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Abstract001

Multimodal Large Language Models (MLLMs)002
have demonstrated promising reasoning capa-003
bilities in diverse domains, yet their visual per-004
ception skills remain a critical bottleneck. In005
this study, we first investigate the impact of006
visual perception errors on visual reasoning007
questions by analyzing the performance of the008
model on 150 questions. Our findings reveal009
that incorrect answers often stem from failures010
in visual perception. In addition, some correct011
answers arise from hallucinated visual details.012
Towards this end, we introduce Do You See013
Me, a comprehensive benchmark dataset de-014
signed to evaluate visual perception capabil-015
ities in MLLMs. Drawing from established016
principles of human psychology, our dataset017
comprises 1,262 programmatically generated018
images that systematically assess different di-019
mensions of visual understanding. Our bench-020
mark consists of seven perception-focused sub-021
tasks, each designed with control parameters022
to modulate task complexity. Additionally, it023
can be easily extended for new perception tasks024
and varying complexities. We evaluate multiple025
state-of-the-art closed source and open source026
MLLMs and we conduct a comprehensive hu-027
man study where participants are instructed to028
complete visual perception tasks and rate the029
difficulty of each test sample as easy, medium,030
or hard. Results indicate that MLLMs per-031
form poorly on visual perception tasks, achiev-032
ing less than 50% accuracy on most subtasks,033
whereas, humans perform with an average accu-034
racy of around 95%. Furthermore, as task com-035
plexity increases, MLLM performance declines036
drastically, while human performance remains037
stable. In one of our subtasks, when analyzing038
performance across human-rated difficulty lev-039
els, we observe a progressive widening of gap040
between human and MLLM accuracy - start-041
ing at 12% for easy samples and expanding to042
45% for those rated as difficult. This pattern043
of deteriorating MLLM performance relative044
to consistent human accuracy is seen across045

all seven subtasks, highlighting a critical need 046
for enhanced visual perception capabilities in 047
MLLMs. 048

1 Introduction 049

Recent advances in Multimodal Large Language 050

Models (MLLMs) have led to impressive perfor- 051

mance in diverse areas, including mathematical 052

problem-solving (Lu et al., 2023; Zhang et al., 053

2024a), physics-based questions (Saikh et al., 054

2022), and logical reasoning challenges (Xiao et al., 055

2024). Multiple visual question-answering (VQA) 056

tasks have emerged as a critical benchmark for 057

evaluating artificial intelligence systems, particu- 058

larly in assessing their ability to combine visual 059

perception with higher-level reasoning (Yue et al., 060

2023). While the long-term goal is to achieve su- 061

perhuman reasoning across these tasks, an essential 062

prerequisite is the ability to accurately perceive and 063

interpret visual diagrams or figures—a capability 064

rooted in fundamental spatial and form-recognition 065

skills such as visual discrimination and spatial ori- 066

entation. 067

Fig. 1 shows MLLM responses to a logical rea- 068

soning question based on pattern completion. We 069

note that both Claude Sonnet-3.5 (Anthropic, 2024) 070

and GPT-4o (OpenAI et al., 2024a) show visual per- 071

ception errors in their reasoning steps for finding 072

the correct answer with Claude Sonnet-3.5 even 073

reaching the correct final answer despite improper 074

visual grounding. Recent studies have highlighted 075

incorrect or incomplete visual perception as a pri- 076

mary source of error when MLLMs attempt to an- 077

swer visually grounded reasoning questions (Lu 078

et al., 2023). This observation underscores the 079

importance of thoroughly understanding the visual- 080

perception capabilities and failures even when a 081

model’s overall reasoning might appear correct. 082

Visual reasoning itself can be viewed as a composi- 083

tion of three distinct processes: question compre- 084

hension (textual or visual), visual perception, and 085
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Figure 1: Visual Misinterpretations in Popular Multimodal LLMs

reasoning. Because accurate perception is often086

a prerequisite for coherent reasoning, a model’s087

success in high-level tasks might be misleading if088

it masks underlying weaknesses in visual skills.089

Recent benchmarks such as MMVP (Tong et al.,090

2024b) and CV-Bench (Tong et al., 2024a) do pro-091

vide insights into general visual perception abilities092

in MLLMs, but they depend heavily on detailed hu-093

man annotations—making them difficult to scale094

into larger benchmarks. In contrast, tests for hu-095

man visual perception (e.g., the Test of Visual Per-096

cption Skills (Gardner, 1988)) commonly employ097

structured difficulty levels. For instance, in shape098

discrimination tasks, the number and arrangement099

of shapes gradually increase in complexity, and100

participants must identify the presence of a specific101

shape. As the test becomes more challenging, per-102

formance eventually reaches a ceiling, revealing103

the upper limit of a subject’s visual perception ca-104

pabilities. A similar approach for MLLMs—where105

stimuli become progressively harder—would help106

pinpoint the exact complexity threshold beyond107

which these models fail to respond correctly, thus108

providing a more precise measure of their percep-109

tual strengths and weaknesses. This understanding110

can be crucial in designing more targeted pretrain-111

ing datasets, ensuring that models receive the nec-112

essary variety and difficulty of visual samples. It113

can also guide architectural refinements, ultimately114

leading to more robust and accurate multimodal115

reasoning systems.116

Drawing on human psychology (Chalfant and117

Scheffelin, 1969), visual perception can be catego-118

rized into five major interrelated skills: (1) visual 119

discrimination, (2) visual figure-ground, (3) visual 120

spatial, (4) visual closure, and (5) visual sequential 121

memory. These categories provide a more nuanced 122

framework to investigate where exactly models fail. 123

Building on this perspective, our study addresses 124

three primary research questions: 125

• RQ1: If a MLLM correctly answers a reason- 126

ing question based on a visual diagram, does 127

it necessarily succeed on a closely related per- 128

ception question about the same diagram?, 129

• RQ2: How effectively do current MLLMs per- 130

form on various dimensions of visual percep- 131

tion skills? and 132

• RQ3: What patterns emerge in the successes 133

and failures of MLLMs across different visual 134

perception tasks and their complexities, and 135

how do these patterns compare to human per- 136

formance? 137

To investigate RQ1 (§2), we curate a joint vi- 138

sual perception-reasoning dataset comprising 150 139

unique images from logic-based Intelligence Quo- 140

tient (IQ) tests. We opt for IQ-style questions be- 141

cause they focus on pattern recognition and “pure” 142

reasoning with minimal domain-specific knowl- 143

edge, making them well-suited for assessing raw 144

reasoning abilities in MLLMs. Our dataset is 145

constructed by merging samples from both Math- 146

Vista (Lu et al., 2023) and LogicVista (Xiao et al., 147

2024) that feature logic-VQA tasks. For each 148

image-question pair, we evaluate multiple MLLMs 149
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on both perception-oriented and reasoning-oriented150

questions. We then manually annotate each re-151

sponse, categorizing errors into four types: (1) vi-152

sual perception error, (2) reasoning error, (3) arith-153

metic error, and (4) no error. Because a single154

response can exhibit multiple error types, we as-155

sign all applicable labels to each response. This156

comprehensive annotation process provides a more157

nuanced understanding of MLLM performance in158

both perception and reasoning.159

Next, to investigate RQ2 and RQ3 (§3), we in-160

troduce the Do You See Me benchmark, a pro-161

grammatically generated test suite inspired by the162

five core dimensions of human visual perception.163

Our benchmark comprises 1,262 unique images164

designed to test visual perception, accompanied by165

2,116 evaluation questions (see Appendix D for166

details). Our benchmark consists of seven subtasks167

designed to evaluate different aspects of visual per-168

ception. For every subtask, we define a set of con-169

trol variables (see Appendix Table 4) that can be170

systematically adjusted, enabling us to increase or171

decrease task difficulty as needed. Because Do172

You See Me is fully programmatic, we can gen-173

erate a large number of Image-QA pairs across174

varied difficulty levels. Our design approach facili-175

tates a fine-grained analysis of MLLMs’ perceptual176

capabilities, making it particularly valuable for pin-177

pointing the specific visual skills at which MLLMs178

excel—and where they continue to struggle.179

Our experiments on the joint perception-180

reasoning dataset reveal that relying solely on final-181

answer accuracy may obscure critical shortcom-182

ings. For example, Claude Sonnet-3.5, which was183

the best-performing model on reasoning questions184

with around 41% accuracy, still produced reasoning185

chains containing visual perception errors. Specifi-186

cally, around 43% of the correctly answered sam-187

ples exhibited visual perception errors. While, on188

the incorrectly answered samples, both reasoning189

and perception errors were found in equal number190

of samples.191

On the Do You See Me benchmark, we observe192

that no single model outperforms all others across193

the various dimensions of visual perception. Fur-194

ther, we note that while humans perform well on195

all the seven subtasks with an average accuracy196

of 94.31%, the best performing MLLM exhibits197

an accuracy of 50.05%. Additionally, we observe198

that as we use increasingly difficult combination of199

control parameters, MLLMs show a drastic drop200

in performance (dropping to near zero accuracy),201

whereas human performance remains largely stable. 202

Results on the proposed Do You See Me bench- 203

mark clearly indicate that MLLMs fare poorly on 204

visual perception skills, and exhibit a large gap 205

on performance when compared to humans. This 206

suggests an urgent need to improve visual percep- 207

tion capabilities in MLLMs, independently from 208

high-level reasoning. 209

In summary, our key contributions are: 210

1. A joint dataset where reasoning questions on 211

logic-based VQA are paired with closely related 212

visual perception questions. 213

2. An extensive error analysis of SOTA MLLMs for 214

their performance on the joint dataset, including 215

extensive manual annotation of reasoning chains 216

to identify the errors. 217

3. A dynamic and synthetic test bench—Do You 218

See Me—that systematically measures funda- 219

mental visual-perception skills inspired by estab- 220

lished categories in human psychology. 221

4. A comprehensive evaluation of various closed- 222

source and open-source MLLMs against human 223

performance, uncovering patterns of success and 224

failure, and underscoring the gap between “rea- 225

soning” and “seeing” in current MLLMs. 226

2 Preliminary Study 227

2.1 Joint Visual Perception and Reasoning 228

Dataset 229

Most of the existing benchmarks assess MLLM’s 230

visual reasoning capabilities by solely relying on 231

the final answer based accuracy. However, this ap- 232

proach can obscure the exact source of errors. In 233

particular, three primary sources of error can arise: 234

1) Visual Perception- inaccuracies in identifying 235

or interpreting elements in the provided image, 2) 236

Reasoning- errors in the logical or conceptual steps 237

used to arrive at the final answer, or 3) Arithmetic- 238

mistakes in performing numerical or algebraic cal- 239

culations. To accurately distinguish between dif- 240

ferent error sources, it is essential to analyze not 241

only final answers but also the reasoning chains. 242

We introduce a joint perception-reasoning dataset 243

specifically designed to separate visual perception 244

errors from higher-level reasoning failures. 245

Why IQ-Type Questions? IQ-style diagram- 246

matic questions primarily feature basic geomet- 247

ric shapes and patterns, minimizing reliance on 248

domain-specific knowledge. This allows for a fo- 249

cused evaluation of visual perception and reasoning 250
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skills without introducing extraneous complexity.251

2.1.1 Data Collection252

Our dataset is drawn from two established visual253

reasoning benchmarks: MathVista (Lu et al., 2023)254

and LogicVista (Xiao et al., 2024). We selected255

logic-based tasks centered around geometric shapes256

and pattern recognition from:257

• IQtest subset of MathVista (focusing on spatial258

and pattern-based problems).259

• Diagrams subset of LogicVista (pattern comple-260

tion tasks).261

These subsets feature universally understood262

shapes in controlled layouts, allowing systematic263

evaluation of perception and reasoning. We curated264

15 problems from MathVista’s IQtest and 135 from265

LogicVista’s Diagrams, yielding a total of 150 ex-266

amples in our final dataset. Table 1 summarizes the267

distribution.268

Table 1: Distribution of examples across MathVista and
LogicVista. “IQ/Logic Qs.” refers to pattern-based or
spatial reasoning questions.

Dataset Original Size IQ/Logic Qs Selected
MathVistamini(IQtest) 1000 37 15
LogicVista (Diagrams) 448 223 135

2.1.2 Data Annotation269

We extend each original problem (I,R,AR)—270

where I is the image, R is the reasoning ques-271

tion, and AR is the corresponding ground-truth272

answer—by adding a visual perception question P273

with its ground-truth AP . The extended sample is274

thus:
(
I, (R,AR), (P,AP )

)
. Five early-stage re-275

searchers proposed potential perception questions276

directly relevant to each reasoning question (e.g.,277

“How many triangles are in the figure?”). Two se-278

nior annotators then refined these to ensure each279

perception question was unambiguous and closely280

tied to the underlying reasoning skill. Ten ambigu-281

ous queries were discarded and replaced, leading282

to a total of 150 finalized samples.283

3 Do You See Me284

Human psychology systematically categorizes hu-285

man visual perception as a combination of five core286

abilities (Chalfant and Scheffelin, 1969):287

• Visual Discrimination: Ability to recognize288

dominant features (e.g., position, shape, form,289

color).290

Figure 2: A collection of samples for each subdivision
of the TVPS test (Gardner, 1988)

• Visual Figure-Ground: Ability to distinguish 291

the main object from its background. 292

• Visual Memory: Ability to remember se- 293

quences of presented images. 294

• Visual Closure: Ability to complete partially 295

obscured shapes. 296

• Visual Spatial: Ability to perceive positions of 297

objects relative to oneself and to other objects. 298

Assessments such as the Test of Visual Percep- 299

tion Skills (TVPS) (Gardner, 1988) and Motor-Free 300

Visual Perception Test (MVPT) (Colarusso, 2003) 301

systematically evaluate these abilities through struc- 302

tured questionnaires. Although MLLMs differ 303

from human vision, these categories offer a solid 304

framework for evaluating visual perception in 305

MLLMs. Building on these principles, we intro- 306

duce the Do You See Me benchmark, a fully au- 307

tomated test suite that dynamically generates both 308

images and perception-focused questions (VPQA) 309

of incremental difficulty. Our approach allows 310

us to have a graded evaluation of MLLM perfor- 311

mance over multiple perception dimensions (refer 312

Appendix D for dataset distribution). Note that 313

visual memory in addition to visual perception is 314

also a test of short term visual memory in humans. 315

Since the MLLMs currently have no memory, ex- 316

cept via a textual description of the visual scene, 317

we leave out visual memory from our benchmark. 318

Our code is completely written in Python3 1, and 319

uses SVG representation to generate the visual im- 320

ages. We open-source the synthetic data generation 321

code, and dataset at 2. 322

3.1 Visual Discrimination Tasks 323

We organize visual discrimination into four sub- 324

tasks. 325

Shape Discrimination: This subtask assesses the 326

ability to count specific shapes within a composite 327

image. We use seven geometric shapes (rectan- 328

1https://www.python.org/downloads/
2https://anonymous.4open.science/r/DoYouSeeMe-

F52E/README.md
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Figure 3: Do You See Me benchmark visual perception dimensions

gle, triangle, circle, pentagon, hexagon, octagon,329

star), each with a solid black border and trans-330

parent interior. Non-overlapping placements are331

enforced using the Separating Axis Theorem (SAT)332

(Gottschalk et al., 1996). The difficulty is con-333

trolled by three parameters: the number of unique334

shapes (S), the maximum instances per shape (SI),335

and an overlap factor (α). Each generated image336

is paired with questions (for example, “How many337

circles are in the image?”) and its programmatic338

ground truth answer.339

Joint Shape-Color Discrimination: This subtask340

focuses on compositional counting queries (e.g.,341

“Count all red triangles”), using six shapes (star,342

triangle, pentagon, hexagon, octagon, cross) and343

eight colors (red, green, blue, orange, purple, black,344

gray, yellow). We use non-overlapping shapes in345

the task to avoid ambiguity in shape recognition.346

Difficulty is governed by the number of unique347

shapes (S) and the number of unique colors (C).348

Letter Discrimination: Letters are constructed349

from a 5×7 LED-style binary matrix, testing a350

model’s ability to recognize block-based letters.351

Task difficulty depends on the block spacing fac-352

tor (β), the color contrast (∆C) between the let-353

ter blocks and the background, and the number of354

letters (N) present. Higher block spacing (β) or355

lower color contrast (∆C) increases difficulty, as356

does adding more letters in the scene.357

Visual Form Constancy: This subtask checks if358

a model can recognize a target pattern after shape359

substitutions, rotations, and scaling. The target pat-360

tern is constructed from simple primitives (circle, 361

square, line, triangle). We create three variants of 362

this pattern by applying a shape substitution factor 363

(ssf), a scaling factor (α), and a rotation factor 364

(θr). The MLLM must identify the option that 365

exactly matches the target’s arrangement. 366

3.2 Visual Spatial 367

This task uses one or more H ×W grids with each 368

cell containing one of three shapes (circle, square, 369

triangle) rendered in solid black or outlined form. 370

The parameters are the grid dimension (D) and 371

the number of grids (G). The visual query is con- 372

tructed instructing the MLLM to locate shapes by 373

row-column coordinates or counting shapes rela- 374

tive to a reference position in the grid (e.g., “How 375

many solid circles are above the triangle in row 3, 376

column 2?”). 377

3.3 Visual Figure-Ground 378

We extend the visual form constancy framework by 379

introducing distracting background elements. Two 380

parameters control the task complexity: 1) number 381

of shapes (N) and, the background distraction fac- 382

tor (bdf). The bdf determines the amount of noise 383

added to the background. The task of the MLLM 384

is to distinguish the target pattern from other candi- 385

dates under presence of background noise. 386

5



3.4 Visual Closure387

This subtask evaluates whether the MLLM can388

match an incomplete shape with the corresponding389

fully formed target. We define seven basic shapes390

(capsule, star, hexagon, circle, pentagon, rectan-391

gle, triangle), remove some edges to create the392

incomplete target, and then produce three “noisy”393

distractors by randomly distorting vertex positions.394

The model must select which incomplete shape395

correctly closes to the original target.396

3.5 Synthetic Data Generation397

We specify a range of control parameters for each398

subtask (see Table 4) and generate all possible pa-399

rameter combinations. Each combination yields400

ten images, each paired with multiple questions.401

The parameter limits are identified by conducting a402

preliminary study over visual perception accuracy403

for GPT-4o (OpenAI et al., 2024b). Design of each404

subtask is elaborated in Appendix B.405

3.6 Human Performance Benchmarking406

We compare modern MLLMs with seven human407

participants on the Do You See Me dataset. For408

each subtask, subjects answered two randomly se-409

lected questions per parameter combination and410

rated difficulty. A brief calibration phase preceded411

each subtask to reduce bias. Human accuracy, com-412

puted by matching typed answers to ground truth,413

provides a baseline for model comparisons (refer414

Appendix E for more details).415

4 Experiments416

4.1 Evaluation Protocol417

Recent Large Language Models (LLMs) and Mul-418

timodal Large Language Models (MLLMs) are in-419

creasingly instructed to produce extended textual420

outputs rather than concise responses, making ear-421

lier rule-based or template-matching methods (Lu422

et al., 2022) difficult to apply. Inspired by recent423

benchmarks for MLLMs (Lu et al., 2023; Zhang424

et al., 2024a), we employ an expert LLM to eval-425

uate answers. Our framework proceeds in three426

stages. In the first stage, a MLLM generates a de-427

tailed response according to a predefined template428

(see Appendix G), which includes the task descrip-429

tion, the question, and possible choices. Next, an430

answer extractor ( Appendix G), based on GPT-431

4o (OpenAI et al., 2024b), parses these extended432

outputs to yield a concise answer. Prior work has433

Figure 4: Radar chart illustrating MLLM performance
on the seven subtasks in Do You See Me benchmark
dataset.

shown that such an expert LLM can extract the 434

correct answer with near 100% accuracy (Lu et al., 435

2023). Finally, the extracted text is standardized 436

(e.g., reduced to multiple-choice labels or numeric 437

values), and performance metrics are computed. 438

Since the Do You See Me dataset contains both 439

multiple-choice (textual) and free-response (nu- 440

meric) questions, accuracy is used as a measure 441

of performance. 442

4.2 Experimental Setup 443

We evaluate our Do You See Me dataset using 444

both closed-source and open-source Multimodal 445

Large Language Models (MLLMs). For closed- 446

source models, we use GEMINI-1.5 FLASH (Team 447

et al., 2024), GPT-4O (OpenAI et al., 2024a), and 448

CLAUDE-SONNET-3.5 (Anthropic, 2024). For 449

open-source models, our assessment includes 450

LLAMA-3.2-11B-VISION (Grattafiori et al., 2024), 451

LLAMA-3.2-90B-VISION (Grattafiori et al., 2024), 452

DEEPSEEK-VL2-SMALL-3B (Wu et al., 2024b), 453

DEEPSEEK-VL2-TINY-1B (Wu et al., 2024b), 454

QWEN2.5-VL-7B-INSTRUCT (Wang et al., 2024), 455

and INTERNVL2.5-8B (Chen et al., 2025). Each 456

model is given identical inputs, both the same vi- 457

sual content and uniform textual prompts, to ensure 458

fair comparison. The closed-source MLLMs are 459

accessed through their respective proprietary APIs. 460

In contrast, the open-source MLLMs are run locally 461

with consistent hyperparameter settings, including 462

batch size and decoding parameters. 463
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4.3 Experimental Results464

4.3.1 Joint Perception-Reasoning Dataset465

In this section, we evaluate MLLMs on a joint466

perception–reasoning dataset, where each sam-467

ple contains an image (I), a perception question468

((P )), and a reasoning question (R). Each model is469

separately asked to answer both questions with ex-470

plicit instructions tp respond with a detailed chain-471

of-thought. We use an LLM-based grader (see472

Section 4.1) to score the answers on correctness.473

Figure 5: MLLM performance on joint perception-
reasoning questions

Perception vs. Reasoning Performance. Fig-474

ure 5 illustrates the distribution of joint perfor-475

mance on the perception and reasoning questions476

for each image. The stacked bars show four cate-477

gories: 1) both perception and reasoning correct, 2)478

both incorrect, 3) correct reasoning but incorrect479

perception, and 4) correct perception but incor-480

rect reasoning. Claude Sonnet-3.5 has the largest481

fraction of samples with both perception and rea-482

soning correct, whereas DeepSeek-VL2-Small-3B483

has the highest rate of overall failure. Interestingly,484

there are some instances where a model provides a485

correct reasoning answer despite failing the corre-486

sponding perception question. This can be caused487

by one of three things: 1) the perception question488

being only loosely related to the reasoning ques-489

tion, 2) the reasoning question resulting in better490

interpretation of the figure than a direct visual per-491

ception question leading to a correct final answer,492

or 3) the model arriving at the correct reasoning493

conclusion through hallucinatory or shortcut strate-494

gies, not genuine understanding. Thus, a closer,495

fine-grained analysis is needed to pinpoint which496

factor dominates.497

Error Breakdown in Reasoning Chains. To498

gain deeper insights, we manually annotated an-499

swers from top-2 models (Claude Sonnet-3.5, GPT-500

4o), labeling each error as visual perception, rea-501

soning, or arithmetic (as defined in Section 2). Fig-502

ure 6 presents the error distribution for Claude 503

Sonnet-3.5 (see Appendix C for GPT4o results). 504

We observe that, in the case where the final reason- 505

ing answer was determined to be incorrect, both 506

visual perception and reasoning errors were a cause. 507

Whereas, on cases where the final answer was cor- 508

rect, the detailed model response contained around 509

42.9% visual perception errors, with only 14.3% 510

samples were answered error free. Clearly, these 511

findings underscore the importance of improving 512

visual perception in MLLMs. They also reinforce 513

that success on a final question does not necessarily 514

imply robust grounding in visual details or error 515

free reasoning. 516

(a) Error distribution for correct final answers.

(b) Error distribution for incorrect final answers.

Figure 6: Error distributions in reasoning chain for
visual reasoning questions (Claude Sonnet-3.5).

4.3.2 Do You See Me 517

In this section, we present a comparative evalua- 518

tion of multiple MLLMs (and human experts) on a 519

set of visual reasoning tasks from the Do You See 520

Me benchmark. These tasks assess a broad range 521

of perceptual and interpretive skills, including vi- 522

sual closure, form constancy, figure–ground sepa- 523

ration, spatial reasoning, color/shape disambigua- 524

tion, and letter disambiguation. Overall Perfor- 525

mance Across Dimensions Figure 4 compares the 526

accuracy of all models across the various subtasks. 527

Each radial spoke corresponds to a distinct visual 528

skill (e.g., visual closure or visual spatial), while 529

the distance from the center (0%–100% accuracy) 530

denotes performance. Consistent with the quanti- 531

tative results in Table 2, we observe that current 532

MLLMs still lag behind human performance by 533

a large margin across all subtasks. Despite this 534

gap, several interesting observations emerge: Most 535

MLLMs are relatively strong visual form constancy. 536

For instance, Claude Sonnet-3.5 achieves an accu- 537
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Figure 7: MLLMs vs Human on Increasingly Difficult
Combinations of Control Parameters for Visual Form
Constancy Task.

racy of 91.8%, the highest on form constancy. Fur-538

ther, MLLMs also perform relatively well on joint539

color-shape disambiguation with Gemini-1.5 Flash540

and Qwen2.5-VL-7B-Instruct performing the best.541

Finally, we observe that no single model is the best542

across all dimensions. Different tasks highlight dis-543

tinct top performers; for example, Claude Sonnet-544

3.5 leads on form constancy, whereas Gemini-545

1.5 Flash and Qwen2.5-VL-7B-Instruct excel at546

color–shape tasks. Notably, the radar chart also re-547

veals stark performance drops when tasks involve548

noise, occlusion, or overlap. For example, in visual549

figure–ground addition of noise in comparison to550

the form constancy task results in a gap of roughly551

50% between top-performers. A similar trend ap-552

pears between the shape discrimination task (which553

involves overlapping black outlines) and the joint554

shape–color task (no overlap). Thus, it is plausible555

that MLLM accuracy deteriorates significantly556

as tasks incorporate occlusion or noise around557

critical visual areas.558

(a) Letter Disambiguation (b) Visual Form Constancy

Figure 8: Human vs MLLM Performance on Human
Rated Difficulty Levels

Model Performance Over Increasing Diffi-559

culty In §3.6, we described our human study on560

the Do You See Me dataset, where participants561

provided perceived difficulty ratings for each com-562

bination of control parameters across all subtasks.563

We used majority voting to classify each combina-564

tion as easy, medium, or hard. Next, we partitioned565

the accuracy results of each MLLM according to566

these levels. For clearer comparison, we grouped567

MLLMs into two categories—closed-source and 568

open-source—and then averaged their performance 569

within each difficulty level, alongside human per- 570

formance. Figure 8 shows the results for two ex- 571

ample tasks: visual form constancy and letter dis- 572

ambiguation. On visual form constancy—where 573

MLLMs generally perform better than on other sub- 574

tasks—both open- and closed-source models show 575

progressively lower accuracies as human-rated task 576

difficulty increases. Notably, the performance gap 577

compared to humans widens: for closed-source 578

models, it grows from about 12% at Easy to 20% at 579

Medium and 45% at Hard. Closed-source models 580

also outperform open-source models across all dif- 581

ficulty levels. Meanwhile, on the letter disambigua- 582

tion task, as soon as the difficulty reaches Medium, 583

both closed- and open-source models effectively 584

fail (performance is near zero), whereas human ac- 585

curacy remains high. We observed similar trends 586

in the other subtasks as well (see Appendix C). 587

5 Conclusion 588

In this study, we examined the visual perception 589

capabilities of MLLMs and their impact on logical 590

reasoning. Our preliminary analysis revealed that 591

many reasoning errors in MLLMs originate from 592

incorrect visual perception, while some correct an- 593

swers result from hallucinated visual details. These 594

findings highlight the critical role of perception in 595

multimodal reasoning and motivate the need for a 596

systematic evaluation of MLLM visual skills. Mo- 597

tivated by these findings, we introduced the Do 598

You See Me —a programmatic and scalable bench- 599

mark with a collection of seven visual perception 600

subtasks inspired by human psychology. 601

Experimental results demonstrated that MLLMs 602

struggle considerably on these subtasks compared 603

to humans, particularly when complexity of the 604

subtasks increase. While human performance 605

remained robust across varying difficulty levels, 606

MLLMs showed rapid declines in accuracy, rein- 607

forcing the need for improved visual processing. 608

Overall, our study highlights the importance of de- 609

veloping more perceptually grounded MLLMs to 610

reduce hallucinations and ensure reliable perfor- 611

mance on visual reasoning and related tasks. Our 612

approach of programmatic, scalable and complex- 613

ity controlled data creation is not only suitable for 614

evaluations, but for synthetic training data creation 615

as well. 616
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6 Limitations617

Our work has a few limitations that we acknowl-618

edge and plan to address in future research. First,619

the size of our joint perception-reasoning dataset620

is relatively small. However, we have made ev-621

ery effort to include all possible samples where622

it was feasible to generate non-ambiguous and623

correlated visual perception questions. To ad-624

dress this limitation, we plan to employ LLM +625

Image-Diffusion techniques in the future to gen-626

erate a more diverse and controlled format of per-627

ception+reasoning questions, thus expanding our628

dataset. Second, while our dataset considers non-629

real-world settings for evaluating visual perception,630

we found this approach extremely useful for gen-631

erating a vast number of diverse examples with a632

broad difficulty range. It is worth noting that most633

human visual perception tests follow a similar for-634

mat. In future work, we aim to explore the use635

of 3D tools such as Unity3D 3 and Blender 4 to636

generate realistic 3D questions based on the same637

principles presented in our dataset, thus enhancing638

the ecological validity of our experiments. Third,639

in the current setup, we have restricted our visual640

perception prompts to the English language only,641

including the letter disambiguation task. This deci-642

sion was made in the interest of managing the over-643

all cost of benchmarking closed-source MLLMs.644

However, we recognize the importance of language645

diversity and plan to expand our coverage to other646

non-English languages in future iterations of our647

work. Overall, we believe that our work provides648

a valuable contribution to the understanding of649

MLLM capabilities in visual perception tasks and650

lays the foundation for future research in this area.651
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Aviral Kumar, Stephanie Winkler, Jonathan Caton, 1208
Andrew Brock, Sid Dalmia, Hannah Sheahan, Iain 1209
Barr, Yingjie Miao, Paul Natsev, Jacob Devlin, Fer- 1210
yal Behbahani, Flavien Prost, Yanhua Sun, Artiom 1211
Myaskovsky, Thanumalayan Sankaranarayana Pillai, 1212
Dan Hurt, Angeliki Lazaridou, Xi Xiong, Ce Zheng, 1213
Fabio Pardo, Xiaowei Li, Dan Horgan, Joe Stanton, 1214
Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu 1215
Wang, Basil Mustafa, Albert Webson, Hyo Lee, Ro- 1216
han Anil, Martin Wicke, Timothy Dozat, Abhishek 1217
Sinha, Enrique Piqueras, Elahe Dabir, Shyam Upad- 1218
hyay, Anudhyan Boral, Lisa Anne Hendricks, Corey 1219
Fry, Josip Djolonga, Yi Su, Jake Walker, Jane La- 1220
banowski, Ronny Huang, Vedant Misra, Jeremy 1221
Chen, RJ Skerry-Ryan, Avi Singh, Shruti Rijh- 1222
wani, Dian Yu, Alex Castro-Ros, Beer Changpinyo, 1223
Romina Datta, Sumit Bagri, Arnar Mar Hrafnkels- 1224
son, Marcello Maggioni, Daniel Zheng, Yury Sul- 1225
sky, Shaobo Hou, Tom Le Paine, Antoine Yang, 1226
Jason Riesa, Dominika Rogozinska, Dror Marcus, 1227

13

https://api.semanticscholar.org/CorpusID:265551993
https://api.semanticscholar.org/CorpusID:265551993
https://api.semanticscholar.org/CorpusID:265551993
https://api.semanticscholar.org/CorpusID:265551993
https://api.semanticscholar.org/CorpusID:265551993
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:231591445
https://api.semanticscholar.org/CorpusID:250729995
https://api.semanticscholar.org/CorpusID:250729995
https://api.semanticscholar.org/CorpusID:250729995
https://api.semanticscholar.org/CorpusID:250729995
https://api.semanticscholar.org/CorpusID:250729995


Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen1228
Miller, Jeremy Greer, Lars Lowe Sjos, Azade Nova,1229
Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu1230
Jiang, Charlie Chen, Ruibo Liu, Tara Sainath, Maxim1231
Krikun, Alex Polozov, Jean-Baptiste Lespiau, Josh1232
Newlan, Zeyncep Cankara, Soo Kwak, Yunhan Xu,1233
Phil Chen, Andy Coenen, Clemens Meyer, Katerina1234
Tsihlas, Ada Ma, Juraj Gottweis, Jinwei Xing, Chen-1235
jie Gu, Jin Miao, Christian Frank, Zeynep Cankara,1236
Sanjay Ganapathy, Ishita Dasgupta, Steph Hughes-1237
Fitt, Heng Chen, David Reid, Keran Rong, Hongmin1238
Fan, Joost van Amersfoort, Vincent Zhuang, Aaron1239
Cohen, Shixiang Shane Gu, Anhad Mohananey,1240
Anastasija Ilic, Taylor Tobin, John Wieting, Anna1241
Bortsova, Phoebe Thacker, Emma Wang, Emily1242
Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli,1243
Steven Baker, Katie Millican, Mohamed Elhawaty,1244
Kostas Aisopos, Carl Lebsack, Nathan Byrd, Hanjun1245
Dai, Wenhao Jia, Matthew Wiethoff, Elnaz Davoodi,1246
Albert Weston, Lakshman Yagati, Arun Ahuja, Isabel1247
Gao, Golan Pundak, Susan Zhang, Michael Azzam,1248
Khe Chai Sim, Sergi Caelles, James Keeling, Ab-1249
hanshu Sharma, Andy Swing, YaGuang Li, Chenxi1250
Liu, Carrie Grimes Bostock, Yamini Bansal, Zachary1251
Nado, Ankesh Anand, Josh Lipschultz, Abhijit Kar-1252
markar, Lev Proleev, Abe Ittycheriah, Soheil Has-1253
sas Yeganeh, George Polovets, Aleksandra Faust,1254
Jiao Sun, Alban Rrustemi, Pen Li, Rakesh Shivanna,1255
Jeremiah Liu, Chris Welty, Federico Lebron, Anirudh1256
Baddepudi, Sebastian Krause, Emilio Parisotto, Radu1257
Soricut, Zheng Xu, Dawn Bloxwich, Melvin John-1258
son, Behnam Neyshabur, Justin Mao-Jones, Ren-1259
shen Wang, Vinay Ramasesh, Zaheer Abbas, Arthur1260
Guez, Constant Segal, Duc Dung Nguyen, James1261
Svensson, Le Hou, Sarah York, Kieran Milan, So-1262
phie Bridgers, Wiktor Gworek, Marco Tagliasacchi,1263
James Lee-Thorp, Michael Chang, Alexey Guseynov,1264
Ale Jakse Hartman, Michael Kwong, Ruizhe Zhao,1265
Sheleem Kashem, Elizabeth Cole, Antoine Miech,1266
Richard Tanburn, Mary Phuong, Filip Pavetic, Se-1267
bastien Cevey, Ramona Comanescu, Richard Ives,1268
Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang,1269
Mariko Iinuma, Clara Huiyi Hu, Aurko Roy, Shaan1270
Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel1271
Saputro, Anita Gergely, Steven Zheng, Dawei Jia,1272
Ioannis Antonoglou, Adam Sadovsky, Shane Gu,1273
Yingying Bi, Alek Andreev, Sina Samangooei, Mina1274
Khan, Tomas Kocisky, Angelos Filos, Chintu Ku-1275
mar, Colton Bishop, Adams Yu, Sarah Hodkin-1276
son, Sid Mittal, Premal Shah, Alexandre Moufarek,1277
Yong Cheng, Adam Bloniarz, Jaehoon Lee, Pedram1278
Pejman, Paul Michel, Stephen Spencer, Vladimir1279
Feinberg, Xuehan Xiong, Nikolay Savinov, Char-1280
lotte Smith, Siamak Shakeri, Dustin Tran, Mary1281
Chesus, Bernd Bohnet, George Tucker, Tamara von1282
Glehn, Carrie Muir, Yiran Mao, Hideto Kazawa,1283
Ambrose Slone, Kedar Soparkar, Disha Shrivastava,1284
James Cobon-Kerr, Michael Sharman, Jay Pavagadhi,1285
Carlos Araya, Karolis Misiunas, Nimesh Ghelani,1286
Michael Laskin, David Barker, Qiujia Li, Anton1287
Briukhov, Neil Houlsby, Mia Glaese, Balaji Laksh-1288
minarayanan, Nathan Schucher, Yunhao Tang, Eli1289
Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria1290
Recasens, Guangda Lai, Alberto Magni, Nicola De1291

Cao, Aditya Siddhant, Zoe Ashwood, Jordi Orbay, 1292
Mostafa Dehghani, Jenny Brennan, Yifan He, Kelvin 1293
Xu, Yang Gao, Carl Saroufim, James Molloy, Xinyi 1294
Wu, Seb Arnold, Solomon Chang, Julian Schrit- 1295
twieser, Elena Buchatskaya, Soroush Radpour, Mar- 1296
tin Polacek, Skye Giordano, Ankur Bapna, Simon 1297
Tokumine, Vincent Hellendoorn, Thibault Sottiaux, 1298
Sarah Cogan, Aliaksei Severyn, Mohammad Saleh, 1299
Shantanu Thakoor, Laurent Shefey, Siyuan Qiao, 1300
Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao 1301
Zhang, Benjamin Lee, Paul Kishan Rubenstein, Gan 1302
Song, Tom Kwiatkowski, Anna Koop, Ajay Kan- 1303
nan, David Kao, Parker Schuh, Axel Stjerngren, Gol- 1304
naz Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Fe- 1305
lipe Tiengo Ferreira, Aishwarya Kamath, Ted Kli- 1306
menko, Ken Franko, Kefan Xiao, Indro Bhattacharya, 1307
Miteyan Patel, Rui Wang, Alex Morris, Robin 1308
Strudel, Vivek Sharma, Peter Choy, Sayed Hadi 1309
Hashemi, Jessica Landon, Mara Finkelstein, Priya 1310
Jhakra, Justin Frye, Megan Barnes, Matthew Mauger, 1311
Dennis Daun, Khuslen Baatarsukh, Matthew Tung, 1312
Wael Farhan, Henryk Michalewski, Fabio Viola, Fe- 1313
lix de Chaumont Quitry, Charline Le Lan, Tom Hud- 1314
son, Qingze Wang, Felix Fischer, Ivy Zheng, Elspeth 1315
White, Anca Dragan, Jean baptiste Alayrac, Eric Ni, 1316
Alexander Pritzel, Adam Iwanicki, Michael Isard, 1317
Anna Bulanova, Lukas Zilka, Ethan Dyer, Deven- 1318
dra Sachan, Srivatsan Srinivasan, Hannah Mucken- 1319
hirn, Honglong Cai, Amol Mandhane, Mukarram 1320
Tariq, Jack W. Rae, Gary Wang, Kareem Ayoub, 1321
Nicholas FitzGerald, Yao Zhao, Woohyun Han, Chris 1322
Alberti, Dan Garrette, Kashyap Krishnakumar, Mai 1323
Gimenez, Anselm Levskaya, Daniel Sohn, Josip 1324
Matak, Inaki Iturrate, Michael B. Chang, Jackie Xi- 1325
ang, Yuan Cao, Nishant Ranka, Geoff Brown, Adrian 1326
Hutter, Vahab Mirrokni, Nanxin Chen, Kaisheng 1327
Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty, 1328
Praveen Kallakuri, Evan Palmer, Sanjay Ghemawat, 1329
Jasmine Liu, David Tao, Chloe Thornton, Tim Green, 1330
Mimi Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan 1331
Tan, Noah Fiedel, Hongkun Yu, Ed Chi, Alexan- 1332
der Neitz, Jens Heitkaemper, Anu Sinha, Denny 1333
Zhou, Yi Sun, Charbel Kaed, Brice Hulse, Swa- 1334
roop Mishra, Maria Georgaki, Sneha Kudugunta, 1335
Clement Farabet, Izhak Shafran, Daniel Vlasic, An- 1336
ton Tsitsulin, Rajagopal Ananthanarayanan, Alen 1337
Carin, Guolong Su, Pei Sun, Shashank V, Gabriel 1338
Carvajal, Josef Broder, Iulia Comsa, Alena Repina, 1339
William Wong, Warren Weilun Chen, Peter Hawkins, 1340
Egor Filonov, Lucia Loher, Christoph Hirnschall, 1341
Weiyi Wang, Jingchen Ye, Andrea Burns, Hardie 1342
Cate, Diana Gage Wright, Federico Piccinini, Lei 1343
Zhang, Chu-Cheng Lin, Ionel Gog, Yana Kulizh- 1344
skaya, Ashwin Sreevatsa, Shuang Song, Luis C. 1345
Cobo, Anand Iyer, Chetan Tekur, Guillermo Gar- 1346
rido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven 1347
Zheng, Hui Li, Ananth Agarwal, Christel Ngani, 1348
Kati Goshvadi, Rebeca Santamaria-Fernandez, Woj- 1349
ciech Fica, Xinyun Chen, Chris Gorgolewski, Sean 1350
Sun, Roopal Garg, Xinyu Ye, S. M. Ali Eslami, 1351
Nan Hua, Jon Simon, Pratik Joshi, Yelin Kim, Ian 1352
Tenney, Sahitya Potluri, Lam Nguyen Thiet, Quan 1353
Yuan, Florian Luisier, Alexandra Chronopoulou, Sal- 1354
vatore Scellato, Praveen Srinivasan, Minmin Chen, 1355

14



Vinod Koverkathu, Valentin Dalibard, Yaming Xu,1356
Brennan Saeta, Keith Anderson, Thibault Sellam,1357
Nick Fernando, Fantine Huot, Junehyuk Jung, Mani1358
Varadarajan, Michael Quinn, Amit Raul, Maigo Le,1359
Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha1360
Bullard, Achintya Singhal, Thang Luong, Boyu1361
Wang, Sujeevan Rajayogam, Julian Eisenschlos,1362
Johnson Jia, Daniel Finchelstein, Alex Yakubovich,1363
Daniel Balle, Michael Fink, Sameer Agarwal, Jing1364
Li, Dj Dvijotham, Shalini Pal, Kai Kang, Jaclyn1365
Konzelmann, Jennifer Beattie, Olivier Dousse, Diane1366
Wu, Remi Crocker, Chen Elkind, Siddhartha Reddy1367
Jonnalagadda, Jong Lee, Dan Holtmann-Rice, Krys-1368
tal Kallarackal, Rosanne Liu, Denis Vnukov, Neera1369
Vats, Luca Invernizzi, Mohsen Jafari, Huanjie Zhou,1370
Lilly Taylor, Jennifer Prendki, Marcus Wu, Tom1371
Eccles, Tianqi Liu, Kavya Kopparapu, Francoise1372
Beaufays, Christof Angermueller, Andreea Marzoca,1373
Shourya Sarcar, Hilal Dib, Jeff Stanway, Frank Per-1374
bet, Nejc Trdin, Rachel Sterneck, Andrey Khor-1375
lin, Dinghua Li, Xihui Wu, Sonam Goenka, David1376
Madras, Sasha Goldshtein, Willi Gierke, Tong Zhou,1377
Yaxin Liu, Yannie Liang, Anais White, Yunjie Li,1378
Shreya Singh, Sanaz Bahargam, Mark Epstein, Su-1379
joy Basu, Li Lao, Adnan Ozturel, Carl Crous, Alex1380
Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna1381
Walton, Lucas Dixon, Ming Zhang, Amir Glober-1382
son, Grant Uy, Andrew Bolt, Olivia Wiles, Milad1383
Nasr, Ilia Shumailov, Marco Selvi, Francesco Pic-1384
cinno, Ricardo Aguilar, Sara McCarthy, Misha Khal-1385
man, Mrinal Shukla, Vlado Galic, John Carpen-1386
ter, Kevin Villela, Haibin Zhang, Harry Richard-1387
son, James Martens, Matko Bosnjak, Shreyas Ram-1388
mohan Belle, Jeff Seibert, Mahmoud Alnahlawi,1389
Brian McWilliams, Sankalp Singh, Annie Louis,1390
Wen Ding, Dan Popovici, Lenin Simicich, Laura1391
Knight, Pulkit Mehta, Nishesh Gupta, Chongyang1392
Shi, Saaber Fatehi, Jovana Mitrovic, Alex Grills,1393
Joseph Pagadora, Tsendsuren Munkhdalai, Dessie1394
Petrova, Danielle Eisenbud, Zhishuai Zhang, Damion1395
Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yan-1396
nis Assael, Thomas Brovelli, Prateek Jain, Miha-1397
jlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolf-1398
gang Macherey, Ravin Kumar, Jun Xu, Haroon1399
Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhi-1400
tao Gong, Anton Ruddock, Matthias Bauer, Nick1401
Felt, Anirudh GP, Anurag Arnab, Dustin Zelle,1402
Jonas Rothfuss, Bill Rosgen, Ashish Shenoy, Bryan1403
Seybold, Xinjian Li, Jayaram Mudigonda, Goker1404
Erdogan, Jiawei Xia, Jiri Simsa, Andrea Michi,1405
Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell,1406
Carey Radebaugh, Andre Elisseeff, Pedro Valen-1407
zuela, Kay McKinney, Kim Paterson, Albert Cui, Eri1408
Latorre-Chimoto, Solomon Kim, William Zeng, Ken1409
Durden, Priya Ponnapalli, Tiberiu Sosea, Christo-1410
pher A. Choquette-Choo, James Manyika, Brona1411
Robenek, Harsha Vashisht, Sebastien Pereira, Hoi1412
Lam, Marko Velic, Denese Owusu-Afriyie, Kather-1413
ine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu,1414
Jane Park, Balaji Venkatraman, Alice Talbert, Lam-1415
bert Rosique, Yuchung Cheng, Andrei Sozanschi,1416
Adam Paszke, Praveen Kumar, Jessica Austin, Lu Li,1417
Khalid Salama, Bartek Perz, Wooyeol Kim, Nandita1418
Dukkipati, Anthony Baryshnikov, Christos Kapla-1419

nis, XiangHai Sheng, Yuri Chervonyi, Caglar Unlu, 1420
Diego de Las Casas, Harry Askham, Kathryn Tun- 1421
yasuvunakool, Felix Gimeno, Siim Poder, Chester 1422
Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek 1423
Dimitriev, Aaron Parisi, Dangyi Liu, Tomy Tsai, 1424
Toby Shevlane, Christina Kouridi, Drew Garmon, 1425
Adrian Goedeckemeyer, Adam R. Brown, Anitha Vi- 1426
jayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang, 1427
Sara Mc Carthy, Jay Hoover, Lucy Kim, Sandeep 1428
Kumar, Wei Chen, Courtney Biles, Garrett Bingham, 1429
Evan Rosen, Lisa Wang, Qijun Tan, David Engel, 1430
Francesco Pongetti, Dario de Cesare, Dongseong 1431
Hwang, Lily Yu, Jennifer Pullman, Srini Narayanan, 1432
Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aha- 1433
roni, Trieu Trinh, Jessica Lo, Norman Casagrande, 1434
Roopali Vij, Loic Matthey, Bramandia Ramadhana, 1435
Austin Matthews, CJ Carey, Matthew Johnson, Kre- 1436
mena Goranova, Rohin Shah, Shereen Ashraf, King- 1437
shuk Dasgupta, Rasmus Larsen, Yicheng Wang, Man- 1438
ish Reddy Vuyyuru, Chong Jiang, Joana Ijazi, Kazuki 1439
Osawa, Celine Smith, Ramya Sree Boppana, Tay- 1440
lan Bilal, Yuma Koizumi, Ying Xu, Yasemin Altun, 1441
Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam 1442
Choo, Olaf Ronneberger, Chimezie Iwuanyanwu, 1443
Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene 1444
Cai, Shariq Iqbal, Martin Sundermeyer, Zhe Chen, 1445
Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy, 1446
Prakash Shroff, Inderjit Dhillon, Tejasi Latkar, Chris 1447
Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Niko- 1448
laev, Somer Greene, Marin Georgiev, Pidong Wang, 1449
Nina Martin, Hanie Sedghi, John Zhang, Praseem 1450
Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Ji- 1451
ageng Zhang, Viorica Patraucean, Dayou Du, Igor 1452
Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi 1453
Mohan, Janek Nowakowski, Vlad-Doru Ion, Nan 1454
Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hud- 1455
son, Vaishakh Keshava, Shubham Agrawal, Kevin 1456
Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Mad- 1457
havi Sewak, Bryce Petrini, DongHyun Choi, Ivan 1458
Philips, Ziyue Wang, Ioana Bica, Ankush Garg, 1459
Jarek Wilkiewicz, Priyanka Agrawal, Xiaowei Li, 1460
Danhao Guo, Emily Xue, Naseer Shaik, Andrew 1461
Leach, Sadh MNM Khan, Julia Wiesinger, Sammy 1462
Jerome, Abhishek Chakladar, Alek Wenjiao Wang, 1463
Tina Ornduff, Folake Abu, Alireza Ghaffarkhah, Mar- 1464
cus Wainwright, Mario Cortes, Frederick Liu, Joshua 1465
Maynez, Andreas Terzis, Pouya Samangouei, Ri- 1466
ham Mansour, Tomasz Kepa, François-Xavier Aubet, 1467
Anton Algymr, Dan Banica, Agoston Weisz, An- 1468
dras Orban, Alexandre Senges, Ewa Andrejczuk, 1469
Mark Geller, Niccolo Dal Santo, Valentin Anklin, 1470
Majd Al Merey, Martin Baeuml, Trevor Strohman, 1471
Junwen Bai, Slav Petrov, Yonghui Wu, Demis Has- 1472
sabis, Koray Kavukcuoglu, Jeff Dean, and Oriol 1473
Vinyals. 2024. Gemini 1.5: Unlocking multimodal 1474
understanding across millions of tokens of context. 1475
Preprint, arXiv:2403.05530. 1476

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun 1477
Woo, Manoj Middepogu, Sai Charitha Akula, Jihan 1478
Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, 1479
Ziteng Wang, Rob Fergus, Yann LeCun, and Sain- 1480
ing Xie. 2024a. Cambrian-1: A fully open, vision- 1481

15

https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2406.16860
https://arxiv.org/abs/2406.16860


centric exploration of multimodal llms. Preprint,1482
arXiv:2406.16860.1483

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma,1484
Yann LeCun, and Saining Xie. 2024b. Eyes wide1485
shut? exploring the visual shortcomings of multi-1486
modal llms. Preprint, arXiv:2401.06209.1487

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma,1488
Yann LeCun, and Saining Xie. 2024c. Eyes wide1489
shut? exploring the visual shortcomings of multi-1490
modal llms. 2024 IEEE/CVF Conference on Com-1491
puter Vision and Pattern Recognition (CVPR), pages1492
9568–9578.1493

Guangzhi Wang, Yixiao Ge, Xiaohan Ding, Mohan S.1494
Kankanhalli, and Ying Shan. 2023. What makes for1495
good visual tokenizers for large language models?1496
ArXiv, abs/2305.12223.1497

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-1498
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin1499
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei1500
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,1501
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024.1502
Qwen2-vl: Enhancing vision-language model’s per-1503
ception of the world at any resolution. Preprint,1504
arXiv:2409.12191.1505

Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng1506
Chen, Liang Liao, Annan Wang, Chunyi Li, Wenxiu1507
Sun, Qiong Yan, Guangtao Zhai, and Weisi Lin.1508
2024a. Q-bench: A benchmark for general-purpose1509
foundation models on low-level vision. In The1510
Twelfth International Conference on Learning Repre-1511
sentations.1512

Penghao Wu and Saining Xie. 2023. V*: Guided vi-1513
sual search as a core mechanism in multimodal llms.1514
2024 IEEE/CVF Conference on Computer Vision and1515
Pattern Recognition (CVPR), pages 13084–13094.1516

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao1517
Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma,1518
Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu,1519
Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi1520
Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You,1521
Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao,1522
Yisong Wang, and Chong Ruan. 2024b. Deepseek-1523
vl2: Mixture-of-experts vision-language models1524
for advanced multimodal understanding. Preprint,1525
arXiv:2412.10302.1526

Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang.1527
2024. Logicvista: Multimodal llm logical rea-1528
soning benchmark in visual contexts. ArXiv,1529
abs/2407.04973.1530

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,1531
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu1532
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao1533
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan1534
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang,1535
Huan Sun, Yu Su, and Wenhu Chen. 2023. Mmmu:1536
A massive multi-discipline multimodal understand-1537
ing and reasoning benchmark for expert agi. 20241538

IEEE/CVF Conference on Computer Vision and Pat- 1539
tern Recognition (CVPR), pages 9556–9567. 1540

Yuhang Zang, Wei Li, Jun Han, Kaiyang Zhou, and 1541
Chen Change Loy. 2023. Contextual object detec- 1542
tion with multimodal large language models. ArXiv, 1543
abs/2305.18279. 1544

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, 1545
and Lucas Beyer. 2023. Sigmoid loss for language 1546
image pre-training. Preprint, arXiv:2303.15343. 1547

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun 1548
Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, 1549
Kai-Wei Chang, Peng Gao, and Hongsheng Li. 2024a. 1550
Mathverse: Does your multi-modal llm truly see the 1551
diagrams in visual math problems? In European 1552
Conference on Computer Vision. 1553

Zicheng Zhang, Haoning Wu, Erli Zhang, Guangtao 1554
Zhai, and Weisi Lin. 2024b. Q-bench+: A bench- 1555
mark for multi-modal foundation models on low- 1556
level vision from single images to pairs. Preprint, 1557
arXiv:2402.07116. 1558

16

https://arxiv.org/abs/2406.16860
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2401.06209
https://arxiv.org/abs/2401.06209
https://api.semanticscholar.org/CorpusID:266976992
https://api.semanticscholar.org/CorpusID:266976992
https://api.semanticscholar.org/CorpusID:266976992
https://api.semanticscholar.org/CorpusID:266976992
https://api.semanticscholar.org/CorpusID:266976992
https://api.semanticscholar.org/CorpusID:258833156
https://api.semanticscholar.org/CorpusID:258833156
https://api.semanticscholar.org/CorpusID:258833156
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://openreview.net/forum?id=0V5TVt9bk0
https://openreview.net/forum?id=0V5TVt9bk0
https://openreview.net/forum?id=0V5TVt9bk0
https://api.semanticscholar.org/CorpusID:266436019
https://api.semanticscholar.org/CorpusID:266436019
https://api.semanticscholar.org/CorpusID:266436019
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://api.semanticscholar.org/CorpusID:271050597
https://api.semanticscholar.org/CorpusID:271050597
https://api.semanticscholar.org/CorpusID:271050597
https://api.semanticscholar.org/CorpusID:265466525
https://api.semanticscholar.org/CorpusID:265466525
https://api.semanticscholar.org/CorpusID:265466525
https://api.semanticscholar.org/CorpusID:265466525
https://api.semanticscholar.org/CorpusID:265466525
https://api.semanticscholar.org/CorpusID:258959011
https://api.semanticscholar.org/CorpusID:258959011
https://api.semanticscholar.org/CorpusID:258959011
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2303.15343
https://api.semanticscholar.org/CorpusID:268554279
https://api.semanticscholar.org/CorpusID:268554279
https://api.semanticscholar.org/CorpusID:268554279
https://arxiv.org/abs/2402.07116
https://arxiv.org/abs/2402.07116
https://arxiv.org/abs/2402.07116
https://arxiv.org/abs/2402.07116
https://arxiv.org/abs/2402.07116


A Detailed Related Work 1559

Multimodal Large Language Models (MLLMs) have evolved from joint image-language pretraining 1560

approaches, exemplified by CLIP (Radford et al., 2021), BLIP (Li et al., 2022, 2023), and SigLIP (Zhai 1561

et al., 2023). With the rapid progress of large language models (LLMs), the ’vision as a token’ paradigm 1562

has emerged, fostering numerous closed and open-source MLLMs that continue to advance through 1563

large-scale data and instruction finetuning (OpenAI et al., 2024b; Wu et al., 2024b; Wang et al., 2024). 1564

Various domain-specific benchmarks have been introduced in mathematics (Lu et al., 2023; Zhang et al., 1565

2024a), science (Lu et al., 2022; Saikh et al., 2022), scientific documents (Li et al., 2024), and broader 1566

AGI contexts (Yue et al., 2023), each requiring intricate reasoning and domain knowledge. However, 1567

studies (Zhang et al., 2024a; Wu et al., 2024a) indicate that many VLM failures arise from inadequate 1568

visual perception, underscoring the need for robust, perception-focused evaluation. 1569

Several datasets (Peng et al., 2023; Wang et al., 2023; Wu and Xie, 2023; Zang et al., 2023; Tong 1570

et al., 2024c; Wu et al., 2024a; Zhang et al., 2024b) do assess visual perception but often incorporate 1571

domain-specific reasoning. In contrast, visual benchmarks like MMVP (Tong et al., 2024b) and CV-Bench 1572

(Tong et al., 2024a) do provide insights into general visual perception abilities in MLLMs. However, 1573

these studies heavily rely on human annotation for dataset construction, which makes it difficult to scale 1574

them to larger sizes. Additionally, these datasets lack a mechanism to attribute difficulty levels to the 1575

visual perception of their constituent samples, which could be useful in determining fine-grained visual 1576

perception differences between MLLMs. 1577

Insights from human psychology reveal that, visual perception encompasses five core dimensions 1578

(Chalfant and Scheffelin, 1969). Motor-free tests (Colarusso, 2003; Gardner, 1988), such as the Test of 1579

Visual Perceptual Skills (TVPS) (Gardner, 1988), Motor-Free Visual Perception Test (MVPT) (Colarusso, 1580

2003), and Developmental Test of Visual Perception (DVPT) (Hammill et al., 2016) focus exclusively on 1581

perception, avoiding motor components. These, tests have evolved to assess children and adults (Brown 1582

and Peres, 2018), and have also been adapted for evaluating individuals recovering from visual cortex 1583

injuries (Brown and Peres, 2018). 1584

Drawing on the extensive research in human psychology on human visual perception, we introduce the 1585

Do You See Me benchmark, leveraging established perception categories to evaluate VLMs. 1586
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B Do You See Me - Additional Details1587

B.1 Visual Discrimination1588

The visual discrimination dimension of our dataset has four subtasks: shape discrimination, joint shape-1589

color discrimination, letter discrimination, and form-constancy. Below, we briefly outline our automated1590

test generation for all the four visual discrimination sub-division.1591

Shape Discrimination: The difficulty of this task is controlled using: (a) number of unique shapes in1592

the canvas (S), (b) maximum permissible instances per-shape (SI ), and (c) allowable overlap factor (α).1593

The overlap factor α, refers to the separation amount for between shapes. When set to a non-negative1594

value it results into a cluster of non-overlapping shapes, whereas, a negative value allows for some degree1595

of overlap.1596

Letter Discrimination: The visual perception task’s difficulty is modulated by three key factors: block1597

spacing, letter count, and color contrast. The block spacing factor β determines the distance between1598

a letter’s constituent blocks, with β = 0.1 representing large spacing that makes letter identification1599

challenging. As β decreases below 0.1, letter recognition becomes progressively easier. The task1600

difficulty also increases with the number of letters present in the canvas. Color contrast provides another1601

dimension of complexity, defined as ∆C = F −B, where F represents the block color and B represents1602

the background color. We implement three levels of contrast (∆C ∈ 1, 2, 3), where 1 indicates high1603

foreground-background contrast and 3 represents low contrast. To generate these color combinations,1604

we begin with seven common background colors in hexadecimal format, converting them to HSV1605

representation. We then create three difficulty levels by manipulating the hue, saturation, and value: for1606

easy combinations (high contrast), we rotate the hue by 180, for medium combinations, we rotate the1607

hue by 90 while maintaining constant saturation and value, for challenging combinations (low contrast),1608

we rotate the hue by 30 and apply a 10% distortion to both saturation and value. These parameters are1609

summarized in Table 41610

Visual Form Constancy: It is important to note that low rotation and scaling without substitution1611

make the task more challenging, whereas higher values of rotation, scaling, or substitution simplify it by1612

rendering the variants more visibly distinct.1613

B.2 Visual Closure1614

We begin by defining seven basic shapes: capsule, star, hexagon, circle, pentagon,1615

rectangle, and triangle. Each shape is represented by a set of vertices connected to form the exact1616

shape. A single shape is randomly selected as the target image. To create an incomplete version of this1617

shape, we first choose k pairs of adjacent vertices and remove the connecting edges entirely. Next, we1618

choose l other pairs of adjacent vertices (distinct from the first k pairs) for partial edge removal. This1619

produces an incomplete shape which, if completed, would match the original target. To generate three1620

distractors (incorrect options), we take the incomplete shape, introduce distortions to m vertices by adding1621

noise specified by the distortion factor δ to the vertex coordinates. Each of the three distractors is created1622

by repeating this process independently, resulting in three unique noisy variants. Finally, the correct1623

incomplete shape (which can be closed to match the target) and the three distractors are shuffled and1624

displayed horizontally, accompanied by the complete target shape on the top (see Fig 3).1625
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C Detailed Results 1626

Table 2: Performance comparison across different visual perception tasks. All values are percentages (%). Models
are sorted by average accuracy.

Model Figure
Ground

Visual
Spatial

Color
Disamb.

Shape
Disamb.

Letter
Disamb.

Form
Const.

Visual
Closure

Average
Accuracy

Human 100.00 92.59 100.00 100.00 77.77 98.14 91.66 94.31
Claude Sonnet-3.5 47.78 32.63 75.98 30.83 13.33 91.48 58.33 50.05
Gemini-1.5 34.44 25.68 81.86 26.67 22.96 81.11 67.26 48.57
GPT-4o 33.33 25.43 66.91 10.83 28.89 80.37 58.93 43.53
Qwen-2.5 27.78 40.69 81.86 19.58 2.96 50.37 63.10 40.91
Deepseek-tiny 20.00 21.34 57.35 20.42 25.19 30.74 29.76 29.26
Intern-VL 30.00 16.00 55.64 19.17 0.74 34.81 29.76 26.59
Deepseek-small 27.78 14.52 45.10 10.00 1.48 43.70 35.71 25.47
LLaMA-11B 26.67 6.08 25.74 3.33 11.85 22.22 22.02 16.84
LLaMA-90B 23.33 10.05 15.44 1.25 11.11 27.41 21.43 15.72

Table 3: Comparison of model performance. Claude Sonnet-3.5 leads in both reasoning and visual perception
questions.

Model Reasoning Acc. (%) Perception Acc. (%)

Claude Sonnet-3.5 40.95 45.21
GPT-4o 32.97 42.55
Gemini 1.5 Flash 32.97 44.68
Qwen2.5-VL-7B-Instruct 35.63 35.10
Intern2.5-VL-8B 27.66 37.23
LLaMA3.2-Vision-Preview-90B 35.64 25.00
LLaMA3.2-Vision-Preview-11B 26.06 31.91
Deepseek-VL-Small 3B 22.34 26.60
Deepseek-VL-Tiny 1B 23.40 35.01
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Figure 9: MLLM performance on Human Rated Difficulty Levels. Note: Empty human bar for a difficulty level
indicates that no samples were attributed the corresponding difficulty level.
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Figure 10: Average MLLM performance over a sweep of combinations of control parameters.
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D Do You See Me - Control Parameter Details1627

Table 4: Control parameters and question types for each subdivision of the visual perception test.

Division Subdivision Control Parameters Question Type Unique Images Number of Questions

Visual Discrimination

Shape Discrimination

Number of Shapes: S ∈ [3, 7]

Integer 241 241
Instances per Shape: SI ∈ [3, 6, 10]

Overlap Factor: α ∈ [−40,−30,−20, 10]

Joint Shape-Color
Number of Shapes: S ∈ [2, 4, 6]

Integer 90 408Number of Unique Colors: C ∈ [2, 4, 6]]

Letter Discrimination

Number of Letters: N ∈ [1, 5, 9]

Text 135 135
Foreground-Background Contrast: ∆C ∈ [1, 2, 3]

Block Size: [0.04, 0.08, 0.1]

Form Constancy

Shape Substitution Factor : ssf ∈ [0, 1]

MCQ 270 270
Scaling Factor: α ∈ [0.8, 1.1, 1.4]
Rotation Factor: θr ∈ [5, 25, 50]
Aspect Ratio: β ∈ [0.8, 1.1, 1.4]

Visual Spatial Spatial Grids
Grid Dimension: D ⊆ [3, 6, 9]× [3, 6, 9]

Integer 270 806Number of Grids: G ∈ [1, 3, 5]

Visual Figure-Ground N.A.

Number of Shapes: N ∈ [2, 6, 10]

MCQ 90 90
Background Density Factor: bdf ∈ [0.1, 0.3, 0.5]

Visual Closure N.A.

Number of Full Edges to Remove: k ∈ [1, 3]

MCQ 166 166
Number of Partial Edges to Remove: l ∈ [1, 3]

Number of Edges to Distort: m ∈ [1, 3]
Distortion Factor: δ ∈ [0.1, 0.12, 0.14]
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E Human Performance Benchmarking 1628

We recruited 7 participants, consisting of 5 men and 2 women. The selection criterion was that participants 1629

had no history of vision-related disorders. All participants were between 25 and 35 years of age. Each test 1630

took approximately 10 minutes to complete, with a total testing time of 70 minutes. To prevent mental 1631

fatigue, we conducted the tests over two days. 1632

(a) Information Collected in the Test (b) Calibration Instructions

Figure 11: Human Performance Benchmarking

Figure 12: Actual Test and Human Difficulty Rating Collection
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F Joint Perception-Reasoning Dataset1633

F.1 Correct Reasoning Incorrect Perception1634

Example 1

Figure 13
Reasoning Question: Which of the boxes comes next in the sequence? Select answers from A-E.
Explain the reasoning behind the answer.
Reasoning Answer (GT): C
Reasoning Explanation: Triangle alternates from pointing up, to pointing right with each turn.
Doughnut shape alternates from left corner to right corner with each turn.
Claude Sonnet-3.5 Answer: Let’s solve this step by step:
Looking at the top sequence, I notice a pattern of shapes and dots:
Single triangle, single dot above Single triangle, single dot above Single triangle, two dots above
Single triangle, single dot above Single triangle, single dot above Also notice that the triangles
alternate between pointing left () and right ()
The pattern appears to be:
The triangles alternate direction The dots follow a pattern of: 1, 1, 2, 1, 1, 2, ... Following this
pattern, the next box should have:
A triangle pointing right () Two dots above (because we’re at the point in the sequence where two
dots should appear) Looking at the options A through E: Option C shows a triangle pointing right
with two dots above it.
Therefore, the answer is C.
The reasoning is based on both the alternating direction of the triangles and the repeating pattern
of dots (1, 1, 2).
VLM Final Answer: YES
Visual Perception Question: Using visual inspection, count the number of black dots on the
top-left side of the box where the triangle present in the box is resting on its side and not the vertex.
Visual Perception Answer (GT): 4
Claude Sonnet-3.5 Answer: Let me help you count the black dots as requested.
Looking at the boxes where the triangle is resting on its side (not on its vertex), we need to look at
the top-left portion of those boxes.
The triangles resting on their sides (not on vertex) appear in positions B, D, and E in the top row
and positions A and E in the bottom row.
Among these:
Top row: B has 2 dots, D has 2 dots, E has 1 dot Bottom row: A has 0 dots, E has 2 dots (incorrect
perception) Therefore, there are a total of 7 black dots when counting only the top-left portions of
boxes where the triangle is resting on its side.
Analysis: The visual perception question shows how model fails answering the question on number
of dots on top-left side. The same failure occurs in answering the visual reasoning question.
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Example 2

Figure 14
Reasoning Question: Which set does the Figure belong to? Select from A, B, and C. (A) Set A
(B) Set B (C) Neither set A nor set B. Explain the reasoning behind the answer.
Reasoning Answer (GT): B
Reasoning Explanation: Set A: The total number of crossed boxes is equal to the total number
of stars. The total number of shaded boxes is equal to the total number of circles. Set B: The total
number of crossed boxes is equal to the total number of circles. The total number of shaded boxes
is equal to the total number of starts. Figure: There are four shaded boxes and four stars. There are
three crossed boxes and three circles.
Claude Sonnet-3.5 Answer: The Figure belongs to (B) Set B.
Reasoning:
Looking at the pattern in both sets, we need to focus on the arrangement of black squares and
circles in the cards.
Key observations about the Figure:
It has circles arranged in a specific pattern It has three black squares at the bottom The overall
layout is similar to other cards in both sets When comparing with Set A and Set B: Set A’s cards
generally have black squares distributed throughout different positions Set B’s cards consistently
show black squares grouped at the bottom of each card, similar to the Figure The circle patterns in
Set B also appear more similar to the Figure’s arrangement The decisive factor is the positioning of
the black squares: The Figure shows three black squares aligned at the bottom This arrangement is
consistent with the pattern seen in Set B, where black squares are consistently placed at the bottom
of the cards This pattern is not characteristic of Set A Therefore, based on the consistent pattern of
black square placement at the bottom and similar circle arrangements, the Figure belongs to Set B.
MLLM Final Answer: Correct
Visual Perception Question: In Set B of the diagram, looking at the second square from the left,
how many stars (?) are inside that square?
Visual Perception Answer (GT): 4
Claude Sonnet-3.5 Answer: Looking at Set B, in the second square from the left, I can count 2
stars within that square.
MLLM Final Answer: Incorrect
Analysis: The that number of stars within the box are linked to correctly the reasoning question
and Claude Sonnet-3.5 fails to answer the count correctly. Further, from the reasoning chain, it is
clear that it makes a reasoning error that black squares are grouped/ungrouped in Set A and B, and
answers the reasoning question on this basis. This shows a reasoning error in its response, however,
the final answer given is correct. Additionally, there is visual hallucination about distribution of
black sqaures as well.
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F.2 Qualitative Analysis of Reasoning Chain Errors1637

Example 1

Figure 15
Reasoning Question: Which of the boxes comes next in the sequence? Select from A-E
Reasoning Answer (GT): A
Reasoning Explanation:
GPT4o Answer: To determine which box comes next in the sequence, observe the direction of
the arrows and the distribution of dots in each box. 1. The direction of arrows alternates from
pointing up to down in every subsequent box. The sequence starts with an arrow pointing up. 2.
The number of dots increases incrementally by one in each subsequent box. The first box has one
dot, the second has two, the third has three, and so on. Following this pattern:
- The first box in the sequence has one dot and an arrow pointing up.
- The second box has two dots and an arrow pointing down.
- The third box has three dots and an arrow pointing right.
- The fourth box has four dots and an arrow pointing down. (perception error)
- The fifth box has five dots and an arrow pointing up.
Given these patterns, the next box should have an arrow pointing down and six dots. Among the
choices A to E:
- Choice A fits with an arrow pointing down and six dots.
Therefore, the correct answer is box A.
VLM Final Answer: Correct.
Key Observation: Correct Final Answer But presence of Incorrect Visual Perception in Reasoning
Chain.
Analysis: GPT4o makes a visual perception error on the fourth box, the pattern was up, down,
right, left, up. Whereas, GPT-4o determines that the pattern is up, down, right, down, up. This is
an example of visual perception error in reasoning chain even while the model gives a correct final
answer.
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Example 2

Figure 16
Reasoning Question: Which of the boxes comes next in the sequence? Select from A-E
Reasoning Answer (GT): C
Reasoning Explanation:
GPT4o Answer: To determine which box comes next in the sequence, we need to observe the
patterns of the shapes and their rotations in the given boxes. 1. The position of the circle:
- The circle moves through four quadrants: top-right, top-left, bottom-left, and bottom-right. (visual
perception error: the circle never goes to bottom left or right)
- Based on this pattern, after the bottom-right position in the fifth box, the next position should be
top-right.
2. The rotation of the triangle:
- The triangle rotates clockwise: pointing up, right, down, and then left.
- In the fifth box, the triangle is pointing left. Therefore, in the next box, it should point up again.
Given these patterns, we are looking for a box with the circle in the top-right quadrant and the
triangle pointing up.
Option **C** shows a circle in the top-right quadrant and a triangle pointing up. This matches the
patterns observed, so option C is the correct answer for the next box in the sequence.
VLM Final Answer: Correct.
Key Observation: Correct final answer but presence of incorrect visual perception in Reasoning
Chain.
Analysis: The circle goes between top-right/left. Example of visual perception error
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Example 3

Figure 17
Reasoning Question: The bottom boxes create a rule that has to be applied in the box directly
above them. Select which of options A to F corresponds to the rule below the box with the question
mark.. Explain the reasoning behind the answer.
Reasoning Answer (GT): E
Reasoning Explanation: The simple rule in this question is that the number of grey arrows in the
box below must equal the number of black shaded shapes in the box above. There are three grey
arrows below the missing box, so the correct answer must contain three black shapes.
GPT4o Answer: To determine which option (A to F) corresponds to the rule that should be
applied above the question mark, we need to analyze the pattern in each column and how the
bottom boxes affect the top boxes.
Column Analysis:
Column 1: The bottom box has arrows pointing right. The top box changes the orientation of the
shapes accordingly.
Column 2: The bottom box has arrows pointing left. The top box changes by mirroring or flipping
the orientation.
Column 3: The bottom box has inward-facing arrows, and the shapes in the top box are transformed
or interchanged.
Column 4: The bottom box has outward-facing arrows. It seems to involve swapping the positions
of certain elements in the top box.
Column 5 (Question Mark): The bottom box has left-facing arrows, implying a mirroring or
flipping operation similar to column 2.
Rule Application:
Given the bottom box under the question mark has left-facing arrows, we should select an option
that mirrors or flips the elements horizontally compared to the option from Column 4.
Options Evaluation:
Option E is a horizontally flipped version of the top box in Column 4, making it the correct answer.
Therefore, the correct option corresponding to the rule below the box with the question mark is
Option E.
VLM Final Answer: Correct
Key Observation: Correct answer, incorrect reasoning.
Analysis: The simple rule here is the number of grey arrows in the box below must equal the
number of black shaded shapes in the box above. However, the model reasons about changing
orientations based on the direction of arrows. However, even with wrong reasoning GPT-4o
reaches the correct answer.
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Example 4

Figure 18
Reasoning Question: Which set does the Figure belong to? Select from A, B, and C. (A) Set A
(B) Set B (C) Neither set A nor set B. Explain the reasoning behind the answer.
Reasoning Answer (GT): C
Reasoning Explanation: Set A: Each box contains four shaded shapes. Set B: Each box contains
three shaded shapes. Figure: The Figure contains five shaded shapes.
GPT4o Answer: The figure belongs to (C) Neither set A nor set B. Reasoning:
Set A:
In Set A, the figures alternate between filled and empty shapes, or there is a symmetry of arrange-
ment. Set B:
In Set B, there is a symmetrical arrangement as well, but the colors (filled and empty) alternate in
a different manner than Set A. Figure Analysis:
The given figure is composed of triangles, both filled and empty, arranged in a different pattern
from any of the figures in Set A or Set B. It does not follow the alternation pattern or symmetry
rules observed in either set. Therefore, the figure does not belong to Set A or Set B.
VLM Final Answer: Correct
Key Observation: Correct answer, incorrect reasoning.
Analysis: GPT4o reasons that there is a different alternate pattern to fill shapes in Set A and B,
and the new shape has both these patterns, hence cannot be alloted to any one set. However, the
simple rule here is that 3 shapes are shaded in set B, and 4 shapes are shaded in shape A. Thus,
while the model reasons incorrectly, it arrives at the right option.
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G MLLM Prompts1642

Expert LLM Evaluator

You will be given three inputs consisting of: a question, the answer by a human giving the test, and
the ground truth answer. The answer from the human can be a longform one, which can contain
an explaination or reasoning. Your task is to determine if the final answer reached matches the
ground truth answer.
# Inputs
Question: {question}
Ground Truth Answer: {gt answer}
Human Answer: {mllm answer}
Your task is to reply in just YES (or) NO. If the answer matches your response should be YES,
else NO.

1643

Example Prompts For Subtasks in Do You See Me

Visual Figure Ground: The figure consists of a Target image, which is embedded in some
background noise. Out of the four given options, your task is to pick the option which has the same
figure as the target image. Respond as follows: Option your answer (choose between 1, 2, 3, or 4).

Letter Disambiguation: The image shows one or more letters formed by a grid of small squares.
What letter(s) can you identify in this image? Please respond with only the letter(s) you see.

Visual Form Constancy: The figure consists of a Target image. Out of the four given options,
your task is to pick the option which has the same figure as the target image. Respond as follows:
Option your answer (choose between 1, 2, 3, or 4).

Visual Closure: The figure consists of a target image which is complete, Out of the four given
options (which are partially complete), your task is to pick the option which when completed
matches the target image. Respond as follows: Option your answer (choose between 1, 2, 3, or 4).

Visual Spatial: In grid 5, starting from the white square at position (row 1, column 5), how many
circles are there down of it in the same column?

Color Disambiguation: Count the number of cross’s that are purple.

Shape Discrimination: Count the total number of stars in the image, including each concentric
star separately. For example, if there is one star with 2 inner concentric rings, that counts as 3 stars.
Respond with only a number.
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