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ABSTRACT

We propose NeuFace, a 3D face mesh pseudo annotation method on videos via
neural re-parameterized optimization. Despite the huge progress in 3D face re-
construction methods, generating reliable 3D face labels for in-the-wild dynamic
videos remains challenging. Using NeuFace optimization, we annotate the per-
view/-frame accurate and consistent face meshes on large-scale face videos, called
the NeuFace-dataset. We investigate how neural re-parameterization helps to re-
construct 3D facial geometries, well complying with input facial gestures and
motions. By exploiting the naturalness and diversity of 3D faces in our dataset, we
demonstrate the usefulness of our dataset for 3D face-related tasks: improving the
reconstruction accuracy of an existing 3D face reconstruction model and learning
3D facial motion prior. Code and datasets will be publicly available if accepted.

1 INTRODUCTION

A comprehensive understanding of dynamic 3D human faces has been a long-standing problem in
computer vision and graphics. Reconstructing and generating dynamic 3D human faces are key
components for diverse tasks such as face recognition (Weyrauch et al., 2004; Blanz & Vetter, 2003),
face forgery detection (Cozzolino et al., 2021; Rossler et al., 2018; 2019), video face editing (B R
etal., 2021; Kim et al., 2018; Tewari et al., 2020), facial motion or expression transfer (Thies et al.,
2015; 2016a; 2018), XR applications (Elgharib et al., 2020; Wang et al., 2021; Richard et al., 2021),
and human avatar generation (Raj et al., 2020; Ma et al., 2021; Youwang et al., 2022).

Recent studies (Wood et al., 2021; 2022; Bae et al., 2023; Yeh et al., 2022) have shown that reliable
datasets of facial geometry, even synthetic or pseudo ones, can help achieve a comprehensive
understanding of “static” 3D faces. However, there is currently a lack of reliable and large-scale
datasets containing “dynamic” and “natural” 3D facial motion annotations. The lack of such
datasets becomes a bottleneck for studying inherent facial motion dynamics or 3D face reconstruction
tasks by restricting them to rely on weak supervision, e.g., 2D landmarks or segmentation maps.
Accurately acquired 3D face video data may mitigate such issues but typically requires intensive
and time-consuming efforts with carefully calibrated multi-view cameras and controlled lighting
conditions (Yoon et al., 2021; Joo et al., 2015; 2018; Cudeiro et al., 2019; Ranjan et al., 2018). Few
seminal works (Fanelli et al., 2010; Ranjan et al., 2018; Cudeiro et al., 2019; Zielonka et al., 2022)
take such effort to build 3D face video datasets. Despite significant efforts, the existing datasets
obtained from such restricted settings are limited in scale, scenarios, diversity of actor identity and
expression, and naturalness of facial motion (see Table 1).

In contrast to 3D, there are an incomparably large amount of 2D face video datasets available
online (Wang et al., 2020; Nagrani et al., 2017; Chung et al., 2018; Zhu et al., 2022; Parkhi et al., 2015;
Cao et al., 2018; Karras et al., 2019; Wang et al., 2021; 2019; Liu et al., 2015), which are captured in
diverse in-the-wild environments but without 3D annotations. As successfully demonstrated in some
3D tasks (Fang et al., 2021; Bouazizi et al., 2021; Huang et al., 2022; Miiller et al., 2021; Hassan et al.,
2019; Bayer et al., 2016; Ng et al., 2022) as well as other analysis tasks (Miech et al., 2019; Nagrani
etal.,, 2022; Lee et al., 2021), leveraging off-the-shelf reconstruction models is a common practice
to obtain pseudo ground-truth of such in-the-wild videos that were already captured. They showed
that high-quality and large-scale pseudo ground-truth is sufficient to achieve the state-of-the-art at
the time of their works. Similarly, a naive approach is to construct a large-scale 3D face video
dataset by curating existing 2D video datasets and obtain 3D face annotations with off-the-shelf
face reconstruction models (Feng et al., 2021; Danecek et al., 2022). However, existing 3D face
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reconstruction models have limitations for reconstructing temporally smooth or multi-view consistent
3D face meshes from videos. This is because state-of-the-art face reconstruction models are typically
trained on single-view static images only with 2D supervision; thus fail to extrapolate to faces having
rare poses and yield jittered motion due to the per-frame independent inference.

To address these difficulties, we propose NeuFace optimization, which reconstructs accurate and
spatio-temporally consistent parametric 3D face meshes on videos. By re-parameterizing 3D face
meshes with neural network parameters, NeuFace infuses spatio-temporal cues of dynamic face
videos on 3D face reconstruction. NeuFace optimizes spatio-temporal consistency losses and the 2D
landmark loss to acquire reliable face mesh pseudo-labels for videos.

Using this method, we create the NeuFace- 5 o No. seq. [K] No.id Dur. (hrs] _ Env.
dataset,. the first large—sgale, accurate " gyisting 3D face video datasets
and spatio-temporally consistent 3D face = BIWI3D L1 14 14 Lab.
. . COMA 0.15 12 0.1 Lab.
?sz%es for Vlﬂeos. C()iurldka;xtallsetf conltams VOCASET 03 b 05 Lab.
ace mesh pseudo-labels Tor 1arge- oo po e dataset (ours) 1,245 21,048 2,090  Wild + Lab.
scale, multi-view or in-the-wild 2D face F NeuFaceypap 210 48 25 Lab.
videos, MEAD (Wang et al., 2020), Vox- - NeuFacevoxceten 1,000 6,000 2,000 Wild
= = NeuFaceceiebv-HQ 35 15,000 65 Wild

Celeb2 (Chung et al., 2018), and CelebV-
HQ (Zhu et al., 2022), achieving about
1,000 times larger number of sequences
than existing facial motion capture datasets
(see Table 1). Our dataset inherits the ben-
efits of the rich visual attributes in large-
scale face videos, e.g., various races, ap-
pearances, backgrounds, natural facial mo-
tions, and expressions. We assess the fi-
delity of our dataset by investigating the cross-view vertex distance and the 3D motion stability index.
We demonstrate that our dataset contains more spatio-temporally consistent and accurate 3D meshes
than the competing datasets built with strong baseline methods. To demonstrate the potential of our
dataset, we present two applications: (1) improving the accuracy of a face reconstruction model and
(2) learning a generative 3D facial motion prior. These applications highlight that NeuFace-dataset
can be further used in diverse applications demanding high-quality and large-scale 3D face meshes.
We summarize our main contributions as follows:

Table 1: NeuFace-dataset provides reliable 3D face
mesh annotations for MEAD, VoxCeleb2 and CelebV-
HQ videos, which is significantly richer than the ex-
isting datasets in terms of the scale, diversity and nat-
uralness. Abbr. {seq.: sequences, id.: identities, Dur.:
duration, Env.: environment}

* NeuFace, an optimization method for reconstructing accurate and spatio-temporally consistent 3D
face meshes on videos via neural re-parameterization.

* NeuFace-dataset, the first large-scale 3D face mesh pseudo-labels constructed by curating existing
large-scale 2D face video datasets with our method.

* Demonstrating the benefits of NeuFace-dataset: (1) improve the accuracy of off-the-shelf face mesh
regressors, (2) learn 3D facial motion prior for long-term face motion generation.

2 RELATED WORK

3D face datasets. To achieve a comprehensive understanding of dynamic 3D faces, large-scale
in-the-wild 3D face video datasets are essential. There exist large-scale 2D face datasets that provide
expressive face images or videos (Wang et al., 2020; Nagrani et al., 2017; Chung et al., 2018; Zhu
et al., 2022; Parkhi et al., 2015; Cao et al., 2018; Karras et al., 2019; Liu et al., 2015) with diverse
attributes covering a wide variety of appearances, races, environments, scenarios, and emotions.
However, most 2D face datasets do not have corresponding 3D annotations, due to the difficulty of
3D face acquisition, especially for in-the-wild environments. Although some recent datasets (Yoon
et al., 2021; Ranjan et al., 2018; Cudeiro et al., 2019; Zielonka et al., 2022; Wood et al., 2021) provide
3D face annotations with paired images or videos,' they are acquired in the restricted and carefully
controlled indoor capturing environment, e.g., laboratory, yielding small scale, unnatural facial
expressions and a limited variety of facial identities or features. Achieving in-the-wild naturalness
and acquiring true 3D labels would be mutually exclusive in the real-world. Due to the challenge of
constructing a real-world 3D face dataset, FaceSynthetics (Wood et al., 2021) synthesizes large-scale

'MICA released the medium-scale 3D annotated face datasets, but only a single identity parameter per video is
provided, not the facial poses or expression parameters, i.e., static 3D faces.
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synthetic face images and annotations derived from synthetic 3D faces, but limited in that they only
publish images and 2D annotations without 3D annotations, which restrict 3D face video applications.
In this work, we present the NeuFace-dataset, the first large-scale 3D face mesh pseudo-labels paired
with the existing in-the-wild 2D face video datasets, resolving the lack of the 3D face video datasets.

3D face reconstruction. To obtain reliable face meshes for large-scale face videos, we need accurate
3D face reconstruction methods for videos. Reconstructing accurate 3D faces from limited visual cues,
e.g., a monocular image, is an ill-posed problem. Model-based approaches have been the mainstream
to mitigate the ill-posedness and have advanced with the 3D Morphable Models (3DMMs) (Blanz &
Vetter, 1999; Paysan et al., 2009; Li et al., 2017) and 3DMM-based reconstruction methods (Zollhofer
et al., 2018; Egger et al., 2020; Feng et al., 2021; Danecek et al., 2022; Zielonka et al., 2022).

3D face reconstruction methods can be categorized into learning-based and optimization-based
approaches. The learning-based approaches, e.g., (Feng et al., 2021; Danecek et al., 2022; Zielonka
et al.,, 2022; Sanyal et al., 2019a; an Tran et al., 2016), use neural networks trained on large-scale
face image datasets to regress the 3DMM parameters from a single image. The optimization-based
approaches (Blanz & Vetter, 2003; Huber et al., 2015; Chen et al., 2013; Wood et al., 2022; Thies et al.,
2015; Gecer et al., 2019) optimize the 2D landmark or photometric losses with extra regularization
terms directly over the 3DMM parameters. Given a specific image, these methods overfit to 2D
landmarks observations, thus showing better 2D landmark fit than the learning-based methods. These
approaches are suitable for our purpose in that we need accurate reconstruction that best fits each
video. However, the regularization terms are typically hand-designed with prior assumptions that
disregard the input image. These regularization terms often introduce mean shape biases (Feng et al.,
2021; Pavlakos et al., 2019; Bogo et al., 2016; Joo et al., 2020), due to their independence to input
data, which we call the data-independent prior. Also, balancing the losses and regularization is
inherently cumbersome and may introduce initialization sensitivity and local minima issues (Joo
et al., 2020; Pavlakos et al., 2019; Bogo et al., 2016; Choutas et al., 2020).

Instead of hand-designed regularization terms, we induce such effects by optimizing re-parameterized
3DMM parameters with a 3DMM regression neural network, called NeuFace optimization. Such
network parameters are trained from large-scale real face images, which implicitly embed strong
prior from the trained data. Thereby, we can leverage the favorable properties of the neural re-
parameterization: 1) an input data-dependent initialization and prior in 3DMM parameter opti-
mization, 2) less bias toward a mean shape, and 3) stable optimization robust to local minima by
over-parameterized model (Cooper, 2021; Du et al., 2019a; Neyshabur et al., 2018; Allen-Zhu et al.,
2019; Du et al., 2019b). Similar re-parameterizations were proposed in (Joo et al., 2020; Grassal
et al., 2022), but they focus on the human body in a single image input with fixed 2D landmark
supervision, or use MLP to re-parameterize the per-vertex displacement of the 3D face. We extend it
to dynamic faces in the multi-view and video settings by sharing the neural parameters across views
and frames, and devise an alternating optimization to self-supervise spatio-temporal consistency.

3 NEUFACE: A 3D FACE MESH OPTIMIZATION FOR VIDEOS VIA NEURAL
RE-PARAMETERIZATION

In this section, we introduce the neural re-parameterization of 3DMM (Sec. 3.1) and NeuFace,
an optimization to obtain accurate and spatio-temporally consistent face meshes from face videos
(Sec. 3.2). We discuss the benefit of neural re-parameterization (Sec. 3.3), and show the possibility of
our system as a reliable face mesh annotator (Sec. 3.4).

3.1 NEURAL RE-PARAMETERIZATION OF 3D FACE MESHES

We use FLAME (L. et al., 2017), a renowned 3DMM, as a 3D face representation. 3D face mesh
vertices M and facial landmarks J for F' frame videos can be acquired with the differentiable
skinning: M, J=FLAME(r, 8, 3, 1), where r € R3, § € R'?, B € R0 and v € R°" denote the
head orientation, face poses, face shape and expression coefficients, respectively. For simplicity,
FLAME parameters © can be represented as, ® = [r, 8, 3,]. We further re-parameterize the
FLAME parameters ® and weak perspective camera parameters p € R >3 for video frames
{If}f::l, into a neural network, ®, with parameters w, i.e., [©,p] = (bw({]:f}?zl). We use the
pre-trained DECA (Feng et al., 2021) or EMOCA (Danecek et al., 2022) encoder for ®,.
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Figure 1: NeuFace optimization. Given 2D face videos, NeuFace optimizes spatio-temporally
consistent 3D face meshes. NeuFace updates the neural network parameters that re-parameterize the
3D face meshes with 2D landmark loss and spatio-temporal consistency losses.

3.2 NEUFACE OPTIMIZATION

Given the N frames and Ny views of a face video {I f’v}}vj 1’]\1{‘;1, NeuFace aims to find the optimal
neural network parameter w* that re-parameterizes accurate, multi-view and temporally consistent
face meshes (see Fig. 1). The optimization objective is defined as:

* .
w* = argmin Lop + )\tempﬂtemporal + Aview Lonultiview s (D
w

where {\.} denotes the weights for each loss term. Complex temporal and multi-view dependencies
among variables in the losses would make direct optimization difficult (Afonso et al., 2010; Salzmann,
2013; Zhang, 1993). We ease the optimization of Eq. (1) by introducing latent target variables for
self-supervision in an Expectation-Maximization (EM) style optimization.

2D landmark loss. For each iteration ¢, we compute L,p as a unary term, following the conventional
2D facial landmark re-projection loss (Feng et al., 2021; Danecek et al., 2022) for the landmarks in
all different frames and views:

1 Np,N ‘ . .
Lop = mzfil,viﬂ\ﬂ(*] (W) Ps ) —drulls 2

where 7 (-, -) denotes the weak perspective projection, and J(w) is the 3D landmark from P, (+).
Eq. (2) computes the pixel distance between the pre-detected 2D facial landmarks j and the regressed
and projected 3D facial landmarks 7(J(w), p). j stays the same for the whole optimization. We use
FAN (Bulat & Tzimiropoulos, 2017) to obtain j with human verification to reject the failure cases.

Temporal consistency loss. Our temporal consistency loss reduces facial motion jitter caused by
per-frame independent mesh regression on videos. Instead of a complicated Markov chain style loss,
for each iteration ¢, we first estimate latent target meshes that represent temporally smooth heads
in Expectation step (E-step). Then, we simply maximize the likelihood of regressed meshes to its

corresponding latent target in Maximization step (M-step). In E-step, we feed {I fﬂ,}vai 1’1\5‘;1 into the

network ®.,: and obtain FLAME and camera parameters, [@t, p']. For multiple frames in view v,
we extract the head orientations r? , from ® and convert it to the unit quaternion qfﬂ). To generate
the latent target, i.e., temporally smooth head orientations qfﬂ), we take the temporal moving average

U0
over qf,v. In M-step, we compute the temporal consistency loss as:

1 Np,N A
Liemporal = Wzlfil,u‘;l”qtf,v - Q?,v”y 3

where q is the unit-quaternion representation of r. We empirically found that such simple consistency
loss is sufficient enough to obtain temporal smoothness while allowing more flexible expressions.
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align and merge the meshes depending on the con-
fidence. The boostrapped mesh serves as a target

»Cmultiview = mzyjif\;‘;lth RV M?Hh (4)
where 1\7It denotes the latent target mesh vertices estimated in E-step of each iteration. In E-step,
given Vertlces Mt of multiple views in frame f, we interpret the vertex visibility as the per-vertex
confidence. We asslgn the confidence score per each vertex by measuring the angle between the
vertex normal and the camera ray. We set the vertices as invisible We set the vertices as invisible if
the angle is larger than the threshold 7,, and the vertex has a deeper depth than 7., i.e., 2 < 7,. We
empirically choose 7, = 72°, 7, = —0.08. To obtain the latent target mesh ML, we align per-view
estimated meshes to the canonical view, and bootstrap the meshes by taking the weighted average of
M} depending on the confidence (see Fig. 2). With this, Eq. (4) constrains the vertices of each view

to be consistent with 1\7[7}

Overall process. We first estimate all the latent variables, q and M as E-step. With the estimated
latent variables as the self-supervision target, we optimize Eq. (1) over the network parameter w as M-
step. This single alternating iteration updates the optimization parameter w’ —w'*! at iteration . We
iterate alternating E-step and M-step until convergence. After convergence, we obtain the final solution

[©*, p*] by querying video frames to the optimized network, i.e., [@*, p*]|=Py,- ({Ifyv}]fvjl’%‘;l).

3.3 WHY IS NEUFACE OPTIMIZATION EFFECTIVE?

Note that one can simply update FLAME parameters directly with the same loss in Eq. (1). Then, why
do we need neural re-parameterization of 3D face meshes? We claim such neural re-parameterization
allows data-dependent mesh update, which the FLAME fitting cannot achieve. To support our claim,
we analyze the benefit of our optimization by comparing it with the solid baseline.

Baseline: FLAME fitting. Given the same video frames {I ,, }}Vjiﬁ‘;l and the same initial FLAME
and camera parameters [©1,, pp] as NeuFace?, we implement the baseline optimization as:

[6':;7 p;;] = agg min £2D + AtempACtemporal + )\view‘cmultiview + Arﬁr + AG‘CG + )\B‘Cﬂ + )\1p£1p7 (5)
bsPb

where the losses Lop, Liemporal and Lmuitiview are identical to the Eqgs. (2), (3), and (4). L., Lo, L3
and L., are the common regularization terms used in (Li et al., 2017; Wood et al., 2022).

Data-dependent gradients for mesh update. We analyze the data-dependency of the baseline and
NeuFace optimization by investigating back-propagated gradients. For the FLAME fitting (Eq. (5)),
the update rule for FLAME parameters ®1, at optimization step ¢ is as follows:

oL

®t+l @t _ ,
b aa(_)t

(6)

*To conduct a fair comparison with a strong baseline, we initialize [@y,, pp] as the prediction of the pre-trained
DECA. This is identical to NeuFace optimization (Eq. (1)); only the optimization variable is different.
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where £ denotes the sum of all the losses used in the optimization. In contrast, given video frames
{1 f,v}yji%il, or simply I, the update for our NeuFace optimization is as follows:
oL oL 0e! oL 0
witl — wt — as = wt — a(@@t . awvtV) —wt— a(@@t . Wq)wt(l))’ (7

where @ is re-/over-parameterized by the neural network ® ¢, i.e., @ = @ ().

By comparing the back-propagated gradient terms in Egs. (6) and (7), we can intuitively notice that
the update for NeuFace optimization (Eq. (7)) is conditioned by input I, yielding data-dependent
mesh update. With data-dependent gradient %‘bwt (I), NeuFace optimization may inherit the
implicit prior embedded in the pre-trained neural model, e.g., DECA (Feng et al., 2021), learned
from large-scale real face images. This allows NeuFace optimization to obtain expressive 3D facial
geometries, well complying with input facial gestures and motions.

It is also worthwhile to note that, thanks to over-parameterization of @, () w.r.t. ®, we benefit from
the following favorable property. For simplicity, we consider a simple l2-loss and a fully connected
ReLU network,’ but it is sufficient to understand the mechanism of NeuFace optimization.

Proposition 1 (Informal). Global convergence. For the input data x € [0, 1]"*%n, paired labels
y* € R"%dout and an over-parameterized L-layer fully connected network ®.,(-) with ReLU activa-
tion and uniform weight widths, consider optimizing the non-convex problem: arg min,, £L(w) =
%H(I)w (x) — y*||%. Under some assumptions, gradient descent finds a global optimum in polynomial
time with high probability.

Proposition 1 can be derived by simply re-
compositing the results by Allen-Zhu et al. (2019).
Its proof sketch can be found in the supplementary
material. This hints that our over-parameterization
helps NeuFace optimization achieve robustness to
local minima and avoid mean shape biases.

[¢] 1

Normalized absolute
magnitude of gradient
color map

To see how data-dependent gradient of NeuFace
affects the mesh optimization, we visualize the ab-
solute magnitude of the back-propagated gradients
of each method in Fig. 3. The baseline optimiza-
tion produces a sparse gradient map along the face
landmarks, which disregards the pixel-level fa-
cial details, e.g., wrinkles or facial boundaries. In
contrast, NeuFace additionally induces the dense
gradients over face surfaces, not just sparse land-
marks, which are helpful for representing image-
aligned and detailed facial expressions on meshes. Thanks to the rich gradient map, our method
yields more expressive and accurately image-aligned meshes than the baseline.

Input Baseline NeuFace (ours)

Figure 3: Data-dependent gradient. NeuFace
optimization obtains a richer gradient map re-
garding the pixel-level facial details (157 row).
Thus, our method achieves more expressive and
accurately meshes than the baseline (2nd row).

3.4 HOW RELIABLE IS NEUFACE OPTIMIZATION?

Many recent face-related applications (Ng et al., VOCASET GT  @DECA prediction @ FLAME fitting @ NeuFace optimization
2022; Khakhulin et al., 2022; Feng et al., 2022) i ke
utilize a pre-trained, off-the-shelf 3D face recon-
struction model or the FLAME fitting (Eq. (5))
as a pseudo ground-truth annotator. Compared
to such conventional face mesh annotation meth-
ods, we discuss how reliable Neuface optimization
is. Specifically, we measure the vertex-level accu-
racy of the reconstructed face meshes by NeuFace 03 DECA FLAME fitting (Eq. (5)) NeuFace (ours)
optimization on the motion capture videos, VO-  VpvE mm] | 384 s 30,6

CASET (Cudeiro et al., 2019).

Figure 4: Given the ground-truth meshes, our
VOCASET is a small-scale facial motion capture  optimization reconstructs more vertex-level ac-
dataset that provides registered ground-truth mesh  curate meshes than the competing methods.

3By sacrificing the complexity of proof, the same conclusion holds for ResNet (Allen-Zhu et al., 2019).



Under review as a conference paper at ICLR 2024

MEAD VoxCeleb2 CelebV-HQ
Dataset MSIy, t MSI,t CVD] NME| MSI;,t MSI,t NME| MSIG,t MSL, t NME|
Base-dataset (Eq. (5)) 0.034 0.053 0.192 4.34 0.034 0.056 3.32 0.030 0.047 3.65
DECA-dataset 0.011 0.016 0.209 4.65 0.028 0.044 4.78 0.012 0.018 5.34
NeuFace-D-dataset (ours) 0.206 0.305 0.103 2.58 0.095 0.137 2.19 0.054 0.074 2.55
EMOCA-dataset 0.010 0.016 0.199 5.42 0.003 0.004 4.77 0.005 0.007 5.57

NeuFace-E-dataset (ours) 0.209 0.312 0.104 2.28 0.028 0.048 2.38 0.053 0.077 2.86

Table 2: Quantitative evaluation. NeuFace-D/E-datasets (ours) significantly outperform the other
datasets in multi-view consistency (CVD), temporal consistency (MSI;p), and the 2D landmark
accuracy (NME). Abbr: {L: landmark, V: vertex.}

Figure 5: NeuFace-dataset contains accurate and spatio-temporally consistent 3D face mesh pseudo-
labels for large-scale video datasets. Please refer supplementary material for more samples in video.

sequences. Given the ground-truth mesh sequences from the VOCASET, we evaluate the Mean-Per-
Vertex-Error (MPVE) (Cho et al., 2022; Lin et al., 2021b;a) of face meshes obtained by pre-trained
DECA, FLAME fitting and our method. In Fig. 4, NeuFace optimization achieves more vertex-level
accurate meshes than other methods, i.e., lower MPVE. Note that FLAME fitting still achieves
competitive MPVE with ours, which shows that it is a valid, strong baseline. Such favorable mesh
accuracy of NeuFace optimization motivates us to leverage it as a reliable face mesh annotator for
large-scale face videos, and build the NeuFace-dataset.

4 THE NEUFACE-DATASET

The NeuFace-dataset provides accurate and spatio-temporally consistent face meshes of existing
large-scale 2D face video datasets; MEAD (Wang et al., 2020), VoxCeleb2 (Chung et al., 2018),
and CelebV-HQ (Zhu et al., 2022) (see Fig. 5). Our datasets are denoted with NeuFace ., and
summarized in Table 1. The NeuFace-dataset is, namely, the largest 3D face mesh pseudo-labeled
dataset in terms of the scale, naturalness, and diversity of facial attributes, emotions, and backgrounds.
Please refer to the supplementary material for the dataset acquisition and filtering details.

We assess the fidelity of our dataset in terms of spatio-temporal consistency and landmark accuracy.
We make competing datasets and compare the quality of the generated mesh annotations. First, we
compose the strong baseline, Base-dataset, by fitting FLAME with Eq. (5). We also utilize pre-trained
DECA and EMOCA as mesh annotators and built DECA-dataset and EMOCA-dataset, respecitvely.
Finally, we build two versions of our dataset, i.e., NeuFace-D, and NeuFace-E, where each dataset is
generated via Eq. (1) with DECA and EMOCA for the neural re-parameterization ®,, respectively.

Temporal consistency. We extend the Motion Stability Index (MSI) (Ling et al., 2022) to MSIsp
and evaluate the temporal consistency of each dataset. MSI3p computes a reciprocal of the motion
acceleration variance of either 3D landmarks or vertices and quantifies facial motion stability for a
given Ny frame video, {If}}vjl, as MSI3D({If}}Vj1):% > ﬁ, where a’ denotes the 3D motion
acceleration of i-th 3D landmarks or vertices, o(-) the temporal variance, and K the number of
landmarks or vertices. If the mesh sequence has small temporal jittering, i.e., low motion variance,
it has a high MSIsp, value. We compute MSIyp for landmarks and vertices, i.e., MSI5, and MSIyp,,
respectively. Table 2 shows the MSI5, and MSIy, averaged over the validation sets. For the
VoxCeleb2 and CelebV-HQ splits, the NeuFace-D/E-dataset outperform the other datasets in both
MSI;ps. Remarkably, we have improvements on MSIsp more than 20 times in MEAD. We postulate
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that the multi-view consistency loss also strengthens the temporal consistency for MEAD. In other
words, our losses would be mutually helpful when jointly optimized. We discuss it through loss
ablation studies in the supplementary material.

Multi-view consistency. We visualize the pre-
dicted meshes over different views in Fig. 6,
where per-view independent estimations are pre-
sented, not a single merged one. We verify that
the NeuFace-D-dataset contains multi-view con- 55 cHim
sistent meshes compared to the DECA-dataset, k o
especially near the mouth region. See sup- [ g h
plementary material for the comparison of the B e T h e -
EMOCA-dataset and NeuFace-E-dataset. As

a quantitative measure, we compute the cross- Figure 6: Multi-view consistent face meshes.
view vertex distance (CVD), i.e., the vertex dis- NeuFace-dataset contains multi-view consistent
tance between two different views, i and j, in meshes compared to the DECA-dataset. L- and R-
the same frame f: |M fi—Myg I .- We com- denote Left and Right, and 30 and 60 denote the
pare the averaged CVD of all views in Table 2. camera view angles from the center.

CVD is only evaluated on the MEAD dataset,

which is in a multi-camera setup. While the DECA-/EMOCA-dataset results in high CVD, the
NeuFace-dataset shows significantly lower CVD on overall views.

2D landmark accuracy. A trivial solution to obtain low CVD and high MSIjp, is to regress the same
mean face meshes across views and frames regardless of the input image. To verify such occurrence,
we measure the landmark accuracy of the regressed 2D facial landmarks using the normalized mean
error (NME) (Sagonas et al., 2016). The NeuFace-D/E-dataset outperform the other datasets in NME,
i.e., contain spatio-temporally consistent and accurately landmark-aligned meshes.

5 APPLICATIONS OF THE NEUFACE-DATASETS

In this section, we demonstrate the usefulness of the NeuFace-dataset. We boost the accuracy of an
off-the-shelf face mesh regressor by exploiting our dataset’s 3D supervision (Sec. 5.1). Also, we learn
generative facial motion prior from the large-scale, in-the-wild 3D faces in our dataset (Sec. 5.2).

5.1 IMPROVING THE 3D RECONSTRUCTION ACCURACY

Due to the absence of large-scale 3D face video datasets, existing face mesh regressor models utilize
limited visual cues, such as 2D landmarks or segmentations. Thus, we utilize the NeuFace-dataset to
add direct 3D supervision to enhance the performance of such a model.

3D supervision with the NeuFace-dataset. We implement the auxiliary 3D supervision as conven-
tional 3D vertex and landmark losses (Kolotouros et al., 2019; Cho et al., 2022; Lin et al., 2021b;a).
Given regressed and our annotated mesh vertices, M, M € RNum X3 and regressed and our anno-
tated 3D landmarks, J, J € RN7*3 the auxiliary 3D losses are computed as: C%Zﬁ ||M—M||2,

E%D:N%I | J—J||2, where Nas, N is the number of mesh vertices and landmarks, respectively.

Enhancement on 3D reconstruction accuracy. By fine-tuning DECA (Feng et al., 2021) using
the images of MEAD (Wang et al., 2020), VoxCeleb2 (Chung et al., 2018) and CelebV-HQ (Zhu
et al., 2022), with and without our 3D supervision, we obtain DECANeypace 3p and DECANeyrace 2D -
Following the evaluation protocol of the NoW benchmark (Sanyal et al., 2019a), we reconstruct 3D
faces for the provided images via each model and report the 3D reconstruction errors. In Table 3, our
DECANeuFace,3p shows lower 3D reconstruction error than DECAigina and DECAneyFace 2D-

5.2 LEARNING 3D HUMAN FACIAL MOTION PRIOR

A facial motion prior is a versatile tool to understand how human faces move over time. It can generate
realistic motions or regularize temporal 3D reconstruction (Rempe et al., 2021). Unfortunately, the
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Error [mm] (])

Model Test-opt Median Mean  Std

3DMM-CNN (Tuan Tran et al., 2017) cvpr 2017 1.84 233 205

PRNet (Feng et al., 2018)geev 2018 150 198 1.88

RingNet (Sanyal et al., 2019b) cvpr 2010 121 1.54 131

MGCNet (Shang et al., 2020) geev 2020 1.31 1.87 263

) ECCv 2020 v 123 157 1.39

1., 2022) gcev 2022 v 1.02 1.28  1.08

v 0.90 L1l 092

1.18 146 125

1.15 144 1.26

- = 111 138 119
DECAcriginal DECAneuFace,20 DECAneuface,30

(a) (b)

Table 3: Improving the face reconstruction accuracy. (a) NeuFace-dataset helps the model
reconstruct more occlusion robust and expressive 3D faces than the original model. Green and
red dots denote visible and invisible 3D landmarks, respectively. (b) As a result, DECANeyFace, 2D-
DECANeuFace,3p achieve better 3D reconstruction accuracy than DECA griginat-

lack of large-scale 3D face video datasets makes learning facial motion prior infeasible. We tackle
this by exploiting the scale, diversity, and naturalness of the 3D facial motions in our dataset.

Learning facial motion prior. We learn a 3D facial motion prior using HuMoR (Rempe et al.,
2021) with simple modifications. HuMoR is a conditional VAE (Sohn et al., 2015) that learns the
transition distribution of human body motion. We represent the state of a facial motion sequence as
the combination of FLAME parameters and landmarks in the NeuFace-dataset and train the dedicated
face motion prior, called HuMoR-Face. We train three motion prior models (HuMoR-Face) with
different training datasets, i.e., VOCASET (Cudeiro et al., 2019), NeuFacepgap, and NeuFacevyoxceleb? -
Please refer to supplementary material and HuMoR (Rempe et al., 2021) for the details.

Long-term face motion generation. We
evaluate the validity and generative power
of the learned motion prior by generat- |
ing long-term 3D face motion sequences \Ej
(10.0s). Long-term motions are gener-
ated by auto-regressive sampling from the —
learned prior, given only a starting frame \éj

as the condition (see Fig. 7). VOCASET ‘
provides small-scale, in-the-lab captured — Neuracevocees
meshes, thus limited in motion natural- [ |
ness and facial diversity. Accordingly, the &/
HuMoR-Face trained with VOCASET fails '
to learn a valid human facial motion prior
and generates unnatural motion. Using

only the subset, NeuFacemeap, the long-  Figure 7: Long-term facial motion generation using
term stability of head motion has signifi- Jearned motion prior. The motion prior trained with
cantly enhanced. We attribute such high  gmall-scale, diversity-limited fails to gener-
quality prior to the benefit of the NeuFace-  4te natural motion, while the motion prior trained with

dataset: large-scale facial motion annota- NeuFacey,yceer> generates diverse and natural long-
tions. Further, exploiting diverse in-the- term facial motion.

wild, dynamic, and natural motion anno-
tation from NeuFacevoxceleb2 helps HuMoR-Face learn real-world motion prior and surprisingly
generate much diverse and dynamic motions.

NeuFaceyen

time
0.0s 1.0s 2.0s 5.0s 8.0s 10.0s

6 CONCLUSION

We develop NeuFace, an optimization for generating accurate and spatio-temporally consistent 3D
face mesh pseudo-labels on videos with provable optimal guarantee. Moreover, with the technique,
we build the NeuFace-dataset, a large-scale 3D face meshes paired with in-the-wild 2D videos.
We demonstrate the potential of the diversity and naturalness of our NeuFace-dataset as a training
dataset to learn generative 3D facial motion prior. Also, we improve the reconstruction accuracy of a
de-facto standard 3D face reconstruction model using our dataset. We expect NeuFace to open up
new opportunities by providing large-scale, real-world 3D face video data, the NeuFace-dataset, as a
reliable data curation method.
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ETHICS STATEMENT

For face reconstruction tasks and datasets, the diversity of race or ethnicity, gender, appearance,
and actions is an important topic to discuss (Wang et al., 2019; Zhu et al., 2022). Existing 3D face
video datasets (Zielonka et al., 2022; Ranjan et al., 2018; Cudeiro et al., 2019) typically have limited
diversity regarding ethnicity, gender, appearance, and actions. Such 3D face datasets rarely provide
video pairs, but with artificial facial markers attached to human faces and a small set of identities.
On the other hand, our NeuFace-dataset mitigates such issues since our dataset is acquired on top
of large-scale in-the-wild face video datasets, which typically rely on internet videos. Such video
datasets are diverse in terms of ethnicity, gender, facial appearances, and actions when compared to
the small/medium-scale 3D facial motion capture datasets. Since our dataset is acquired based on the
existing public video datasets (Wang et al., 2020; Chung et al., 2018; Zhu et al., 2022), all the rights,
licenses, and permissions follow the original datasets. Moreover, we will release the NeuFace-dataset
by providing the reconstructed 3DMM parameters without the actual facial video frames. NeuFace-
dataset does not contain identity-specific metadata and facial texture maps. Nonetheless, per-identity
shape coefficients can give a rough guide about human facial shape. Thus, we will release our dataset
for research purposes only.

REPRODUCIBILITY STATEMENT

We will make our code and data accessible to the public once it is published.
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APPENDIX

We present additional analysis, results, and experiments that are not included in the main paper due
to the space limit. Also, the attached video explains and demonstrates the main idea of NeuFace and
video samples for the NeuFace-dataset.

A ANALYSIS ON NEUFACE

In this section, we introduce and validate our design choices for NeuFace optimization, through
analysis. Specifically, we build a strong baseline and support our choice of “re-parameterized” face
mesh optimization method for NeuFace in Sec. A.1. Next, we provide a proof sketch of the provable
global minima convergence of NeuFace optimization in Sec. A.2. Also, we analyze and discuss the
effect of each loss function in Sec. A.3.

A.1 FLAME FITTING VS. NEUFACE OPTIMIZATION

Recall that NeuFace re-parameterizes the 3DMM, i.e., FLAME (Li et al., 2017) to the neural param-
eters (represented as DECA (Feng et al., 2021)), then optimizes over them to obtain accurate 3D
face meshes for videos. Following the prior arts in the parametric human body reconstruction litera-
ture (Bogo et al., 2016; Pavlakos et al., 2019; Kolotouros et al., 2019), there exists a simple method
to optimize the parametric model; 3DMM parameter fitting. Thus, we implement FLAME fitting as
a solid baseline and compare the quantitative and qualitative results with NeuFace optimization to
analyze and support our choice of neural re-parameterization.

Details of baseline FLAME fitting. Given the initial FLAME and camera parameters, [Oy, pp| =
[rb, Ob, By, ¥, Pb), we implement the direct FLAME optimization as:

[9;‘;7 pik)] = a(gg min £2D + )\tempﬁtemporal + )\view»cmultiview + )\r»cr + )\O»CG + )\ﬁ»CB + )\wﬁqpa
bsPb

where the losses Lop, Liemporal, and Lyuiiview are identical to the losses discussed in the main
paper (Egs. 2,3,4). We can obtain the initial FLAME parameters for the optimization in two ways:
(1) initialize from mean parameters and (2) initialize from pre-trained DECA (Feng et al., 2021)
predictions. We empirically found that initialization with mean FLAME parameters frequently fails
when the input images contain extreme head poses. Thus, we choose to initialize FLAME parameters
from the pre-trained DECA predictions, thus providing a plausible initialization for a fair comparison.
Also, following the convention (Li et al., 2017), we optimize FLAME parameters in a coarse-to-fine
manner. For the earlier stage, we fix FLAME parameters that control local details, i.e., Oy, 3y,, and
1)y,, and optimize the global head orientation, rp,, and camera parameters pp. Then we fix camera
parameters and optimize other FLAME parameters jointly at a later stage to fit the local details.

Since we initialize FLAME parameters and camera parameters from the pre-trained DECA predictions,
i.e., initial [@p, pp] in Eq. (5). Accordingly, the meshes obtained by the FLAME fitting achieve better
spatio-temporal consistency and 2D landmark accuracy than the meshes obtained by a pre-trained
DECA without any post-processing.

Qualitative result. In Fig. S1(a), NeuFace-dataset contains much expressive and image-aligned
meshes, e.g., wrinkles and face boundaries. On the other hand, the meshes obtained by the direct
FLAME optimization show mean shape-biased 3D faces. We explain such results in terms of the data-
independency of the direct FLAME optimization. The baseline method requires several regularization
terms based on the prior, pre-built from external 3D datasets, which is data-independent (Eq. (5)).
Such data-independent regularization encourages the optimized FLAME parameters to stay close to
the mean of parameter distributions, regardless of the facial characteristics on input images. Balancing
such regularization terms with other losses is cumbersome and prone to obtain mean shape faces.

In contrast, recall that NeuFace re-parameterizes the FLAME parameters as the pre-trained neural
network, such as DECA (Feng et al., 2021). Such re-parameterization allows NeuFace to update
face meshes in an input-image-conditioned manner, called data-dependent mesh update (Sec. 3.3 in
the main paper). Figure S1(b) visualizes the data-dependent gradient of our optimization. While
the baseline shows similar gradient patterns throughout three input images, NeuFace optimization
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Input FLAME fitting NeuFace optim. Input FLAME fitting NeuFace optim.
(baseline) (ours) (baseline) (ours)
(@) (b)

Figure S1: FLAME fitting vs. NeuFace optimization. (a) NeuFace optimization obtains much
expressive and pixel-level aligned meshes than the baseline FLAME fitting. (b) We observe NeuFace
optimization induces richer and data-dependent gradients compared to the sparse gradients of baseline.

produces diverse gradient maps according to input images. Such rich and data-dependent gradients
consider high-dimensional visual features induced from the input RGB values in the optimization
process, yielding accurate and expressive 3D faces.

A.2 PROPOSITION 1: CONVERGENCE PROPERTY TO GLOBAL MINIMA

Proposition 1 in this work is a straightforward variation of the main result of Allen-Zhu et al. (Allen-
Zhu et al., 2019). Before providing the proof sketch of Proposition 1. We describe the assumptions
needed to prove Proposition 1. For simplicity, we consider a simple l»-based regression loss and
a L-layer fully connected ReL.U network @W(-) having a uniform weight width size of m. For

the training data consisting of vector pairs {(z;,y;)}ic[n> the network has the batched input of
x={;}ic[n), Where n is the batch size, z;€[0,1]%, and y; € R, the output of b () € R,
and the weights W = (W eR™*din Wi -1y €R™*™ W ERoutxm) 4

Assumption 1. Without loss of generality, Vi, ||z;|| = 1 and ||y}|| < O(1).

Assumption 2. The pretrained neural network weights W(O) are assumed to be started from the
values distributed normally, i.e., considered as a sample instance from a Gaussian distribution. Specif-

ically, W], ; ~ N(0,2/rou[W)]) forl € {1,--- ,L — 1} and [W\"], ; ~ N'(0,1/row[W])
for every (i, j), where the operator rou[-] returns the row size of the input matrix.

Assumption 2 appears to be restrictive by those standard deviations, but it is not. The assumptions
cover a fairly broad range of weight distribution scenarios. For larger standard deviations, we can
always set a small norm for 2’s in Assumption 1 without loss of generality, and vice versa.

Under these assumptions, we restate Proposition 1 in the main paper.

Proposition 1 (Global Convergence). For any € € (0,1], 6€ (0,0(%)], given an input data {x,y}
and the neural network ®g(-) over-parameterized such that m > (poly(n, L,671) - doust).
consider optimizing the non-convex regression problem: arg minf E(W) = 3P (x) — yl3-
Under the above assumptions, with high probability, the gradient descent algorithm with the learning

rate p = © (m) finds a point W* such that E(W*) < € in polynomial time.

Proof sketch. We first introduce the following useful lemmas needed to prove the proposition.

Lemma 1 (Theorem 3 in (Allen-Zhu et al, 2019)). With probability at least 1 —

e~ m/Qpoly(n,L:67Y) it satisfies for every £ € [L], every i € [n], and every W with

*We can consider that the biases are included in { W'} without loss of generality.
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W - WO, <

1
S poly(n,Lo- 1)

0 (W) 353 ) < VLWl < 0 (W) 257 ).

2,

where ||WH2 = maxe(z) [|W;

dn? d

This lemma suggests that, when we are close to the starting point W(O) of the neural network, there
is no saddle point or critical point of any order. Specifically, for example, given a fixed 0, d, n and L,
when we have the same error £ for two different neural networks with respective widths of m; and
ma, where mq < mo, then the lower bound of the gradient with my is larger than that of m; with a
better chance. This means that neural networks with larger widths are likely to have a lower chance
of local minima.

This hints that any local search (e.g., gradient descent) does not suffer from any local minima or
saddle points for larger m, which implies a more likely chance of avoiding local minima, i.e., finding
global minima. However, the local search does not guarantee to decrease the loss function yet.

With the favorable property of Lemma 1, if we have an additional guarantee of loss decrease with
gradient descent, we can prove the convergence to global minima. To derive objective-decrease
guarantee in optimization theory, a notion of smoothness is typically needed; thus, we introduce the
following lemma.

Lemma 2 (Theorem 4 of (Allen-Zhu et al., 2019)). With probability at least 1 — e~ (m/pely(Lilogm))
we have: for every Wi € (R™*m)L with ||WT — W(O)”2 <

1
poly(L,logm)’
and for every W e (Rm*m) L ypith ||W

N2 < m, the following inequality holds

LOWIHW) < LW + (VLW W) + O(2Lm) [ W3 4 BRI amem W |/ £(WH).

This lemma states the semi-smoothness property of the objective function £ w.r.t. Qw() to take
into account non-smoothness introduced by ReLU activation in ®; (+). The semi-smoothness looks

similar to the Lipschitz smoothness except for the first order term ||W>’ ||2- Interestingly, when
we increase m, the increasing rate of the first order term is much slower than that of the second
order term; thus, the second order term becomes dominant compared to the first order one, and the
semi-smoothness approaches closer to the Lipschitz smoothness. This means that the neural network
is smoother as m goes larger.

Under the assumption that HW(” WO || is small (will be verified later), the next step is to combine
Lemma 2 with gradient descent to derive the loss-decrease guarantee. Denoting V; = VL(W®),

the gradient descent update rule is defined as: V_V>(t+1) = W(t) — pV, for a learning rate p > 0.
Then, from Lemma 2, putting WD) — Wi + W and W) — WT, ie., W = —pV,, we have

LWUD) < LWO) = gV} + p2C [ Vill3 + pCall Vil LW )

(where Cy = O(nLdzm), Cy = Poly(L)\f/Z m logm)
< LW~ IVl + (PC0 (5) + 00O (27) ) L(WO)
(V13 < max ||le£(W<f>))||% <O () £(W(t)) from the upper bound in Lemma 1)
=
= (L4 C)LWO) = Vi3 (where Gy = p2C10 (222) 4 pCay /O (222)

< (o (5) e

(by the gradient lower bound from Lemma [ and our choice of p, e.g., p = O( n;z‘sgm )
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When we choose the parameters such that ("57”> €(0,1), we have ﬁ(W(tH) ) <£(W(t)). In other

dn?
words, there exists 7" > 0 such that ﬁ(W(T)) < e. Examples of convenient parameter choices of
m, p, and T in polynomial orders are suggested in Allen-Zhu et al. (2019) to hold (fii@ ) € (0,1)

and the small value of HW(t)fW(O) || » for every ¢. This concludes the proof sketch of finding a
point W*=W ) such that E(W*) <e O

Remark 1: Global optimality. In Proposition 1, we can set € arbitrarily small. With a very small e,
it suggests that a converged point W* is a global minimum.

Remark 2: The radius condition between the initial weights and updated one. The spectral

radius bounds for ||W —WO || 7 required in Lemmas 2 and 1 appear to be small, it is sufficiently
large enough to completely change the output of the model, considering the large width of size m
and the standard deviation \/—% of weight entries in Assumption 2.

Remark 3: Other architectures. Allen-Zhu et al. (2019); Du et al. (2019a) present the recipes
to convert the L-layer fully connected networks to convolutional neural networks and to ResNet by
sacrificing the complexity of proof. Thus, the conclusion of the provable guarantee does not change
with such architectural changes. Thus, the architectures we experimented provably comply with the
conclusion of Proposition 1 up to the choice of the parameters, i.e., global convergence.

Remark 4: Other losses. In the above proof sketch, one of the important pieces is the semi-
smoothness in Lemma 2. While we discuss only with the simple /5 regression loss function, fortu-
nately, the semi-smoothness already encompasses any choice of Lipschitz smooth cases for the loss
functions. Thus, as long as the choice of the loss function is Lipschitz smooth, the replacement of the
loss function does not alter the conclusion of Proposition 1 even for non-convex losses except the
choice of parameters. This hints that our choice of the multi-task loss in Eq. (1) provably complies
with the conclusion of Proposition 1 except the choice of the parameters.

Remark 5: L vs. m for the over-parameterization. For designing the over-parameterized ar-
chitecture, one can control two different parameters L and m. Obviously, the high probability is
achieved with larger m rather than L, but more importantly, the local minima smoothing phenomenon
suggested in the lower bound of Lemma 1 is independent to L.

A.3 ABLATION ON LOSS FUNCTIONS

We conduct ablation studies to analyze the effect of our proposed spatio-temporal consistency losses
in the NeuFace optimization, Liyuiiview, and Liemporal. We evaluate the quality of the meshes obtained
by optimizing each of the loss configurations. All the experiments are conducted on the same
validation set as the Table 2 of the main paper.

NeuFace MEAD (Wang et al., 2020) VoxCeleb2(Chung et al., 2018)  CelebV-HQ (Zhu et al., 2022)
Lo Lowiview  Leempora CVD] MSLp T MSL, 1+ NME] MSL,+ MSL, 1+ NME| MSE,t MSL,+ NME|
v 0333 0.015 0.022 2.44 0.001 0.001 2.71 0.001 0.003 3.88
v v 0.110  0.015 0.023 249 - - - - - -
v v 0294  0.176 0.250 2.56 0.095 0.137 2.19 0.54 0.074 2.55
v v v 0.103  0.206 0.305 2.58 - - - - -

DECA (Feng et al., 2021)  0.209 0.011 0.016 4.65 0.028 0.044 4.78 0.012 0.018 5.34

Table S1: Ablation results on the different loss functions. We evaluate the effect of our proposed
spatio-temporally consistent losses by changing the configurations of the loss combinations. Optimiz-
ing full loss functions shows favorable results on CVD and NME while outperforming MSI compared
to other configurations. We cannot analyze the effect of Lyypiview for VoxCeleb2 and CelebV-HQ
since they are taken in the single-camera setup. Abbr. L: landmark, V: vertex.

Only £,p. We start by optimizing the loss function with only 2D facial landmark re-projection error,
Lop. As we optimize L;p, the obtained meshes achieve lower NME than DECA over the whole
validation set (see Table S1). However, we observe that this may break both multi-view and temporal
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consistencies, degrading the CVD and MSI compared to that of DECA. The qualitative results in
Fig. S2 also show that optimizing only £,p reconstructs more expressive but inconsistent meshes
over different views. Therefore, we propose loss functions that can induce multi-view and temporal
consistencies to the meshes during the optimization.

Lop+ Lultiviews BY optimizing Lupiview along with ’
Lop, we observe that CVD gets significantly lower Down (
than DECA and the meshes optimized with only Lo p. -
We have not optimized any regularization term which
induces temporal consistency; thus, MSIs remain L-60
low. As discussed in the main paper, a trivial solu-

tion for achieving low CVD is to regress mean faces nput DECA — Ours (only £z0)
over different views. However, the optimization with Figure S2: Effect of the Luuitiview-

Lop+ Liuiiview achieves low CVD while comparable

NME to the £,p optimization, which proves not to be falling into a trivial solution. Note that £ iview
can only be measured in the multi-camera setup, e.g. MEAD.

Ours (Full)

Lop~+Liemporal. As we optimize Liemporal With Lop, we observe substantial improvements in MSIs
over the whole validation set. Interestingly, jointly optimizing these two losses can further achieve
better NME in VoxCeleb2 and CelebV-HQ datasets. We postulate that, for in-the-wild challenging
cases, e.g., images containing extreme head poses or diverse background scenes, only optimizing £,p
could fail to regress proper meshes, as it may generate meshes that break out of the facial regions. On
the other hand, Liemporal could prevent the regressed mesh from breaking out from the facial regions
to a certain extent.

Full loss function. With the ob-
servations of the effect on each

proposed loss, we optimize the
full loss functions (NeuFace opti- =0 mﬂ Soco DECA a0 a0 oamy oo NOUFACE

mization), £2D+£spatial+£temporala on E 0.127 0.000
.-

MEAD. The quantitative results in Ta- w
ble S1 show that NeuFace optimiza-
R-60 HMEH 0.138 0.000 R-60 - 0.123 0.110 0.113 0.111 0.065 0.000
Top ﬁmﬁw 0.000 Top -0.114 0.081 0.108 0.126 0.108 0.125 0.000

tion achieves comparable NME while
Down Front L-30 L-60 R-30 R-60 Top Down Front L-30 L-60 R-30 R-60 Top

Down - 0.000 Down- 0.000

Front-0.135 0.000 Front- 0.079 0.000

L-60 L-60 - 0.122 0.112 0.063 0.000

0.000 R-30-0.108 0.086 0.103 0.116 0.000

outperforming CVD and MSIs com-
pared to other settings. As analyzed
in the main paper, we postulate that
our proposed spatio-temporal losses Figure S3: Comparisons of cross-view vertex distance.
are mutually helpful for generating We quantitatively show the multi-view consistency of our
multi-view and temporally consistent method by averaging the cross-view vertex distance on the
meshes. validation set of MEAD. L- and R- denote Left and Right,
respectively, and 30 and 60 denote the view angles which the

The advantage of jointly optimizing % .
video is captured from.

all the losses can also be found in the
qualitative results; the reconstructed
face meshes are well-fitted to its 2D face features, e.g., landmarks and wrinkles, and multi-view
consistent (See Fig. S2). In addition, we compare the view-wise averaged CVD between NeuFace
optimization and DECA in Fig. S3. While DECA results in high CVD, especially for the views with
self-occluded regions, such as Left-60 and Right-60, NeuFace shows significantly lower CVD on
overall views. We also evaluate the meshes reconstructed by pre-trained DECA (Feng et al., 2021)
for comparison (see Fig. S4).

A.4 ADDITIONAL ANALYSIS ON THE DESIGN CHOICES

In our proposed NeuFace optimization, the temporal consistency loss employs a temporal moving
average to estimate latent target meshes that represent temporally smooth heads. To assess the
effectiveness of the temporal moving average operation, we conduct an ablation study using a median
operation instead of the average on a subset of the MEAD dataset. As shown in Table S2, both
methods—temporal moving average and median operation in the temporal window—demonstrated
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Multi-view videos DECA (views merged) Ours (views merged) In-the-wild videos

Figure S4: Spatio-temporal consistency comparison. NeuFace reconstructs multi-view consistent
3D faces (left); reduced misalignment for faces (each view is aligned to the canonical pose, color-
coded and alpha-blended), and temporally stabilized motion (right); reduced jitter than the competing
method (we concatenate vertical cyan line in each frame along time). while being accurate.

Loss config. CVD | NME|

Temporal loss (Average)  0.0981  3.03
Temporal loss (Medidan) 0.0985  3.09

Table S2: Average vs. Median operation. we conduct an ablation study on a subset of the MEAD
dataset, using a median operation instead of the average for the temporal consistency loss.

comparable performance in terms of NME and CVD, with no significant difference in the optimization
results. This finding suggests that the choice of operation has a negligible impact on the optimization
process.

Although our proposed NeuFace optimization utilizes a simple combination of losses, we find that it
is surprisingly effective for constructing accurate pseudo 3D face data. For example, we observe that
use of photometric loss (L£p0t0) has neglibile effect, as demonstrated in Table S3 (a). In fact, Lpyhot0
tends to degrade performance, with larger values of this loss leading to greater degradation. We
postulate that this might be due to the impact of self-shadows and non-Lambertian reflection caused
by lighting and noise in video data, which could interfere with robust optimization. Interestingly,
we also reveal that without explicit regularization for shared identities across frames in videos, the
identity codes tend to converge automatically, as shown in Table S3 (b). This finding suggests that
adding shared identity regularization may be unnecessary. Despite the effectiveness of our proposed
NeuFace optimization, we believe that exploring additional losses to further refine the optimization
process could be a worthwhile future direction.

B IMPLEMENTATION DETAILS

We provide detailed configurations for implementations and experiments in the main paper.

NeuFace optimization details. NeuFace optimization is composed of a neural network ®,, and the
optimizing part. For the network ®y,, we use a pre-trained DECA (Feng et al., 2021) or a pre-trained
EMOCA (Danecek et al., 2022) encoder network. Overall optimization takes about 8 min. for 7
views, ~120 frames of videos, and about 2.5 min. for 1 view, ~120 frames of videos.

NeuFace-dataset acquisition. We provide reliable 3D face mesh annotations for large-scale face
video datasets: MEAD (Wang et al., 2020), VoxCeleb2 (Chung et al., 2018), and CelebV-HQ (Zhu
et al., 2022). We optimize our full objective (Eq. (1)) to acquire FLAME meshes for the datasets
with a multi-view camera setup, e.g., MEAD. Otherwise, we optimize (Eq. (1)) with Ayiew=0. We
automatically discard the sequences if the optimization yields out-of-distribution shape parameters,
i.e., the L2-norm of shape parameters deviates largely from the pre-built distribution (Li et al., 2017),
|3]]2>1.0, or if the 2D landmark detector (Bulat & Tzimiropoulos, 2017) fails to capture the faces.
After subsequent human verification, the NeuFace-dataset achieves <0.1% of failure rate on upon
criteria, supporting the reliable quality of our dataset.

Facial motion prior. As one of our dataset’s prominent applications, we introduced the learning of
3D facial motion prior, called HuMoR-Face (Sec.5.1 in the main paper). We first pre-process 3D
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Loss config. CVD | MSL, T MSL, T NME] )
<
NeuFace 0.103 0.206 0.305 2.58 E
NeuFace+2 - Lyhoo  0.106 0.205 0.299 2.62 % ..
NeuFace+5 - Lohoo  0.112 0.195 0.282 3.69 AN
“ Iterations *
(a) Ablation on the photometric loss (b) Std. of 3 over the iterations

Table S3: Ablation on the design choices. (a) Optimizing photometric loss (Lppoo) With the NeuFace
optimization results in performance degradation. (b) The identity code (3) gradually converges over
the iterations, although we do not manually force shared identity regularization.

face meshes in the NeuFace-dataset. We compute root orientation, face pose angles, 3D landmark
positions, and their velocities, respectively. Then, we represent the state of a moving human face as
X = [¢, é, 0,J,J ], where ¢, d) denotes head root orientation and its velocity, 8 denotes the FLAME
face pose parameters, and J, J denotes facial joint and its velocity, respectively.

The generative facial motion prior is trained to predict the facial motion state, X;1, given the current
state x; as a condition. We consider the NeuFace holdout test split as the real motion distribution
and compute the FD for the generated motions. We do not consider VOCASET as the real motion
distribution for computing FD. It is limited in diversity and naturalness, which contradicts FD’s
purpose of measuring the naturalness of generated motions. Our NeuFace holdout test split is much
larger and more diverse than VOCASET.

Fine-tuning face mesh regressor. As our dataset’s another application, we improve the accuracy
of the pre-trained DECA model with our NeuFace-dataset and its 3D annotations. Specifically,
we fine-tune the pre-trained DECA parameters with our NeuFace-dataset and the auxiliary 3D
supervisions proposed in the main paper (L795-797). During fine-tuning, we use an adjusted learning
rate, 1 x 10~2, which is ten times smaller than training DECA from scratch. Note that there exist
the DECA-coarse model and the DECA-detail model. Unfortunately, there are known issues in
reproducing DECA-detail due to the absence of VGGFace2 and the training recipe (DECA GitHub
issues: bit.ly/3jj2psn, bit.ly/3HIi V{0).

C ADDITIONAL EXPERIMENTS

In Sec. C.1, we apply NeuFace to another face mesh regressor, EMOCA (Danecek et al., 2022),
showing the flexibility of our method. In Sec. C.1, we compare the performance of NeuFace
optimization with another competing optimization method, MICA with a tracker. In Sec. C.3, we
report further results of the application experiments on the main paper.

C.1 NEUFACE OPTIMIZATION WITH EMOCA

Recall that we can replace the neural parameterization of face meshes with another neural model.
Specifically, we use EMOCA (Danecek et al., 2022), which is built upon DECA with an additional
expression encoder. We change the neural network from DECA to EMOCA and optimize over it with
our spatio-temporal and landmark losses. In Table 2 and Sec. 4 in the main paper, we discussed about
the quantitative quality of NeuFace-E-dataset.

Qualitatively, we visualize the rendered meshes over different views as in Fig. S5. NeuFace-E-dataset
(3rd row) contains multi-view consistent meshes over views compared to the meshes obtained by
EMOCA inference (2nd row). Specifically, EMOCA produces huge discrepancies in mouth area
across the views, while our method is more consistent. Moreover, our method reconstructs more
accurate meshes, especially for the shape of the nose and face contour.

C.2 NEUFACE vS. VIDEO 3D FACE TRACKING METHOD
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Figure S5: Multi-view consistency: EMOCA vs. NeuFace-E. We visualize the meshes obtained by
EMOCA (Danecek et al., 2022) and NeuFace-E. By aligning the meshes to face the same direction,
we can clearly notice that NeuFace-E obtains multi-view consistent meshes compared to EMOCA.

We verify the favorable quality of NeuFace- CVD| MSLyp1 NME| Optim. time (7 views)
datasets by comparing it with the meshes  micat+T 0049 0349 298 60 min.
obtained by the state-of-the-art method, NeuFace-D-dataset  0.0094 0.277 2.58 8 min.

MICA with a tracker (Zielonka et al, .

2022) (MICA+T), among the existing Table S4: Evaluation on MEAD: MICA vs. NeuFace
methods (Cao et al., 2013; 2015; Thies

et al., 2016b; Zielonka et al., 2022). MICA+T jointly optimizes 3DMM, cameras, and textures with
landmark and photometric losses, and statistic regularizers. In Table S4, NeuFace performs better
than MICA+T in CVD & NME with comparable MSI. Also, faster optimization makes NeuFace
preferable when annotating large-scale videos.

C.3 FACIAL MOTION PRIOR LEARNED FROM NEUFACE-DATASET

In Sec. 5.2 of the main paper, we trained the facial motion prior model, HuMoR-Face with different
training datasets: VOCASET (Cudeiro et al., 2019), NeuFacepmgap, and NeuFacevyoxceleb2. We
evaluate HuMoR-Face models using two metrics: motion Fréchet distance (FD) (Ng et al., 2022) and
average pairwise distance (APD) (Aliakbarian et al., 2020; Rempe et al., 2021). FD measures the
naturalness like the FID score (Heusel et al., 2017) and APD measures the diversity of generated
motions. For APD, we generate 50 long-term motions from the same initial state and compute the
mean landmark distance between all pairs of samples.

HuMoR-Face trained w/ Scale Environment FD | APD [cm] T

Existing motion capture dataset
VOCASET (Cudeiro et al., 2019) ~ Small In-the-lab 420.92 -

Our dataset
NeuFaceympap Large In-the-lab 78.99 3.56
NeuFacevoxceleb? Large In-the-wild 31.32 52.69

Table S5: Quantitative evaluation of learned facial motion prior. We evaluate the naturalness and
diversity of generated long-term motions from different motion prior models. HuMoR-Face trained
with existing facial motion capture dataset, e.g., VOCASET (Cudeiro et al., 2019), fail to generate
natural and diverse facial motions.

HuMoR-Face models trained with large-scale and diverse motions, i.e., the NeuFace-dataset, show
superior performance in naturalness and diversity (see Table S5). Specifically, the HuMoR-Face
trained with NeuFaceyoxcelen2 Shows substantial enhancement on APD. APD is not reported for the
HuMoR-Face trained with VOCASET, since the model fails to generate realistic motion. Please
check the generated motion comparisons in the supplementary video.
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D MORE DATASET SAMPLES

We present more qualitative samples of NeuFace-dataset, with diverse identities and visual features
(see Fig. S6). Since we cannot deliver expressive and temporally smooth facial motion in images, we
strongly recommend seeing video visualizations for NeuFace-dataset, in the supplementary videos.

E LIMITATIONS

The failure cases of NeuFace optimization could occur when the 2D video contains extreme degrada-
tions, e.g., motion blur, low resolution, extremely (>50%) occluded, so that the 2D keypoint detection
fails. Please note that when we construct the NeuFace-dataset, we tackle these cases with automatic
filtering followed by human verification, discussed in Sec. B, which guarantees the reliability of the
dataset. Since 2D landmark human annotations are relatively cheaper than any other signals, we think
using better 2D landmarks can mitigate this limitation.
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Figure S6: NeuFace-dataset is the large-scale 3D face video dataset containing 3DMM annotations
for faces with diverse ethnicity, gender, emotions, and actions. See supplementary videos for the
dynamic face visualizations.
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