
OPT2022: 14th Annual Workshop on Optimization for Machine Learning 1–27

A Neural Tangent Kernel Perspective on
Function-Space Regularization in Neural Networks

Zonghao Chen12, University College London

Xupeng Shi1, Northeastern University

Tim G. J. Rudner, University of Oxford

Qixuan Feng, University of Oxford

Weizhong Zhang, HKUST

Tong Zhang, HKUST

Abstract

Regularization can help reduce the gap between training and test error by systematically
limiting model complexity. Popular regularization techniques such as ℓ2 weight regularization
act directly on the network parameters but do not explicitly take into account how the
interplay between the parameters and the network architecture may affect the induced
predictive functions. To address this shortcoming, we propose a simple technique for effective
function-space regularization. Drawing on the result that fully-trained wide multi-layer
perceptrons are equivalent to kernel regression under the Neural Tangent Kernel (NTK),
we propose to approximate the norm of neural network functions by the reproducing kernel
Hilbert space norm under the NTK and use it as a function-space regularizer. We prove
that neural networks trained using this regularizer are arbitrarily close to kernel ridge
regression solutions under the NTK. Furthermore, we provide a generalization error bound
under the proposed regularizer and empirically demonstrate improved generalization and
state-of-the-art performance on downstream tasks where effective regularization on the
induced space of functions is essential.

1. Introduction

Over-parameterized deep neural networks have been shown to succeed at solving a wide
array of complex tasks when a large amount of data is available. However, in areas where
data is scarce or data labeling is expensive, neural networks may over-fit easily and require
particularly effective regularization techniques to systematically control model complexity
and improve generalization (Vapnik, 1998).

The empirical phenomenon of double decent (Belkin et al., 2018) has demonstrated that
notions of regularization and generalization developed for smaller models may not transfer to
highly expressive, over-parameterized neural networks. Furthermore, recent work has shown
that parameter regularization is unable to effectively control model complexity (Triki et al.,
2018), that neural network parameter regularization is a poor proxy for regularization on
the predictive functions (Benjamin et al., 2018; Rudner et al., 2022a,b), and that minimizing
the parameter norm is not necessary to obtain good generalization (Zhang et al., 2021;
Kawaguchi et al., 2017). These observations raise the question of why parameter-space
regularization techniques fall short and to what extent over-parameterized neural networks

1. Equal contribution.
2. Correspondence to: zonghao.chen.22@ucl.ac.uk.

© Z. Chen, X. Shi, T.G.J. Rudner, Q. Feng, W. Zhang & T. Zhang.

mailto:zonghao.chen.22@ucl.ac.uk

Chen Shi Rudner Feng Zhang Zhang

may benefit from alternative regularization techniques that do not explicitly regularize the
network parameters but rather regularize an alternative quantity more closely related to
neural network complexity.

In this paper, we propose to directly regularize the norm of function mappings induced
by the neural network architecture to more effectively control the complexity of the learned
function and improve generalization in over-parameterized models. A natural candidate
for such a function norm would be the reproducing kernel Hilbert space (RKHS) norm, but
there is no direct evidence that the function space defined by a neural network is identical
to an RKHS HK . To address this disconnect, we draw on a result by Arora et al. (2019)
that a fully-trained wide multi-layer perceptron is equivalent to a kernel regression predictor
under the Neural Tangent Kernel (NTK). Building on this result, we prove that functions f
encoded by a neural network can be approximated by functions f̃ in an RKHS HK associated
with the network’s NTK with arbitrary precision. Since the RKHS norm, ||f̃ ||HK

, of f̃ is a
principled measure of the function complexity, in Section 2 we propose to compute the norm
of functions f in the same way and use the function norm as a function-space regularizer.
We further prove in Theorem 1 that trained neural network predictive functions under this
regularizer are arbitrarily close to kernel ridge regression solutions under NTK and we also
provide a generalization error bound in Theorem 2.

Several prior works have proposed to regularize neural networks directly in the space
of functions. Benjamin et al. (2018) proposed to use the L2 norm and Bietti et al. (2019)
proposed to use the Jacobian norm as a lower bound on the RKHS norm. However, both
methods fall short, as the L2 space does not contain essential topological information, and
regularizing the lower bound on the RKHS norm has no direct relation to controlling the
function complexity.

To evaluate whether the proposed function-space regularization technique leads to
improved generalization, we follow prior work (Bietti et al., 2019) and train neural networks
on MNIST and CIFAR-10—in each case with only a small number of training samples—
and show that the function-space regularizer improves predictive performance, compared
to alternative methods. We further show that the proposed approach can be scaled to
highly-overparameterized neural networks that are prone to over-fitting (Tolstikhin et al.,
2021; Yu et al., 2022). The proposed function-space regularizer can effectively alleviate over-
fitting to achieve improved generalization. Lastly, we evaluate the proposed regularization
technique on practically-relevant protein homology detection and continual learning tasks
where effective regularization is essential. We show that our regularization method leads to
state-of-the-art predictive accuracy in continual learning, outperforming related parameter-
and function-space regularization techniques (Kirkpatrick et al., 2017; Nguyen et al., 2018;
Titsias et al., 2019; Pan et al., 2020).

Contributions. We propose a regularization technique for neural network training that
penalizes complexity in the predictive functions by jointly minimizing the loss and the
norm on the functions in the RKHS associated with a network’s NTK. We provide a
theoretical justification for this approach and derive a corresponding generalization error
bound. We empirically verify that the proposed regularization technique results in improved
generalization and demonstrate that it results in state-of-the-art performance on downstream
prediction tasks where effective regularization is particularly important.

2

A NTK Perspective on Function-Space Regularization in Neural Networks

2. Preliminaries

In the following sections, we denote the training set as D .
=

{(
x(n),y(n)

)}N

n=1
= (X,y) with

inputs x(n) ∈ X ⊆ Rd and targets y(n) ∈ Y ⊆ RQ. Note that x ∈ X is also used for function
inputs for convenience. We consider the function fθ(·) encoded by a neural network with
parameters θ ∈ RP and denote the Jacobian of fθ(·) with respect to θ by Jθ(·). ζ denotes a
complexity-penalty coefficient.

2.1. Kernel Ridge Regression

Consider a kernel function K : X × X → R which is symmetric and positive definite.
According to Moore–Aronszajn theorem (Aronszajn, 1950), for any such kernel K on X
we have a unique reproducing kernel Hilbert space (RKHS) HK , which is the completion of
the pre-Hilbert space consisting of all linear span of feature maps {Kx(·) : x ∈ X}, where
Kx(·) = K(·,x). Classical kernel ridge regression considers the objective function

L(f) = 1

N

N∑
n=1

ℓ(f(x(n))) + ζ ∥f∥2HK
, (1)

with solution f∗ = argminf∈HK
L(f). The Representer Theorem (Schölkopf et al., 2001) im-

plies that the solution f∗ must be a finite linear combination of feature maps Kx(1) , . . . ,Kx(N)

evaluated on the training set, that is, for an arbitrary evaluation point x,

f∗(x) =
N∑

n=1

αnK(x,x(n)) ∀x ∈ X . (2)

This solution reduces the hypothesis function space to the finite linear span of feature maps
evaluated on the training set. Hence the function norm can be calculated as follows:

∥f∥2HK
=

∑
1≤i,j≤N

αiαjK(x(i),x(j)) = α⊤K(X,X)α, (3)

where α = [α1, . . . , αN]⊤ represents the coordinate of f in HK with respect to the basis
Φ = [Kx(1) , . . . ,Kx(N)]⊤. K(X,X) = [K(x(i),x(j))]1≤i,j≤N is the kernel matrix evaluated on
the training set, so it is symmetric and positive definite (and hence, invertible). According
to Equation (2) that f(X) = [f(x(1)), . . . , f(xN)]⊤ and f(X) = K(X,X)α, we can then
compute the RKHS norm as follows:

∥f∥2HK
= α⊤K(X,X)α (4)

= f(X)⊤K(X,X)−1K(X,X)K(X,X)−1f(X)

= f(X)⊤K(X,X)−1f(X).

Eqn. (4) shows that the RKHS norm is completely determined by function values and the
inverse of the kernel matrix. In Section 3, we will show how to exploit this structure to
construct a simple function-space regularizer for neural network training.

3

Chen Shi Rudner Feng Zhang Zhang

2.2. Kernel Methods and Deep Learning

We recursively define an L-layer fully-connected neural network by

f (h)(x) = W(h)g(h−1)(x) ∈ Rdh

g(h)(x) =

√
cσ
dh

σ
(
f (h)(x)

)
, ∀h = 1, 2, . . . , L,

(5)

where we denote g(0)(x) = x, W(h) ∈ Rdh×dh−1 is the weight matrix in the h-th layer, σ is an
activation function, and c−1

σ = Ez∼N (0,1)[σ(z)
2] is a scaling factor. The resulting predictive

function is then given by
fθ(x) = f (L+1)(x) = W(L+1)g(L)(x), (6)

where θ = vec(W(1), . . . ,W(L+1)) represents a vectorization of all parameters in the network.
Jacot et al. (2018) define the (empirical) Neural Tangent Kernel (NTK) as

Θ(x,x′) = ⟨Jθ(x),Jθ(x′)⟩ (7)

and showed that, when the number of hidden units in the layers of a neural network goes to
infinity, the empirical NTK Θ converges to a deterministic limiting kernel Θntk, which we
will refer to as the analytic NTK to distinguish it from the empirical NTK Θ.

Complementing this result, Arora et al. (2019) showed that for ℓ2 loss functions, the
predictions of a fully-trained, finite-width fully-connected ReLU neural network, f∗

nn, can be
made to be arbitrarily close to the predictions under the analytic NTK Θntk kernel regression
solution f∗

ntk:

Theorem (Adapted from Arora et al. (2019)) Let f be an m-layer fully-connected
neural network mapping with ReLU activation functions, f∗

nn and f∗
ntk as defined above,

1/κ = poly(1/ε, log(N/δ)), d1 = d2 = . . . = dL = m with m ≥ poly(1/κ, L, 1/λ0, n log(1/δ)).
Then for any x with ∥x∥ = 1, with probability at least 1− δ over the random initialization,

|f∗
nn(x)− f∗

ntk(x)| ≤ ε. (8)

3. Approximate Function-Space Regularization for Neural Networks

In this section, we extend the Theorem in Arora et al. (2019) to kernel ridge regression
and use this simple extension to motivate a function-space regularization method for neural
network training.

Since the explicit function-space regularizer in Equation (1) cannot be computed tractably
for arbitrary neural network architectures, we consider a variation of the setting of the theorem
above to motivate a function-space regularizer for arbitrary neural network architectures. In
particular, we propose the following approximation as a general function-space regularizer
for neural network optimization:

R(f) = ∥f∥2HK
≈ fθ(X)⊤Θntk(X,X)−1fθ(X) = R̂(fθ). (9)

To justify this approximate regularizer, we return to the regularized kernel ridge regression
problem in Equation (1). We denote as fR∗

∞ the solution of the regularized kernel ridge

4

A NTK Perspective on Function-Space Regularization in Neural Networks

regression problem under the analytic NTK derived from an infinitely-wide neural network,
Θntk. For an ℓ2 squared loss function, the solution fR∗

∞ can be expressed by

fR∗
∞ (·) = Θntk(·,X) (Θntk(X,X) + ζNI)−1 y. (10)

If R̂(fθ) is a good approximation to R(f), then the minimizer of the regularized objective

LR̂(fθ) =
1

N

N∑
n=1

ℓ(fθ(x
(n))) + ζfθ(X)⊤Θntk(X,X)−1fθ(X), (11)

denoted by f R̂∗
nn = argminfθ LR̂(fθ), should be close to fR∗

∞ . The following theorem shows

that f R̂∗
nn (x) and fR∗

∞ (x) can indeed be made arbitrarily close to one another:

Theorem 1 Let f be an m-layer fully-connected neural network mapping with ReLU

activation functions, f R̂∗
nn and fR∗

∞ as defined above, 1/κ = poly(1/ε, log(N/δ)), di = m
for i = 1, ..., L with m ≥ poly(1/κ, L, 1/(λ0 + ζN)). Then for any x with ∥x∥ = 1, with
probability at least 1− δ over random initialization,

|f R̂∗
nn (x)− fR∗

∞ (x)| ≤ ε. (12)

Proof See Appendix 2.

Furthermore, based on Theorem 1 and generalization theory for kernel ridge regression,

we can obtain the following generalization error bound for the solution f R̂∗
nn :

Theorem 2 Let f R̂∗
nn be as defined above. Let R(f R̂∗

nn) = E[(f R̂∗
nn (x) − y(x))2] be the

generalization error and R̂(f R̂∗
nn) the corresponding empirical error. Assume for all ∥x∥ ≤ 1,

|f R̂∗
nn (x)| ≤ C0κ and

∥∥∥∂θf R̂∗
nn (x)

∥∥∥ ≤ C1 and |y| ≤ c. Then for any δ > 0, with probability at

least 1− δ, we have the following bound:

R(f R̂∗
nn)− R̂(f R̂∗

nn) ≤ 4(C0κ+ c)ε+
8C2

1Λ
2

√
N

√
CK

NC2
1

+
3

4

√
log 2

δ

2

 ,

where N is the number of training points and Λ is a constant that only depends on the
regularization coefficient ζ. CK is the trace of the empirical NTK. ε is the discrepancy
between predictive functions from Theorem 1.

Proof See Appendix 2.

Theorems 1 and 2 demonstrate that for fully-connected ReLU neural networks and with
ℓ2 loss functions, the proposed function-space regularization method yields solutions that are
close to the kernel ridge regression solution and generalize well. As analogous results cannot
be derived for more general loss functions (e.g., cross-entropy loss functions) and neural
network architectures (e.g., convolutional layers or attention mechanisms), we provide an
extensive empirical evaluation in which we use the proposed function-space regularization
technique in classification problems with convolutional neural network architectures and
cross-entropy loss functions.

5

Chen Shi Rudner Feng Zhang Zhang

Algorithm 1 Neural Network Optimization with Function-Space Regularization

1: Initialize θ
2: for training epoch m = 1, 2, . . . ,M do
3: for each training iteration do
4: Sample a mini-batch of data B =

{(
x(1),y(1)

)
, . . . ,

(
x(B),y(B)

)}
5: Sample the context set from data C ⊂ B
6: Compute NTK Θ(XC ,XC) = Jθ(XC)Jθ(XC)⊤

7: Compute Loss LR̂B = −∑B
i=1 log p(y

(i)|fθ(x(i))) + ζfθ(XC)⊤Θ−1(XC ,XC)fθ(XC)
8: Update θ: θ ← θ − η∇θLB
9: end for

10: end for
output θ

3.1. Optimization Objective and Computational Cost

There are several challenges to computing the function-space regularizer. The first
challenge is the computation of the analytic NTK Θntk. Although Arora et al. (2019) derived
an analytical expression of the analytic NTK for both fully-connected and convolutional
networks, the layer-wise computation is too expensive to perform for large neural networks
and at every gradient step. Fortunately, as Jacot et al. (2018) and Arora et al. (2019) showed
that the Frobenius norm of the matrix difference between Θ and Θntk is arbitrarily small for
sufficiently wide neural networks, we approximate the analytic NTK of large (finite-width)
neural networks by the empirical NTK as in Equation (7).

The second challenge is the computation of the empirical NTK Θ itself. Computing the
empirical NTK Θ(X,X) naively has O(P 2) space complexity and O(N2P) time complexity.
To reduce both time and space complexity, we use an implicit NTK computation included
in the JAX-based neural-tangents python library (Novak et al., 2020). By noting that
the empirical NTK can be written as

Θ(X,X) = J (X) J (X)⊤ = d
[
J (X) J (X)⊤ v

]
/dv⊤

for a vector v, the implicit computation can be expressed as a memory-efficient, nested
application of two Jacobian-vector products instead of instantiating the Jacobian explicitly
and computing its inner product.

The third challenge is that computing the function norm in Equation (11) requires
inverting the empirical NTK Θ(X,X). To reduce the computational cost, instead of
inverting the entire N -by-N matrix Θ(X,X), we sample a context set XC from X at every
gradient step and compute the function norm on this particular context set only. This way,
we only need to invert an |XC |-by-|XC | matrix, which, for a sufficiently small mini-batch
size, can be done at every gradient step without a significant slowdown in training.

For the context set XC sampled uniformly from the entire dataset X at every gradient
step XC ∼ pX, the final, approximate function-space-regularization objective is given by

LR̂(θ) =
N∑
i=1

log p(y(i)|fθ(x(i))) + ζfθ(XC)⊤Θ−1(XC ,XC)fθ(XC). (13)

Algorithm 1 describes stochastic gradient descent under this optimization objective.

6

A NTK Perspective on Function-Space Regularization in Neural Networks

4. Related Work

Function-Space Regularization. Benjamin et al. (2018) use the L2 norm as a trivial
function-space norm and (Bietti et al., 2019) use the Jacobian norm as a lower bound of the
function norm. Both methods fall short, as the L2 space is a trivial function space that loses
essential topological information, and regularizing the lower bound has no direct relation to
controlling the function complexity. Bietti and Mairal (2018) construct an RKHS which
contains CNN prediction functions, but unfortunately, the RKHS is of very complicated
forms and is not applicable in practice.

The concept of function-space regularization has also been used in other areas, such as
variational inference (Blei et al., 2017; Sun et al., 2018; Burt et al., 2020; Khan et al., 2019;
Rudner et al., 2022b) and continual learning (Titsias et al., 2019; Pan et al., 2020; Rudner
et al., 2022a). These function-space regularization techniques directly constrain the space of
functions and as such allow for more explicit incorporation of prior information about the
functions to be learned.

In the context of variational inference, function-space approaches seek to avoid the
limitations of parameter-space variational inference (Blundell et al., 2015; Farquhar et al.,
2020) and have been shown to achieve better uncertainty estimation and calibration (Rudner
et al., 2022b). However, many function-space approaches to regularization lack scalability.
Sun et al. (2018) use an expensive gradient estimator which limits the application to low-
dimensional data and Pan et al. (2020) require expensive matrix inversion operations. Ma
and Hernández-Lobato (2021) propose to use a grid Kullback-Leibler (KL) divergence to
replace the traditional Kullback-Leibler divergence.

For continual learning, most function-space approaches also use variational inference. A
regularization term commonly used in these works is the Kullback-Leibler divergence from
the variational posterior to the posterior of the previous task (Titsias et al., 2019). Benjamin
et al. (2018) use a function L2 norm as a function-space regularizer; FROMP (Pan et al.,
2020) first construct a GP based on DNN2GP (Khan et al., 2019) and then use the GP
posterior in the KL divergence regularization term.

Generalization in Neural Networks. Classical learning theory attributes the ability
to generalize well to low-capacity classes of hypothesis space (Vapnik, 1998; Mohri et al.,
2012; Bartlett and Mendelson, 2002), but empirical findings about the performance of
neural networks to generalize well have contradicted those results, demonstrating that good
generalization can be achieved despite, and possibly due to, over-parameterization (Zhang
et al., 2021; Kawaguchi et al., 2017). Keskar et al. (2016) argue that flat minima can lead to
better generalization, but Dinh et al. (2017) show that sharp minima can also lead to good
generalization. Neyshabur et al. (2019) propose a novel measure based on unit-wise capacities
for two-layer ReLU networks. Allen-Zhu et al. (2020) establish a new notion of quadratic
approximation applicable beyond two-layer neural networks. Why over-parameterization in
neural networks leads to improved generalization remains an open question.

Kernel Methods. Kernel methods, especially support vector machines (Schölkopf et al.,
2002), are a popular class of statistical learning methods. Classical choices of kernels
include Gaussian, polynomial, and Matérn kernel functions. Previous works also considered
families of Gaussian kernels (Micchelli et al., 2005) and hyperkernels (Ong et al., 2005). The

7

Chen Shi Rudner Feng Zhang Zhang

generalization performance of kernel methods has been demonstrated theoretically (Lanckriet
et al., 2004; Cortes et al., 2009). Despite the theoretical success of kernel methods, their
high computational cost limits their applicability to many large-scale problems, and many
approximation methods have been proposed to scale up kernel machines to large training
datasets, such as random features (Rahimi et al., 2007) and the Nyström method (Williams
and Seeger, 2000). Kernel methods have also been considered in neural networks. Williams
(1998) show that the covariance function induced by a distribution over the parameters of
an infinite-width neural network can be given in closed form. Jacot et al. (2018) consider
the training dynamics of neural network outputs and introduced the neural tangent kernel
(NTK) and Lee et al. (2019) show that wide deep neural networks evolve approximately as
linear models.

5. Empirical Evaluations

In Sections 2 and 3, we proposed a function-space regularization technique for neural network
training. In this section, we evaluate the empirical performance of this method. To do so,
we consider four different prediction tasks in which regularization is particularly important.

First, we follow the experiment setup in Bietti et al. (2019) and evaluate the generalization
performance of the proposed function-space regularization technique on MNIST and CIFAR-
10 by training a neural network with only a small subset of samples from each of these datasets.
This way, regularization becomes crucial in preventing over-fitting on the training data.
Second, we evaluate the effectiveness of the proposed method on highly-overparameterized
neural networks. In particular, we consider the MLP-Mixer (Tolstikhin et al., 2021) model,
which has recently drawn attention for its competitive performance on large-scale datasets
with much higher throughput compared to convolutional networks or self-attention models.
However, the MLP-Mixer model has been shown to be very prone to over-fitting (Tolstikhin
et al., 2021). We use the proposed function-space regularization method to train the
MLP-Mixer model and show that it alleviates over-fitting and leads to improved predictive
performance. Third, we evaluate the proposed function-space regularization technique on
the small-sample downstream task of protein homology detection. Fourth, we evaluate the
proposed method on continual learning tasks where effective regularization is needed to
prevent catastrophic forgetting (Kirkpatrick et al., 2017; Nguyen et al., 2018; Benjamin
et al., 2018; Titsias et al., 2019; Pan et al., 2020). For a detailed description of the datasets
as well as training and evaluation protocols, see Appendix 4.1

In contrast to methods designed for related tasks, such as few-shot learning, which
specialized techniques to extract relevant information from related tasks (Wang et al., 2020),
we propose a general-purpose regularization technique. The experiments in our empirical
evaluation are carefully tailored to illustrate the usefulness of the proposed method in finding
models that generalize well without requiring task- or model-specific modifications to the
training procedure.

In the remainder of this section, we refer to our method as KΘ, the function L2 norm
regularization approach proposed by Benjamin et al. (2018) as KL2 , the Jacobian norm
regularization technique proposed by Bietti et al. (2019) as KJ , weight decay as maximum
a posteriori (map) estimation, and kernel regression under the NTK as Kntk.

1. Our code can be accessed at https://github.com/hudsonchen/FS-REG.

8

https://github.com/hudsonchen/FS-REG

A NTK Perspective on Function-Space Regularization in Neural Networks

KΘ (no DA)

KΘ (DA)

KL2 (no DA)

KL2 (DA)

KJ (no DA)

KJ (DA)

MAP (no DA)

MAP (DA)

Kntk
Dropout

100 300 1000 3000 10000 Full
Number of Training Samples

80

85

90

95

100

Te
st

 A
cc

ur
ac

y
(\%

)

(a) Accuracy on MNIST

1000 3000 10000 30000 Full
Number of Training Samples

40

60

80

100

Te
st

 A
cc

ur
ac

y
(\%

)

(b) Accuracy on CIFAR10

Figure 1: Test accuracy on MNIST and CIFAR-10.

5.1. Generalization From Small Datasets

Following Bietti et al. (2019), we train with a small number of samples on MNIST and
CIFAR-10 to demonstrate generalization performance. We gradually increase the number
of training samples to show that our method does not lead to under-fitting even when the
number of samples is large. We use a LeNet-style (Lecun et al., 1998) network for MNIST
and ResNet18 (He et al., 2016) for CIFAR-10. In order to deal with the fact that batch
normalization (BN) and therefore NTK computation is dependent on the evaluation set, we
took special care to implement batch normalization by computing the normalization mean
and standard deviation for any single evaluation point deterministically at every iteration
from a fixed “conditioning set” Xcond. For details, see Appendix 4.

We compare our method with map, dropout (Srivastava et al., 2014), KL2 , and KJ . The
comparison against Kntk is only implemented on MNIST because the kernel regression under
Θntk is too expensive on a ResNet-18 architecture, even under the Nyström approximation.
Figures 1(a) and 1(b) show the test accuracy on MNIST and CIFAR-10 as we increase the
number of training samples. On small datasets like MNIST or CIFAR-10, our networks can
easily reach 100% accuracy on the training set and higher test accuracy indicates better
a better ability to generalize. We can see that our approach, KΘ, generalizes best when
the number of training samples is small, but map gradually catches up as the number of
training samples grows.

Moreover, we find that our method also outperforms Kntk, which may be due to the
expressiveness of neural networks. Lastly, we observe that as the number of training samples
grows, KΘ loses its advantage vis-a-vis other methods, since the large number of training
samples makes the ability to generalize well from a small set of training points less important.
We also note that in Figure 1(b), our approach KΘ is more effective when there is no data
augmentation. This may be due to the fact that data augmentation aids neural networks in
generalizing well and as such may offset the positive regularization effect of KΘ.

9

Chen Shi Rudner Feng Zhang Zhang

5.2. Reducing over-fitting in Highly Overparameterized Models: MLP-Mixer

Based on the practical techniques discussed in Section 3.1, we are able to train an MLP-Mixer
of the B/16 architecture on CIFAR-10 and CIFAR-100 using the proposed function-space
regularization technique. To train the model, we initialize the MLP-Mixer B/16 parameters
with a set of parameters pre-trained on ImageNet (Deng et al., 2009) and then train until
convergence using the proposed function-space regularization method.

In this experiment, we observe that function-space regularization results in a higher
level of predictive accuracy than maximum likelihood training from a pre-trained model
without function-space regularization (see Table 1). The improvement in predictive accuracy
is statistically significant on both datasets, demonstrating that the proposed regularization
technique is effective in reducing over-fitting in highly over-parameterized neural networks.

Table 1: MLP-Mixer performance on CIFAR-10 and CIFAR-100. Reported mean and standard errors
are computed over ten random seeds. 1Negative log-likelihood. 2Regularization used in Tolstikhin
et al. (2021).

Method
CIFAR-10 CIFAR-100

NLL1 Accuracy NLL Accuracy

Baseline2 0.10±0.01 96.5±0.1 0.56±0.01 84.5±0.1

Ours 0.10±0.00 97.0±0.1 0.54±0.00 85.2±0.1

5.3. Improving Generalization Across Datasets: Protein Homology Detection

Table 2: Regularization on protein ho-
mology detection tasks with data aug-
mentation (Bietti et al., 2019). Average
auROC50 score is reported with stan-
dard error across five seeds. 1Values ob-
tained from Bietti et al. (2019).

Method auROC50

∥θ∥2 0.55±0.02

KJ 0.59±0.09

KL2 0.58±0.04

Dropout 0.55±0.02

∥f∥2δ 1 0.61
grad-ℓ2

1 0.57
Ours 0.62±0.05

We consider the task of detecting a protein’s super-
family based on its sequence, which is an important
task in the area of bioinformatics. We used the Struc-
tural Classification Of Proteins (SCOP) version 1.67
dataset (Murzin et al., 1995). Applying the prepro-
cessing steps described in Appendix 4.4, we get 100
balanced binary classification tasks with 200 protein
sequences each. We also cut the length of the protein
sequence to l = 400 amino acids and each amino acid
is represented as {0, 1}20 using a one-hot encoding.
This way, each protein sequence becomes a 20× l ma-
trix, which can be easily processed by convolutional
neural networks (Alipanahi et al., 2015). We use a
convolutional neural network with 3 convolutional
layers followed by a fully-connected layer.

The performance from this experiment is reported
in Table 2. The auROC50 score (area under the ROC curve up to 50% of false positives) is
used as the main evaluation metric. We use the first 50 datasets as validation to select the
hyperparameter, and report the auROC50 score over the remaining 50 datasets. As shown
in Table 2 the proposed regularization method, KΘ, performs best on the small-data protein
homology detection task.

10

A NTK Perspective on Function-Space Regularization in Neural Networks

NTK EWC L2 Norm VCL

1 2 3 4 5 6 7 8 9 10
Task ID

89

91

93

95

97

99

T
es

t
A

cc
u

ra
cy

(%
)

(a) Permuted MNIST

1 2 3 4 5
Task ID

88

92

96

100

T
es

t
A

cc
u

ra
cy

(%
)

(b) Split MNIST

Figure 2: Predictive performance of different continual learning methods and the proposed function-
space regularization technique (denoted ‘NTK’) on Permuted MNIST (single-head) and Split MNIST
(multi-head). Function-space regularization outperforms other methods.

5.4. Sequential Optimization: Continual Learning

Continual learning is a setting in which a model seeks to represent S distinct datasets,
arriving sequentially one at a time, so that a model needs to memorize previously learned
predictions when learning to solve a new task (Kirkpatrick et al., 2017). We denote each

of S sequential datasets by Ds = {x(n)
s ,y

(n)
s }Ns

n=1 with s = 0, 1, . . . , S − 1. When learning to
solve a given task, a model is assumed not to have access to the full datasets associated with
previous tasks but only to a small number of samples from them. These subsets are referred
to as “coresets” and denoted by Cs. We denote the parameters, the corresponding induced
functions, and the induced NTK at task s by θs, fθs(·), Θs, respectively.

At task s = 0, we use maximum likelihood estimation without regularization to fit the
model parameters. When learning tasks s > 0, in order to avoid catastrophic forgetting
of the previous task, we penalize the changes between the function learned at task s − 1
and the function to be learned at task s using the proposed function-space regularization
technique. In Benjamin et al. (2018), this distance is trivially measured by the L2 norm as
∥fs − fs−1∥L2

. As noted in the discussion of the function norm associated with a network’s
NTK in Section 2, the L2 function space may be unable to capture important topological
information of the data-generating process. To capture such information, we instead use the
function-space regularization method proposed in Section 3 and compute the function norm
of fs − fs−1 following Equation (11), using the empirical NTK Θs−1 of task s− 1.

In the continual learning setting, we do not need to explicitly sample XC from X as we
can directly evaluate function values on coresets Cs, which are typically small. The objective
function for continual learning at task s can then be expressed as

LR̂s (θs) =
Ns∑
n=1

log p(y(n)|fθs(x(n))) + ζ∆f(Cs)
⊤Θ−1

s−1(Cs, Cs)∆f(Cs), (14)

where ∆f(Cs) = fθs(Cs)−fθs−1(Cs) denotes the relative change of function values evaluated
on coreset Cs from task s− 1 to task s. Intuitively, the objective trades off fitting the data
at task s while also maintaining “predictive memory” from previous tasks.

11

Chen Shi Rudner Feng Zhang Zhang

Table 3: Comparisons of predictive average accu-
racy computed across all S tasks against a selection
of popular continual learning methods. Both the
mean and standard error are computed across ten
different random seeds.

Method Permuted MNIST Split MNIST

EWC 84.0%±0.3 63.1%±0.2

SI 86.0% 98.9%
VCL 92.5%±0.1 97.8%±0.0

FROMP 94.9%±0.0 99.0%±0.0

FRCL 94.3%±0.0 97.8%±0.2

L2 93.5%±0.0 98.4%±0.1

Ours 95.2%±0.0 99.3%±0.0

We evaluate this approach on single-
head permuted-MNIST and multi-head split-
MNIST, which are standard continual learn-
ing benchmarks. Following prior works,
we use a two-layer fully-connected neural
network with 100 hidden units per layer
for permuted MNIST and a two-layer fully-
connected neural network with 256 hidden
units per layer for split-MNIST. We use 200
coreset points for permuted-MNIST and 40
coreset points for split-MNIST. We can see
from Figures 2(a) and 2(b) and Table 3 that
function-space methods provide higher aver-
age accuracy across all tasks than parameter-
space methods, which shows that function
space regularization results in better memorization of past knowledge. Among all function-
space regularization methods, our method, KΘ, achieves the highest average accuracy. We
attribute this result to the effective regularization of the relative changes in the predictive
functions.

5.5. Sensitivity Study on Function Norm Kernel Approximations

In order to assess the accuracy of the approximations described in Section 3, we conducted a
sensitivity study on how well the norm under the empirical NTK, Θ, evaluated at a context
set XC approximates the norm under the analytic NTK, Θntk. Specially, in Figure 4, the
red line represents the norm

∥f∥2HΘ
= fθ(X)⊤Θ−1

ntk(X,X)fθ(X), (15)

that is, the function norm used in Theorems 1 and 2. The blue line in Figure 4 represents

E
XC∼pX

[
fθ (XC)

⊤Θ−1 (XC ,XC) fθ (XC)
]
, (16)

the norm under the approximate kernel used in the empirical evaluations (see Equation (13)).
The norms are computed using a LeNet-style neural network and a sample of 1,000 MNIST
training points is used to compute the analytic NTK Θntk and invert the full matrix. Figure 4
shows that the approximate function norm is close to the function norm under the analytical
NTK when |XC | ≥ 10. |XC | = 10 was used for the empirical evaluations presented in the
previous section.

12

A NTK Perspective on Function-Space Regularization in Neural Networks

5 10 30 50 100
Set Size

82

84

86

88
Ac

cu
ra

cy
 (%

)

5 10 30 50

Set Size

78

80

82

84

A
cc

u
ra

cy
(%

)

Figure 3: Top: Violin plots showing the effect of |XC | on predictive performance when training
on MNIST using 50,000 samples. Bottom: Violin plots showing the effect of |XC | on predictive
performance when training on CIFAR-10 using 10,000 samples. The plots were generated from ten
random seeds.

5 10 30 50 100

|XC |

0

3

6

×10−5

‖f‖2HΘ
E

XC∼pX
[fθ (XC)>Θ−1 (XC ,XC) fθ (XC)]

Figure 4: Ablation study on the approximations
of the function norm practically used (blue line)
to the theoretical function norm (red line) under
different context set sizes, |XC |.

Additionally, we carried out a sensitiv-
ity study on the effect of the context set
size |XC | on the final predictive performance
on larger datasets and larger neural net-
work architectures. In Figure 3, we report
the predictive performance on MNIST with
50,000 training samples and on CIFAR-10
with 10,000 training samples while varying
the size of the context set. We observe that
as long as the context set size is chosen to be
above a certain threshold, that is, |XC | > 0,
predictive performance does not increase fur-
ther as the size of the context set increases.
This result is consistent with the results in Figure 4.

6. Conclusion

In this paper, we proposed a function-space regularization technique for neural networks. The
proposed optimization objective explicitly regularizes an approximation to the norm on the
functions in the RKHS associated with a neural network’s NTK. We showed empirically that
this approach yields improved generalization on challenging small-data prediction problems
and demonstrated that it leads to state-of-the-art performance in continual learning and
protein homology detection tasks. We proposed a set of approximations that allow scaling
up the regularization method to very large neural network architectures and hope that
future research will enable further improvements in the scalability of the proposed method.
This work provides further evidence in support of the hypothesis that carefully designed
function-space regularizers improve generalization, and we hope that the proposed approach
will inspire further research into general-purpose function-space regularization methods for
deep learning as well as into tailored function-space regularization methods for challenging
downstream tasks.

13

Chen Shi Rudner Feng Zhang Zhang

Acknowledgments

Tim G. J. Rudner is funded by the Rhodes Trust and the Engineering and Physical Sciences
Research Council (EPSRC).

References

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting
the sequence specificities of dna-and rna-binding proteins by deep learning. Nature
biotechnology, 33(8):831–838, 2015.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers, 2020.

Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generation of
protein database search programs. Nucleic acids research, 25(17):3389–3402, 1997.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337–404, 1950.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, pages 8141–8150,
2019.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. J. Mach. Learn. Res., 3:463–482, 2002.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine
learning practice and the bias-variance trade-off. arXiv preprint arXiv:1812.11118, 2018.

Ari Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing networks in
function space. In International Conference on Learning Representations, 2018.

Alberto Bietti and Julien Mairal. Group invariance, stability to deformations, and complexity
of deep convolutional representations, 2018.

Alberto Bietti, Grégoire Mialon, Dexiong Chen, and Julien Mairal. A kernel perspective
for regularizing deep neural networks. In International Conference on Machine Learning,
pages 664–674. PMLR, 2019.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, Apr 2017.
ISSN 1537-274X. doi: 10.1080/01621459.2017.1285773.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural network. In International conference on machine learning, pages
1613–1622. PMLR, 2015.

14

A NTK Perspective on Function-Space Regularization in Neural Networks

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

David R Burt, Sebastian W Ober, Adrià Garriga-Alonso, and Mark van der Wilk. Un-
derstanding variational inference in function-space. arXiv preprint arXiv:2011.09421,
2020.

John B Conway. A course in functional analysis, volume 96. Springer, 2019.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. New generalization bounds for
learning kernels. arXiv preprint arXiv:0912.3309, 2009.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In International Conference on Machine Learning, pages 1019–
1028. PMLR, 2017.

Sebastian Farquhar, Michael A Osborne, and Yarin Gal. Radial bayesian neural networks:
Beyond discrete support in large-scale bayesian deep learning. In International Conference
on Artificial Intelligence and Statistics, pages 1352–1362. PMLR, 2020.

Amnon Geifman, Abhay Yadav, Yoni Kasten, Meirav Galun, David Jacobs, and Basri
Ronen. On the similarity between the laplace and neural tangent kernels. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1451–1461. Curran Associates, Inc., 2020.

Tony H̊andstad, Arne JH Hestnes, and P̊al Sætrom. Motif kernel generated by genetic
programming improves remote homology and fold detection. BMC bioinformatics, 8(1):
1–16, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in neural information processing
systems, pages 8571–8580, 2018.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
arXiv preprint arXiv:1710.05468, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

15

http://github.com/google/jax

Chen Shi Rudner Feng Zhang Zhang

Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Ap-
proximate inference turns deep networks into gaussian processes. Advances in neural
information processing systems, 32, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming
catastrophic forgetting in neural networks, 2017.

Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I
Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine
learning research, 5(Jan):27–72, 2004.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32, pages 8572–8583. Curran Associates, Inc., 2019.

Chao Ma and José Miguel Hernández-Lobato. Functional variational inference based on
stochastic process generators. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 21795–21807. Curran Associates, Inc., 2021.

J Mercer. Functions ofpositive and negativetypeand theircommection with the theory
ofintegral equations. Philos. Trinsdictions Rogyal Soc, 209:4–415, 1909.

Charles A Micchelli, Massimiliano Pontil, and Peter Bartlett. Learning the kernel function
via regularization. Journal of machine learning research, 6(7), 2005.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. The MIT Press, 2012. ISBN 026201825X.

Alexey G Murzin, Steven E Brenner, Tim Hubbard, and Cyrus Chothia. Scop: a structural
classification of proteins database for the investigation of sequences and structures. Journal
of molecular biology, 247(4):536–540, 1995.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
The role of over-parametrization in generalization of neural networks. In International
Conference on Learning Representations, 2019.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. In International Conference on Learning Representations, 2018.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural

16

A NTK Perspective on Function-Space Regularization in Neural Networks

networks in python. In International Conference on Learning Representations, 2020. URL
https://github.com/google/neural-tangents.

CS Ong, A Smola, and R Williamson. Learning the kernel with hyperkernels. The Journal
of Machine Learning Research, 6:1043–1071, 2005.

Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner,
and Mohammad Emtiyaz E Khan. Continual deep learning by functional regularisation
of memorable past. Advances in Neural Information Processing Systems, 33:4453–4464,
2020.

Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel machines. In
NIPS, volume 3. Citeseer, 2007.

Michael Reed and Barry Simon. Methods of modern mathematical physics, volume 1. Elsevier,
1972.

Tim G. J. Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal.
Continual Learning via Function-Space Variational Inference. In Proceedings of the 38th
International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, 2022a.

Tim G. J. Rudner, Zonghao Chen, Yee Whye Teh, and Yarin Gal. Tractabe Function-Space
Variational Inference in Bayesian Neural Networks. In Advances in Neural Information
Processing Systems 35, 2022b.

Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem.
In International conference on computational learning theory, pages 416–426. Springer,
2001.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press, 2002.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational
bayesian neural networks. In International Conference on Learning Representations, 2018.

Michalis K Titsias, Jonathan Schwarz, Alexander G de G Matthews, Razvan Pascanu, and
Yee Whye Teh. Functional regularisation for continual learning with gaussian processes.
In International Conference on Learning Representations, 2019.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-
mixer: An all-mlp architecture for vision. Advances in Neural Information Processing
Systems, 34, 2021.

17

https://github.com/google/neural-tangents

Chen Shi Rudner Feng Zhang Zhang

Amal Rannen Triki, Maxim Berman, and Matthew B. Blaschko. Function norms and
regularization in deep networks, 2018.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few
examples: A survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3):1–34,
2020.

Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. Advances in neural information processing systems, 13, 2000.

Christopher KI Williams. Computation with infinite neural networks. Neural Computation,
10(5):1203–1216, 1998.

Tan Yu, Xu Li, Yunfeng Cai, Mingming Sun, and Ping Li. S2-mlp: Spatial-shift mlp archi-
tecture for vision. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 297–306, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning (still) requires rethinking generalization. Communications of the
ACM, 64(3):107–115, 2021.

18

A NTK Perspective on Function-Space Regularization in Neural Networks

Supplementary Material

Table of Contents

1 Reproducing Kernel Hilbert Space Theory 20

2 Proofs and Derivations 21
2.1 Discrepancy Between Predictive Functions 21
2.2 Generalization Error Bound . 25

3 Ablation Studies 26
3.1 Empirical Evaluation of Time Complexity 26
3.2 Batch Normalization in NTK Computation 26

4 Implementation, Training, and Evaluation Details 26
4.1 MNIST and CIFAR-10 . 26
4.2 MLP-Mixer . 27
4.3 Continual Learning . 27
4.4 Protein Homology Detection . 27

19

Chen Shi Rudner Feng Zhang Zhang

1. Reproducing Kernel Hilbert Space Theory

Let K : X × X → R be a symmetric and positive definite kernel function. That is to
say K(x,x′) = K(x′,x) for all x,x′ ∈ X and

∑
1≤i,j≤N K(xi,xj)cicj ≥ 0 hold for any

{xi}ni=1 ⊆ X for given n ∈ N and {ci}ni=1 ⊆ R.
Let L2(X , µ) be the squared integrable function space over X with respect to a strictly

positive finite Borel measure (e.g. probability measure) µ on X , there is an associated
integral operator TK : L2(X , µ)→ L2(X , µ) defined as follows:

TK(f)(·) =
∫
X
K(·,x)f(x)dµ(x). (1.1)

If X is compact, TK is compact self-adjoint. Spectral theorem (Conway, 2019) then implies
TK has at most countable eigenvalues {σj}j≥0 such that TK(ϕj) = σjϕj , where {ϕj}j≥0

is an orthonormal basis of L2(X , µ) and σ0 ≥ σ1 ≥ . . ., σj → 0 as j → ∞. Furthermore,
Mercer’s theorem (Mercer, 1909) states that K admits a decomposition as follows:

K(x,x′) =
∞∑
j=0

σjϕj(x)ϕj(x
′). (1.2)

According to Moore–Aronszajn theorem (Aronszajn, 1950), for any such kernel K on X
we have a unique reproducing kernel Hilbert space (RKHS) HK , which is the completion of
the pre-Hilbert space consisting of all linear span of feature maps {Kx(·) : x ∈ X}, where
Kx(·) = K(·,x). To be precise, we have

HK =

{
f(·) =

∞∑
j=1

αjK(x(j), ·) :(x(1),x(2), . . .) ⊂ X ∧ ∥f∥2HK
=

∑
i,j

αiαjK(x(i),x(j)) <∞
}
.

(1.3)

The kernel function K is called reproducing kernel since for any f ∈ HK , we have the
following reproducing property:

f(x) = ⟨f,Kx⟩HK
. (1.4)

One can show that the RKHS can also be viewed as a subspace of L2(X , µ) as follows:

HK =

{
f ∈ L2(X , µ) : ∥f∥2HK

=
∞∑
j=0

⟨f, ϕj⟩2L2

σj
<∞

}
. (1.5)

We make the following observations:

1. As we can see from Equation (1.3), the computation of norm depends on the choice of xi,
hence is not uniform for general f if the underlying space X is uncountable. This implies
that Equation (3) is not true for general f . But as a result of the Representer Theorem,
the hypothesis space for kernel regression is H = {f(·) = ∑N

j=1 αjK(x(j), ·) : x(j) ∈ X},
which is a finite-dimensional subspace of HK . This is the same as taking X = X, which
is finite. Hence Equation (3) is valid for kernel regression.

2. By Equation (1.5), we can easily see that ∥f∥2HK
≥ c

∑∞
j=0⟨f, ϕj⟩2L2

= c ∥f∥2L2
where

c = σ−1
0 . Therefore, the RKHS norm provides more effective regularization than the L2

norm.

20

A NTK Perspective on Function-Space Regularization in Neural Networks

2. Proofs and Derivations

2.1. Discrepancy Between Predictive Functions

The proof of Theorem 1 requires a study of neural network training dynamics, and Theorem 2
can be proved by applying the classical kernel ridge regression bound. We start by recalling
the definition of fully-connected neural networks:

f (h)(x) = W(h)g(h−1)(x) ∈ Rdh g(0)(x) = x

g(h)(x) =

√
cσ
dh

σ
(
f (h)(x)

)
∀h = 1, 2, . . . , L.

(2.6)

And the last layer is given by

fθ(x) = f (L+1)(x) = W(L+1)g(L)(x). (2.7)

The optimization problem we propose is

min
θ
LR̂ = min

θ

1

N

N∑
j=1

ℓ(fθ(x
(j))) + ζfθ(X)⊤Θntk(X,X)−1fθ(X). (2.8)

Training Dynamics under Function-Space Regularization. We first study the
dynamics of the optimization problem stated in Equation (2.8). Suppose the loss function is
the squared loss ℓ(f) = (f(x)− y)2. Then the continuous gradient descent training dynamics
are given by

dθ

dt
= −ηdL

R̂

dθ
= −η

(
2

N
Jθ(X)⊤(fθ(X)− y) + 2ζJθ(X)⊤Θntk(X,X)−1fθ(X)

)
(2.9)

and

dfθ
dt

(X) = Jθ(X)
dθ

dt
= −η

(
2

N
Θ(X,X)(fθ(X)− y) + 2ζΘ(X,X)Θntk(X,X)−1fθ(X)

)
.

(2.10)
Note that, in practice, we use the empirical kernel Θ instead of the analytic NTK, and the
inverse kernel matrix is treated as constant in the network parameters at each gradient
update step. The training dynamics under the empirical NTK are therefore given by

dfθ
dt

(X) = −η
(

2

N
Θ(X,X)(fθ(X)− y) + 2ζΘ(X,X)Θ(X,X)−1fθ(X)

)
= −η

(
2

N
Θ(X,X)(fθ(X)− y) + 2ζfθ(X)

) . (2.11)

First, we prove that the two training dynamics are close and that the proposed practical
algorithm, therefore, approximates the true solution well.

Lemma 1 Let f∗
ntk and fentk be the solutions of Equation (2.10) and Equation (2.11),

respectively, with the same initial condition. Assume f is bounded, then for ultra-wide
networks, we have

sup
t≥0
∥f∗

ntk(X)− fentk(X)∥ < γε. (2.12)

21

Chen Shi Rudner Feng Zhang Zhang

Proof By comparing the dynamics in Equation (2.10) and Equation (2.11), we have

− 1

η

[
df

dθ
− dg

dθ

]
=

2

N
Θf (fθ(X)− y)− 2

N
Θg(gθ(X)− y) + 2ζΘfΘ

−1
ntkfθ(X)− 2ζgθ(X)

=
1

N

(
2Θf + 2ζΘfΘ

−1
ntk

)
(fθ(X)− gθ(X)) +

(
Θf −Θg

)(2

N
(gθ(X)− y) + 2ζΘ−1

ntkgθ(X)

)
.

(2.13)

We denote the empirical NTK matrix with respect to f by Θf = Θf (X,X) (and analogously
for g). Let A = 1

N

(
2Θf + 2ζΘfΘ

−1
ntk

)
, v =

(
Θf −Θg

)(
2
N (gθ(X)− y) + 2ζΘ−1

ntkgθ(X)
)
and

h = f − g. Also let λ0 be the smallest eigenvalue of Θntk. Since h(0) = 0, we have

f∗
ntk(X)− fentk(X) = h(t) = −ηe−η

∫ t
0 Adt

∫ t

0
e
∫ s
0 ηAdtv(s)ds (2.14)

Note that for ultra-wide neural networks, we have ∥Θ−Θntk∥F ≤ N(L + 1)ε (Theorem
3.1; Arora et al. (2019)), and hence

∥Θf −Θg∥ ≤ ∥Θf −Θg∥F ≤ ∥Θf −Θntk∥F + ∥Θg −Θntk∥F ≤ 2N(L+ 1)ε (2.15)

So we have

∥v∥ ≤∥Θf −Θg∥
(

2

N
∥gθ(X)− y∥+ 2ζ

∥∥Θ−1
ntkgθ(X)

∥∥)
≤4N(L+ 1)ε

(
C1 + ζ

NC0

λ0

)
:= C ′′ε.

(2.16)

Let A0 =
1
N (2Θntk + 2ζI), then

∥A−A0∥ ≤
1

N
(2 ∥Θf −Θntk∥+ 2ζ

∥∥Θ−1
ntk

∥∥ ∥Θf −Θntk∥) ≤ 2(L+ 1)ε

(
1 +

ζ

λ0

)
. (2.17)

Hence, by Lemma 2, we have

λmin(

∫ t

s
Ads) ≥λmin(

∫ t

s
A0ds)−

∥∥∥∥∫ t

s
(A−A0)ds

∥∥∥∥
≥
[
2

N
(λ0 + ζ)− 2(L+ 1)ε

(
1 +

ζ

λ0

)]
(t− s) := C ′(t− s).

(2.18)

Hence we see that

∥h(t)∥ ≤ η

∫ t

0

∥∥∥e∫ s
t ηAdt

∥∥∥ ∥v∥ ds
≤ ηC ′′ε

∫ t

0
e−ηλmin(

∫ t
s Adt)ds

≤ ηC ′′ε
∫ t

0
eηC

′(s−t)ds

≤ ηC ′′ε
ηC ′ (1− e−ηC′t) ≤ C ′′

C ′ ε.

(2.19)

This proves the lemma by letting γ = C ′′/C ′.

22

A NTK Perspective on Function-Space Regularization in Neural Networks

Lemma 2 Let A,B be n× n Hermitian matrices, arrange the eigenvalues in descending
order as λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) (and for B as well). Then for all 1 ≤ i ≤ n, we have

|λi(A+B)− λi(A)| ≤ ∥B∥ . (2.20)

Proof Courant-Fischer min-max theorem ((Reed and Simon, 1972)) implies that for any
Hermitian matrix, we have

λi(A) = sup
dimV=i

inf
v∈V,∥v∥=1

v∗Av (2.21)

λi(A) = inf
dimV=n−i+1

sup
v∈V,∥v∥=1

v∗Av. (2.22)

According to Equation (2.21), we can find a subspace U with dimU = i, such that λi(A) ≥
u∗Au for all unit vector u ∈ U . And similarly using Equation (2.22), we can find a subspace
W with dimW = n − i + 1, we have λi(A + B) ≤ w∗(A + B)w. Since dimU ∩ W =
dimU +dimW −dimU ∪W ≥ i+n− i+1−n = 1, we find a non-trivial solution v ∈ U ∩W
such that

λi(A+B)− λi(A) ≤ v∗(A+B)v − v∗Av = v∗Bv ≤ ∥B∥ . (2.23)

Similarly we can prove λi(A+ B)− λi(A) ≥ −∥B∥ using the same argument. These two
inequalities prove the claim of the lemma.

Theorem 1 Let f be an m-layer fully-connected neural network mapping with ReLU

activation functions, f R̂∗
nn and fR∗

∞ as defined above, 1/κ = poly(1/ε, log(N/δ)), di = m
for i = 1, ..., L with m ≥ poly(1/κ, L, 1/(λ0 + ζN)). Then for any x with ∥x∥ = 1, with
probability at least 1− δ over random initialization,

|f R̂∗
nn (x)− fR∗

∞ (x)| ≤ ε. (2.24)

Proof Note that the training dynamics 2.11 can be written as

dfθ
dt

+
2η

N
(Θ + ζNI)fθ =

2η

N
Θy. (2.25)

if we replace Θ by the analytic kernel Θntk, the linear system above becomes

dfθ
dt

+
2η

N
(Θntk + ζNI)fθ =

2η

N
Θntky. (2.26)

Since Θntk is constant, we have a closed-form solution

ft(x) = Θntk(x,X)
(
Θntk(X,X) + ζNI

)−1
(
I − e−

2η
N

tΘntk(X,X)

)
y. (2.27)

This is exactly the solution of kernel ridge regression under the NTK when t → ∞, i.e.
ft → fR∗

∞ . Taking the difference of the two linear systems, we have

dh

dt
+

2η

N
(Θntk + ζNI)h =

2η

N
(Θ−Θntk)(y − f). (2.28)

23

Chen Shi Rudner Feng Zhang Zhang

Let B = 2η
N (Θntk + ζNI) and u = 2η

N (Θ−Θntk)(y − f), we see that

fentk(X)− fR∗
∞ (X) = h(t) = e−

∫ t
0 Bdt

∫ t

0
e
∫ s
0 Bdtu(s)ds. (2.29)

This implies

|h(t)| ≤
∫ t

0

∥∥∥e∫ t
s Bdt

∥∥∥ ∥u∥ ds
≤ 2η

N
∥Θ−Θntk∥ ∥y − f(X)∥ 1

∥B∥
(
1− e−t∥B∥) ≤ NC0ε

λ0 + ζN
,

(2.30)

where C0 is constant bounds the function value and λ0 is the smallest eigenvalue of the
NTK. Equation (2.30) together with Theorem 1 prove the Theorem on the training set.

To complete the proof for any test point x, note that we only need to mimic the proof
of Lemma F.1 in Arora et al. (2019). All the bounds remain the same, except now Θntk is
replaced by Θntk + ζNI, so λ0 is replaced by λ0 + ζN .

Analytic and Empirical NTK. Here we provide the details about using the empirical
NTK Θ instead of the analytic NTK Θntk as we discussed in Section 3. Although we propose
to use function norm under the analytic NTK Θntk as a regularizer in Equation (11), this
exact computation is costly in practice, so the empirical kernel is used instead.

Specifically, in practice, we replace Θntk in Equation (2.8) by Θ, and furthermore we
do not compute the gradient of the inverse NTK Θ during SGD since the analytical kernel
is constant. The kernel approximation has been well-studied in the literature. Under
the infinite-width assumption, that is, m → ∞, Θ → Θntk (Jacot et al., 2018). This
result was extended to the non-asymptotic case in Arora et al. (2019), which implies that
|Θ(x,x′)−Θntk(x,x

′)| ≤ (L+ 1)ε. Hence, intuitively, the two objective functions using the
analytic and empirical kernel are almost identical for sufficiently-wide neural networks. The
corresponding training dynamics are described by Equation (2.10) and Equation (2.11). As
we have proven in Lemma 1, these dynamics are sufficiently close during training, which
indicates that the approximation by the empirical kernel is theoretically justified.

24

A NTK Perspective on Function-Space Regularization in Neural Networks

2.2. Generalization Error Bound

Theorem 2 Let f R̂∗
nn be as defined in the main text. Let R(f R̂∗

nn) = E[(f R̂∗
nn (x) − y(x))2]

be the generalization error and R̂(f R̂∗
nn) the corresponding empirical error. Assume for all

∥x∥ ≤ 1, |f R̂∗
nn (x)| ≤ C0κ and

∥∥∥∂θf R̂∗
nn (x)

∥∥∥ ≤ C1 and |y| ≤ c. Then for any δ > 0, with

probability at least 1− δ, we have the following bound:

R(f R̂∗
nn)− R̂(f R̂∗

nn) ≤ 4(C0κ+ c)ε+
8C2

1Λ
2

√
N

√
CK

NC2
1

+
3

4

√
log 2

δ

2

 , (2.31)

where N is the number of training points and Λ is a constant that only depends on the
regularization coefficient ζ. CK is the trace of the empirical NTK. ε is the discrepancy
between predictive functions from Theorem 1.

Proof First note that the definition of neural network function in the very beginning is
homogeneous since it is bias-free, and ReLU is also homogeneous. Hence for any t, we have
f(tx) = tf(x). Therefore, it is sufficient to assume ∥x∥ ≤ 1 for all x ∈ X .

Since we have proven the equivalence between neural network optimization and kernel
ridge regression, we have

R(f R̂∗
nn)−R(fR∗

∞) = E
[(
f R̂∗
nn (x)−fR∗

∞ (x)
)(
f R̂∗
nn (x)+fR∗

∞ (x)−2y(x)
)]
≤ 2ε(C0κ+c), (2.32)

where Ce is the supremum of the error term. Similarly, we have

R̂(fR∗
∞)− R̂(f R̂∗

nn) ≤ 2ε(C0κ+ c) (2.33)

Therefore,

R(f R̂∗
nn)− R̂(f R̂∗

nn) ≤ R(fR∗
∞)− R̂(fR∗

∞) + 4ε(C0κ+ c). (2.34)

Classical result for kernel ridge regression (e.g. Theorem 10.7 (Mohri et al., 2012)) implies

R(fR∗
∞)− R̂(fR∗

∞) ≤ 8r2Λ2

√
N

(√
Tr(Θntk)

Nr2
+

3

4

√
log 2

δ

2

)
, (2.35)

where r and Λ are constants such that Θntk(x,x) ≤ r2 and ∥f∥HK
≤ Λ. Note that the

condition ∥f∥HK
≤ Λ corresponds to the regularizer, hence Λ is uniquely determined by

ζ. We can take r = C1 since Θntk(x,x) ≈ ⟨Jθfθ(x),Jθfθ(x)⟩ ≤ C2
1 under the ultra-wide

assumption.
It has been proven in Geifman et al. (2020) that the eigenvalues of the NTK satisfy

ck−d ≤ λk ≤ Ck−d for all k > k0, where d is the dimension of input data points. Therefore,
Tr(Θntk) ≤ λ1 + . . .+ λk0 +C

∑
k>k0

k−d := CK <∞. Combining these facts completes the
proof of the theorem.

25

Chen Shi Rudner Feng Zhang Zhang

3. Ablation Studies

3.1. Empirical Evaluation of Time Complexity

We provide a comparison of the time of every epoch under ResNet-18 using a single RTX 2080
Ti in Table 4. Although KΘ is slower than maximum a posteriori estimation (map), this is
not a significant issue, since we propose to use KΘ in small-data problems, so computational
time is not the main bottleneck. Moreover, compared to other regularization techniques like
KJ KΘ has a similar computational cost but demonstrates better performance in practice.

Table 4: Wall-clock time (in second) of different methods.

Method KΘ KJ Dropout map

Time (s) 170 141 26 25

3.2. Batch Normalization in NTK Computation

To remain consistent with NTK theory, we took special care in implementing batch normal-
ization (BN). To compute the normalization mean and standard deviation deterministically
at every iteration, we use a fixed “conditioning set” of 20 data points, Xcond, randomly
sampled from the training set at the beginning of training. Normalization means and
variances for a given NTK evaluation point xi are then computed by evaluating the network
on [xi,Xcond]. Vectorization allows implementing this procedure efficiently with a cost of
O(|XB|+ |Xcond|) for a mini-batch XB.

4. Implementation, Training, and Evaluation Details

We use 10% of the training set as the validation set to conduct a hyperparameter search over
the scaling factor ζ and learning rate η for all methods. We choose the set of hyperparameters
that yielded the lowest validation negative log-likelihood for all experiments. All experiments
are implemented in JAX (Bradbury et al., 2018).

4.1. MNIST and CIFAR-10

For MNIST, we use a LeNet style network with three convolutional layers of 6, 16, and 120
5×5 filters and a fully-connected final layer of 84 hidden units. An average pooling operation
is placed after each convolutional layer and ReLU activation is used. For CIFAR-10, we use
ResNet-18. For both MNIST and CIFAR-10, we use SGD optimizer with a learning rate of
0.03 and momentum of 0.9. The learning rate would decay by a rate of 0.3 every 10 epochs.
During training, the batch size is set to 128 for MNIST and 256 for CIFAR-10. At every
iteration, 10 input points are randomly sampled from the current batch as XC to compute
the RKHS norm.

When we compare our method against KL2 and KJ , we copy the same experimental
set-up as in the original paper. For map and Dropout, we use a held-out validation set to
select the best hyper-parameter. In the end, we find that for map, the best ζ is 5e−4, and
for Dropout, the best dropout rate is 0.15.

26

A NTK Perspective on Function-Space Regularization in Neural Networks

4.2. MLP-Mixer

We use MLP-Mixer of B/16 architecture (Tolstikhin et al., 2021) and load the pre-trained
parameters on ImageNet from a public online source. The training of MLP-Mixer on
CIFAR-100 requires 8 GTX 3090 GPUs. Stochastic gradient descent with a learning rate of
0.01 and momentum with a decay rate of 0.9 are used for optimization.

4.3. Continual Learning

For all continual learning experiments, 60,000 data samples are used for training and 10,000
data samples are used for testing. The inputs are converted to float values in the range of
[0, 1].

Multi-Head Split MNIST In the multi-head setup, a model receives 5 sequential datasets
and uses a different output head for each task. The original 10 classes in MNIST are split
into 5 different binary classification tasks. The network is a multilayer perceptron with two
layers and 100 hidden units for each layer. 40 coreset points are randomly chosen at each
task.

Single-Head Permuted MNIST In the single-head setup, a model receives 10 sequential
datasets and uses the same output head for each task. At every task, the MNIST images
undergo a random permutation of pixels. The network is a multilayer perceptron with two
layers and 256 hidden units for each layer. 200 coreset points are randomly chosen at each
task. For both multi-head split MNIST and single-head permuted MNIST, we use the Adam
optimizer of learning rate 10−3 with default settings of β1 = 0.9, β2 = 0.99 and ϵ = 10−8

and we use a batch size of 128 in all experiments.

4.4. Protein Homology Detection

The protein homology detection experiment used the dataset of Structural Classification Of
Proteins (SCOP) version 1.67 (Murzin et al., 1995) and we followed the data preprocessing
method in H̊andstad et al. (2007). We construct 100 balanced binary classification dataset
by sampling 200 positive samples from a specific family and sampling 200 negative samples
outside that family. If the number of positive samples does not reach 100, we extend their
numbers to 100 by using PSI-BLAST (Altschul et al., 1997). In order to remain comparable
to the results in Bietti et al. (2019), we also follow their data augmentation techniques by
randomly flipping some of the binary characters of a given sequence at probability 0.1. We
use the Adam optimizer with a learning rate fixed to 0.01 (with default β (0:9; 0:999)), and
a batch size of 100 for 300 epochs.

27

	Introduction
	Preliminaries
	Kernel Ridge Regression
	Kernel Methods and Deep Learning

	Approximate Function-Space Regularization for Neural Networks
	Optimization Objective and Computational Cost

	Related Work
	Empirical Evaluations
	Generalization From Small Datasets
	Reducing over-fitting in Highly Overparameterized Models: MLP-Mixer
	Improving Generalization Across Datasets: Protein Homology Detection
	Sequential Optimization: Continual Learning
	Sensitivity Study on Function Norm Kernel Approximations

	Conclusion
	Reproducing Kernel Hilbert Space Theory
	Proofs and Derivations
	Discrepancy Between Predictive Functions
	Generalization Error Bound

	Ablation Studies
	Empirical Evaluation of Time Complexity
	Batch Normalization in NTK Computation

	Implementation, Training, and Evaluation Details
	MNIST and CIFAR-10
	MLP-Mixer
	Continual Learning
	Protein Homology Detection

