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Abstract
Clinical decision-making, particularly in the context of dif-
ferential diagnosis in low-resource healthcare settings, poses
significant challenges due to the complexity and variety of
symptoms presented by patients and the lack of skilled doc-
tors. This study introduces mLabLLM, a fine-tuned adap-
tation of the LLaMA 3.2 3B model designed to enhance
clinical decision-making in differential diagnosis. Leverag-
ing domain-specific datasets, including a curated tropical dis-
eases dataset including Dengue, malaria, and chikungunya
- prevalent health challenges in South Asian countries and
employing optimization techniques like Low-Rank Adap-
tation (LoRA) and pruning to reduce computational over-
head. The model achieves greater efficiency without com-
promising performance. A probabilistic framework integrates
symptom-disease frequencies with Bayesian reasoning, en-
abling dynamic ranking of diagnoses during patient interac-
tions. Experimental results show that mLabLLM significantly
outperforms baseline models, achieving an 82.8 % Top-3
accuracy in differential diagnosis, compared to 75.1% for
Phi-3-128k and 72.4% for LLaMA 3.2 3B, positioning
it as a scalable and practical solution for real-world clinical
applications.

1 Introduction
Accurate and efficient differential diagnosis is a funda-
mental aspect of medical practice, particularly in resource-
limited settings where the availability of skilled profession-
als and healthcare infrastructure is often restricted. In these
environments, clinicians must rely heavily on their experi-
ence and available resources to make timely and accurate di-
agnoses. In addition, when patient burdens are high, primary
care physicians may be able to spend only a few minutes dis-
cussing the symptoms of the patient (Irving et al. 2017). Ar-
tificial intelligence (AI) tools can be of significant benefit in
diagnostic assistance in such scenarios if patient symptoms
can be processed before the doctor’s appointment.

Recent advancements in deep learning models have
shown considerable promise in enhancing diagnostic accu-
racy by aiding clinicians in synthesizing complex patient
data. Large language models (LLMs) such as GPT-4 (Ope-
nAI 2023), LLaMA (Touvron et al. 2023), PaLM (Chowd-
hery and et al. 2022), Gopher (Rae and et al. 2021), and
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OPT (Zhang and et al. 2022) have emerged as powerful
tools, capable of processing vast amounts of medical liter-
ature and patient data, offering valuable insights for clini-
cal decision-making. However, these general-purpose mod-
els often lack domain-specific training, limiting their ef-
fectiveness in navigating the complexities of medical diag-
noses in diverse clinical scenarios. Domain-specific mod-
els, such as Med-PaLM (Carr et al. 2022) and BioMedLM
(Lee et al. 2021), address this gap by specializing in medical
tasks, e.g., question answering and literature mining. How-
ever, their computationally expensive nature renders them
less practical for resource-constrained environments, where
accessibility and scalability are critical. This limitation is
particularly evident in low and middle-income countries
(LMICs) like Bangladesh, which experienced over 321,000
reported dengue cases during its largest outbreak in 2023,
overwhelming its healthcare system and highlighting gaps
in surveillance and rural healthcare infrastructure (World
Health Organization (WHO) 2024; PLOS Neglected Trop-
ical Diseases 2023). Additionally, approximately 2.4 mil-
lion annual dengue cases remain underreported due to lim-
itations in diagnostic resources and cultural barriers (Tropi-
cal Medicine and Health 2022). These challenges emphasize
the need for efficient, domain-specific AI solutions tailored
to LMIC settings.

This work presents mLabLLM, a fine-tuned version of the
LLaMA 3.2 3Bmodel, designed to address the challenges
of differential diagnosis in resource-constrained healthcare
systems. By leveraging domain-specific datasets and opti-
mization techniques, mLabLLM is tailored to operate effec-
tively within the unique constraints of real-world medical
environments. This study makes the following key contribu-
tions to the field of clinical AI and differential diagnosis:
• Domain Adaptation: We use custom dataset focused on

tropical diseases alongside publicly available biomedi-
cal resources such as PubMed abstracts (PubMed 2022),
ensuring broad coverage of health conditions that are
particularly relevant in tropical countries and resource-
limited regions.

• Efficient Fine-Tuning: To optimize the model’s computa-
tional efficiency, mLabLLM leverages Low-Rank Adap-
tation (LoRA) (Hu et al. 2021), a technique that reduces
the computational cost while maintaining high perfor-
mance in domain-specific tasks. In contrast, traditional



models often require extensive computational resources.
• Dynamic Probabilistic Diagnosis Framework: We pro-

pose a Bayesian-based ranking mechanism that functions
on the model’s output, enabling it to prioritize potential
diagnoses in real-time based on patient-reported symp-
toms and prior knowledge extracted from annotated med-
ical datasets (van Doorn et al. 2020). This framework
facilitates dynamic decision-making and supports clini-
cians in generating a list of probable diagnoses that are
continuously updated as new information becomes avail-
able.

2 Dataset Creation and Preprocessing
The effectiveness of a medical LLM heavily depends on the
quality and relevance of the dataset used for fine-tuning. For
the purpose of this study, we curated a custom tropical dis-
eases dataset, augmented with publicly available biomedical
datasets, to address the specific needs of differential diagno-
sis in resource-constrained settings.

2.1 Tropical Diseases Dataset
This dataset was designed to improve the diagnostic capa-
bilities of the model by providing domain-specific data, thus
enhancing its ability to understand and process medical in-
formation in these contexts.

Sources: The custom tropical diseases dataset was derived
from a combination of authoritative medical resources to
ensure its comprehensiveness and reliability. Key sources
include relevant books (Kasper et al. 2020),(Cahill 2011),
(Rothe 2020),(Meunier et al. 2013) and guidelines from the
World Health Organization (WHO), which offer trusted in-
sights into the pathophysiology, diagnosis, and treatment of
tropical diseases. Additionally, peer-reviewed research arti-
cles and publications sourced from open-access platforms,
including PubMed Central, were integrated, allowing for the
inclusion of the latest clinical findings and evidence-based
practices. This combination of established textbooks and up-
to-date research ensures that the dataset covers a broad spec-
trum of diseases and clinical scenarios relevant to tropical
medicine, particularly in resource-constrained settings.

Content and Structure: The dataset encompasses both
structured and unstructured data, covering essential aspects
of medical knowledge required for accurate diagnosis and
treatment in tropical medicine. The structured data includes
detailed information on common symptoms associated with
tropical diseases, such as fever, rash, and joint pain. It also
includes diagnostic data, outlining the relevant diagnostic
tools and procedures used to identify these diseases, such
as imaging results and laboratory tests. The treatment data
features commonly recommended regimens, including an-
timicrobial drugs and supportive therapies, tailored to man-
age tropical diseases. Additionally, the dataset contains an-
notated real-world case studies, providing comprehensive
examples of conditions, symptoms, diagnostic approaches,
treatments, and outcomes, offering valuable insights into
practical, clinical decision-making.

For instance, a typical entry in the dataset might look like:

“Disease: Malaria → Symptoms: Fever, chills,
headache, fatigue → Diagnostics: Blood smear,
rapid diagnostic test → Treatment: Artemisinin-
based combination therapy (ACT).”

2.2 Additional Datasets
In addition to the tropical diseases dataset, several other
relevant datasets were incorporated to further enhance our
model training. The PubMed Abstracts dataset (PubMed
2022), which consists of biomedical literature abstracts
from PubMed, provides valuable clinical insights and back-
ground information on a wide range of diseases and med-
ical conditions. To improve the model’s ability to handle
complex medical reasoning tasks, the USMLE Dataset was
included, which contains a collection of question-answer
pairs from the United States Medical Licensing Examina-
tion (USMLE). Furthermore, the MedQA Dataset (Jin et al.
2020), a domain-specific question-answer set, was utilized
to strengthen the model’s performance in answering medi-
cal questions.

2.3 Preprocessing Steps
Several preprocessing steps were undertaken to ensure the
compatibility and effectiveness of the datasets for model
fine-tuning. Firstly, Text Cleaning, involved removing irrel-
evant noise and ensuring consistency across the dataset by
eliminating special characters, redundant spaces, and stan-
dardizing medical abbreviations and terminology. This was
followed by Tokenization, where the datasets were processed
using the LLaMA tokenizer, which divides the text into
smaller subword tokens. This ensures that the data aligns
with the model’s architecture and facilitates efficient pro-
cessing during training. To enhance the model’s understand-
ing of key medical concepts, Named Entity Recognition
(NER) was performed using SciSpacy (Neumann et al.
2019). This tool annotated important entities such as symp-
toms, diseases, and treatments within the text. For example,
in the sentence, “The patient reported fever and joint pain,”
the terms “fever” and “joint pain” were identified as symp-
toms. Finally, to address the 128k-token limit of the LLaMA
model, Text Chunking was applied to divide longer para-
graphs into manageable chunks, ensuring that the model can
process larger contexts without truncation while preserving
semantic coherence.

2.4 Dataset Statistics
The final dataset for fine-tuning and evaluation comprised
key components including 50,000 custom-annotated entries
from the Tropical Diseases Dataset. Additionally, the dataset
included 1,000 labeled, 61,200 unlabeled, and 211,300 arti-
ficially generated entries from PubMedQA, along with ap-
proximately 60,000 QA pairs from USMLE and MedQA. A
brief overview of the data is shown in Table 1.



Dataset Entries
Tropical Diseases Dataset (custom annotated) 50,000
PubMedQA (PQA-Labeled) 1,000
PubMedQA (PQA-Unlabeled) 61,200
PubMedQA (PQA-Artificial) 211,300
USMLE and MedQA (QA Pairs) 60,000

Table 1: Dataset statistics for fine-tuning and evaluation

3 Model Fine-Tuning
The mLab LLM model was fine-tuned on medical datasets
to enhance its ability to perform clinical reasoning and dif-
ferential diagnosis tasks. The fine-tuning process incorpo-
rated Low-Rank Adaptation (LoRA) to reduce computational
complexity and memory requirements while maintaining
high accuracy. Pruning and quantization further optimized
the model for deployment in resource-constrained environ-
ments. Figure 1 provides a general overview.

3.1 Low-Rank Adaptation (LoRA)
Fine-tuning all weights of a large model such as LLaMA
3.2 3B is computationally expensive. LoRA provides a
parameter-efficient alternative by introducing low-rank up-
dates to specific model layers while keeping the pre-trained
weights frozen.

Formulation: LoRA modifies the weight matrix W in at-
tention layers. Instead of updating W directly, LoRA intro-
duces a low-rank decomposition:

W ′ = W +∆W, ∆W = A ·BT (1)

where W ∈ Rd×k is original pre-trained weight matrix.
A ∈ Rd×r and B ∈ Rk×r are Low-rank matrices, with rank
r ≪ min(d, k). The forward pass in attention computation
is given by:

h′ = Softmax
(
QKT

√
dk

)
V +A ·BT (2)

where Q,K, V are Query, Key, and Value matrices respec-
tively. dk is Dimensionality of Q. This decomposition sig-
nificantly reduces the number of trainable parameters as fol-
lows:

Trainable Parameters = r · (d+ k) (3)
As an example, with d = 4096, k = 4096, and r = 8,
the number of trainable parameters is reduced by a factor of
approximately 256.

Implementation: The Low-Rank Adaptation (LoRA)
technique was implemented by applying LoRA layers to the
Query, Key, and Value (QKV) projection matrices within
the attention layers. The hyperparameters were carefully se-
lected to balance performance and efficiency. Specifically,
the rank r was set to 8, which provided an optimal trade-off
between accuracy and computational efficiency. The learn-
ing rate for the LoRA parameters was set to 5× 10−5, while
the batch size was set to 128, achieved through gradient ac-
cumulation.

Figure 1: Workflow for data preprocessing and model fine-
Tuning.

3.2 Pruning for Optimization
Two pruning strategies were applied in this work. Structured
pruning involved removing entire attention heads and neu-
rons in feedforward layers based on their contribution to
the loss function. The importance of each weight was de-
termined using the following score:

Score(wij) =

∣∣∣∣ ∂L
∂wij

wij

∣∣∣∣ (4)

Weights with scores below a predefined threshold τ were
pruned (He and Xiao 2023). On the other hand, unstructured
pruning focused on zeroing out individual weights whose
magnitudes fell below a specified threshold. This process
was carried out iteratively, removing 20%-30% of the pa-
rameters, followed by retraining the model to recover its
performance. In the Post-Pruning Retraining step, the model
was fine-tuned using cross-entropy loss to adjust the remain-
ing parameters and maintain accuracy:

L = −
N∑
i=1

yi log(ŷi) (5)

where yi is the true label, and ŷi is the predicted probability
for the i-th token. Finally, a quantization step reduces the
precision of model weights to minimize memory usage. An
8-bit quantization scheme was applied:

Wquant = round(W · 2b)/2b, b = 8 (6)

This approach preserved accuracy while reducing memory
consumption by approximately 75%.

4 Differential Diagnosis Framework
A robust differential diagnosis system must iteratively col-
lect and analyze patient information to guide clinical reason-
ing. mLab LLM employs a dynamic questioning framework,



integrating patient responses with biomedical literature to
prioritize potential diagnoses (See Figure 2). The process
involves following steps: (1) Iterative Questioning System
which engages users in a structured conversation to gather
clinical details, with questions dynamically generated based
on prior responses and extracted keywords. The process be-
gins with broad, open-ended questions to establish context.
For example:

the system might start with the question: “What
brings you in today?”
As the conversation progresses, the model generates
more specific follow-up questions based on the symp-
toms the user reports. For instance, if a user responds
with:
“I have a fever and feel tired.”
the model may generate a targeted follow-up question
such as:
“Have you recently traveled to a tropical region?”.

This iterative questioning approach allows the model
to progressively narrow down the clinical context and
gather relevant information to assist in diagnosis. (2) Con-
versation Continuity i.e. Each response updates a struc-
tured Patient Note, which is fed back into the model
for subsequent queries. (3) Medical Keyword Extraction
To enhance the model’s reasoning capabilities, relevant
medical terms are extracted from user responses and lit-
erature. (4) Medical Named Entity Recognition (NER)
is performed using tools like SciSpacy, extracting terms
such as <symptom>, <disease>, <treatment>, and
<risk factor>. e.g.

Input: “I have a fever and rash.”
Output: "fever": <symptom>, "rash":
<symptom>

(5) PubMed Integration: The extracted terms are used to
query biomedical literature via PyMed:

Example Query: “fever rash tropical disease differen-
tial diagnosis”

The returned abstracts are further processed to extract ad-
ditional keywords using SciBERT (Beltagy, Lo, and Co-
han 2019). (6) Symptom-Disease Accumulation: The model
maintains a frequency dictionary that combines terms from
patient responses and PubMed searches. (7) Construction of
a Frequency Dictionary which is a weighted accumulation
formula integrates terms:

F (t+ 1) = F (t) + w1 · Fresponse + w2 · Fpubmed (7)

where F (t) is the current frequency dictionary, Fresponse are
terms extracted from user input (w1 = 1.0), and Fpubmed are
terms extracted from PubMed abstracts (w2 = 0.5). One
example workflow is given below:

Figure 2: Workflow for Patient Interaction and Differential
Diagnosis.

• step 1: User reports fever and fatigue.
Extracted: "fever", "fatigue".

• step 2: PubMed search adds terms like ”malaria”
and ”dengue”.

Updated Frequency:
"fever": 1.0, "fatigue": 1.0,
"malaria": 0.5, "dengue": 0.5.

This iterative accumulation informs the probabilistic
ranking described in Section 5.

5 Probabilistic Symptom-Disease Ranking
The model employs a probabilistic framework to rank poten-
tial diagnoses based on observed symptoms and prior knowl-
edge. This system dynamically integrates patient-reported
symptoms, biomedical literature, and clinical knowledge us-
ing Bayesian reasoning and frequency-based weighting.

5.1 Bayesian Symptom-Disease Model
The ranking process begins with a prior probability distribu-
tion over possible diseases, updated iteratively as symptoms
are observed (Friedman, Geiger, and Goldszmidt 1997). Ini-
tial disease probabilities P (diseasej) (aka prior probability)
are derived from epidemiological data and prevalence rates:

P (diseasej) =
prevalencej∑N
k=1 prevalencek

(8)

where prevalencej is Prevalence of disease j and N is to-
tal number of diseases considered. The likelihood function



Figure 3: Comparison of mLabLLM with similar models. mLabLLM outperforms all SOTA LLMs across most metrics.

P (symptoms|diseasej) quantifies the probability of observ-
ing the given symptoms for each disease. This is modeled
as:

P (symptoms|diseasej) =
M∏
i=1

P (symptomi|diseasej) (9)

where M is Number of observed symptoms and
P (symptomi|diseasej) is Retrieved from annotated
datasets or medical literature. Using Bayes’ rule, the
posterior probability of disease j is given by:

P (diseasej |symptoms) ∝ P (symptoms|diseasej) · P (diseasej)

5.2 Symptom Frequency Integration
The Bayesian probabilities are combined with the symptom
frequency dictionary F (t) to refine diagnosis rankings. The
relevance of each disease is measured by Weighted Symp-
tom Scores defined as:

S(diseasej) =
M∑
i=1

P (symptomi|diseasej) · F (symptomi)

where F (symptomi) is Weighted frequency of symptom i in
the dictionary.

5.3 Stopping Criterion
The system stops questioning when the top-ranked disease
scores stabilize. Convergence is defined as:

max
j

|St(diseasej)− St−1(diseasej)| < ϵ (10)

where St(diseasej) is the score at iteration t and ϵ is an
infinitesimal number (e.g. 0.01). Alternatively, a maximum
question limit can terminate the process.

6 Results and Benchmarks
The performance of mLabLLM was evaluated on various
clinical reasoning and diagnostic tasks using both public
datasets (See Figure 3). The model demonstrated supe-
rior results compared to baseline models, including LLaMA
3.2 3B and Phi-3-128k.

6.1 Evaluation Metrics
The evaluation metrics used to assess the model’s perfor-
mance are outlined below, with associated mathematical
formulas for each task (See Table 2). For the question-
answering (QA) tasks, the primary metrics include:

Accuracy: This metric calculates the percentage of cor-
rect answers in multiple-choice questions. It is expressed
mathematically as:

Accuracy =
Number of Correct Answers
Total Number of Questions

× 100 (11)

Exact Match (EM): This measures the proportion of ex-
act matches between the predicted and true answers. It is
defined as:

EM =
Number of Exact Matches
Total Number of Questions

× 100 (12)

For Summarization tasks, the metrics used are:

ROUGE-L: This metric measures the overlap of predicted
and reference summaries, focusing on the longest common
subsequence. The ROUGE-L score is computed as:

ROUGE-L =

∑n
i=1 LCSi∑n

i=1 Reference Lengthi
(13)

where LCSi denotes the longest common subsequence for
a given summary, and Reference Lengthi is the length of the
reference summary (Lin 2004).

BLEU: This evaluates the quality of generated text based
on n-gram matches. The BLEU score is given by:

BLEU = min

(
1,

Candidate n-grams
Reference n-grams

)
× exp

(
N∑

n=1

log pn

)
(14)

where pn is the precision for n-grams of length n, and N
denotes the maximum n-gram length (Papineni et al. 2001).

For NER and Classification tasks, the metric used is:

F1 Score: This is the harmonic mean of precision and re-
call, and it is defined as:

F1 = 2× Precision × Recall
Precision + Recall

(15)

where Precision is the number of true positive predictions
divided by the number of true positive plus false positive
predictions, and Recall is the number of true positive pre-
dictions divided by the number of true positive plus false
negative predictions.

For Differential Diagnosis tasks, the metrics are:

Top-3 Accuracy: This measures whether the correct diag-
nosis is among the top three predicted diagnoses (Lee et al.
2016). It is calculated as:

Top-3 Accuracy =
Number of Correct Diagnoses in Top-3

Total Number of Diagnoses
× 100 (16)



Models QA and Reasoning Differential Diagnosis Summarization
USMLE Accuracy (%) MedQA Accuracy (%) Top-3 Accuracy (%) Symptom Matching F1 ROUGE-L (%) BLEU (%)

LLaMA 3.2 3B 55.0 51.5 72.4 0.68 42.1 38.5
Phi-3-128k 57.8 54.3 75.1 0.72 44.0 40.2
mLabLLM 65.2 62.1 82.8 0.79 49.3 45.6

Table 2: Performance Comparison Across Tasks: QA and Reasoning, Differential Diagnosis, and Summarization

Symptom Matching F1: This evaluates the model’s abil-
ity to correctly associate symptoms with diseases. The
Symptom Matching F1 is calculated as:

F1Symptom Matching = 2 ×
PrecisionSymptom × RecallSymptom
PrecisionSymptom + RecallSymptom

(17)

These evaluation metrics provide a comprehensive assess-
ment of the model’s performance across various tasks, en-
suring that it can handle different aspects of medical reason-
ing, summarization, and classification effectively.

6.2 Benchmark Datasets
The following datasets were used for evaluation. The
USMLE dataset consists of simulated board exam question-
answer pairs, which test the model’s ability to perform med-
ical reasoning and decision-making. The MedQA dataset
focuses on medical domain question-answer tasks, enhanc-
ing the model’s performance in answering domain-specific
questions. Additionally, a custom Tropical Diseases dataset
was created, designed for differential diagnosis and summa-
rization tasks, providing context-specific challenges related
to tropical diseases and their clinical management.

6.3 Case Study: Tropical Disease Diagnosis
Scenario: The model is tasked with diagnosing a tropical
disease based on the patient’s symptoms.

The input provided by the clinician :
“Patient presents with fever, rash, and recent travel to a
tropical region.”
Based on this input, the model generated the following
predictions:
Dengue: 1.38 (score), Malaria: 1.36 (score), and
Chikungunya: 1.21 (score).

The model accurately prioritized Dengue as the most
likely diagnosis, based on high posterior probabilities and
symptom frequencies derived from both the input and the
model’s learned epidemiological data.

6.4 Ablation Study
An ablation study was conducted to evaluate the impact of
key components on model performance. These results high-

Component Removed Performance Impact
LoRA 6.7% reduction in Top-3 accuracy
Tropical Diseases Dataset 8.4% decrease in QA accuracy

Table 3: Impact of Key Components on Model Performance

light the importance of both LoRA and the tropical diseases
dataset in improving the model’s overall performance.

7 Discussion
In this study, we developed a model for tropical disease
diagnosis by integrating symptom-based inputs and epi-
demiological data. The results from the ablation study
revealed the critical importance of both the Low-Rank
Adaptation (LoRA) approach and the tropical diseases
dataset. Removing these components significantly reduced
the model’s performance, underscoring the effectiveness of
these innovations. Specifically, our model, mLabLLM, out-
performed baseline models such as LLaMA 3.2 3B and
Phi-3-128k across multiple metrics, including achieving
an impressive 82.8% Top-3 accuracy in differential diagno-
sis, compared to 75.1% for Phi-3-128k and 72.4% for
LLaMA 3.2 3B. Additionally, mLabLLM demonstrated
notable improvements in symptom matching (F1 score of
0.79) and reasoning accuracy, with a significant 62.1% ac-
curacy on MedQA and 65.2% on USMLE questions. The
model’s performance in text summarization tasks was also
strong, with a ROUGE-L score of 49.3% and a BLEU score
of 45.6%. These metrics indicate the robustness and scala-
bility of mLabLLM in practical clinical environments, par-
ticularly for tropical disease diagnosis, where timely, accu-
rate identification is crucial. Future work will aim to refine
these results through further dataset diversification, includ-
ing more rare disease data, and continued optimization of
the model’s architecture.

8 Conclusions and Future Directions
In conclusion, this work highlights the effectiveness of a
probabilistic model for diagnosing tropical diseases based
on symptom input and epidemiological data. The integra-
tion of LoRA and targeted datasets improved diagnostic
accuracy. Future directions involve expanding the dataset
to include more diverse diseases, enhancing model gener-
alization, and exploring advanced optimization techniques
such as neural architecture search. Additionally, incorporat-
ing real-time data and refining the iterative questioning sys-
tem could further improve the model’s clinical applicability
and efficiency.
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