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Abstract

Associative memory architectures are designed for memorization but also offer,
through their retrieval method, a form of generalization to unseen inputs: stored
memories can be seen as prototypes from this point of view. Focusing on Modern
Hopfield Networks (MHN), we show that a large memorization capacity under-
mines the generalization opportunity. We offer a solution to better optimize this
tradeoff. It relies on Minimum Description Length (MDL) to determine during
training which memories to store, as well as how many of them.

1 Introduction

Generalization requires going beyond the training data. Hopfield Networks (HNs), both classical and
modern, involve a retrieval component that can be seen as a form of generalization: an input image
that is fed into a trained network can lead to a stored image even if the input itself is quite different
from anything that the network saw during training. This form of generalization, however, is limited
by the fact that the training stage of the network incentivizes rote memorization.

The present paper explores the generalization capacity of HNs using a very simple setup. Our goals
are twofold. We wish to both sharpen the implications of the memorization in HNs and offer a
remedy that incorporates generalization into the storage phase. For our first goal, we note that rote
memorization in the storage phase can lead to the storage of a wrong number of memories. For our
second goal, we show how incorporating a well-studied principle of generalization — specifically,
the principle of Minimum Description Length (MDL; Solomonoff] 1964, Rissanen|[1978) — into the
storage phase can help address the problem that we note for rote memorization. MDL balances the
complexity of a hypothesis against its fit to the data, and by doing so it leads to hypotheses that are
relatively simple, and therefore generalize beyond the data, but not too simple.

We start, in section [2} with relevant background. We assume familiarity with HNs and focus on MDL
and its use in the context of neural networks. Section 3| presents MDL HNG. In section ] we illustrate
the problem of incorrect number of memories, and how solving it can lead to good generalization. In
sectionE]we show how MDL does this. Throughout, we will use modern HNs, but as far as we can
tell our essential point holds in Classical HNs and other familiar architectures for associative memory.
Section [6] concludes and outlines remaining issues.

2 Background on simplicity and MDL

Consider a hypothesis space G of possible networks, and a corpus of input data D. In our case, G
is the set of all possible HNs expressible using our representations, and D is a set of input images.
For any G € G, we may consider the ways in which we can encode the data D, given that G.
The MDL principle (Rissanen, |1978), a computable approximation of Kolmogorov Complexity
(Solomonoff, |1964, Kolmogorov, |1965| (Chaitin, |1966), aims at the G that minimizes |G| + |D : G|,
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where |G| is the size of G and | D : G| is the length of the shortest encoding of D given G (with both
components typically measured in bits). Minimizing |G| favors simple, general networks that often
fit the data poorly. Minimizing | D : G| favors complex, overly specific networks that overfit the data.
By minimizing the sum, MDL aims at an intermediate level of generalization: reasonably simple
networks that fit the data reasonably well.

Simplicity criteria have been applied to artificial neural networks, primarily for feed-forward archi-
tectures, as early as|Hinton and Van Camp|[1993]], who minimize the encoding length of a network’s
weights alongside its error, and to|Zhang and Miihlenbein|[[1993,|1995]], who use a simplicity metric
that is essentially the same as the MDL metric that we use in the present work. |Schmidhuber] [[1997]]
presents an algorithm for discovering networks that optimize a simplicity metric that is closely related
to MDL. Simplicity criteria have been used in a range of works on neural networks, including recent
contributions (e.g.,/Ahmadizar et al.l 2015/ and |Gaier and Ha, 2019). More recently, |Lan et al.|[2022,
2023|| applied MDL to recurrent neural networks (RNNs) and showed that this allows the networks to
find provably correct solutions to a range of tasks that are only approximated using standard methods.

Outside of neural networks, MDL — and the closely related Bayesian approach to induction — have
been used in a wide range of tasks in which one is required to generalize from very limited data (see
Horning, |1969, Berwick! (1982 [Stolcke, |1994] |Griinwald, [1996| and |de Marcken, |1996, and more
recently Rasin and Katzir, 2016 and Rasin et al.| 2021,

3 MDL Hopfield Networks

Implementing MDL within a given formalism involves specifying how to measure both |G|, the
encoding length of a hypothesis G, and | D : G|, the encoding length of the training data D given the
hypothesis G. Moreover, in order to turn MDL into a practical objective function, we should specify
how we search the hypothesis space for the choice that optimizes |G| + |D : G|. We describe our
choices for each of these three decision points below, and discuss more possibilities in section @ [1_-]

3.1 Encoding G

MHN can be described as a set of patterns stored in memory slots. An encoding of these memories is
thus an encoding of the ‘grammar’ GG (which itself is the basis for an encoding of any data point). To
encode such a set of patterns, and get |G| for the MDL objective, one needs to encode the pixel values
of these patterns, and concatenate these encodings. Here we used two simple encoding schemes
for pixel values in [0, 1] (which produced similar results, that we will therefore not distinguish).
Fixed-Length Encoding: We encode each pixel value of each pattern with a constant number of bits,
say one, resulting in a total encoding length equal to the number of patterns multiplied by the pattern
size. Prefer-Extreme-Value Encoding: This encoding favors extreme values: we assign one bit to
encode 0 and 1, while the numbers in between are encoded with more bits, with the middle point 0.5
receiving the most complex encoding. For concreteness we chose [1 + 10 - (value - (1 — value))]?.

3.2 Encoding D:G

To encode the data according to the given grammar, we need to specify how each training exemplar
can be reconstructed using the grammar (network). For each training exemplar, we first need to
encode which memory we should start from to reconstruct it. To do this, we encode the index of the
closest memory in the memory slots. We need [log, num_memory_slots] bits for this encoding.

Next we need to encode the differences between the exemplar and its associated memory. We used
the L1-distance between the memory and the training image, multiplied by [log, pattern_size|. If all
images are bitmaps, then this amounts to encoding where the non-null differences are.

3.3 Training

In order to search the hypothesis space for the network that optimizes the MDL objective function
we use Simulated Annealing (SA; Kirkpatrick et al.[1983)). Starting from an initial hypothesis, SA
repeatedly considers switching to a random neighbor, depending on (a) how the neighbor compares to
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the current hypothesis, and (b) a temperature parameter. If the neighbor is better (in our case, lower
|G| + |D : G|), SA switches to it. Otherwise, the worse the neighbor the less likely SA is to switch
to it. The temperature parameter determines how risk taking SA is at a given moment: the higher the
temperature, the likelier the switch to a worse neighbor. During the search the temperature is slowly
lowered, and when it is close to zero the search is effectively greedy.

A random neighbor is derived from the current hypothesis using one of the following operations:
1. Removing a random memory, 2. Adding a random training set image to the memories, 3. Changing
an existing memory: Selecting a random memory and applying Gaussian noise to random indices in
it, 4. Crossover: Creating a new memory by averaging two random memories, replacing the originals.

4 Experiment 1: The risk with excessive memory in Hopfield Networks

Much work in the literature has been dedicated to equip Hopfield networks with a large memory
capacity. Here we illustrate why the use of these large memory resources should be constrained.

Data. We created a 9 x 9 bitmap of each digit. For each of these ‘golden’ bitmaps, we created
several noisy, continuous exemplars of it: each pixel was incremented with Gaussian noise with low
or high variance, and the result was clipped to [0, 1]. Noisy, discrete exemplars were also created, by
rounding the continuous exemplars to 0 or 1. Setup. HNs were implemented with a version of the
HAMUX library [Hoover et al.,[2022], updated in https://github. com/bhoov/eqx-hamux.

Experimental conditions. The different training sets used to train the networks were defined
by: the number of golden digits represented (1 digit, 2 digits, ..., all 10 digits), the number of
exemplars per digit (1, 5, 10, 30), their type (discrete, continuous), their level of noise (low or medium
variance). Additionally, the networks were equipped with a memory capacity either corresponding to
the cardinality of the training set (unconstrained), or to the cardinality of golden digits represented in
the training set (golden memories).

Results and discussion. Unconstrained MHNs very closely memorized the full input: in the
examples inspected, unsurprisingly, memories retrieved from exemplars were diverse, each capturing
few exemplars, with distances between an exemplar and its retrieved memory being low, potentially
lower than to the underlying golden digit. On the other hand, with MHNs constrained a priori to use
no more than the golden number of memories, the learned memories were close to the actual golden
digits. (Results became similar to those in Fig.[2). MHNs are thus capable of excellent generalization
in principle, but only if the memory resources are kept under control. The next experiment shows
how to achieve this in a non-supervised manner (i.e. non-ad-hoc), through the MDL objective.

5 Experiment 2: MDL delivers the golden memories (unsupervised)

Setup. The Minimum Description Length (MDL) princi-
ple was incorporated as described in section [3|above to train
MHN:Ss, on the same training sets described for Exp. 1. 'E |-|

Results.  Fig.[T|shows the outcome of one simulation. We see 'E" I-I _'a q
that the memories learned through MDL are identical to the -
target ‘golden’ digits, aside from two grey pixels in digits 8 and E 1 I 3. q
9. This illustrates the two main results. First, the final number

of memory slots (which is now adjusted during training), aligns 'E- H Eﬁ‘ 'q
well with the golden number of digits in the training set, see

Fig. 2] and Fig. @] in Appx. [A] for continuous noise). This
holds strictly true in most cases, except most notably for the
high noise conditions, with many exemplars for each digit —
conditions under which an image may be sampled very far from
its golden digit, which may reasonably justify the creation of a
new category. We come back to these issues in the follow-up below. Second, the learned memories

strongly resemble the golden digits: the golden digits were at an average L2 distance of 0.449 for the
low noise simulations (1.181 for medium noise) from their associated memories.

Figure 1: Memory slots learned
through MDL training (top row) and
exemplars that were matched to each
memory.
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Follow-up experiment. We conjec-
tured that some deviance from the correct
number of memory slots (Fig.[2) may ac-
tually be legitimate. A noisy version of
a digit could be so far from its source
that it would justify creating a new cat-
egory. As a conservative criterion, we
thus consider that an exemplar that ends
up closest to a digit that is not its source
digit is too noisy. Indeed, it could lead to
a new category and an overestimation of
categories. Or it could lead to an under-
estimation, since a golden digit would 5 I & 5
become redundant as a category if all its Number of target (/ golden) digits
exemplars end up closer to another digit.

We therefore re-ran the Exp .2 withanew Figure 2: Average number of memory slots found through
dataset, in which we disregarded such ex- MDL training on discrete noisy exemplars, compared to
emplars. We found that MDLHNSs were the number of golden digits.

even better than before at aligning their

number of memories with the (now, more meaningful) golden number, see Fig. 3] and Fig. 5 in

Appx. [A]
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6 Discussion

We noted that generalization in HNs is limited to the retrieval stage, while storage amounts to rote
memorization. We illustrated the problem that this limitation poses when the training data are imper-
fect, including variants, possibly noisy, of a hidden number of archetypes. In such cases, standard
HNs memorize the surface, noisy versions and do not recover the intuitively correct underlying col-
lection of images. We showed how this problem can be remedied by incorporating the generalization
principle of MDL into the storage phase: by considering the encoding length of the network (the
lower the encoding length, the less capable it is to memorize the data) as a counterweight to the fit to
the data, MDLHNs overcame the challenge of generalization and recovered both the correct number
of archetypes and the archetypes themselves.

Our proposal is robust to architecture changes. While we illustrated the use of MDL with MHNSs,
MDL can just as easily be incorporated into classical HNs or other architectures for associative
memory. Indeed, as mentioned in section[2} MDL has been explored for sequential neural network
architectures as well as for entirely different formalisms such as those of formal language theory,
and it has also been argued to underlie various mechanisms in human cognition. In this regard, our
solution is a principled and very general one to the problem that we noted.

While general, MDL is very tightly connected to representations, which highlights interesting future
directions for MDLHNs. Our present illustration relied on simple encoding schemes both for |G|
and for | D : G|. For both, however, one can consider more sophisticated choices. For instance, in a
more realistic setting than ours, the system might have a preference for encoding certain values over
others. And for | D : G|, our distance function was a convenient choice for the illustration, but it is
one that is suitable for static noise that flips random bits. It is not designed to capture, for example,
translation, rotation, stretches, reflection, or other operators that are arguably needed for a system that
captures human intuitions about visual similarity. Incorporating such operators into | D : G| would be
an interesting next step. One simple way to illustrate the relevance of better representations is this.
Using our current, naive encodings, a network trained on a single image will have no reason not to
memorize that image. With more sophisticated primitives, on the other hand, a reconstruction of an
archetype may well be preferable even for a single image.

Our focus in the present paper has been entirely on the objective function for HNs. For the optimiza-
tion of the storage phase we simply adopted a general search algorithm (specifically, SA), which
supported the recovery of memories in our examples. For setups that are more complex than the one
used here, this might prove inadequate, and other optimization algorithms may be more helpful. [Lan
et al.| [2022]], for example, report using a genetic algorithm for optimizing MDL in the domain of
RNNs. And other choices might be more helpful still.
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Figure 3: Follow-up to Exp. 1 - average number of memory slots found using MDL, compared to the
number of target ‘golden’ digits in the discrete noise training set, while making sure noised exemplars
aren’t ambiguous between classes.
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Figure 4: Running Exp. 1 with continuous noise exemplars in the training set

Figure 5:

10 Examples per digit

1

5

10

30

6 Noise level
—— low
medium

Average number of memories

2 4 6 8
Number of target (/ golden) digits

10

Follow-up experiment for the continuous noise training set
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