by an average of approximately
1%, 4%, 13%, 15%, and 40% across forward prediction, retrosynthesis, reagent prediction, molcap,
and Description QA separately. That is to say, Omni-Mol achieves superior performance with greater
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Figure 5: Ablation studies: (Left) Ablation of unified training. The performance is averaged across
all metrics. (Mid) Ablation of adaptive gradient stabilization. (Right) Ablation of MoE expansion.

parameter efficiency, demonstrating its effectiveness in becoming a general AI chemist. Due to the
page limit, we only report 3 tasks, the remaining results can be found in Appendix F.

3.3 IS OMNI-MOL A SCALABLE FRAMEWORK?
One critical property of LLMs is their scaling behavior in relation to both model and data size. In
this study, we demonstrate that Omni-Mol is a scalable framework by conducting three distinct types
of scaling experiments: (1) We select three different sizes of LLMs from the LLaMA 3 series, 1B,
3B, and 8B, for language backbone scaling. (2) We evaluate the impact of dataset size by down-
sampling the original dataset to 20%, 40%, 60%, and 100% of its full size. (3) To examine task
scaling, we train Omni-Mol on different numbers of tasks, specifically, 1, 2, 4, 8, and 15 tasks, and
observe the performance of individual tasks within these multi-task settings.

(1) As shown in the left of Figure 3, we observe a clear logarithmic scaling trend as the dataset
proportion increases. The relationship between the model’s average performance and the dataset
proportion can be approximately expressed as y = 0.07 · log(x) + 0.41. The overlaid radar charts
further demonstrate that this trend holds true across all tasks.

(2) As shown on the right side of Figure 3, the performance of Omni-Mol across all tasks increases
as the model size grows. We also observe a clear logarithmic scaling trend, where this relationship
can be approximated as y = 0.02 · log(x) + 0.32.

(3) The average results are shown in the right side of Figure 1 based on reagent prediction. This
indirectly supports our theory about the value of a high-quality, universal representation space. In
contrast, InstructMol experiences a performance decline when the number of tasks exceeds eight, as
conflicts between tasks hinder its ability to simultaneously learn all tasks effectively.

3.4 IS UNIFIED INSTRUCTION TUNING ESSENTIAL?
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Figure 4: Ablation study of active learning-based
dataset selection. Omni-Mol w. RS: we randomly
sample all datasets and mix them, Omni-Mol w.
AD: we use all data samples.

One key aspect of Omni-Mol is its abil-
ity to leverage unified learning across omni-
molecular tasks, enabling the convergence to
more generalizable representations. To evalu-
ate this, we compare the performance of sepa-
rate tuning on individual tasks (Omni-Mol w/o
UT) against our unified tuning. As shown in
Figure 5, Omni-Mol w/o UT performs signifi-
cantly worse across five tasks compared to ours.
This indicates that the representations learned
through unified tuning are superior and bene-
fit from shared knowledge. Interestingly, even
tasks that are not directly related, such as the
molcap task, which is distinct from both reac-
tion and regression tasks, still show improve-
ments with unified tuning. Additional ablation
results are provided in Appendix G.

3.5 IS DATASET SELECTION ESSENTIAL?

In Figure 4, we report the results compared with random sampling (Omni-Mol w. RS) and all-data
training (Omni-Mol w. AD). The figure also includes the ratio of full data to down-sampled data.
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With 40% of the data, the Omni-Mol significantly outperforms (Omni-Mol w. RS) and surpasses
(Omni-Mol w. AD) on the MolCap, Description QA, and Reagent tasks. This supports the hypoth-
esis that redundant samples exist within the data, and selecting appropriate subsets from different
datasets can lead to better performance. In the remaining two tasks, our results are also comparable,
considering that we used only a small portion of the data.

3.6 CAN WE MITIGATE THE CONFLICT COLLAPSE?

How Do Adaptive Gradient Stabilization Helps? We compare our Omni-Mol with Omni-Mol w/o
ST, which replaces our adaptive module with the standard LoRA adapter. As shown in the middle
of Figure 5, Omni-Mol w/o ST consistently exhibits lower performances than Omni-Mol across all
tasks. This consistent decline underscores the effectiveness of our adaptive module in enhancing
performance by mitigating task conflicts. This mitigation of task conflicts ensures that Omni-Mol
can leverage shared knowledge without detrimental interference, thereby enhancing its ability to
generalize across various tasks and modalities.

Is MoE Expansion Essential? We conduct an ablation study by replacing our Anchor-and-
Reconcile Experts Expansion with a single activated Feed-Forward Network (FFN). The compari-
son results are shown in the right of Figure 5. We observe that Omni-Mol consistently outperforms
the Omni-Mol w. FFN across all tasks, including molcap, forward prediction, retrosynthesis, and
reagent prediction. Additionally, for the homo-lumo, where lower values are preferable, Omni-Mol
achieves a better score. This demonstrates that Omni-Mol effectively enhances performance by
leveraging specialized experts, as opposed to a single FFN. The most significant improvement is
observed in forward prediction, where the diverse experts contribute to better generalization. More
insights on MoE layers can be found in Appendix A.

3.7 CONVERGENCE ANALYSIS VIA MUTUAL SIMILARITY

(a) Omni-Mol (b) InstrcutMol

Figure 6: Demonstration of similarity scores heatmap for
methods trained on varying numbers of tasks. Surprisingly,
Omni-Mol shows rising similarity scores as the task count
increases (direction of the black dashed line). Compared
to the decreasing trend of InstructMol, this suggests that
Omni-Mol converges toward a more consistent representa-
tion space universally.

We aim to validate the theory in Sec-
tion 2.5 and verify the convergence of
Omni-Mol, we compute the represen-
tation sequence with model trained
on 1, 2, 4, and 8 tasks, we use
mutual knn (Huh et al., 2024) as
our similarity function Γ(·, ·), the re-
sults are shown in Figure 6.

Obviously, when the number of tasks
increases, the similarity of the repre-
sentations learned by Omni-Mol also
increases. This indicates that the
model’s representations are gradually
converging. This outcome supports
our hypothesis that adding more tasks
reduces the size of the model’s gen-
eral solution space. As a result, the
model is forced to learn representa-
tions within a smaller and more fo-
cused space, leading to the convergence of the representations. Ultimately, these representations
converge to a universal form that can effectively solve all tasks.

Interestingly, in the mutual similarity analysis of InstructMol, we observe the opposite trend. As
the number of tasks increases, the representations learned by InstructMol become progressively
less similar to those learned previously. This suggests that with each added task, the changes in the
solutions learned by InstructMol become larger, indicating that it is unable to converge to a universal
representation space through unified training. In fact, the model may be moving further away from
such a space.
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MEANINGFULNESS STATEMENT

We consider that the meaningful representation of life refers to a model’s exploration of the un-
derlying principles governing all living and physical phenomena. Omni-Mol represents an initial
attempt to develop a chemical AI model with as universal a representation as possible. We aim for
this approach to aid the community in building a more general and powerful AI chemist.
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A INSIGHT FOR BIO-CHEMICAL COMMUNITY

We visualize the routing of tokens representing different functional groups through various experts
in Omni-Mol. The results clearly demonstrate that different functional groups activate distinct ex-
perts, highlighting that molecular representations differ fundamentally from pure textual semantics.
This suggests the existence of intrinsic interactions, particularly between different functional groups,
rather than isolated token representations. Our visualization provides strong evidence for this phe-
nomenon, emphasizing the structured nature of molecular representations. This insight offers valu-
able guidance for future research on integrating molecular representations with LLMs, paving the
way for more chemically informed architectures, even more powerful AI chemist.

7 Alkene

1 Ether 2 Amide 3 Carboxyl 5 Acyl Chloride4 Fluorine

8 Fluorine-substituted alkene 9 Ester group

6 Imine group

1 2 3 4 5 6 7 8 9

Figure 7: Illustration of router scores in our MoE framework for tokens representing different func-
tional groups. The numbers correspond to specific tokens associated with 9 visualized functional
groups.

B FURTHER DETAILS ON DATASETS

B.1 COMPREHENSIVE DATASETS CONSTRUCTION

In this subsection, we provide a comprehensive list of the datasets used in our study along with their
respective sources. While datasets vary across different papers, we observed that many are derived
and processed from common sources. To clarify this overlap, we summarize the information in
Table and provide a detailed analysis below.

(1) USPTO (USPTO, 2020). The USPTO (United States Patent and Trademark Office) dataset is
a widely used large-scale chemical reaction dataset extracted and processed from US patent texts.
It encompasses a diverse range of organic reaction types, including esterification, amidation, halo-
genation, Suzuki coupling, Buchwald–Hartwig coupling, addition reactions, condensation reactions,
and redox reactions. Following Fang et al. (2024), for the Forward Reaction Prediction task, we
extract data from USPTO, and split the dataset into 124,384 training instances and 1,000 test in-
stances. Partially following Cao et al. (2024), for the Catalyst Prediction and Solvent Prediction
tasks, we similarly extract data from USPTO, splitting the training/test sets into 10,079/1,015 and
67,099/7,793, respectively.

USPTO 500 MT (Lu & Zhang, 2022) is a high-quality multi-task reaction prediction dataset, de-
rived from USPTO through manual processing (including data filtering, deduplication, etc.). This
subset retains the 500 most common reaction types. Following Fang et al. (2024), for the Reagent
Prediction task, we split the dataset into 124,384 training instances and 1,000 test instances.

USPTO 500K (Lu & Zhang, 2022), a subset of organic chemical reaction data extracted from
USPTO, is widely used in chemoinformatics for the single-step retrosynthesis task. Following Fang
et al. (2024), for the Retrosynthesis task, the dataset is divided into 128,684 training instances and
1,000 test instances.
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USPTO-Applications (Lowe, 2017) is another commonly used subset of USPTO, primarily derived
from data samples in patent applications. For the Experiment Procedure Prediction task, follow-
ing Liu et al. (2024c) (along with the introduction of ORD data), we split the dataset into 80%
training, 10% validation and 10% test sets.

(2) ChEBI-20 (Edwards et al., 2021). ChEBI-20 is derived from the ChEBI-16 (Hastings et al.,
2016) dataset, with further annotations based on PubChem, forming a comprehensive database of
chemical entities in the field of biochemistry. Compared to Fang et al. (2024), ChEBI-20 provides
a more extensive and detailed description of chemical compounds. Therefore, for the Molecular
Captioning task, following Cao et al. (2025), we split the ChEBI-20 dataset (which contains a
total of 33,010 instances) into 26,420 training instances, 3295 validation instances and 3,295 test
instances.

(3) QM9 (Wu et al., 2018). QM9 is a subset of the GDB-17 (Ruddigkeit et al., 2012) database,
focusing on quantum chemical property prediction for small organic molecules. It provides com-
prehensive quantum chemical attributes for molecular compounds, including spatial geometries and
electronic properties, such as HOMO/LUMO energy levels obtained via DFT calculations (Kohn &
Sham, 1965). In this work, we focus on the HOMO/LUMO energy levels of molecules. For the
Quantum Mechanics Property Prediction task, following Fang et al. (2024), we split the dataset
into 360,113 training instances and 1,987 test instances.

(4) PubChem (Kim et al., 2021). PubChem is the world’s largest open-access chemical informa-
tion database, focusing on chemistry, bioinformatics, and drug discovery. It provides comprehen-
sive support for the retrieval and analysis of molecular compound data. Partiallly following Li
et al. (2024b), for the Molecular Weight Prediction, LogP Prediction, Topological Polar Sur-
face Area Prediction, and Complexity Prediction tasks, we split the dataset into 11,979/2,000,
10,673/1,785, 11,979/2,000, and 11,979/2,000 for training and test sets, respectively. Additionally,
for the Description Q&A task, also following Li et al. (2024b), we split the dataset into 56,885
training instances and 10,000 test instances.

PubChemQC (Maho, 2015) is a large-scale chemical database generated through ab initio quantum
chemistry calculations, with molecular compounds sourced from PubChem. Partially following Li
et al. (2024b), for the SCF Energy Prediction task, we split the dataset into 623,418 training in-
stances and 77,993 test instances.

(5) RNX Yields (Schwaller et al., 2021). The RNX Yields dataset consists of the Buchwald–Hartwig
reaction (Ahneman et al., 2018) dataset and the Suzuki–Miyaura reaction (Perera et al., 2018)
dataset, both collected through high-throughput experimentation (HTE). It is designed to predict
reaction yields for these two reaction types. Following PRESTO, we split the dataset into 9,515
training instances and 200 test instances for Yields Regression.

(6) ORD (Kearnes et al., 2021). The ORD (Open Reaction Database) is an open-source database
dedicated to the standardization, storage, and sharing of organic chemistry reaction data, providing
a unified data schema with structured text for organic reaction datasets. Following Liu et al. (2024c)
(along with the USPTO-Applications), for Experimental Procedure Prediction task, We partition
the dataset into 90% for training, 10% for validation, and 10% for testing, based on the total data
volume.

Based on the six datasets presented above, we construct a total of 15 tasks spanning four task types,
amounting to 1.8 million data samples. To the best of our knowledge, this represents the most
comprehensive dataset to date in the molecular domain. The specific partitions are illustrated in
Figure 8 below.

B.2 PRE-PROCESSING

We encounter several issues during processing the datasets, we list them below and elaborate our
solutions.

Unable to obtain SELFIES. We retrieve the SMILES representation of a molecule with
its CID using pubchempy (Swain, 2024) API, for CIDs that cannot be found with
pubchempy.Compound.from cid(), we discard them. For molecules that cannot be con-
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Figure 8: Domains and Tasks. We choose 15 tasks across 4 domains, including reaction, regression, descrip-
tion and action.

verted to SELFIES, we discard them. This could happen when processing datasets from Li et al.
(2024b).

Overlapped samples. Datasets from different sources often contain overlapping samples, leading to
potential data leakage. For example, solvent and catalyst prediction are subsets of reagent prediction,
and molecule description data from 3D-MOIT (Li et al., 2024b) may include samples that overlap
with those in ChEBI-20 (Edwards et al., 2021). Such overlaps create scenarios where a sample from
one dataset’s training set appears in the test set of another, compromising the reliability of model
evaluation. To address this issue, we conduct a thorough dataset comparison to identify potential
overlaps and systematically remove any samples from the training sets that also appear in the test
sets of other datasets.

B.3 EVALUATION METRICS

Exact Match. The Exact Match Score evaluates whether two SMILES strings unequivocally cor-
respond to the same molecular structure. Specifically, a score of 1 is assigned when both SMILES
strings are identical following normalization, indicating they represent the same molecule. Mean-
while, a score of 0 is given when the normalized SMILES strings differ, signifying that they corre-
spond to distinct molecules.

Levenshtein Score. The Levenshtein Score scores the smallest number of edit operations needed to
transform one SMILES string into another. These edit operations typically encompass: (1) Insertion,
which involves adding a character at a specific position; (2) Deletion, the removal of a character
from a designated location; and (3) Substitution, replacing a character at a particular position with a
different one.

MACCS Similarity. Within cheminformatics, MACCS Similarity is used to assess and compare the
structural likeness of molecules. This approach is grounded in MACCS keys, which are a standard-
ized set of structural descriptors developed by the Molecular ACCess System. These keys capture
and represent essential molecular substructures. To determine the similarity between two molecules,
the method evaluates the presence or absence of these predefined structural features.

RDK Similarity. The RDK Similarity generally involves evaluating and quantifying the similarity
between molecules by utilizing fingerprints produced with RDKit.

Morgan Similarity. Morgan Similarity is used to evaluate and measure the structural resemblance
between molecules by utilizing Morgan fingerprints as its foundational basis.

Mean Absolute Error (MAE). The MAE quantifies the average absolute deviations between pre-
dicted results and actual values, which provides a straightforward metric for assessing the accuracy
of predictive models by averaging the absolute differences across all instances.

R2. The R2 metric scores the proportion of variability in the target variable that can be explained
by the model’s predictors. It can be served as an indicator of the model’s explanatory strength,
reflecting how well the observed data points are captured by the regression model.
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C RELATED WORKS

C.1 MOLECULAR FOUNDATION MODELS

Researchers are trying to leverage the world knowledge embedded in LLMs to build higher-quality
molecular representations by fine-tuning on task-specific instructions. Mol-Instruction (Fang et al.,
2024) pioneers the instruction fine-tuning dataset, demonstrating the potential of LLMs in molecular
modeling. Subsequently, InstructMol (Cao et al., 2025) introduces 2D graph features of molecules
based on SMILES (Weininger, 1988), showing that LLMs can also enhance performance by aligning
and fine-tuning their understanding of graph-based features. Soon after, 3D-MoLM (Li et al., 2024b)
explores the advantages of 3D molecular representations in multimodal LLMs, while HIGHT (Chen
et al., 2024) investigates the impact of multi-level 2D graph features on molecular understanding.
More recently, PRESTO (Cao et al., 2024) enhances LLMs’ comprehension of molecular-related
knowledge through extensive domain-specific pretraining across eight tasks.

C.2 UNIFIED GENERATIVE MODELING

The GPT models (Brown et al., 2020; Achiam et al., 2023) have achieved unification across all text-
based tasks through large-scale pretraining and instruction tuning. Subsequently, the community has
successfully constructed models that can understand data from multiple modalities and simultane-
ously perform tasks related to different modalities by converting features from each modality into
tokens (Alayrac et al., 2022; Li et al., 2022; 2023; Dai et al., 2023; Liu et al., 2024b). More recently,
the community has also been exploring unified understanding and generation, allowing models not
only to understand multimodal data but also to generate multimodal data (Zhu et al., 2023; Zheng
et al., 2023a; Koh et al., 2024). This development is driving models towards convergence into a
truly general-purpose model capable of solving all tasks. Huh et al. (2024) suggests that as models
grow more powerful and general, their representations tend to converge, approaching a universal
space that reflects the fundamental laws of the world. This insight inspires us to explore whether a
universal convergent space also exists in the molecular domain.

D FURTHER DETAILS ON MODEL IMPLEMENTATION

D.1 GRAPH TOKENIZER

Molecule to graph conversion. Graph neural network is widely used in many scenarios like traf-
fic (Zhang et al., 2025), society relationships (Zhang et al., 2024a), and also molecules (Sun et al.,
2022; 2024). Following vanilla setting, we utilize RDKit (Landrum et al., 2013) to transform
SELFIES into graph structure in our experiments. For tasks involving a single molecule as in-
put, the molecule is converted directly. For tasks requiring multiple molecules as input, only the
first molecule in the input sequence is converted into a graph. Our model does not incorporate
multi-graph understanding; instead, it processes both the graph and SELFIES representation of the
first molecule, while only the SELFIES representations are provided for the remaining molecules.
Meanwhile, since MoleculeSTM (Liu et al., 2023) incorporates additional molecular graph-text con-
trastive training compared to GraphMVP (Liu et al., 2022), leading to improved multimodal model
training efficiency, we adopt MoleculeSTM as the graph encoder.

Insertion. For graph tokens HG = {H1, H2, . . . ,Hn} after projection, we always insert the graph
token at the beginning of user instruction XI. The input instruction will be updated to the concate-
nation of {HG,XI}.

D.2 MULTIMODAL ALIGNMENT

To balance the molecular graph and text modalities while ensuring training efficiency, we employ
a single-layer linear projector in Stage 1. Following Liu et al. (2023), we carefully filter PubChem
to obtain 310K+ graph-text pairs and convert them into instruction-following data for pretraining.
The alignment between the molecular graph and text modalities is enhanced solely by adjusting the
parameters of the single-layer linear projector.
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D.3 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

As the size of recent models increases rapidly, updating the models in parameter-efficient ways be-
comes crucial. PEFT (Ding et al., 2023; Wang et al., 2023; Zhai et al., 2023; Yu et al., 2024a; Wang
et al., 2024) methods diverge from the conventional approach of fine-tuning the entire pre-trained
model, instead only learning a few additional parameters for knowledge transfer. Due to the redun-
dancies of attention matrix in LLMs’ pre-trained parameter W0, we hope to implement the low-rank
approximation (LoRA) of the tensor W0 to get the new learnable weight tensor ∆W ∈ Rm×n for
downstream knowledge transfer. ∆W can be constructed with the product of two lower-dimensional
matrices A ∈ Rm×r and B ∈ Rr×n, where r ≪ min(m,n). The goal is to find A and B that min-
imize the approximation error between W and AB. A common objective is the Frobenius norm,
leading to the minimization problem minA,B ∥∆W −AB∥2F . Here, A and B together have signifi-
cantly fewer parameters than ∆W itself, making AB an effective rank-r approximation. Therefore,
the backward propagation on the downstream fine-tuning data D can be expressed as:

∇∆W =
∂L (D;W0 +∆W)

∂∆W (7)

However, in Figure 1 right, we observe that the conventional LoRA approach can encounter intricate
divergences in the middle to later phases of training, primarily due to a gradual increase in gradient
norm values. Motivated by work Kalajdzievski (2023); Team (2024), we attribute the main cause
of these divergences to issues arising from the softmax operation when handling tasks drawn from
different domains with substantially varied entropy, stemming from softmax’s translation invariance
(i.e., softmax (z) = softmax (z + c)). Since all model parameters are shared among multiple
tasks, each task competes by incrementally growing its norms. while this is not immediately detri-
mental, it leads to divergence once norms extend beyond the effective range of bf16. To mitigate
this, we introduce the Adaptive Gradient Stabilization module in Section 2.3, employing an adap-
tive coefficient γθ = αθ

||r||p + βθ, where αθ and βθ are learnable variables and r represents the rank.
Through this mechanism, gradients can be adaptively stabilized in the form of:

∇∆W =
∂L (D;W0 + γθ ·∆W)

∂∆W (8)

D.4 FROZEN PRE-TRAINED BACKBONE

We adopt LLaMA 3 (Dubey et al., 2024) as the backbone, a standard dense Transformer (Vaswani,
2017) architecture. It employs grouped query attention (Ainslie et al., 2023), which generalizes
multi-query attention by introducing an intermediate set of key-value heads. Furthermore, LLaMA
3 applies an attention mask that blocks cross-document self-attention within a single sequence; while
this feature shows minimal influence during standard pre-training, it becomes crucial for continued
pre-training on long sequences. Lastly, LLaMA 3 supports an expanded vocabulary of 128K tokens.

D.5 MUTUAL REPRESENTATION SIMILARITY

Task Scaling Setup. We build a sequence of multi-task dataset with detailed composition as follows:

• 1 task: Reagent Prediction.
• 2 tasks: Reagent Prediction + Molecular Captioning.
• 4 tasks: Reagent Prediction + Molecular Captioning + Solvent Prediction + Catalyst Prediction.
• 8 tasks: Reagent Prediction + Molecular Captioning + Solvent Prediction + Catalyst Prediction
+ Forward Prediction + Retrosynthesis + Property Prediction + Yield Regression.

Similarity Calculation. We first extract features R ∈ RB×L×T×d from all decoder layers in LLM,
where B,L, T, d is batch size, number of decoder layers, sequence length and the hidden dimension
of LLM. The sequence dimension is then averaged.

R′ =

(∑T
t=1(R[:, :, t, :] ∗m[:, t])

)
∑T
t=1m[:, t]

(9)

whereR′ ∈ RB×L×d, andm ∈ RB×T is the mask indicating the padding tokens. We then flatten the
first two dimensions and get R′′ ∈ R(B∗L)×d and calculate the similarity with mutual knn (Huh
et al., 2024).

18



Published at LMRL Workshop at ICLR 2025

Learning rate Num Epoch LR Decay Stop Epoch Batch Size Warmup Ratio

Forward Reaction Prediction

8e-5
15

cosine
10

32 0.0075

Reagent Prediction
Retrosynthesis
Quantum Mechanics Property Prediction
Catalyst Prediction
Solvent Prediction
Yield Regression
Experimental Procedure Prediction
Description Q&A
SCF Energy Prediction
Topological Polar Surface Area Prediction
Complexity Prediction
Molecular Weight Prediction
LogP Prediction
Molecular Captioning 10 8
Omni-Molecular Tasks 15 15

Table 2: An overview of the hyper-parameters and training configurations used in all molecular task
experiments.

Let N = B ∗ L, and we have two models A and B trained on different multi-task datasets, we first
find their k nearest neighbors knnA and knnB .

knnA = KNN(RA, k) knnB = KNN(RB , k) (10)

where knn∗ ∈ RN×k, we then create indicator matrices

MA
i,j =

{
1, j ∈ knnA[i, :]
0, otherwise

MB
i,j =

{
1, j ∈ knnB [i, :]
0, otherwise

i, j ∈ 1, . . . , N (11)

The accuracy of a sample is

acc[i] =
1

k

∣∣knnA[i, :] ∩ knnB [i, :]
∣∣ = 1

k

N∑
j=1

MA
i,j ·MB

i,j (12)

Finally, the alignment score of two models is

Score =
1

N

N∑
i=1

acc[i] (13)

E FURTHER DETAILS ON TRAINING

Specialist models are typically fine-tuned on a single task at a time, repeating the process separately
for each task, a strategy known as separate tuning. In contrast, generalist models undergo simulta-
neous fine-tuning across multiple tasks, a process referred to as unified tuning. In this section, we
present a detailed training framework for both of them on all experiments.

Separate instruction tuning. We follow the training recipe outlined in Cao et al. (2025). However,
we observe significant overfitting when training the model on the molcap task for 20–50 epochs,
as suggested in Cao et al. (2025). To address this issue, we manually allocate 10% of the training
set for validation and re-evaluated all tasks, we find that the recipes for forward prediction, reagent
prediction, retrosynthesis, HOMO LUMO prediction from the original paper matches our results,
however, we identify an updated training strategy tailored to the molcap task. The revised training
recipe is summarized in Table E.

Unified instruction tuning. For unified training, we apply a fixed training recipe as shown in
Table E, this recipe is consistent across all Unified Instruction Tuning.

Environment Settings. We employ common techniques to boost performance and conserve mem-
ory, including FlashAttention 2 (Dao et al., 2022), activation checkpointing, and bf16 training. All
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Model Type #Param B-2 B-4 R-1 R-2 R-L M
Molecular Captioning Task
GPT-3.5-turbo1 Retrieval - 0.565 0.482 0.623 0.450 0.543 0.585
GPT-4-03141 Retrieval - 0.607 0.525 0.634 0.476 0.562 0.610
BioMedGPT2 Generalist 10B 0.234 0.141 0.386 0.206 0.332 0.308
Mol-Instruction Specialist 6.7B 0.249 0.171 0.331 0.203 0.289 0.271
HIGHT Specialist 6.7B 0.498 0.397 0.582 0.414 0.518 0.525
InstructMol Specialist 6.7B 0.475 0.371 0.566 0.394 0.502 0.509
Omni-Mol Generalist 1.7B 0.544 0.456 0.610 0.456 0.549 0.579
Description Q&A Task
Llama23 Specialist 6.7B 0.282 0.232 0.351 0.221 0.304 0.469
3D-MoLM(S)4 Specialist 6.7B 0.320 0.261 0.401 0.256 0.346 0.522
3D-MoLM(G)4 Generalist 6.7B 0.318 0.261 0.401 0.259 0.350 0.519
Omni-Mol Generalist 1.7B 0.516 0.440 0.529 0.382 0.492 0.580

Model Type #Param HOMO LUMO GAP Avg.
Quantum Mechanics Property Prediction Task
Alpaca1 In-Context 6.7B - - - 322.109
LLaMA22 In-Context 6.7B 0.7367 0.8641 0.5152 0.7510
Vicuna2 In-Context 13B 0.7135 3.6807 1.5407 1.9783
Mol-Instruction Specialist 6.7B 0.0210 0.0210 0.0203 0.0210
HIGHT Specialist 6.7B 0.0056 0.0065 0.0077 0.0066
InstructMol Specialist 6.7B 0.0048 0.0050 0.0061 0.0050
Omni-Mol Generalist 1.7B 0.0047 0.0056 0.0060 0.0052

Table 3: Main results of molecular captioning and description QA task, 1: 10-shot results from Li et al.
(2024a), 2,3: results from Luo et al. (2023); Li et al. (2024b), 4: (S,G) means the specialist and generalist
version of 3D-MoLM separately. B: BLEU, R: ROUGE, M: METEOR.

experiments are conducted on 8×NVIDIA A100 GPUs (80GB). For all experiments, the weight
decay is set to 0. The term Stop Epoch in Table E shows the epoch that the experiment stops. This
is because the early stop mechanism we used to prevent overfitting.

F FURTHER DETAILS ON EXPERIMENTAL RESULTS

In this section, we provide a complete performance evaluation of Omni-Mol across the remaining
11 tasks.

Model Type #Param Weight(g/mol) LogP TPSA(Å2) Complexity SCF(105eV)

Llama2 Specialist 6.7B 22.10 (96%) 1.45 (95%) 15.87 (92%) 69.74 (93%) 0.70 (99%)
3D-MoLM(S) Specialist 6.7B 14.79 (95%) 0.66 (97%) 9.71 (93%) 44.85 (94%) 0.35 (99%)
3D-MoLM(G) Generalist 6.7B 16.58 (92%) 0.78 (95%) 10.90 (90%) 45.49 (89%) 0.38 (98%)
Omni-Mol Generalist 1.7B 15.08 (100%) 0.59 (100%) 11.17 (100%) 49.38 (100%) 0.55 (99%)

Model Type #Param B-H S-M

Llama2 - 6.7B -0.476 0.121
Vicuna v1.5 - 6.7B -0.131 0.151
PRESTO Generalist 6.7B 0.944 0.652
Omni-Mol Generalist 1.7B 0.891 0.560

Table 4: More results for regression tasks. (Left) Results of property regression tasks, we report
MAE for each task with the valid answer rate (%), since LMs sometimes fail to generate numerical
responses corresponding to the given prompts. (Right) Results of Yield regression task, we report
R2 score.

G MORE ABLATION STUDY RESULTS

G.1 SEPARATE TUNING V.S. UNIFIED TUNING

Here, we present the performance of separate tuning and unified tuning across the remaining 9 tasks.

As show in Figure 9, We observe that tasks like solvent prediction, catalyst prediction, and exper-
iment procedure prediction continue to gain significant improvements from unified training. How-
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Model Type #Param Exact BLEU Levenshtein RDK MACCS Morgan Validity

Catalyst Prediction (PRESTO)
Llama2 - 6.7B 0.680 0.720 2.545 0.882 0.868 0.687 1.000
Vicuna v1.5 - 6.7B 0.685 0.703 2.451 0.883 0.869 0.692 1.000
nach0-base - - 0.000 0.072 36.442 0.129 0.055 0.009 0.849
Mol-Instruction Specialist 6.7B 0.000 0.110 28.424 0.031 0.045 0.015 0.999
T5Chem - - 0.022 0.346 13.408 0.146 0.268 0.200 0.996
PRESTO Generalist 6.7B 0.768 0.814 1.755 0.914 0.895 0.774 1.000
Omni-Mol Generalist 1.7B 0.752 0.860 1.544 0.919 0.903 0.759 1.000
Solvent Prediction (PRESTO)
Llama2 - 6.7B 0.311 0.462 3.819 0.452 0.480 0.417 1.000
Vicuna v1.5 - 6.7B 0.320 0.436 3.809 0.459 0.486 0.427 1.000
nach0-base - - 0.000 0.072 36.442 0.129 0.055 0.009 0.849
Mol-Instruction Specialist 6.7B 0.000 0.155 25.117 0.030 0.122 0.035 1.000
T5Chem - - 0.083 0.311 16.224 0.458 0.424 0.397 0.995
PRESTO Generalist 6.7B 0.419 0.695 2.758 0.529 0.547 0.506 0.912
Omni-Mol Generalist 1.7B 0.590 0.799 2.243 0.740 0.733 0.715 1.000

Table 5: More results for reaction tasks.

Model Type #Param BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

TextChemT5 Generalist 220M 0.541 0.406 0.615 0.403 0.564
MolT5-Large Specialist 780M 0.545 0.410 0.625 0.409 0.572
Galactica Specialist 1.3B 0.535 0.395 0.609 0.386 0.552
MolCA, Galac Specialist 1.3B 0.549 0.415 0.625 0.404 0.570
ReactXT, Galac Specialist 1.3B 0.574 0.440 0.644 0.427 0.589
Omni-Mol Generalist 1.7B 0.569 0.445 0.523 0.270 0.460

Table 6: Results of experimental procedure prediction.

ever, we also notice that some tasks perform worse after unified training compared to individual
training, particularly those related to regression tasks, such as yield regression, logP prediction, and
complexity prediction. While we see some modest gains in SCF prediction and weight prediction,
there is a noticeable performance degradation in other tasks, especially in the complexity prediction
task, where unified training causes a substantial drop in performance.

Regression tasks differ significantly from SELFIES generation and text description tasks in that the
model must, after understanding the molecule, directly and accurately predict the specific numerical
value of a property. Even though existing literature suggests that LLMs are capable of performing
regression, accurately predicting the next number remains a fundamentally different challenge from
current tasks, and potentially introduces significant conflicts.

Perhaps incorporating additional information, such as the process of deriving a specific number (e.g.,
a chain of thought), or using an additional regression head, could help alleviate these conflicts before
making an accurate numerical prediction.

H FURTHER DETAILS ON EFFICIENCY ANALYSIS

To ensure a fair comparison of computational efficiency with existing methods, we evaluate Omni-
Mol across four key metrics: inference time, memory consumption, token generation speed (to-
kens per second), and GFLOPs. All comparative experiments are conducted on a single standalone
NVIDIA A100-80G GPU to ensure consistency in inference evaluation. As illustrated in Figure
10, Omni-Mol achieves significantly lower inference latency, reducing it by up to 65% compared
to PRESTO. This substantial efficiency gain enables faster response times, making Omni-Mol par-
ticularly well-suited for high-throughput molecular modeling tasks. Moreover, Omni-Mol demon-
strates optimized memory utilization, consuming 28% less memory, which enhances its feasibility
for deployment on resource-constrained hardware without compromising performance. Addition-
ally, Omni-Mol achieves a 1.78× higher token generation rate, ensuring faster sequence generation
and significantly improving usability in real-world applications that require rapid molecular prop-
erty predictions and synthesis planning. Finally, Omni-Mol effectively reduces computational cost
by 41% in terms of GFLOPs, striking a favorable balance between model complexity and inference
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Figure 9: Additional results from the ablation study comparing our unified instruction tuning to
separate training.
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Figure 10: A comprehensive efficiency evaluation of our Omni-Mol, built on LLaMA 3.2-1B, com-
pared to the state-of-the-art baseline. We conduct all experiments three times and compute the
average result.

speed. These advantages make Omni-Mol a scalable, cost-efficient, and high-performance solution
for large-scale molecular modeling and chemistry-related AI applications.

I FURTHER DETAILS ON THEORETICAL ANALYSIS

I.1 PROOF OF THEOREM 2.1

Proof of Theorem 2.1. For F (n)
general and F (m)

general with m > n, we have

F
(m)
general = F1 ∩ F2 ∩ · · · ∩ Fn ∩ Fn+1 ∩ · · · ∩ Fm

= F
(n)
general ∩ Fn+1 ∩ · · · ∩ Fm

(14)

Since intersection of sets can only become smaller or remain the same as more sets are intersected,
therefore

F
(m)
general ⊆ F

(n)
general (15)

If ∀i, j, n < i, j < m and Fi ̸= Fj when i ̸= j, then

F
(n+1)
general = F

(n)
general ∩ Fn+1 ⊊ F

(n)
general

F
(n+2)
general = F

(n+1)
general ∩ Fn+2 ⊊ F

(n+1)
general ⊊ F

(n)
general

· · ·

F
(m)
general = F

(n+(m−n−1))
general ∩ Fn+(m−n) ⊊ F

(n+(m−n−1))
general ⊊ F

(n+(m−n−2))
general ⊊ · · · ⊊ F

(n)
general

(16)

J CASE STUDY

In this section, we visualize specific reactions in reaction tasks. The results in Figure 11 demonstrate
that our method exhibits more accurate generation capabilities compared to the baseline.
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J.1 REACTION TASKS
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Figure 11: A case study on reaction tasks.

In this subsection, we visualize specific reactions in three reaction tasks. The results in
Figure 11 demonstrate that our method exhibits more accurate generation capabilities com-
pared to the baseline. For example, in the solvent prediction task, we are given the reac-
tants: [C][C][Branch1][C][C][Branch1][C][C][O][C][=Branch1][C][=O][C][C][C][Br] and
[C][C][=C][C][Branch1][Ring1][C][#N][=C][C][Branch1][C][Cl][=C][Ring1][=Branch2][O], as
well as the product [C][C][=C][C][Branch1][Ring1][C][#N][=C][C][Branch1][C][Cl][=C][Ring1]-
[=Branch2][O][C][C][C][C][=Branch1][C][=O][O][C][Branch1][C][C][Branch1][C][C][C].
Omni-Mol correctly predicts the solvent as [C][N][Branch1][C][C][C][=O], whereas PRESTO
predicts an incorrect solvent: [C][C][#N].

J.2 MOLCAP

In the case study of the molecular captioning task, as shown in Figure 12, the model’s description
of the same molecule becomes more accurate before and after mixed training. It is able to cor-
rectly classify and localize functional groups. Does this suggest that the model can learn to identify
functional groups from the reaction task? Additionally, constraints from other tasks in the shared
representation space also enhance the model’s ability to describe molecules. For example, for Case
1 Molecule, Separate Tuning outputs incorrect information regarding the locations of functional
groups, whereas Unified Tuning predicts them correctly.
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The molecule is a member of the 
class  of pyrazoles that  is 1H-

pyrazole which is subs tituted at 

posit ions 1, 3, and 5 by 2,4-
dichloro-5-chlorophenyl, cyano, and 

trifluoromethylsufanyl groups, 
respectively. It is  a member of 

pyrazoles , a nitrile, a 

dichlorobenzene, a member of 
(trifluoromethyl)benzenes and a 

member of monochlorobenzenes.

Separate Tuning Unified Tuning

The molecule is a member of the class 
of pyrazoles that is 1H-pyrazole that is  

subst ituted at posi tions 1, 3, 4, and 5 

by 2,6-dichloro-4-
(trifluoromethyl)phenyl, cyano, 

trifluoromethyl , and amino groups, 
respect ively. It is  a nitrile, a 

dichlorobenzene, a secondary amino 

compound, an aromatic primary 
alcohol, a member of pyrazoles and a 

member of (t rifluoromethyl)benzenes.

The molecule is a member of the class of 
pyrazoles  that is 1H-pyrazole that is  

subst ituted at posi tions 1, 3, 4, and 5 by 2,6-

dichloro-4-(trifluoromethyl)phenyl, cyano, 
(trifluoromethyl)sulfanyl, and amino groups, 

respect ively. It is  a metabolite of the 
agrochemical fipronil . It has a role as  a marine 

xenobiotic metabolite. It is a member of 

pyrazoles , a dichlorobenzene, a member of 
(trifluoromethyl)benzenes, an organic sulfide 

and a nitrile.

GTCase 1 Molecule

Separate Tuning Unified TuningGTCase 2 Molecule

The molecule is a monocarboxylic 
acid anion that is the conjugate base 

of 17-oxoestradiol, obtained by 

deprotonation of the carboxy group; 
major species  at pH 7.3. It is a 

conjugate base of a 17-oxoestradiol.

The molecule is a steroid acid 
anion that is the conjugate base of 

9-oxo-15alpha-17-epysterone, 

obtained by deprotonation of the 
carboxy group;  major species at 

pH 7.3. It is a conjugate base of a 
9-oxo-15alpha-17-epysterone.

The molecule is a steroid acid anion, that  
is the conjugate base of pyridinestrone-3-

carboxylic acid. An abiotic metabolite in 

the 4,5-seco pathway of aerobic estrogen 
degradation by the bacterium 

Sphingomonas sp. strain KC8. It is a 
conjugate base of a pyridinestrone-3-

carboxylic acid.

Figure 12: A case study on molcap task

K TASK DEFINITION & PROMPT TEMPLATES

K.1 BASE CHAT TEMPLATE

For LLaMA 3.2 and LLaMA 3.1 instruction-tuned LLMs, we use the base chat template suggested
by the official documents, the multi-modal graph tokens are inserted at the beginning of user instruc-
tions.

System Prompt

<|begin of text|><|start header id|>system<|end header id|> \n\n A chat between a curious user and an arti-
ficial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user’s questions.<|eot id|>

User Input

<|start header id|>user<|end header id|>\n\n<graph token>\nInstructions.<|eot id|><|start header id|>
assistant<|end header id|> \ n \n

Assistant Output

Response.<|eot id|>

We use <|finetune right pad id|> as pad token for SFT.

K.2 FORWARD REACTION PREDICTION

The forward reaction prediction task focuses on determining the chemical product of a reaction
given its reactants and reagents. The forward reaction prediction task involves predicting the chem-
ical product of a reaction given the reactants and reagents as input. The input format is structured
as the SELFIES representation of reactants, concatenated with a period (”.”) and the reagent infor-
mation (e.g., ”reactant1.reactant2.reagent”). The task requires the model to process this input and
output the corresponding reaction product. The objective is to accurately map the input reaction
components to their chemical outcome, leveraging the model’s understanding of reaction patterns
and transformations. A key challenge in forward reaction prediction is capturing the underlying
chemical rules that govern reactivity. The model must infer how functional groups interact, recog-
nize the role of reagents, and apply appropriate transformations to generate the correct product. This
process requires a deep understanding of reaction mechanisms, beyond simple pattern recognition.
The prompt template is as follows.
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Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES reactants>.<SEL-
FIES reagents>⊕ <|eot id|>⊕ <assistant identifier>
Assistant Output: <SELFIES product>.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Given the reactants and reagents provided, what is a possible product that can be formed?
<SELFIES reagents>: [Br][C][C][Br].[O][C][=C][C][Branch1][C][Br][=C][C][=C][Ring1][#Branch1][Br]
<SELFIES reactants>: [Na+1].[OH1-1]

<SELFIES product>: [Br][C][C][O][C][=C][C][Branch1][C][Br][=C][C][=C][Ring1][#Branch1][Br]

K.3 RETROSYNTHESIS

The retrosynthesis task focuses on predicting the reactants required to synthesize a given chemical
product, a fundamental challenge in organic chemistry and computational drug discovery. Unlike
forward reaction prediction, which maps reactants to products, retrosynthesis operates in reverse, it
seeks to determine the most plausible set of precursors that could yield the target compound under
appropriate reaction conditions. This task is crucial for designing efficient synthetic routes, enabling
chemists to explore viable pathways for molecule construction while minimizing cost and complex-
ity. At the core of this task is a structured input format using SELFIES representations, ensuring
a robust and unambiguous encoding of molecular structures. The input consists of the SELFIES
representation of the target product, which the model then processes to generate the corresponding
reactants. This structured formulation ensures that the model can generalize across diverse chemical
transformations, learning the intricate patterns of bond formation and cleavage. A key challenge
in retrosynthesis prediction is handling the inherent one-to-many nature of the problem: a single
product can often be synthesized through multiple distinct reaction pathways. The model must ef-
fectively navigate this complexity, identifying the most chemically plausible set of reactants based
on learned reaction mechanisms. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES product> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: <SELFIES reactants><|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Which reactants could have been used to generate the given product? The product is:
<SELFIES product>: [C][C][=Branch1][C][=O][C][=C][C][=C][Branch1][C][O][C][Branch1][C][Cl][=C][Ring1]-
[Branch2]

<SELFIES reactants>: [C][C][=Branch1][C][=O][Cl].[O][C][=C][C][=C][C][=C][Ring1][=Branch1][Cl]

K.4 REAGENT PREDICTION

The reagent prediction task focuses on identifying the necessary reagents for a given chemical reac-
tion, a critical step in reaction planning and synthetic chemistry. This task is essential for guiding ex-
perimental chemists, as choosing the correct reagents influences reaction efficiency, selectivity, and
feasibility. To ensure a structured and standardized input format, we represent the reaction equation
using SELFIES, a robust molecular encoding system. The input consists of the SELFIES repre-
sentations of the reactants, concatenated with a reaction separator ”>>”, followed by the SELFIES
representation of the product. This format (e.g., ”reactant1.reactant2>>product”) provides a clear,
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machine-readable structure that allows the model to infer the necessary reagents based on known
reaction mechanisms and transformation rules. One of the core challenges in reagent prediction is
handling the diversity of chemical transformations. Different reactions require specific reagents that
dictate the reaction type, whether it’s an oxidation, reduction, coupling, or substitution reaction. The
model must learn to recognize reaction context, interpret functional group interactions, and infer the
most likely reagents from training data. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES reactants> >>
<SELFIES product>⊕ <|eot id|>⊕ <assistant identifier>
Assistant Output: <SELFIES reagents><|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Can you provide potential reagents for the following chemical reaction? The reaction is
<SELFIES reactants>: [C][C][C][Branch1][#C][C][=C][C][=N][C][Branch1][Ring1][O][C][=C][Ring1][Branch2]-
[C][=O][O][C][C][C][O][Ring1][S]
<SELFIES product>: [C][C][C][Branch1][#C][C][=C][C][=N][C][Branch1][Ring1][O][C][=C][Ring1][Branch2][C][O]-
[O][C][C][C][O][Ring1][S]

<SELFIES reagents>: [C][C][Branch1][C][C][O].[O].[BH4-1].[Na+1]

K.5 MOLECULAR CAPTIONING

The molecular captioning (MolCap) task focuses on generating descriptive textual information for a
given chemical compound based on its molecular structure. This task plays a crucial role in chemical
informatics, enabling automated annotation of molecular properties, classification, and functional
characteristics. MolCap leverages machine learning models to infer and generate human-readable
descriptions that encapsulate key chemical attributes. The input for this task follows a structured for-
mat using SELFIES, a robust molecular representation designed for machine learning applications.
The SELFIES encoding of a given compound serves as the input, and the model is responsible for
producing a descriptive caption that includes relevant chemical properties. These descriptions can
encompass a wide range of molecular characteristics, such as compound classification (e.g., ”organic
acid,” ”amine-containing molecule”), pH estimation, presence of functional groups (e.g., ”contains
a hydroxyl and ketone group”), solubility, toxicity, or other key features. One of the key challenges
in molecular captioning is ensuring that the generated text is both chemically accurate and contex-
tually informative. The model must learn to recognize molecular substructures, infer meaningful
chemical attributes, and articulate these in a clear and interpretable manner. The prompt template is
as follows.

Template

User Input: <user identifier> ⊕ <graph token> \n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Description.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Please give me some details about this molecule. The compound SELFIES sequence is:
<SELFIES compound>:[C][=C][C][=Branch2][Ring1][S][=C][C][=C][Ring1][=Branch1][C][C][Branch2][Ring1]-
[Branch1][C][Branch1][P][C] [Branch1][Ring2][O][Ring1][Branch1][C][O][P][=Branch1][C][=O][Branch1][C][O-1][O-
1][O][O][O]

Description: The molecule is an organophosphate oxoanion obtained by deprotonation of the phosphate OH groups of
4-(5-O-phospho-beta-D-ribofuranosyl)phenol; major species at pH 7.3. It derives from a D-ribofuranose 5-phosphate(2-).
It is a conjugate base of a 4-(5-O-phospho-beta-D-ribofuranosyl)phenol.
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K.6 QUANTUM MECHANICS PROPERTY PREDICTION

The quantum mechanics property prediction task focuses on determining key quantum-mechanical
properties of a given chemical compound, providing critical insights into its electronic behavior,
stability, and potential applications. This task is essential in computational chemistry, materials sci-
ence, and drug discovery, where quantum properties influence molecular interactions, reactivity, and
optoelectronic performance. The input follows a structured format using SELFIES, a robust molec-
ular representation optimized for machine learning applications. Given the SELFIES encoding of a
molecule, the model is tasked with predicting its quantum properties, such as the highest occupied
molecular orbital (HOMO) energy, lowest unoccupied molecular orbital (LUMO) energy, and the
HOMO–LUMO gap. These properties are fundamental in determining a molecule’s electronic struc-
ture, with implications for charge transfer, chemical reactivity, and photophysical behavior. One of
the key challenges in quantum property prediction is capturing the underlying quantum-chemical
interactions that govern molecular behavior. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Property.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: What is the HOMO-LUMO gap of this molecule? The compound SELFIES sequence is:
<SELFIES compound>: [N][=C][O][C][=C][C][=Branch1][Ring2][=N][Ring1][=Branch1][C][#N]

Property: 0.1487

K.7 CATALYST PREDICTION

The catalyst prediction task focuses on identifying the appropriate catalysts required to facilitate
a given chemical reaction. Catalysts play a crucial role in modifying reaction pathways, lower-
ing activation energy, and improving reaction efficiency without being consumed in the process.
The input follows the SELFIES representation, a robust molecular encoding system designed for
computational applications. The reaction is expressed as an equation where the SELFIES represen-
tations of the reactants are concatenated and separated from the product using ”>>” (e.g., ”reac-
tant1.reactant2>>product”). This structured representation allows the model to process the reaction
as a whole and infer the most suitable catalyst that enables the transformation. One of the primary
challenges in catalyst prediction is understanding the nuanced role that catalysts play in different
reaction mechanisms. Unlike reagents, which directly participate in the reaction, catalysts provide
alternative pathways to enhance reaction kinetics. The prompt template is as follows.
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Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES reactants> >>
<SELFIES product>⊕ <|eot id|>⊕ <assistant identifier>
Assistant Output: <SELFIES catalysts><|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Given this chemical reaction, what are some catalysts that could have been used? The reaction is
<SELFIES reactants>: [C][C][=C][C][=C][Branch1][Ring1][C][#N][C][=C][Ring1][Branch2][C][Branch1][C][F]-
[Branch1][C][F][F].[O][=C][C][C][C][=Branch1][C][=O][N][Ring1][=Branch1][Br]
<SELFIES product>: [N][#C][C][=C][C][=C][Branch1][Ring1][C][Br][C][Branch1][=Branch2][C][Branch1][C][F]-
[Branch1][C][F][F][=C][Ring1][N]

<SELFIES catalysts>:[O][=C][Branch1][#C][O][O][C][=Branch1][C][=O][C][=C][C][=C][C][=C]-
[Ring1][=Branch1][C][=C][C][=C][C] [=C][Ring1][=Branch1]

K.8 SOLVENT PREDICTION

The solvent prediction task focuses on identifying the appropriate solvents required for a given
chemical reaction. Solvents play a crucial role in determining reaction efficiency, influencing factors
such as solubility, reaction kinetics, selectivity, and stability of intermediates. To ensure a structured
and machine-readable representation, the input follows the SELFIES format, a robust molecular
encoding system designed for computational applications. The reaction is expressed as an equation
where the SELFIES representations of the reactants are concatenated and separated from the product
using the reaction separator ”>>” (e.g., ”reactant1.reactant2>>product”). This structured format
allows the model to interpret the reaction context and infer the most suitable solvents required to
facilitate the transformation. One of the key challenges in solvent prediction is understanding the
diverse roles solvents play in different reaction mechanisms. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES reactants> >>
<SELFIES product>⊕ <|eot id|>⊕ <assistant identifier>
Assistant Output: <SELFIES solvents><|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Please propose potential solvents that might have been utilized in the provided chemical reaction. The reaction
is
<SELFIES reactants>: [N][#C][C][=C][C][=C][Branch1][C][F][C][=C][Ring1][#Branch1].[O][C][C][C][N][C][Ring1]-
[Branch1]
<SELFIES product>: [N][#C][C][=C][C][=C][Branch1][O][N][C][C][C][Branch1][C][O][C][Ring1][=Branch1][C][=C]-
[Ring1][N]

<SELFIES solvents>: [O]

K.9 YIELD REGRESSION

The yield regression task focuses on estimating the proportion of the actual product obtained in a
chemical reaction relative to its theoretical maximum. Reaction yield is a critical metric in organic
synthesis, pharmaceutical manufacturing, and industrial chemistry, as it directly influences process
efficiency, resource utilization, and cost-effectiveness. The input follows the SELFIES format, a
robust molecular encoding system tailored for computational chemistry. The reaction is expressed
as an equation where the SELFIES representations of the reactants are concatenated and separated
from the product using the reaction separator ”>>” (e.g., ”reactant1.reactant2>>product”). This
structured format provides a standardized input for the model, allowing it to interpret the reaction
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context and estimate the expected yield. One of the key challenges in yield prediction is capturing
the complex interplay between reaction conditions, molecular stability, steric effects, and solvent or
catalyst influences. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES reactants> >>
<SELFIES product>⊕ <|eot id|>⊕ <assistant identifier>
Assistant Output: Property.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Please propose potential solvents that might have been utilized in the provided chemical reaction. The reaction
is
<SELFIES reactants>: [F][C][Branch1][C][F][Branch1][C][F][C][=C][C][=C][Branch1][C][Cl][C][=C][Ring1][#Br-
anch1].[C][C][=C][C][=C][Branch1] [C][N][C][=C][Ring1][#Branch1].[O][=S][=Branch1][C][=O][Branch2][Ring1][=Br-
anch1][O][Pd][N][C][=C][C][=C][C][=C][Ring1][=Branch1][C][=C][C][=C][C][=C][Ring1][=Branch1][Ring1][=C][C]-
[Branch1][C][F][Branch1][C][F][F].[C][O][C][=C][C][=C][Branch1][Ring1][O][C][C][Branch2][Ring2][=N][P][Branch2]-
[Ring1][Branch1][C][C][C][C][C][Branch1][O][C][C][Branch1][Ring2][C][Ring1][=Branch1][C][Ring1][=Branch2][C][R-
ing1][#Branch2][C][C][C][C][C][Branch1][O][C][C][Branch1][Ring2][C][Ring1][=Branch1][C][Ring1][=Branch2][C][R-
ing1][#Branch2][=C][Ring2][Ring1][=N][C][=C][Branch1][=Branch1][C][Branch1][C][C][C][C][=C][Branch1][=Branch1]-
[C][Branch1][C][C][C][C][=C][Ring1][N][C][Branch1][C][C][C].[C][N][C][C][C][N][C][C][C][N][=C][Ring1][#Branch2]-
[Ring1][=Branch1].[C][C][O][C][=Branch1][C][=O][C][C] [=C][Branch1][C][C][O][N][=Ring1][=Branch1]
<SELFIES product>: [C][C][=C][C][=C][Branch2][Ring1][Ring2][N][C][=C][C][=C][Branch1][=Branch2][C][Bran-
ch1][C][F][Branch1][C][F][F][C] [=C][Ring1][#Branch2][C][=C][Ring1][P]

Property: 0.1449

K.10 SCF ENERGY PREDICTION

The SCF energy prediction task involves determining the self-consistent field (SCF) energy for a
given compound. The input is the SELFIES representation of the compound, and the model is
tasked with predicting the molecule’s SCF energy. The objective is to provide a reliable basis for
understanding the compound’s total electronic energy, which is critical for assessing its stability,
reactivity, and potential applications in computational chemistry. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Property.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Please provide the SCF Energy value for this molecule. If uncertain, provide an estimate. Respond with the
numerical value only. The molecule SELFIES sequence is:
<SELFIES compound>:[C][C][C][C][C][C][=Branch1][C][=O][C][=C][C][C][Branch2][Ring1][Ring2][C][C][=Bran-
ch1][C][=O][C][Ring1] [=Branch1][C][C][C][C][C][C][C][=Branch1][C][=O][O][O]

Property: The SCF Energy for the input molecule is -1.988e+05 eV.

K.11 LOGP PREDICTION

The LogP prediction task focuses on determining the octanol–water partition coefficient (LogP)
of a given chemical compound, a key physicochemical property that influences molecular behavior
across various environments. LogP quantifies the relative solubility of a compound in octanol versus
water, serving as a critical indicator of lipophilicity, hydrophobicity, and membrane permeability.
The task employs the SELFIES molecular representation, which encodes chemical structures in a
machine-readable form optimized for deep learning models. Given the SELFIES representation
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of a compound, the model is responsible for predicting its LogP value, a numerical measure that
typically ranges from negative values (indicating high water solubility) to positive values (indicating
high lipophilicity). This structured approach allows the model to learn patterns between molecular
structure and partitioning behavior, enabling accurate and data-driven LogP estimation. One of
the key challenges in LogP prediction is capturing the complex molecular interactions that dictate
solubility behavior. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Property.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: I am interested in the LogP of this molecule, could you tell me what it is? If uncertain, provide an estimate.
Respond with the numerical value only. The molecule SELFIES sequence is:
<SELFIES compound>: [C][O][C][=C][C][=Branch1][=Branch2][=C][C][=Branch1][Ring2][=C][Ring1][=Branch1][O]-
[C@H1][C@H1][C@@H1] [Branch1][Branch1][C][O][Ring1][Branch1][C@@H1][Branch1][=Branch1][O][C][Ring1]-
[#Branch1][=O][C][=C][C][=Branch1][=C][=C][Branch1] [=Branch2][C][=Branch1][Ring2][=C][Ring1][=Branch1][O]-
[C][O][C][O]

Property: The LogP for the input molecule is 2.00.

K.12 MOLECULAR WEIGHT PREDICTION

The molecular weight prediction task focuses on determining the molecular weight of a given chem-
ical compound, a fundamental property that reflects its size and atomic composition. Molecular
weight is a crucial parameter in various scientific disciplines, including organic synthesis, drug de-
sign, polymer chemistry, and materials science. It influences key aspects such as reaction stoichiom-
etry, diffusion rates, bioavailability, and stability. The input follows the SELFIES format, a robust
molecular encoding system designed for computational chemistry applications. The input consists
of the SELFIES representation of a molecule, which the model processes to predict its molecular
weight in unified atomic mass units (Da). This structured approach allows the model to learn the
relationships between molecular structure and atomic composition, enabling precise and efficient
molecular weight estimation. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Property.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: Please provide me with the Molecular Weight value of this molecule. Determine the Molecular Weight value
of this molecule. If uncertain, provide an estimate. Respond with the numerical value only. The molecule SELFIES
sequence is:
<SELFIES compound>: [C][O][C][=C][Branch1][#Branch1][C][=C][C][=N][Ring1][=Branch1][C][=Branch1][C][=O]-
[N][C][C][C][C][C][N][Branch1][Branch1][C][C][Ring1][=Branch1][S][=Branch1][C][=O][=Branch1][C][=O][N][C][=Br-
anch1][C][=O][N][C][C][C][C][C][C][Ring1] [Branch1][C][=C][Ring1][Branch1]

Property: The Molecular Weight for the input molecule is 491.60 g/mol.
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K.13 TOPOLOGICAL POLAR SURFACE AREA PREDICTION

The topological polar surface area (TPSA) prediction task focuses on determining the TPSA value
of a given chemical compound, a key descriptor that reflects its molecular polarity and hydrogen
bonding capacity. TPSA is widely used in cheminformatics, particularly in drug discovery, where
it serves as an important predictor of solubility, permeability, and absorption. A compound’s TPSA
value influences its bioavailability, blood-brain barrier penetration, and interactions with biological
membranes, making accurate prediction essential for pharmaceutical and materials research. The
input is the SELFIES representation of the compound, and the model is tasked with predicting the
compound’s TPSA. The objective is to provide insights into the compound’s polarity, solubility, and
potential absorption characteristics, which are crucial considerations in areas such as drug discovery
and materials research. The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Property.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: I would like to know the Topological Polar Surface Area of this molecule, can you provide it? If uncertain,
provide an estimate. Respond with the numerical value only. The compound SELFIES sequence is:
<SELFIES compound>:[C][C][=Branch2][=Branch1][=Branch2][=C][C][O][C][C][Branch1][O][C][Branch1][Ring2]-
[O][Ring1][=Branch1][Branch1][C][C][C][O][C][C][C][C][Branch2][Ring2][#C][C][Branch2][Ring2][#Branch2][C][Br-
anch2][Ring1][=Branch1][C][C][Branch1][P][C][Ring1][=Branch1][Branch1][O][C][Ring1][#Branch2][C][Ring2][Ring1]-
[C][O][Ring1][Ring1][O][O][C][C][=C][Ring1][=N][N][C][=C][C][=C][C][=C][Ring1][=Branch2][Ring1][=Branch1][C]-
[C][C]

Property: The Topological Polar Surface Area for the input molecule is 96.50 Å².

K.14 COMPLEXITY PREDICTION

The complexity prediction task focuses on determining the structural complexity of a given chem-
ical compound, a key property that reflects its architectural intricacy, stereochemical richness, and
molecular connectivity. Molecular complexity plays a crucial role in synthetic chemistry, drug dis-
covery, and materials science, where it impacts synthetic feasibility, resource requirements, and
overall manufacturability. Compounds with high complexity may require multiple synthetic steps,
specialized reagents, and intricate reaction conditions, whereas simpler molecules are generally eas-
ier to produce and optimize for industrial applications. The input is the SELFIES representation of
the compound, and the model is tasked with predicting the compound’s complexity. The objective
is to shed light on the molecule’s structural intricacy, which can influence its synthetic accessibility,
resource requirements, and overall feasibility in various chemical processes. The prompt template
is as follows.
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Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Property.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: I need to know the Complexity of this molecule, could you please provide it? If uncertain, provide an estimate.
Respond with the numerical value only. The compound SELFIES sequence is:
<SELFIES compound>: [C][C@@H1][Branch2][Ring2][#Branch2][C][C@@H1][Branch1][P][C][=Branch1][C][=O][N]-
[C@@H1][Branch1][C][C][C] [=N][C][=C][S][Ring1][Branch1][N][Branch1][C][C][C][=Branch1][C][=O][C][C@H1]-
[Branch1][C][C][C][Branch1][C][Cl][Branch1][C][Cl][Cl] [C][Branch1][C][Cl][Branch1][C][Cl][Cl]

Property: The Complexity for the input molecule is 572.00.

K.15 DESCRIPTION Q&A

The description question and answer task involves responding to queries regarding a given com-
pound’s properties in physical chemistry and related fields. The input is the SELFIES representation
of the compound. The model is tasked with providing accurate answers to detailed questions about
the compound’s physical and chemical attributes, encompassing a broad range of topics—from phar-
macological considerations to the specific influence of structural and functional groups on biological
activity (e.g., in anticancer agents such as 4-Hydroxycyclophosphamide or Lobaplatin). The objec-
tive is to achieve a comprehensive and in-depth understanding of the compound’s characteristics.
The prompt template is as follows.

Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <SELFIES compound> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: Description.<|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: What is the main component of Lobaplatin that gives it its anticancer properties? The compound SELFIES
sequence is:
<SELFIES compound>: [C][C@@H1][Branch1][=Branch1][C][=Branch1][C][=O][O-1][O-1].[C][C][C@H1]-
[Branch1][=Branch1][C@@H1][Ring1][Ring2][C][N][C][N].[Pt+2]

Description: The main component of Lobaplatin that gives it its anticancer properties is the platinum cation (Pt+2).

K.16 EXPERIMENTAL PROCEDURE PREDICTION

The experimental procedure prediction task focuses on generating a detailed, step-by-step protocol
for conducting chemical experiments based on a given set of experimental components. This task
plays a crucial role in automated synthesis planning, high-throughput experimentation, and robotic
chemistry, where structured experimental procedures are essential for reproducibility, efficiency,
and accuracy. The input is a mapping between experimental components and their corresponding
SELFIES representations (e.g., ”Reactants: $index$: SELFIES” ...). The model is tasked with
producing a structured sequence of operations that associates each component with the detailed
steps of the experiment. The objective is to automate the chemical synthesis process by providing
executable, structured experimental procedures. The prompt template is as follows.
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Template

User Input: <user identifier> ⊕ <graph token>\n ⊕ Instruction. ⊕ <IDX Reactants MAP>
⊕ <IDX Product MAP> ⊕ <IDX Catalysts MAP> ⊕ <IDX Solvents MAP> ⊕ <|eot id|> ⊕
<assistant identifier>
Assistant Output: <ACTION Sequence><|eot id|>
<user identifier>: <|start header id|>user<|end header id|>\n\n
<assistant identifier>: <|start header id|>assistant<|end header id|>\n\n

Example

Instruction: From the provided starting materials and target compound, generate the step-by-step experimental protocol.
The Action Sequence:
<IDX Reactants MAP>:Reactants:$4$:[START SELFIES][O][=C][C][=C][C][=C][Branch1][O][O][C][C][C][O][C][C]-
[O][Ring1][Branch1][C][=C][Ring1][=C][END SELFIES] $3$: [START SELFIES][C][C][Branch1][C][C][Branch1][C][C]-
[O-1].[K+1][END SELFIES]
<IDX Product MAP>:Product:$-1$:[START SELFIES][C][=C][C][=C][C][=C][Branch1][O][O][C][C][C][O][C][C][O]-
[Ring1][Branch1][C][=C][Ring1][=C][END SELFIES]
<IDX Catalysts MAP>:Catalysts:$1$:[START SELFIES][C][P+1][Branch1][=Branch2][C][=C][C][=C][C][=C][Ring1]-
[=Branch1][Branch1][=Branch2][C][=C][C][=C][C][=C][Ring1][=Branch1][C][=C][C][=C][C][=C][Ring1][=Branch1].[Br-
1][END SELFIES]
<IDX Solvents MAP>: Solvents: $2$: [START SELFIES][C][C][O][C][C][END SELFIES]

ACTION Sequence: ADD $1$ (2 liter, 57.2 g) ; ADD $2$ (500 ml) ; ADD $2$ ; STIR ; ADD $3$ (18.0 g) ; ADD $4$
(23.7 g) ; FILTER ; WASH with water ; WASH with sodium chloride ; WASH with water ; WASH with sodium chloride ;
DRYSOLUTION over magnesium sulfate ; FILTER keep filtrate ; CONCENTRATE ; YIELD $-1$ (20.8 g).
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