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Abstract

In this paper, we introduce FedMGP, a new paradigm for personalized federated
prompt learning in vision-language models (VLMs). Existing federated prompt
learning (FPL) methods often rely on a single, text-only prompt representation,
which leads to client-specific overfitting and unstable aggregation under heteroge-
neous data distributions. Toward this end, FedMGP equips each client with mul-
tiple groups of paired textual and visual prompts, enabling the model to capture
diverse, fine-grained semantic and instance-level cues. A diversity loss is intro-
duced to drive each prompt group to specialize in distinct and complementary se-
mantic aspects, ensuring that the groups collectively cover a broader range of local
characteristics. During communication, FedMGP employs a dynamic prompt ag-
gregation strategy based on similarity-guided probabilistic sampling: each client
computes the cosine similarity between its prompt groups and the global prompts
from the previous round, then samples s groups via a softmax-weighted distribu-
tion. This soft selection mechanism preferentially aggregates semantically aligned
knowledge while still enabling exploration of underrepresented patternseffectively
balancing the preservation of common knowledge with client-specific features.
Notably, FedMGP maintains parameter efficiency by redistributing a fixed prompt
capacity across multiple groups, achieving state-of-the-art performance with the
lowest communication parameters (5.1k) among all federated prompt learning
methods. Theoretical analysis shows that our dynamic aggregation strategy pro-
motes robust global representation learning by reinforcing shared semantics while
suppressing client-specific noise. Extensive experiments demonstrate that Fed-
MGP consistently outperforms prior approaches in both personalization and do-
main generalization across diverse federated vision-language benchmarks. The
code will be released on https://github.com/weihao-bo/FedMGP.git.

1 Introduction

Large-scale vision-language models (VLMs) have demonstrated impressive performance across a
wide range of multimodal tasks [, BT, 5, &3, 191, 7]. As these models are increasingly deployed
in privacy-sensitive and decentralized environmentsincluding healthcare, mobile devices, and indus-
trial systemsthere is a growing need to adapt them privately without direct access to raw data [5]. In
such settings, data remains local, and client distributions are often highly heterogeneous [I6, 8]. To
fully utilize local data, personalized federated learning (PFL) [I2, 50] has emerged as an effective
framework for adapting shared models across clients with non-identical data, while preserving pri-
vacy. In parallel, prompt-based tuning has shown great promise for parameter-efficient adaptation
of frozen VLMs. The integration of these two ideas has led to the rise of federated prompt learning
(FPL)a lightweight and scalable approach to adapting VLMs in federated settings[IZ, 23].
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Despite its potential, existing FPL methods face key limitations. Most approaches rely solely on
textual prompts, which encode static class-level semantics. While efficient, these prompts lack the
expressiveness to capture personalized visual cues specific to each client, limiting their ability to
handle diverse or complex inputs. Furthermore, many methods adopt a local-global prompt frame-
work [71, B, 37], in which each client maintains a local prompt and contributes a single global prompt
for aggregation. This framework introduces two critical problems: (1) A single prompt per client
is often insufficient to capture the diversity of local dataespecially when multiple semantic concepts
or visual styles coexist within a client. (2) Aggregating one prompt per client leads to biased global
representations, as the shared prompt tends to overfit to dominant local patterns while overlooking
less frequent but informative ones from other clients. Together, these issues undermine both local
personalization and cross-client generalization, particularly under severe data heterogeneity.

To overcome these limitations, we propose Personalized Federated Learning via Multi-Group Text-
Visual Prompt (FedMGP), a new paradigm for personalized federated adaptation of vision-language
models. Each client in FedMGP maintains multiple paired groups of textual and visual prompts,
where each group captures distinct semantic and instance-level characteristics of the local data. To
ensure prompt groups specialize in different aspects, we introduce a diversity loss that encourages
representational separation within each client. For server aggregation, we develop a dynamic prompt
selection strategy based on the similarity between local prompt groups and the global prompt from
the previous round, ensuring that semantically aligned groups are more likely to be selected, while
still allowing exploration of less dominant patterns. This balanced approach reinforces common
cross-client patterns while suppressing client-specific noise.

FedMGP is both parameter-efficient and communication-aware: with the lowest communication
parameters (5.1k) among all federated prompt learning methods, it achieves state-of-the-art perfor-
mance while distributing a fixed prompt capacity across multiple groups. Empirical results across
various heterogeneous data settings, including pathological non-IID, Dirichlet distribution, and do-
main generalization, demonstrate that FedMGP successfully balances personalization accuracy on
local client data with generalization capability to unseen domains.

2 Related Work

2.1 Prompt Learning for Vision-Language Models

Vision-language models (VLMs) like CLIP [43] have demonstrated strong zero-shot capabilities
through contrastive learning on massive image-text pairs [56, 55, 9, [, &8]. To efficiently adapt
these models to downstream tasks, prompt learning introduces a small set of learnable parame-
ters while keeping the original model weights frozen [b0, 30, 58]. Various prompt learning ap-
proaches have been proposed, including enriching text representations through class-related descrip-
tions [53, B5], additional descriptive sentences [20, 57, B4], external knowledge [22], and visual
annotations [46, 45]. As highlighted in our introduction, recent methods have begun addressing the
critical balance between fitting to seen classes and maintaining generalization capabilities to unseen
classes. For instance, CoCoOp [59] introduces instance-conditioned prompts to capture fine-grained
visual cues while preserving general knowledge, and ProGrad [b1]] proposes prompt alignment gradi-
ents to maintain the model’s inherent knowledge. However, these methods predominantly operate in
centralized settings with direct access to all training data, overlooking privacy concerns and the chal-
lenges of heterogeneous data distributions across multiple clientscritical limitations that necessitate
new frameworks for privacy-preserving, distributed adaptation of VLMs [29].

2.2 Federated Prompt Learning

Federated Prompt Learning (FPL) [I'Z, 16, 51, B?] combines prompt learning with federated learn-
ing [B4, 3, B, 57, 28] to enable privacy-preserving adaptation of vision-language models across dis-
tributed environments. PromptFL [[['7] pioneered this approach by integrating prompt learning into
federated frameworks with theoretical convergence guarantees. To address client heterogeneity, sev-
eral researchers [, B, [6] developed local-global paradigms where clients maintain personalized
prompts while contributing to shared global prompts. This approach improves local performance
but often compromises generalization under non-IID data distributions. Recent work [J] attempted
to balance personalization and generalization through additional constraints. Despite progress, ex-



isting FPL methods have two key limitations. First, they rely solely on textual prompts, missing
crucial visual cues needed for robust multimodal adaptation. Second, they lack effective prompt
learning strategies and aggregation mechanisms tailored specifically for federated settings that can
simultaneously maintain personalization while enhancing cross-client generalization.

3 Method

In this paper, we introduces FedMGP, a novel approach designed to address data heterogeneity and
model stability challenges in federated learning. We first present the fundamentals of federated
prompt learning (Section B), including the core concepts of prompt learning and its application
in federated settings. Then, we elaborate on two key mechanisms of FedMGP: the multimodal
prompt co-learning mechanism (Section BZT), which enhances representation capabilities through
the synergistic interaction between text and visual prompts, and the dynamic prompt aggregation
strategy (Section B727), which effectively balances global knowledge sharing with local feature
preservation.

3.1 Preliminary: Federated Prompt Learning

Prompt learning is a parameter-efficient strategy for adapting large pre-trained Vision-Language
Models (VLMs), such as CLIP [43], to diverse downstream tasks. It introduces a small set of
learnable parameters called "prompts" while keeping the VLM’s encoder weights frozen. These
learnable prompt vectors are combined with class name embeddings to create class-specific textual
prompts that effectively adapt the model to downstream tasks.

A VLM typically consists of an image encoder f(-) and a text encoder g(-). The core workflow
involves: (1) processing an input image through the image encoder to obtain visual features, (2) pro-
cessing text prompts through the text encoder to obtain textual features, and (3) computing similarity
scores between these features to determine class probabilities. The key prediction formula is:
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where t, = {p;, ci. } represents the text input formed by concatenating the learnable text prompt p
with the embedding of class name cj. Here, sim(-, -) represents cosine similarity, K is the number
of classes, and 7 is a temperature scaling factor.

Federated Prompt Learning (FPL) extends this approach to distributed settings where multiple
clients collaborate without sharing their raw data. The federated training process follows a cyclic
pattern: (1) The server distributes the current global prompt to selected clients; (2) Clients perform
local updates using their private data; (3) Updated local prompts are sent back to the server; (4) The
server aggregates these local prompts to form an improved global prompt. This process repeats for
multiple communication rounds, gradually refining the global prompt to work well across all clients.

Despite its privacy-preserving benefits, standard FPL faces significant challenges with heteroge-
neous client data distributions. Client-specific optimization may lead to overfitting to local patterns,
while naive aggregation methods like FedAvg [B4] often struggle to preserve client-specific knowl-
edge while extracting common patterns. Our proposed FedMGP framework specifically addresses
these limitations through a multi-group prompt architecture and dynamic prompt aggregation strat-

cgy.

3.2 FedMGP:Federated Learning via Multi-Group Text-Visual Prompt

To address the fundamental limitations of existing federated prompt learning methods, particularly
their reliance on single text-only prompts and vulnerability to client-specific overfitting, we propose
FedMGP. (The complete pseudocode can be found in appendix A.) As illustrated in figure [, our
framework introduces a novel multi-group mechanism that enhances both prompt diversity and ro-
bustness through complementary prompt groups. For each client in the federation of N clients, we
define a set of prompts P = {pi1,...,P,G,Pu1,---,Du,G}. Where p, ; represents the j-th text
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Figure 1: Overview of FedMGP: The left portion shows the server distributing global prompts to
clients; the middle portion illustrates the multi-group text-visual prompt co-learning mechanism
within each client; and the right portion demonstrates the dynamic prompt aggregation strategy
across communication rounds.

prompt and p,, ; represents the j-th visual prompt, with G being the number of prompt groups. We
use P to denote the global aggregated prompts at the server and T denote the communication round.

This design offers two significant advantages. First, integrating visual and textual modalities en-
riches contextual representation, capturing instance-specific information more comprehensively than
static class names. Second, distributing knowledge across multiple specialized prompt units en-
hances aggregation robustnesseven if certain prompt groups overfit to local distributions, others may
capture generalizable patterns, significantly improving model adaptability under heterogeneous data
distributions without increasing the total parameter count.

3.2.1 Multimodal Prompt Co-learning Mechanism

For any local client, the multi-group prompt learning process operates as follows. During training,
for each group j, the text prompt p; ; is concatenated with the class embedding c;, to form ¢, ; =
{p¢,j, cx }, which is fed into a text encoder g(-). Simultaneously, the image « is combined with the
visual prompt p,, ; to form v; = {z, p, ;}, which is passed through the image encoder f(-). The
predictive probability for class k is computed based on the similarity between the corresponding text
and visual features:
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The classification loss is defined as the average cross-entropy across all G prompt groups:
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To ensure that different prompt groups capture diverse semantic perspectives, we introduce a diver-
sity loss that minimizes the cosine similarity between group-wise features within the same modality:

Lo =YY (1= cos(gltr;), gt ;1)) + (1= cos(f(v;), f(v;))) )
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This encourages each group to specialize in different aspects of the input, thereby reducing redun-
dancy and enhancing representational richness. The overall training objective combines both losses:

L=Lcg+ A Laiy (5)

At inference time, we leverage all prompt groups by computing predictions independently for each
group and averaging the resulting logits:
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This group-wise ensemble enhances robustness by aggregating complementary semantic views, im-
proving prediction stability across heterogeneous inputs while incurring minimal overhead.

3.2.2 Dynamic Prompt Aggregation Strategy

To address the aggregation instability issues prevalent in traditional federated learning, FedMGP
employs a novel dynamic prompt aggregation strategy, as illustrated in the right portion of Figure .
This approach is based on a fundamental insight: each prompt can be conceptually decomposed into
information that is common across clients (global knowledge) and information that is unique to a
specific client (local knowledge). Therefore, we propose this dynamic aggregation mechanism that
adaptively balances the preservation of global knowledge with the exploration of client-specific fea-
tures. In Appendix F, we provide theoretical analysis demonstrating the superiority of our dynamic
aggregation strategy over both full prompt aggregation methods["Z, 34] and explicit global-local
paradigms [277, 9, B7], offering formal justification for our approach.

In this section, we use P without subscripts to refer to the entire set of prompts, while P; =
{Pt,j,pv,j } refers to the j-th group within that set. The global aggregated prompts are denoted

by P, where P consists of top-s selected prompt groups.

In each communication round, our strategy dynamically selects a subset of top-s prompts from each
client for aggregation, where s < G and G is the total number of prompt groups. When s = G,
our method reduces to standard FedAvg. By selecting only the most relevant prompts, we focus the
aggregation on shared knowledge while preserving client specificity. The key steps of our dynamic
aggregation strategy are as follows:

For communication round 7', we first compute the cosine similarity between each client’s local
prompts and the global prompts from the previous round. This process is performed separately for
text and visual prompts, but follows the same procedure. For each local prompt group PjT and its

corresponding global prompt }51va1 (where i € {1,2,...,s} indexes the top-s selected groups):
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To avoid overly deterministic selection that might lead to prompt homogenization, we convert these
similarity scores into selection probabilities using a softmax function with temperature parameter 7:

exp(sim(P], PT=1)/7)
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Based on these probabilities, we sample s prompt groups from each client. For the first commu-
nication round (7" = 1), when no previous global prompts exist, we employ random selection to
establish initial diversity, as described in Appendix A.

After selecting the top-s most relevant prompt groups from each client, the server aggregates these
prompts across all participating clients to form the updated global prompts for round 7'. For the i-th
selected prompt group:
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where C represents the set of clients participating in round 7', n. denotes the number of samples
at client ¢ and Py represents the i-th selected prompt group from client c.



This dynamic prompt aggregation strategy offers several key advantages. First, by favoring prompts
with higher similarity to previous global prompts, we effectively filter out client-specific idiosyn-
crasies that might arise from local data distribution peculiarities. Second, the dynamic nature of our
selection process prevents premature convergence to a static set of prompts, allowing the model to
continually explore the prompt space and adapt to evolving patterns in the data. Third, this approach
naturally balances the preservation of common knowledge with the exploration of diverse prompt
configurations, leading to more robust federated learning.

After aggregation, the server distributes the updated global prompts back to the clients for the next
round, continuing this process for multiple communication rounds to gradually refine the global
prompts to work well across all clients.

4 Experiment

In this section, we conduct comprehensive experiments to validate the dual capabilities of FedMGP:
(1) maintaining strong personalization for individual clients while achieving robust cross-client gen-
eralization, and (2) demonstrating superior performance across various heterogeneous data distri-
butions. Our evaluation spans multiple scenarios including non-I1ID data partitions and Dirichlet
distributions with varying concentration parameters, demonstrating FedMGP’s effectiveness in ad-
dressing the fundamental challenges of federated learning with prompt-based multimodal adapta-
tion.

4.1 Experimental Setup

Datasets and Data Heterogeneity.To thoroughly evaluate FedMGP’s dual capabilities of person-
alization and generalization across heterogeneous data distributions, we design experiments with
three distinct scenarios. First, following [9, 1], we select nine diverse datasets to assess base-
to-novel class generalization: Caltech101 [I3] for general object classification; OxfordPets [38],
Flowers102 [B6&], Food101 [8], Stanford Cars [?5], and FGVC Aircraft [B3] for fine-grained classi-
fication; DTD [[7] for texture classification; UCF101 [&7] for action recognition; and SUN397 [564]
for scene recognition. We create a pathological non-IID setting by equally splitting each dataset
into base and novel classes, then assigning non-overlapping base classes to different clients. Each
client’s model is trained on local classes and evaluated on three test sets: local classes (personaliza-
tion), base classes seen by other clients (cross-client knowledge transfer), and novel classes unseen
during training (generalization to new concepts).Second, to evaluate personalization under label dis-
tribution shift, we employ CIFAR-10 and CIFAR-100 [26], partitioning data among clients using
Dirichlet distribution Dir(«) with varying concentration parameters. This creates realistic hetero-
geneity where clients possess varying class proportions, allowing us to examine how effectively
FedMGP’s multi-group prompt mechanism adapts to imbalanced class distributions.Third, to as-
sess performance under both feature and label distribution shifts, we test FedMGP on multi-domain
datasets: DomainNet [3Y] with six distinct visual domains and Office-Caltech10 [I4] with four do-
mains. This evaluates how effectively our text-visual prompt co-learning bridges domain gaps while
maintaining local specialization. Comprehensive dataset details are provided in Appendix C.1.

Implementation Details. To ensure fair
comparison with existing methods, we es- Table 2: Results on CIFAR10 and CIFAR100 with la-

tablish a unified experimental framework bel shift with Dir partition(a. = 0.5) into 100 clients.

by re-implementing all baseline approaches Methods CIFAR10 CIFAR100
using their official code repositories under PromptFL [7] 91.36 72.04
identical settings. Specifically, we adopt FedOTP [7] 94.73 75.15
ViT-B/16 [IU] as the backbone for all meth- FedTPG [&T] 92.44 74.39
ods. For base-to-novel generalization ex- FedPGP [9] 9241 74.11
periments, we set communication rounds PromptFolio [B7] 93.33 74.14
T = 10 with 100% client participation rate, FedMGP 95.48 75.39

local epochs ' = 2, and use 16-shot sam-
ples per class. For CIFAR-10 and CIFAR-
100 experiments, we simulate a realistic federated environment with Dir(ac = 0.5) distribution
across 100 clients, with 10% client participation rate per round, utilizing the full training dataset.
All models are trained using stochastic gradient descent (SGD) with an initial learning rate of 0.001



Table 1: Accuracy comparison (%) on clients’ local accuracy and generalization.

(a) Average over 9 datasets. (b) OxfordPets.

Methods Local Base Novel | CM Methods Local Base Novel | CM

PromptFL [I[4] 71.19 7170 71.46 | 71.31 PromptFL [I7] 89.77 90.01 97.20 | 91.62
FedOTP [27] 92.53 16.84 31.66 | 57.10 FedOTP [27] 100.00 26.68 57.16 | 68.19
FedTPG [41] 71.62 7191 68.32 | 70.66 FedTPG [41] 94.24 9431 96.64 | 94.85
FedPGP [H] 84.32 7245 68.97 | 77.42 FedPGP [H] 96.20 95.01 96.89 | 96.07
PromptFolio [B7] | 96.02 39.75 51.02 | 70.29 PromptFolio [37] | 99.90 66.23 83.38 | 86.86
FedMGP 93.17 6849 7299 | 81.85 FedMGP 97.15 93.83 97.04 | 96.28

(c) Flowers102. (d) DTD.

Methods Local Base Novel | CM Methods Local Base Novel | CM

PromptFL [I[7] 7033 7179 7539 | 71.94 PromptFL [[7] 5532 57.06 44.32 | 52.60
FedOTP [27] 99.73 13.06 21.51 | 57.99 FedOTP [X4] 96.44 20.06 41.23 | 61.71
FedTPG [41] 79.43 7892 73.26 | 77.71 FedTPG [41] 56.90 59.26 40.46 | 52.49
FedPGP [g] 91.83 80.22 68.46 | 82.85 FedPGP [9] 7847 6722 5093 | 68.21
PromptFolio [B4] | 99.82 27.36 39.34 | 66.05 PromptFolio [37] | 97.18 26.53 37.39 | 64.11
FedMGP 98.41 70.06 74.71 | 85.36 FedMGP 92.87 53.60 55.62 | 73.73

(e) Caltech101. (f) Food101.

Methods Local Base Novel | CM Methods Local Base Novel | CM

PromptFL [[7] 94.16 9535 94.98 | 94.66 PromptFL [I7] 89.75 89.79 90.86 | 90.04
FedOTP [7] 99.96 28.28 62.26 | 69.43 FedOTP [27] 95.44 19.16 45.89 | 61.24
FedTPG [41] 96.17 97.16 91.92 | 95.32 FedTPG [41] 90.36 90.42 91.78 | 90.73
FedPGP [g] 96.91 9735 94.37 | 96.37 FedPGP [d] 90.51 90.48 91.12 | 90.65
PromptFolio [B7] | 99.79 73.69 81.10 | 88.50 PromptFolio [B7] | 97.24 57.40 67.64 | 79.67
FedMGP 99.47 96.02 93.61 | 97.13 FedMGP 95.08 88.47 89.53 | 92.04

(g) UCF101. (h) SUN397.

Methods Local Base Novel | CM Methods Local Base Novel | CM

PromptFL [I[7] 77.08 7694 70.36 | 75.29 PromptFL [I7] 76.25 7620 75.68 | 76.09
FedOTP [27] 9239 1633  19.07 | 54.99 FedOTP [27] 93.40 11.38 19.11 | 53.83
FedTPG [41] 7622 7596 72.09 | 75.10 FedTPG [41] 7372 7371 75.17 | 74.08
FedPGP [g] 82.61 7178 68.45 | 76.34 FedPGP [9] 89.43 66.51 67.43 | 78.20
PromptFolio [B7] | 96.15 31.94 42.00 | 66.22 PromptFolio [37] | 95.18 32.89 44.47 | 66.50
FedMGP 92.69 68.38 72.86 | 81.62 FedMGP 91.83 68.51 72.20 | 81.07

(i) Stanford Cars. (j) FGVC Aircraft.

Methods Local Base Novel | CM Methods Local Base Novel | CM

PromptFL [I7] 62.98 63.14 69.87 | 64.66 PromptFL [I4] 25.03 25.03 24.48 | 24.89
FedOTP [277] 91.06 9.32 10.62 | 50.49 FedOTP [27] 64.34  7.27 8.12 | 36.01

FedTPG [41] 65.50 6547 69.10 | 66.37 FedTPG [&1] 12.00 12.00 4.50 9.27

FedPGP [g] 85.37 57.63 60.19 | 72.13 FedPGP [g] 4759 2589 2289 | 35.94
PromptFolio [B7] | 96.44 29.43 46.77 | 66.28 PromptFolio [B4] | 82.50 1229 17.09 | 48.40
FedMGP 92.61 56.48 71.19 | 77.80 FedMGP 78.46 21.03 30.15 | 51.62

and a single-step learning rate scheduler. All other implementation specifics, including additional hy-
perparameter settings, optimization strategies, and evaluation protocols, are detailed in the appendix
to ensure reproducibility. For more details, please refer to Appendix C.2.

Baselines. We compare FedMGP against state-of-the-art Federated Prompt Learning (FPL) meth-
ods, including PromptFL [['4], FedOTP [27], FedTPG [21], FedPGP [9], and PromptFolio [37].
These baselines represent the full spectrum of existing FPL paradigms: from standard aggregation
approaches to local-global frameworks and constrained local-global architectures. This compre-
hensive comparison allows us to evaluate how effectively FedMGP addresses the critical balance
between personalization and generalization that many existing methods struggle to achieve, particu-
larly under severe data heterogeneity.

4.2 Performance Evaluation

Analysis of Base-to-Novel Generalization Results. To comprehensively assess both personaliza-
tion and generalization capabilities, we introduce a Combined Metric (CM) that balances local
adaptation and cross-domain transfer. Following the approach in [[I7] for local accuracy evalua-
tion and [BU] for harmonized accuracy calculations, CM is computed as CM = (Local + HM)/2,
where HM is the Harmonic Mean defined as HM = 2 x Base x Novel/(Base + Novel). This metric
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Figure 2: Few shot experiment from 1 to 16 shots

effectively quantifies a model’s ability to simultaneously achieve personalization (measured by local
accuracy) and generalization (measured by harmonized performance on base and novel classes). As
shown in Table [, FedMGP achieves the highest CM score (81.85%) averaged over all nine datasets,
demonstrating superior overall performance while maintaining excellent balance between personal-
ization (93.17% on local classes) and generalization (68.49% on base classes and 72.99% on novel
classes). In contrast, methods like FedOTP and PromptFolio achieve exceptional local accuracy
(92.53% and 96.02% respectively) but struggle with generalization to base classes (16.84% and
39.75%), indicating severe overfitting to local distributions. FedPGP, though more balanced, still
falls short of FedMGP in comprehensive performance. These results confirm our analysis that exist-
ing approaches either excel at personalization at the expense of generalization or achieve moderate
performance on both fronts without fully resolving the tension between these competing objectives.

Table 3: Parameter analysis of FedMGP and

other state-of-the-art methods. Table 4: Ablation study on prompt leangth(()
Method Trained | Communication | CM - 1 1
PromptFL [T7] | 8.2k 8.2k 80.27 Setting Local Base Novel| CM
FedOTP [7] 16.4k 8.2k 63.74 FedMGP (I=4) |97.18 72.49 72.17 | 84.75
FedTPG [41] 4208.1k 4208.1k 82.37 FedMGP (I1=8) |98.05 64.00 64.91 |81.25
FedPGP [0] 24.8k 16.4k 86.94 FedMGP (I=16) | 97.62 57.47 61.56 | 78.53
PromptFolio [84]] 164k 82k 77.10 FedMGP (1=2) | 96.92 73.23 74.65 | 85.43
FedMGP 12.8k 5.1k 88.34

Performance on Label Distribution Shift. We evaluate FedMGP’s effectiveness in handling realis-
tic federated learning scenarios with 100 clients following a Dirichlet distribution (o = 0.5), which
creates substantial heterogeneity in class distributions. As shown in Table D, FedMGP consistently
outperforms all baseline methods on both CIFAR-10 and CIFAR-100 datasets. The multi-group
prompt mechanism effectively captures diverse client data patterns through text-visual prompt co-
learning and similarity-based selection, enabling robust performance even under severe label imbal-
ance. Notably, while other methods struggle with the increased complexity of CIFAR-100, FedMGP
maintains its relative advantage, demonstrating strong scalability in federated learning with numer-
ous clients and classes.

Few-Shot Analysis. Figure @ demonstrates FedMGP’s effectiveness across few-shot settings (1-
16 shots per class). While FedMGP exhibits limitations in extreme 1-shot scenarios, it quickly
surpasses competing methods with 2+ shots. This performance pattern aligns with our theoretical
framework: in extremely limited data regimes, the multi-group mechanism struggles to effectively
decompose knowledge into common and client-specific componentsa decomposition that is funda-
mental to our approach as described in Section B2, Specifically, with insufficient samples, prompt
groups cannot effectively disentangle specialized representations nor establish robust text-visual cor-
relations across client distributions. As sample size increases, FedMGP’s dynamic prompt selection
strategy activates its full potential, enabling superior cross-client knowledge transfer while preserv-
ing client-specific information. Detailed discussions on FedMGP’s limitations and future research
directions can be found in Appendix B.



Table 5: Ablation study on Prompt Groups(m,)
Setting Local Base Novel | CM
FedMGP (m=4) | 96.60 73.28 73.99 | 85.12
FedMGP (m=3) | 89.95 77.68 74.48 |83.00
FedMGP (m=2) | 82.88 82.15 74.05 | 80.38
FedMGP (m=1) | 78.85 79.68 70.67 | 76.88

FedMGP (m=5) | 96.92 73.23 74.65 | 85.43

Table 6: Ablation study on Top-s.
Setting Local Base Novel| CM
FedMGP (Top-s=1) [97.88 69.17 74.10|84.72
FedMGP (Topk-s=3)|92.93 76.88 74.85|84.39
FedMGP (Topk-s=4)| 86.77 79.44 74.89 |81.93

FedMGP (Topk-s=2) | 96.92 73.23 74.65 | 85.43

Parameter Efficiency. Table B highlights FedMGP’s remarkable communication efficiency (5.1k
parameters)significantly lower than all competitors while achieving superior performance. This val-
idates our core design: rather than increasing parameter count, FedMGP strategically distributes a
fixed capacity across multiple specialized prompt groups, more effectively capturing diverse client
data characteristics with minimal communication overhead. Additional evaluation like domain eval-
uation results are presented in Appendix D.

4.3 Ablation Study

To thoroughly understand FedMGP’s design choices, we conduct extensive ablation studies examin-
ing key components including prompt length, number of prompt groups, top-s selection size, vision-
text modality contributions, and diversity loss. For comprehensive evaluation and efficiency, all
results are reported as the average performance across Caltech101, Flowers102, and DTD datasets,
providing insights into FedMGP’s optimal configuration.

Impact of prompt length. Table B reveals that increasing prompt length beyond [=2 causes con-
sistent performance degradation. In heterogeneous federated environments, compact prompts excel
by capturing essential semantic patterns without overfitting to client-specific details, enabling more
effective knowledge sharing across diverse client distributions.

Table 8: Ablation study on Lg;,.

Table 7: Ablation study on the impact of vision

and text prompt. Setting Local Base Novel| CM
Setting Local Base Novel| CM FedMGP (w/o Laiv) | 94.53 72.97 72.48 |83.63
FedMGP (Vision Only) |75.94 76.48 72.92 [75.30 FedMGP (Laiv=2) [95.78 74.88 74.98 | 85.35
FedMGP (Text Only) | 95.23 73.60 73.80 | 84.46 FedMGP (Lav=5) |96.35 73.50 74.31 |85.13
FedMGP (Vision + Text) | 96.92 73.23 74.65 | 85.43 FedMGP (Lav=10) |95.78 73.09 74.35|84.75

FedMGP (Laiv=1) [96.92 73.23 74.65 |85.43

Effect of Group Number. Table B shows that multiple prompt groups are crucial for FedMGP’s
effectiveness, with performance declining as group count decreases. Our results indicate that 5
groups achieves optimal performance, with additional groups likely offering diminishing returns
relative to the increased parameter count. This validates our multi-group design which effectively
balances personalization and generalization without rigid global-local separation.

Selection Strategy Analysis. Table B demonstrates how our dynamic prompt aggregation strategy
navigates the critical personalization-generalization trade-off. With smaller selection size (Top-s=1),
the model preserves client specificity but limits knowledge sharing, while larger selection size (Top-
s=4) improves generalization but significantly compromises personalization. Top-s=2 emerges as
the optimal balance point, effectively addressing the aggregation instability issues.

Effect of Vision and Text Components. Table O confirms the necessity of incorporating both
vision and text components in FedMGP. Removing either modality leads to noticeable performance
degradation, highlighting the complementary roles they play. While textual prompts capture high-
level semantic categories, visual prompts provide fine-grained, instance-specific cues. Their joint
contribution enables FedMGP to better represent diverse client data and facilitates more effective
cross-client knowledge transfer. This finding supports the design choice of our multi-group text-
visual prompt co-learning framework.

Impact of diversity Loss. Table B demonstrates the critical importance of diversity loss in FedMGP,
with its removal causing a significant performance drop (CM decreases by 1.8%). This component



ensures effective separation between prompt groupsa fundamental mechanism we analyze in detail
in Appendix E. Remarkably, performance remains stable across different weight values (1-10), con-
firming its insensitivity to hyperparameter settingsa significant advantage in federated environments
with heterogeneous data distributions. Appendix E contains additional ablation studies on tempera-
ture parameters, diversity loss formulations, and other design choices.

4.4 Visual Analysis

(a) Inter-Client Text Prompt Internal Similarity (b) Inter-Client Vision Prompt Internal Similarity
al Similarity

Figure 3: Intra-client prompt similarity visual-  Figure 4: Inter-client prompt similarity visu-
ization. (a) Text prompt similarity matrix show-  alization. (a) Text prompt similarity matrix
ing moderate inter-group diversity. (b) Visual showing high correlations (0.9-1.0). (b) Visual
prompt similarity matrix showing higher inter-  prompt similarity matrix showing moderate di-
group diversity. versity (0.7-0.9).

To validate our diversity loss mechanism, we analyze internal prompt similarity patterns within a
representative client after FedMGP training on Caltech101. Figure B presents similarity matrices
for text and visual prompt groups, revealing distinct specialization. Text prompts show moderate
inter-group correlations (0.5-0.8), maintaining shared linguistic patterns, while visual prompts ex-
hibit significantly lower correlations (often near zero or negative), achieving superior diversification.
This confirms that visual prompts capture more fine-grained, instance-specific features than text
prompts. The diversity loss successfully encourages each prompt group to specialize in distinct
patterns, enabling comprehensive local data coverage while supporting both personalization and
cross-client generalization.

To further validate our dynamic aggregation mechanism, we examine inter-client prompt similar-
ity patterns. Figure B shows that text prompts maintain consistently high correlations (0.9-1.0)
across clients, preserving common semantic knowledge while avoiding the complete homogeniza-
tion in PromptFL [IZ]. Visual prompts show moderate correlations (0.7-0.9), striking an optimal
balance between knowledge transfer and client-specific adaptation. Unlike FedOPT’s [X7] global-
local paradigm that often results in excessive divergence, our approach maintains sufficient similarity
for knowledge sharing while preserving diversity for personalized learning. This confirms that Fed-
MGP’s dynamic aggregation effectively prevents over-homogenization and excessive divergence,
achieving superior performance across heterogeneous client distributions.

5 Conclusion

This paper presents FedMGP, a novel federated learning paradigm that addresses the fundamental
trade-off between personalization and generalization in existing federated prompt learning meth-
ods through multi-group text-visual prompt co-learning. The key innovations of FedMGP include:
(1) leveraging multiple text-visual prompt pairs to overcome the limited expressiveness of single
prompts, with each prompt group focusing on different semantic features; (2) introducing diversity
loss to ensure representation separation between prompt groups, enhancing the model’s expressive
power; (3) designing a similarity-based dynamic prompt selection strategy that effectively balances
shared knowledge and client-specific features. Extensive experiments demonstrate that FedMGP
achieves superior balance between personalization and generalization capabilities across various
heterogeneous data environments while maintaining minimal communication parameters. In future
work, we will explore alternative regularization constraints and integrate category-specific linguis-
tic information to further enhance diverse representations across prompt groups, while investigating
more sophisticated text-visual prompt collaboration mechanisms to improve cross-modal alignment
in federated settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We empirically verify the claims and contributions made in the abstract and
introduction through extensive experiments across diverse federated vision-language bench-
marks. Our theoretical analysis further supports the design motivations, including prompt
diversity, probabilistic sampling, and cross-modal pairing.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a discussion of the limitations of our work in the appendix, high-
lighting potential areas for improvement and directions for future research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and complete proofs for our theoretical
results in the appendix, ensuring correctness and clarity of the analysis.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of all experimental settings, including
dataset splits, model architecture, training hyperparameters, and evaluation metrics. These
details are sufficient to reproduce the main results and support the core claims of the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release our code upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and test details are presented in section 4.1
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: This paper does not report error bars or statistical significance measures. The
results are presented as aggregate performance metrics without confidence intervals or vari-
ance analysis.

Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on either 1 NVIDIA 4090-D GPU (24 GB)
or 1 NVIDIA A100 GPU (40 GB), with each training run completing within 24 hours for
all datasets.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed and adhered to the code of ethics throughout our
research and writing process.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We discuss the broader impacts in Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All publicly available assets (models, code, and data) used in this work have
been properly credited, and their respective licenses and terms of use have been explicitly
mentioned and adhered to.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets in the submission.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use Large Language Models (LLMs) as an important,
original, or non-standard component of the core methods.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A

FedMGP ALGORITHM

Algorithm 1 FEDMGP: Federated Learning via Multi-Group Text-Visual Prompt Co-Learning

Inputs: Communication rounds 7, local epochs R, number of clients IV, local datasets

{D.}X_,, image encoder f(-), text encoder g(-), number of prompt groups G,
top-s size for aggregation, temperature 7, diversity loss weight A, learning rate 7.

Outputs: Personalized multi-group prompts { P}, where

Pc = {pt,lv <oy PGy Puydy - vpv,G}-

—

11:

13:
14:
15:

16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:

A A A R o

Server Executes: ~
Initialize global prompts P° = {p; 1, ..., Pr.GsPuo.1s-- - Do.G -
for each clientc=1,..., N do
Distribute copies: P, < PY.
end for
for each communicationround 7' =1, ..., T}, do
Server selects a subset of clients Cr.
for each client ¢ € Cp in parallel do
PT < CLIENTUPDATE(c, P., D, R, f, 9,G,T,\,n)
end for
> Dynamic prompt aggregation stage
for each client ¢ € C'r do
if 7' =1 then
Select s prompt groups randomly from PZ’, denoted as Pg selected
else
Compute similarity scores between client prompts P and global prompts pT-1
using Eq. (7)
Convert similarities to probabilities using Eq. (8)
Probabilistically select s prompt groups from PZ based on these probabilities, de-
noted as ch:selected
end if
Send P, ;. 1cq tO server.
end for B
Server aggregates collected prompts to form P7" using Eq. (9)
for each client ¢ € Cr do B
Update the selected prompt groups in P, with corresponding prompts from P”
end for
end for
return Final personalized prompts { P.} Y

PRIL AR

17:

18

procedure CLIENTUPDATE(c, P., D., R, f,9,G, T, \,n)
Let local prompts P. = {p¢ 1, .-, 0t,.G>Pu,1s- -+ Pu,G }
for eachepoche =1,..., Rdo
Sample mini-batch (z,y) ~ D,
for each prompt group j =1,...,G do
Form visual input v; = {z, p, ;} and compute f(v;)
for each class k do
Form text input ¢, ; = {p; ;, cx } and compute g(t ;)
Compute logits using Eq. (2)
end for
end for
Compute classification loss Lcg using Eq. (3)
Compute diversity loss Lq;iy using Eq. (4)
Total loss £ < Lcg + A - Law
Update prompt parameters P, using gradient descent with learning rate n
end for
return Updated prompts P,
: end procedure
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B Limitations and Broader Impacts

As shown in Table B, while FedMGP consistently outperforms existing methods across most set-
tings, it shows limitations in extremely data-scarce scenarios (1-2 shots). This stems from our multi-
group prompt mechanism, which requires sufficient data to effectively disentangle different seman-
tic aspects. With minimal samples, prompt groups cannot specialize properly, leading to unstable
training. The text-visual co-learning mechanism further compounds this challenge, as establishing
robust cross-modal correlations requires visual diversity absent in 1-shot settings. Additionally, our
dynamic aggregation strategy becomes less reliable when prompt representations are unstable due
to data scarcity. Simpler methods like PromptFolio occasionally perform better in these extreme
low-shot scenarios precisely because they avoid the complexity that makes FedMGP powerful in
data-rich environments.

To address these limitations, several future directions emerge: (1) developing adaptive mechanisms
to dynamically adjust the number of prompt groups based on available data, reducing groups when
data is scarce; (2) initializing prompt groups with knowledge from related tasks to provide stronger
starting points for specialization; and (3) incorporating meta-learning techniques to improve learn-
ing efficiency from limited examples. While FedMGP contributes positively to privacy-preserving
adaptation of vision-language models in decentralized environments, we acknowledge that, like all
federated learning systems, it may remain vulnerable to various attacks. As these technologies
advance toward deployment in sensitive domains, continued research must address both technical
limitations and broader societal implications.

Table 9: Performance Comparison of Different Methods on 1-16 shots

Dataset Method 1-shot 2-shots 4-shots 8-shots 16-shots
PromptFL 9523 9530 9562 96.20 94.66
FedOPT 92.81 9295 89.27 81.37 69.43

Caltech101 FedTPG 9574 9488 96.00 96.02 95.32
FedPGP 96.02 96.13 95.54 95.87 96.37

PromptFolio 95.84 9539 9390 90.39 88.50
FedMGP (Ours) 96.03 9548 96.48 97.14  97.07

PromptFL 53.78 52.69 55.08 60.58  52.60
FedOPT 68.73 6393 65.68 65.51 61.71
DTD FedTPG 59.30 6428 6622 65.85 5249
FedPGP 58.15 63.60 62.00 63.31 68.21
PromptFolio 64.86 6392 65.11 6242 64.11
FedMGP (Ours) 62.00 68.32 69.58 69.12  73.92
PromptFL 7820 7237 7327  69.71 71.94
FedOPT 68.62 6842 6632 6054 57.99
Flowers102 FedTPG 7459 7371 78.05 7885  77.71
FedPGP 7349 73.16 76.09 8439  82.85

PromptFolio 81.24 7951 7935 70.99 66.05
FedMGP (Ours) 73.75 78.07 83.80 84.53  85.16

C Experimental Details

C.1 Dataset Setup

Our evaluation leverages nine diverse visual classification datasets, spanning fine-grained recogni-
tion, texture analysis, general object classification, and domain adaptation tasks. Table [ provides
comprehensive details about these datasets, including classes, sample sizes, domains, and training
protocols.

For our base-to-novel generalization experiments (Oxford-Pets to Food101), we employ a few-shot
training paradigm, where each client is provided with only 16 samples per class (16-shot) for the
main experiments. These datasets are partitioned by splitting classes equally into base and novel
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categories, with non-overlapping base classes distributed across clients to establish the pathological
non-IID setting described in Section 4.

For label distribution shift experiments, we utilize CIFAR10 and CIFAR100 with Dirichlet distribu-
tion partitioning (ov = 0.5) across 100 clients, using the full training set. This creates realistic client
heterogeneity with varying class proportions.

For domain adaptation scenarios, we leverage Office-Caltech10 with its four domains (Amazon, Cal-
tech, DSLR, and WebCam) and DomainNet with six domains (Clipart, Infograph, Painting, Quick-
draw, Real, and Sketch). Each domain is split into 5 clients under Dirichlet distribution (o« = 0.3),
resulting in a total of 20 and 30 clients respectively. This setup introduces natural feature shifts
across domains and moderate label skew within each domain.

Table 10: Statistical details of datasets used in experiments.

Dataset Classes Train Test Task

Domains Training Protocol

OxfordPets [3R] 37 2,944 3,669 1 Few-shot (16-shot) Pets recognition
Flowers102 [36] 102 4,093 2,463 1 Few-shot (16-shot) Flowers recognition
DTD [[7] 47 2,820 1,692 1 Few-shot (16-shot) Texture recognition
Caltech101 [13] 100 4,128 2,465 1 Few-shot (16-shot) Object recognition
Food101 [4] 101 50,500 30,300 1 Few-shot (16-shot) Food recognition
Stanford Cars [23] 196 6,509 8,041 1 Few-shot (16-shot) Cars recognition
FGVC Aircraft [33] 100 3,334 3,333 1 Few-shot (16-shot) Aircraft recognition
UCF101 [g7] 101 7,639 3,783 1 Few-shot (16-shot) Action recognition
SUN2397 [54] 397 15,880 19,850 1 Few-shot (16-shot) Scene recognition
CIFAR10 [26] 10 50,000 10,000 1 Full dataset Image classification
CIFAR100 [26] 100 50,000 10,000 1 Full dataset Image classification
DomainNet [3Y9] 10 18,278 4,573 6 Full dataset Domain adaptation
Office-Caltech10 [[I4] 10 2,025 508 4 Full dataset Domain adaptation

C.2 Experimental Setup

We employ SGD optimizer with learning rate 7 = 0.001 and single-step learning rate scheduler
across all experiments. All implementations are based on PyTorch and experiments were conducted
on NVIDIA RTX 4090 (24GB) or A100 (40GB) GPUs. Across all experiments, we use ViT-B/16
pretrained on ImageNet as the backbone. Images are resized to 224 x 224 using bicubic interpola-
tion with standard data augmentation (random resized crop, random flip, and normalization). For
FedMGP, we set both text and visual prompt lengths to 2, use 5 prompt groups for each modality,
and initialize with the text "a photo of a". All models are trained with mixed precision (fp16) for
computational efficiency.

The following sections detail the specific configurations for different experimental scenarios.

Base-to-Novel Class Generalization. For the five fine-grained classification datasets, we partition
each dataset equally into base and novel classes, then distribute non-overlapping base classes to
each of the 10 clients. We employ a few-shot (16-shot by default) training paradigm with batch
size 8. The federated learning process proceeds for 10 communication rounds with 100% client
participation and 2 local epochs per round. Each client trains on their local classes, and we evaluate
performance on: (1) local classes (personalization), (2) base classes (classes seen by other clients),
and (3) novel classes (unseen during training). The Combined Metric (CM) is computed as CM =
(Local + HM)/2, where HM is the harmonic mean of Base and Novel accuracies.

Label Distribution Shift. For CIFAR-10 and CIFAR-100, we partition the full training set among
100 clients following a Dirichlet distribution with concentration parameter o = 0.5. Communication
proceeds for 100 rounds with 10% client participation per round and 2 local epochs per round. We
use batch size 32 for training and 300 for testing. This creates a realistic heterogeneous environment
with varying class proportions across clients.
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Domain Adaptation. For Office-Caltech10 and DomainNet, we leverage their inherent domain
structure (4 domains for Office-Caltech10 and 6 domains for DomainNet). Each domain is assigned
5 clients, resulting in a total of 20 clients for Office-Caltech10 and 30 clients for DomainNet. This
setup introduces both feature shift and label skew. The federated learning process runs for 25 rounds
with 25% client participation per round and 1 local epoch per round. We evaluate each client’s
performance on all domains to assess cross-domain generalization.

D Additional Experimental Results

D.1 Domain Generalization for DomainNet

Table 11: Results on DomainNet with feature shift and label shift with Dir(a. = 0.3) partition into 5
clients/domain

Clipart  Infograph Painting Quickdraw  Real Sketch Average

PromptFL[I/] 25.80120_32 10.48111_13 16.0517_40 15.39115_48 14-7218.17 6.2916_45 14.79114_18
FedOPT [77] 43.25:10.90 43.55116.80 28.0717.05 35.561337 28.45411.08 33.6410015 354241433
FedTPG [41] 171641826 23.56417.77 13.5810.41 162511475 17131405 9.164510 16.14 11566

FedPGP [0] 12.01110.21 10494540 11391762 21.77 11576 14291550 1013411544 13.35410.83
PromptFOliO [%/] 41.80:{;11_21 42.38:{:15_51 29.69:(:8_33 34.70:{:2_30 28.99:&10_23 35.72:(:13_73 35.55:&12_23
FedMGP 48.48.15.07 47.76115.61 30.3616.0s 35191473 33.0246.40 36.74115.47 38.59412.00

The values in Table [ represent the maximum and minimum accuracies among the five clients
within each domain under the Dirichlet distribution, illustrating the performance variation of mul-
tiple clients sharing the same domain characteristics. The domain adaptation experiments on Do-
mainNet demonstrate FedMGP’s superior performance in handling domain shifts and label distri-
bution heterogeneity. As shown in Table I, FedMGP achieves an average accuracy of 38.59%,
significantly outperforming the closest competitors PromptFolio (35.55%) and FedOPT (35.42%).
FedMGP exhibits particularly strong performance on domains with high visual abstraction, such as
Clipart (48.48%) and Infograph (47.76%), substantially outperforming other methods. This demon-
strates that our multi-group text-visual prompt co-learning mechanism can effectively capture and
adapt to different visual representations across DomainNet’s diverse artistic styles. The performance
stability across diverse domains, evidenced by comparatively lower standard deviations, confirms
our theoretical analysis that the multi-group architecture effectively decomposes knowledge into
common and client-specific components. The visual prompts capture domain-specific artistic fea-
tures while text prompts provide cross-domain semantic connections, enabling FedMGP to main-
tain both domain adaptability and semantic consistency. This approach effectively addresses the
core challenge of domain generalization in federated learning by simultaneously preserving domain-
specific knowledge while enabling cross-domain knowledge transfer across DomainNet’s six distinct
visual domains.

D.2 Domain Generalization for Office-Caltech10

Table 12: Results on Office-Caltech10 with feature shift and label shift with Dir(ov = 0.3)
partition into 5 clients/domain

Amazon Caltech DSLR Webcam  Average
PromptFL [II'7] 9234555 16.8841407 83341051 2559126065 15.0141511

FedOPT [}/] 28.20:(:5_12 35.22:&13_17 23.67:{:8.72 30.71:{;11_43 29.45:{;10_92

FedPGP [U] 8504775 19.3311260 113341572 24.8911430 16.01 L1440
PromptFolio [B7] 32.48.15351 36211940 20.3311205 11.591585 25.15414.36
FedMGP 313245014 38281720 413341555 44.73 11001 38924175

For the Office-Caltech10 dataset, as shown in Table I, FedMGP demonstrates even more substan-
tial improvements, with an average accuracy of 38.92% compared to the second-best performer
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FedOPT (29.45%). Unlike DomainNet’s artistic style variations, Office-Caltech10 presents chal-
lenges related to imaging conditions and equipment specifications. The advantage is particularly
pronounced on specialized equipment captures like DSLR (41.33%) and Webcam (44.73%), where
FedMGP outperforms other methods by large margins. These results validate the effectiveness of
our approach in handling technical domain shifts beyond artistic variations. Most baseline methods
exhibit substantial performance variations across domains, indicating their vulnerability to domain-
specific overfitting in equipment-based scenarios. In contrast, FedMGP maintains more consistent
performance, demonstrating its robustness to both artistic and technical domain shifts. This confirms
that integrating visual and textual modalities enriches contextual representation, capturing instance-
specific information more comprehensively than text-only approaches across different types of do-
main variations. The performance on Office-Caltech10 confirms that FedMGP’s multi-group archi-
tecture effectively distributes knowledge across specialized prompt units rather than concentrating it
in a single structure, enabling robust cross-domain generalization while preserving domain-specific
adaptation capabilities for both artistic and technical domain characteristics.

D.3 Stability of Prompt Group Selection

Table 13: Selection frequency of each prompt group across training rounds on OxfordPets dataset.
Values show the number of clients (out of 20 total) selecting each group, with percentages in paren-
theses.

Round t gl tg2 tg3 tgd tg5 vgl vg2 vegd vgd v._gs

3(15%) 2(10%) 6(30%) 5(25%) 4(20%) 3(15%) 2(10%) 6(30%) 5(25%) 4(20%)
6(30%) 2(10%) 6(30%) 3(15%) 3(15%) 6(30%) 2(10%) 6(30%) 3(15%) 3(15%)
7(35%) 2(10%) 5(25%) 3(15%) 3(15%) 7(35%) 2(10%) 5(25%) 3(15%) 3(15%)
6(30%) 3(15%) 5(25%) 3(15%) 3(15%) 7(35%) 3(15%) 4(20%) 2(10%) 4(20%)
6(30%) 3(15%) 3(15%) 3(15%) 5(25%) 7(35%) 3(15%) 3(15%) 2(10%) 5(25%)
6(30%) 4(20%) 3(15%) 2(10%) 5(25%) 7(35%) 4(20%) 3(15%) 1(5%) 5(25%)
7(35%) 4(20%) 4(20%) 1(5%) 4(20%) 7(35%) 4(20%) 4(20%) 1(5%) 4(20%)
6(30%) 4(20%) 4(20%) 2(10%) 4(20%) 7(35%) 4(20%) 5(25%) 1(5%) 3(15%)
420%) 5(25%) 6(30%) 1(5%) 4(20%) 5(25%) 5(25%) 7(35%) 0(0%) 3(15%)

0 5(25%) 5(25%) 5(25%) 2(10%) 3(15%) 4(20%) 7(35%) 6(30%) 1(5%) 2(10%)

— O 00O\ WU W~

Table 3 presents the selection frequency of each prompt group across ten training rounds on the Ox-
fordPets dataset, demonstrating the stability of prompt group assignments in FedMGP. The results
reveal that while prompt groups exhibit dynamic selection patterns, their roles remain relatively sta-
ble throughout training. Notably, certain groups consistently receive higher selection frequencies
(e.g., text group 1 and visual group 1 maintain 30-35% selection after round 3), indicating their
specialization in capturing shared global knowledge that benefits multiple clients. Conversely, other
groups show lower but persistent selection rates (e.g., text group 4 ranges from 5-15%), suggesting
their focus on client-specific local features. This pattern validates our dynamic aggregation mecha-
nism’s design principle: rather than forcing uniform participation, the similarity-guided probabilistic
sampling naturally guides prompt groups to specialize in complementary aspectssome evolving to
capture common patterns through frequent selection, while others preserve personalized knowledge
through selective aggregation. The temperature parameter 7 in our selection process plays a crucial
role in maintaining this dynamic balance, preventing any prompt group from being permanently ex-
cluded (as evidenced by the absence of consistently zero selections) while still allowing meaningful
specialization. This ensures that FedMGP retains both strong generalization capabilities through
shared knowledge and effective personalization through client-specific features, achieving the opti-
mal trade-off demonstrated in our main experimental results.

E Additional ablation study

In this section, we present additional ablation studies to further analyze the effectiveness of different
components and design choices in FedMGP. These experiments provide deeper insights into the
model behavior and validate the design decisions discussed in the main paper.
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E.1 Effect of Temperature Parameter in Prompt Selection

Table 14: Effect of Temperature (7) on FedMGP Performance

Setting Local Base Novel CM
FedMGP (7=0.1) 84.84 95.92 72.54 83.72
FedMGP (7=0.5) 85.45 96.46 73.47 84.43

FedMGP (7=0.8) 84.40 95.31 7294 83.52
FedMGP (7=2.0) 85.17 96.63 72.61 84.04

FedMGP (7=1.0) 96.92 73.23 74.65 85.43

The temperature parameter 7 in our dynamic prompt selection strategy plays a critical role in bal-
ancing exploration and exploitation during federated learning. As shown in Table [4, the optimal
performance is achieved at 7 = 1.0 with a Combined Metric (CM) of 85.43%, significantly out-
performing both lower temperatures (7 = 0.1,0.5) and higher temperatures (7 = 2.0). Lower
temperatures lead to more deterministic selection based on prompt similarity, resulting in stronger
base class performance (96.46% at 7 = 0.5) but weaker local personalization. Conversely, higher
temperatures introduce more randomness, allowing for greater exploration but potentially disrupting
the convergence of shared knowledge. This confirms our theoretical framework in Section 3.2.2

E.2 Inference-Time Prompt Group Weighting Strategies

Table 15: Effect of Different Inference Strategies on FedMGP Performance
Setting Local Base Novel CM

FedMGP (Max logits) 81.96 89.48 74.79 81.72
FedMGP (Feature avg) 85.09 95.56 74.32 84.35
FedMGP (Group 0) 79.65 85.80 73.08 79.29
FedMGP (Group 1) 78.19 83.65 72.68 77.99
FedMGP (Group 2) 77.92 83.69 72.66 77.85
FedMGP (Group 3) 80.70 96.94 61.52 77.99
FedMGP (Group 4) 80.52 90.76 69.37 79.58

FedMGP (Average) 96.92 73.23 74.65 85.43

The effectiveness of different inference-time strategies for combining predictions from multiple
prompt groups is examined in Table 3. Simple logit averaging across all groups yields the best
overall performance (CM=85.43%), significantly outperforming alternative strategies such as maxi-
mum logit selection (CM=81.72%) and feature-level averaging (CM=84.35%). Notably, relying on
any single prompt group (groups 0-4) substantially degrades performance, with the best individual
group achieving only CM=79.58%. This confirms our hypothesis presented in Section B2l that the
multi-group architecture enables different prompt groups to specialize in complementary aspects
of the input data. The superior performance of ensemble averaging demonstrates that each prompt
group contributes unique and valuable semantic perspectives, collectively enhancing model robust-
ness. Group 3 exhibits the highest base class accuracy (96.94%) but poor novel class performance
(61.52%), indicating its specialization in capturing shared patterns across clients rather than gen-
eralizable featuresprecisely the type of specialization our diversity loss was designed to encourage.
These results validate our core design principle of distributing knowledge across multiple specialized
prompt units rather than concentrating it in a single monolithic structure.

E.3 Diversity Loss Formulation Variants

The choice of diversity loss function significantly impacts FedMGP’s ability to learn specialized
prompt representations. As shown in Table [, the L1-based diversity formulation achieves the best
overall performance (CM=85.43%), outperforming both cosine similarity (CM=83.96%) and L2-
based approaches (CM=83.83%). The L1 formulation leads to substantially better local accuracy
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Table 16: Effect of Diversity Loss Type on FedMGP Performance
Setting Local Base Novel CM

FedMGP (COS) 84.72 95.68 73.61 83.96
FedMGP (L2) 84.57 94.76 73.98 83.83

FedMGP (L1) 96.92 7323 74.65 85.43

(96.92%) compared to cosine (84.72%) and L2 (84.57%), while maintaining comparable perfor-
mance on novel classes. This performance pattern aligns with our analysis in Section B2, where
we emphasized the importance of encouraging prompt groups to capture diverse semantic perspec-
tives. The L1 norm’s sparsity-inducing property appears to create cleaner separation between prompt
groups, allowing each to specialize more effectively in different aspects of the data distribution. Co-
sine similarity, while effective at enforcing orthogonality, appears less suited to the federated setting
where capturing complementary rather than strictly orthogonal features is beneficial. These results
validate our diversity loss design as a key component of FedMGP’s architecture, enabling effective
knowledge distribution across prompt groups and contributing to the model’s strong performance
balance between personalization and generalization.

E.4 Dynamic Aggregation Strategy

Table 17: Comparison of Different Aggregation Strategies (averaged over 5 datasets)
Setting Local Base Novel CM

CAM 86.13 8594 83.57 8543
FAM  97.37 77.47 78.71 87.73

DAM 96.65 79.20 80.86 88.34

To validate the effectiveness of our dynamic aggregation mechanism, we compare three aggrega-
tion strategies as shown in Table [. Complete Aggregation Mechanism (CAM) aggregates all
prompt groups across clients at each communication round, resulting in identical parameters across
clients (similarity=1.0). While this ensures strong base class performance (85.94%), it sacrifices
local personalization (86.13%) by forcing uniform representations. Fixed Aggregation Mechanism
(FAM) maintains certain prompt groups without aggregation, achieving the highest local accuracy
(97.37%) but severely compromising generalization on base (77.47%) and novel classes (78.71%)
due to insufficient cross-client knowledge transfer.

Our Dynamic Aggregation Mechanism (DAM) strikes an optimal balance, achieving the best Com-
bined Metric (88.34%) by selectively aggregating the most similar prompt groups between clients
at each round. This similarity-guided probabilistic sampling reduces the weight of client-specific
biased features while preserving personalization. The temperature parameter ensures every prompt
group has opportunities for aggregation, enabling FedMGP to learn parameters with high inter-client
similarity (promoting generalization) while maintaining diversity within each client’s prompt groups
(enabling personalization). This explains why FedMGP achieves strong local accuracy (96.65%)
comparable to FAM while maintaining substantially better performance on base (79.20%) and novel
classes (80.86%) than FAM, demonstrating superior generalization capability through dynamic
cross-client knowledge transfer.

F Theoretical Analysis

In this section, we present a comprehensive theoretical analysis that establishes the formal guaran-
tees for FedMGP’s effectiveness in heterogeneous federated learning environments. We demonstrate
that our dynamic aggregation strategy consistently outperforms both full aggregation (represented
by PromptFL [[['7]) and fixed aggregation (represented by FedOTP [U]) approaches, particularly un-
der non-IID data distributions. We begin by establishing the foundational assumptions and notations
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that frame our analysis (Section ETl), including how prompts can be decomposed into global, local,
and noise components. We then formalize the three competing aggregation strategies (Section EX),
highlighting their distinct characteristics in balancing global knowledge with client-specific features.
Next, we introduce a signal-noise decomposition framework (Section EJ) that enables quantitative
comparison between different strategies through their signal-to-noise ratios. Finally, we present and
prove our main theoretical result (Section [E4): the dynamic aggregation superiority theorem, which
establishes that FedMGP’s approach achieves strictly better signal-to-noise ratios than alternative
strategies, directly translating to improved classification performance in practice.

F.1 Assumptions and Notation Definitions

To establish a rigorous theoretical framework, we first define the notation and key assumptions that
underpin our analysis. The notation used in this section and their meanings are as follows:
¢ N: Total number of clients;
* (G: Number of prompt groups per client;
¢ s: Number of prompt groups selected for aggregation in each round, where 1 < s < G,
* Cr C{1,...,N}: Set of clients participating in aggregation at round 7', with n = |Cp

e ¢ € Cr: Client index;

» j€{1,...,G}: Prompt group index;

. Pfc € R%: The j-th prompt group of client ¢ at round T’;

. ]5J-T € R%: The j-th global prompt group at the server after round 7" aggregation;

« ST C {1,...,G}: Set of prompt group indices selected from client ¢ in round T for
aggregation, with |ST| = s;

. a;{c: Selection score for the j-th group from client ¢ in round 7', computed based on
similarity to global prompts;

e 7 > 0: Temperature parameter controlling selection score smoothness;

* sim(z,y): Similarity measure (e.g., cosine similarity);

+ 1% € R%: Unit vector representing global task-related features shared across all clients;

* s € R Unit vector representing local task-related features specific to client c;

» L: Total number of noise feature dimensions in the latent space;

s & € R%: The I-th unit vector representing task-irrelevant noise features;

. fc € R: Coefficient quantifying the contribution of global features to prompt Pfc;

. ’yfc € R: Coefficient quantifying the contribution of client-specific features to prompt PJTC;

. ]TC ; € R: Coefficient quantifying the contribution of the /-th noise feature to prompt Pfc;
* Xc € R: Metric quantifying the degree of data heterogeneity for client c.
Our analysis is based on the following assumptions, which are grounded in feature learning theory
and previous work on federated learning:
Assumption 1 (Feature Space Decomposition). According to feature learning theory [374, D, 6], the

latent feature space can be decomposed into three orthogonal subspaces:

1. Global task-related features represented by a unit vector u© (shared across all clients)
2. Local task-related features represented by unit vectors { .}, (client-specific)

3. Task-irrelevant noise features represented by unit vectors {fl}le (noise)

These three subspaces are mutually orthogonal, i.e., (1€, pu.) = 0, (u%,&) = 0, and (jc, &) = 0
forallc € {1,...,N}andl € {1,...,L}. Here, L represents the dimensionality of the noise
subspace, which can be significantly larger than the dimensionality of task-relevant subspaces. This
decomposition allows us to separately analyze the impact of each component on the aggregation
process and quantify the information content in prompts.
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Assumption 2 (Prompt Representation). Each prompt group j of client c at round T' can be repre-
sented as a linear combination of features from the three orthogonal subspaces:

L
Pl =Bl + 9 e + > 0T 16 (10)
=1

where:

. 5ch represents the coefficient fqr global features, indicating how much the prompt captures
knowledge shared across all clients

. v;fc represents the coefficient for local features, indicating how much the prompt captures
client-specific knowledge

. d)fc’ | represents the coefficient for the l-th noise feature dimension

Since 1€, e, and & are unit vectors as defined in Assumption W, this representation directly quan-
tifies the strength of each component in the prompt. This allows us to analyze how each prompt
captures common knowledge versus client-specific knowledge versus irrelevant noise [I[8, P4].

Assumption 3 (Data Heterogeneity). The degree of data heterogeneity between clients is defined by

the metric:
N

Xe =2 (e ter) (1)

=1

This simplification is valid because ji.. is a unit vector, so ||ji.||3 = 1. This metric measures how
similar client c’s local features are to those of other clients. When x. approaches N, it indicates
that client c’s features are highly aligned with other clients, suggesting an IID (Independent and
Identically Distributed) data scenario. Conversely, when . is close to 1 (its minimum value, rep-
resenting alignment only with itself), it indicates that client c’s features have limited overlap with
other clients, suggesting a highly non-1ID data distribution [B7, ?7]. This metric allows us to relate
the performance of different aggregation strategies to the level of data heterogeneity and provides a
quantitative basis for analyzing the effectiveness of our approach in various federation settings.

F.2 Formalization of Three Aggregation Strategies

We now formally define three different prompt aggregation strategies that represent the spectrum of
approaches in federated prompt learning. Each strategy has distinct characteristics in how it handles
the balance between preserving global knowledge and managing client-specific variations.

Full Aggregation (PromptFL) The full aggregation strategy, as employed in PromptFL [T']], ag-
gregates all prompt groups from all participating clients. This represents the most straightforward
application of federated averaging [34] to prompt learning:

~ 1
T _ T
ﬂ“—gZZ%J (12)
ceCr
While this approach maximizes knowledge sharing, it may suffer from interference between client-

specific features when data distributions are heterogeneous.

Fixed Aggregation (FedOTP) The fixed aggregation strategy, inspired by approaches like Fe-
dOTP [B], only aggregates a predetermined subset of prompt groups (typically the first s groups),
setting all others to zero:

pr {3 cecr Pler =1, (13)
J 0, j=s+1,...,G.

This static partition-based approach attempts to balance shared knowledge with client specificity,
but lacks adaptivity to evolving knowledge patterns across communication rounds.
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Dynamic Aggregation (FedMGP) Our proposed dynamic aggregation strategy selects prompt
groups based on their similarity to the global prompts from the previous round. First, it computes
selection scores: _

exp (sim(P7, P;T_l)/T)

T _ J,C?

Yje = =G - ~T_ )
e Zj/:l exp(&m(Pﬁc,Pf 1)/T)

where ]5;‘”1 is the j-th global prompt from the previous round. Then, for each client ¢, we select the

(14)

top-s groups with the highest selection scores to form S, and aggregate only the selected groups:

- 1 )
pPl'= - > 1(jesh P (15)
ceCr

where I(j € ST) is the indicator function denoting whether group j is selected from client ¢ in
round 7". This adaptive approach balances knowledge sharing and client specificity in a data-driven
manner, potentially offering advantages over fixed strategies.

F.3 Signal-Noise Decomposition and Performance Metrics

To analyze the effectiveness of different aggregation strategies, we introduce a signal-noise decom-
position framework that allows us to quantitatively compare their performance. This approach en-
ables us to examine how effectively each strategy preserves important information while suppressing
noise.

From Assumption @, we have the representation of each prompt as:
L
Pl =Bt + ]t + D )il (16)
=1

For individual prompts, we can define their total signal and noise components. The signal compo-
nents include both global and local task-related information:

Signal 7! = (8]..)° + (+;..)* (17)
while the noise component represents the irrelevant information:
L
Noisejc = » (¢1.,)° (18)
=1

However, when evaluating aggregated global prompts in federated learning, we are primarily in-
terested in how well they preserve global knowledge. From this perspective, even client-specific
features yfcuc can be considered as interference when aggregated across heterogeneous clients.
Therefore, for evaluating global prompts, we define:

Global Signal = (8] )? (19)
Global NoiseJT = (Client-specific noise) + (Task-irrelevant noise) (20)

The key performance metric we use to evaluate the quality of aggregated prompts is the signal-to-
noise ratio (SNR):

Global Signal?  (57)?
_ J J (21)

SNR, — ,
7 Global NoiseJT (b?

where BJ-T is the coefficient of the global feature 1 in the aggregated prompt PT and (bjT quantifies
the total noise power including both client-specific variations and task-irrelevant noise.

This metric is directly related to the generalization performance of the model: a higher SNR indicates
better preservation of global features and more effective suppression of noise, which translates to
improved classification performance and lower test error [f, [&].
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F.4 Dynamic Aggregation Superiority Theorem and Detailed Proof

We now present our main theoretical result, which establishes the superiority of FedMGP’s dynamic
aggregation strategy over both full aggregation and fixed aggregation strategies. Based on equa-
tion (ZI), a higher signal-to-noise ratio leads to lower classification error. The following theorem
and proof demonstrate that:

SNRfun < SNRfixed < SNRayn.

Theorem F.1 (Dynamic Aggregation Superiority). Under Assumptions I, O, and B, for any number
of selected prompt groups s € [1, G|, we have:

SNRfu1 £ SNRxed < SNRayn.

Proof. The proof consists of three parts: first analyzing the SNR of full aggregation, then comparing
it with fixed aggregation, and finally establishing the superiority of dynamic aggregation.

(1) Analysis of Full Aggregation SNRy,;;. From equation (I2Z) and decomposition (If), we can
express the global and noise coefficients for the full aggregation strategy:

I
J n J,¢

ceCr

For the noise term, we must consider both the pure noise components ¢fc ;&1 and the client-specific

features fyjz:cuc which act as interference when aggregated across heterogeneous clients. The total
noise power after aggregation is:

L
gl — % Z Z(d)?:c,l)Z + % Z (77.e)?

ceCr =1 ceCr

The first term represents the traditional noise components, while the second term accounts for client-
specific features that do not align globally. This is a more complete characterization of noise in
federated settings.

For the signal-to-noise ratio of group 7, we have:

full )2 1 T 2
SNRfull(j) = (ﬂj ) = (n ZCGCT B],C)

full 1 L 1
5" nZ ZCECT > jT,c,z)2 t oz ZCECT (VjT,c)Q

A key observation is that full aggregation can actually enhance SNR through constructive signal
accumulation. When client signals are positively correlated (as is typically the case for global
knowledge), the numerator grows quadratically with n, while the noise terms in the denominator
grow linearly if they are uncorrelated across clients. This is the fundamental principle behind why
federated learning works.

The overall SNR of full aggregation is determined by the worst-performing group:
SNRgun = %HGl SNRun ()

(2) Analysis of Fixed Aggregation SNRgyeq. From equation (I3), for j < s (groups that are
aggregated), we have:

fixed __ pfull fixed __ ;full
ﬂj - ﬁj ) ¢j - ¢j ’
therefore SNRfixed (j) = SNRgun(4) for these groups.
For j > s (groups that are not aggregated), we have PJ-T = 0 according to equation ([3), which

means these groups do not contribute to the model’s predictions. We exclude these groups from the
SNR calculation since they do not affect model performance.

The overall SNR of fixed aggregation is determined by the worst-performing group among the ag-
gregated ones:
SNRfixea = min SNRfun(j) > Hgg SNRfun(j) = SNRu-
J<s J<
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This shows that fixed aggregation guarantees an SNR at least as good as full aggregation, since it
excludes potentially noisy groups that might degrade the overall performance. The inequality is
strict when at least one group 7 > s has a lower SNR than all groups 7 < s.

(3) Proving SNRyy,, > SNRgyeq. For dynamic aggregation, we select prompt groups based on their
similarity to the global prompts from the previous round, as defined in equation (I4d). To be precise
about our selection mechanism: for each client ¢, we compute similarity scores between each of
its prompt groups and the corresponding global prompts, then select the top-s groups with highest
similarity. This deterministic selection can be expressed as:

ST ={je{1,...,G}: ajT70 is among the top-s highest for client c}
The selection score aT in equation (I[4) serves as a normalized measure of similarity between local
and global prompts, w1th lower temperature 7 making the scores more concentrated on the highest
similarities.

Let us define the global and noise coefficients for dynamic aggregation:

1
dyn .
B == 1 €SDHB,

ceCr

= S aG e sT) <Z<¢]cl>2+<ﬁc>2>

ceCr =1

The key insight is that our selection mechanism preferentlally selects groups with higher global
signal BT and lower noise (both ngT g and vj T ). This is because groups with higher similarity to
global prompts tend to have higher global signal components and lower noise components.

Letus define N; = > ., I(j € ST') as the number of clients that select group j for aggregation.
This value depends on the "popularity" of group j across clients. For a particular group j:

1. If j represents important global knowledge (high ij across clients), then many clients will select
it, resulting in a large ;. 2. If j captures primarily client-specific knowledge or noise, fewer clients
will select it, resulting in a small N;.

For groups that are selected by at least one client (i.e., N; > 0), we can rewrite:

IN; 1 N:  —sel
dyn J § 1 J

n J

ceCr:jesST
N, 1 = N el
d . y —Se.
¢ =5~ Z Z(aﬁfc,l)z + ()| = —5 - 4
n? N; , "
ceCr:jest \i=1

where B 1s the average ﬂT among clients that selected group j, and qb 1s the average noise
power among clients that se ected group j.

. . . —sel _ — —sel  — — —
The key to our dynamic selection advantage is that Bj-e > 3; and d)j-e < ¢;, where 3, and ¢; are the

averages across all clients. This is because our selection mechanism favors high-signal, low-noise
prompt groups.

For quantitative analysis, we can use a parameter J; > 1 to capture this selection advantage:
—sel — —sel 1 —
ﬁj Z(Sj'ﬁj and ¢j ng'fﬁj

where 5 n ZCEC‘T = Bfun and ¢ =+ & 2eeCr (Zl (67, ¢, )7+ ('YjT,c)Q) =n: ¢§u11.
This leads to:
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dyn J J Y% full

N
N, 1 - N
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O Sy Y T s Y

The SNR for dynamically aggregated group j is therefore:

SNRayn(j) = — 2 % = — : = - SNRyun ()

dyn — j full full
9, na; 95 " % n

2
n Nj-6; | gfull .
(o (M) nog (g2 N

For groups j < s that would be selected by the fixed strategy, we have SNRg1(j) > SNRfixed
(since SNRfixeq = ming<s SNRuu(k)). Therefore:

N; - 83 N; - 53

SNRyyu(j) > Tj “SNRgun(j) > —— L . SNRiixed

Under reasonable assumptions about our selection mechanism, we can establish that for important
groups (those containing significant global knowledge):

1. N; will be high, as many clients will select these groups 2. J; will be significantly greater than 1,
as the selection process effectively identifies high-signal, low-noise components

.63
For these important groups, the factor N’T(s’ > 1 even when N; < n, because the cubic term 65?
provides powerful amplification of the selection advantage. This is particularly true for groups that
represent core global knowledge, which will have the highest ¢, values.

Taking the minimum over all selected groups, we have:

SNRayn = j;Iszm;o SNRdyn(j) > SNReixed

This inequality is strict for the following reason: Our dynamic selection mechanism ensures that
each client selects its best s groups in terms of similarity to global knowledge. This means that the
dynamic strategy will: 1. Select any globally important groups that the fixed strategy would select
2. Replace any poor-quality groups that the fixed strategy would select with better alternatives 3.
Achieve higher d; values for the selected groups through its adaptive selection process

In the extreme case where fixed selection is optimal, dynamic selection would converge to the same
selection pattern, matching its performance. However, in practice, especially with heterogeneous
data, dynamic selection will identify better groups than a predetermined fixed selection, leading to
strictly better performance.

In conclusion, SNRgy1 < SNRgxed < SNRgyn, establishing that FedMGP’s dynamic aggregation
strategy is strictly superior to both full aggregation and fixed aggregation strategies in terms of signal-
to-noise ratio. This theoretical advantage directly translates to improved classification performance
and lower test error in practical applications, particularly under heterogeneous data distributions.

O
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