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ABSTRACT

Machine learning is transforming molecular sciences by accelerating property
prediction, simulation, and the discovery of new molecules and materials. Acquir-
ing labeled data in these domains is often costly and time-consuming, whereas
large collections of unlabeled molecular data are readily available. Standard semi-
supervised learning methods often rely on label-preserving augmentations, which
are challenging to design in the molecular domain, where minor changes can drasti-
cally alter properties. In this work, we show that semi-supervised methods that rely
on an ensemble consensus can boost predictive accuracy across a diverse range of
molecular datasets, task types, and graph neural network architectures. Notably,
we show that training with an ensemble consensus objective results in an effect
similar to knowledge distillation; an individual member of an ensemble trained this
way often outperforms a full ensemble trained in a traditional supervised fashion.
In addition, this type of semi-supervised training reduces calibration error and is
robust over different datasets.

1 INTRODUCTION

In recent years, machine learning has emerged as a transformative tool in the molecular sciences,
accelerating discovery in areas ranging from predicting quantum mechanical properties (Schütt
et al., 2021; 2017; Musaelian et al., 2023; Wood et al., 2025) to discovering novel drugs (Wong
et al., 2024; Kellenberger et al., 2007; Vidler et al., 2013; Zhuang et al., 2014; Ren et al., 2023) and
catalysts (Pillai et al., 2023; Sun et al., 2024; Bai et al., 2025). However, despite recent efforts to
curate large labeled datasets (Merchant et al., 2023; Levine et al., 2025), the scarcity of labeled data
remains a fundamental bottleneck.

In materials and drug discovery, labels often come from computationally expensive simulations, such
as density functional theory (DFT), or resource-intensive laboratory measurements. Consequently,
datasets with specialized high-quality labels are typically small, while large databases of unlabeled
molecules (e.g., ZINC (Irwin et al., 2012; Kim et al., 2024)) are not fully exploited. This scenario—
abundant unlabeled data coupled with scarce labeled data—is an ideal setting for semi-supervised
learning (SSL).

Yet, many state-of-the-art methods are poorly suited for the molecular domain. Dominant techniques
such as consistency training (Berthelot et al., 2019; Sohn et al., 2020) critically depend on data
augmentation strategies that create perturbed copies of an input while preserving its label. Such
augmentations are notoriously difficult to design for molecules, where minor structural changes can
drastically alter the chemical properties we aim to predict. Meanwhile, approaches such as iterative
pseudo-labeling (Scudder, 1965; Riloff & Wiebe, 2003; Huang et al., 2022) hinges on the ability to
reliably rank predictions by confidence in order to select the best candidates for pseudo-labeling and
to avoid reinforcing model errors. This highlights a critical gap where standard SSL benchmarks and
algorithms do not translate well to the practical challenges of molecular science.

In this work, we build upon a class of SSL methods that does not require the explicit design of
data augmentations, but rather relies on an ensemble consistency loss. Specifically, we train a
model ensemble where each member learns from labeled data using a standard supervised loss and
from unlabeled data using a loss that promotes agreement among the ensemble members. While
ensemble coupling in self-supervised learning has been explored in previous work (Sajjadi et al., 2016;
Tarvainen & Valpola, 2018; Platanios, 2018), our formulation is theoretically grounded in an ensemble
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loss ambiguity decomposition, trains in a single run, and exhibits a knowledge distillation-like effect
that has not previously been discussed. As such, our work makes four core contributions:

1. We provide a theoretical motivation for our specific ensemble-consensus approach based on
the formal decomposition of ensemble error, which justifies the consensus as a high-quality,
better-than-average supervisory signal.

2. We demonstrate that our method robustly improves predictive accuracy across a wide range
of molecular datasets and architectures for both regression and classification.

3. We show a powerful knowledge distillation-like effect, where a single model from our
consensus-trained ensemble in almost all cases outperforms an entire ensemble trained in a
traditional supervised fashion.

4. We also show that our approach, in comparison to other SSL methods reduces the calibration
error and does not harm the prediction accuracy on the unlabeled training data.

2 BACKGROUND

Semi-Supervised Learning Semi-supervised learning (SSL) is a machine learning paradigm
designed for settings with a small amount of labeled data and a much larger amount of unlabeled
data. The idea is to leverage the unlabeled data to learn about the underlying structure of the data
distribution p(x), which in turn improves the model’s ability to learn the mapping from inputs
to outputs, p(y|x). Effective SSL methods are typically built upon one or more of the following
assumptions:

• Smoothness Assumption: If two points x1, x2 are close in a high-density region of the
underlying data manifold, their corresponding labels y1, y2 should also be close or identical.

• Cluster Assumption: The data tends to form distinct clusters, and points within the same
cluster are likely to share the same label. This implies that a good decision boundary should
lie in the low-density region between clusters.

Consistency Loss Consistency regularization is currently the most dominant family of SSL methods.
The core idea is that the model’s prediction for an unlabeled data point should remain consistent under
small perturbations. This directly enforces the smoothness assumption. A successful perturbation
or data augmentation is one that explores the local neighborhood of a data point on the manifold
without changing its label. The objective is typically formulated as minimizing a distance measure
(e.g., Mean Squared Error or KL-Divergence) between the model’s predictions for two different
augmentations of the same input:

Lconsistency = Exu∼Xu
[D(fθ(aug1(xu))||fθ(aug2(xu))].

Different choices of the perturbations give rise to a wide range of methods. Π-models (Sajjadi et al.,
2016) enforce that two predictions should be the same under transformations to the data, the use
of dropout and random pooling for perturbations to the model. Each unlabeled datapoint is passed
through the network twice and penalized for the difference in the predictions between the passes.
The benefit of consistency loss is highly linked to the quality of the data augmentation techniques,
as shown in (Xie et al., 2020). Temporal ensembling (Laine & Aila, 2017) builds upon this by
maintaining an exponential moving average of predictions for each unlabeled example to create
a more stable consistency target. Instead of applying a temporal averaging over the predictions,
the mean-teacher method (Tarvainen & Valpola, 2018) averages the model weights and uses the
predictions of that model as the consistency target. In the above works, the predictions can be seen as
coming from a sort of pseudo-ensemble. As the members of this pseudo-ensemble are based on the
trajectory or perturbation of a single network, the diversity of the predictions is reduced and biased,
which reduces the prediction accuracy as we later highlight.

This problem can be mitigated by introducing multiple different initial weightings of the same
architecture and training them in parallel to use as consistency targets. Chen et al. (2021) (cross
pseudo supervision) proposes to do this for pixel-wise segmentation, where the prediction of each
of the two ensemble members is hard labeled and used as the consistency target. Filipiak et al.
(2022) further extends this for pixel-wise segmentation by using n ensemble models and taking all
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combinations of hard labeled predictions as the consistency targets. Another paper that explores
different ensemble predictions is Platanios (2018). Here the ensemble members are restarted multiple
times during training, and the consensus target is computed from a trainable majority vote or Restricted
Boltzmann Machine. All the above methods can be seen as stemming from a broad class of SSL
methods that rely on the prediction of an ensemble to guide the training of the individual models to
improve predictive accuracy.

In many applications, there exist few or no data augmentations that preserve the label of a data point.
Examples include molecules, where the chemical properties can be changed significantly under small
changes to the molecule. This restricts the consistency loss methods to only rely on perturbations to
the model and not the data. This makes the class of ensemble-based SSL methods well-suited for the
problem.

Pseudo-labeling Pseudo-labeling (Yarowsky, 1995; Scudder, 1965; Riloff & Wiebe, 2003), also
known as self-training or entropy minimization, is a process where an initial model is trained on
the labeled data points and then used to predict labels for a large unlabeled dataset. The primary
risk of this method is confirmation bias: if the model generates an incorrect pseudo-label with high
confidence, it will reinforce its own mistake during retraining, leading to error propagation. To
mitigate this risk, modern SSL methods often integrate more sophisticated frameworks. For example,
one uncertainty-aware approach uses a model’s evidential uncertainty to estimate the quality of
each pseudo-label. This enables an adaptive weighting scheme where high-uncertainty (low-quality)
pseudo-labels are given a smaller weight in the loss function, reducing their biasing effect. While this
can be effective, such a strategy requires an initial, full training phase on the labeled data before the
episodic pseudo-labeling can begin. It also introduces several additional tunable hyperparameters
related to its episodic schedule, which require careful tuning (Huang et al., 2022).

Knowledge Distillation Knowledge distillation (Buciluǎ et al., 2006; Hinton et al., 2015) was
proposed as a way of using a complex "teacher" model to transfer its knowledge to a simpler "student"
model. Usually, the teacher model is either a model with more parameters or the same model with
multiple predictions averaged over multiple augmentations of the input, but the use of an ensemble as
the teacher has also been explored (Hinton et al., 2015; Fukuda et al., 2017; Malinin et al., 2019). The
transfer of knowledge can be enforced at different levels, such as feature representations (Heo et al.,
2019) or intermediate layers (Zagoruyko & Komodakis, 2017). Approaches that match predictions
are most closely related to our work. Aligning student and teacher predictions resembles the use of
consistency targets in semi-supervised learning, with the key distinction that distillation is typically
applied post-hoc, and thus lacks a bootstrapping effect where the teacher also benefits from the
student’s progress. Furthermore, knowledge distillation is often focused on preserving the uncertainty
calibration of the teacher or achieving computational efficiency by deploying the smaller student
model instead of the larger one.

3 THEORETICAL MOTIVATION

The theoretical motivation for our method is grounded in the formal relationship between an en-
semble’s performance and that of its individual members. Ensemble performance is governed by
a fundamental trade-off between the accuracy of the individual models and the diversity of their
predictions. This relationship can be expressed through a loss decomposition, which shows that for
any convex loss function, the ensemble’s loss is guaranteed to be less than or equal to the average of
the individual losses (Wood et al., 2024). This stems from Jensen’s inequality and takes the general
form:

Ensemble Loss = Average Individual Loss − Ambiguity (1)

The ambiguity (or diversity) term is a non-negative quantity measuring disagreement among the
members. This decomposition reveals that optimal ensemble performance requires not only accurate
individual models but also beneficial diversity.

Mean Squared Error This principle is most clearly illustrated in regression with Mean Squared
Error (MSE), where the decomposition is exact and well-established (Krogh & Vedelsby, 1994). For
an ensemble of M models {fθm}Mm=1 with a mean prediction f̄(x), the decomposition is:
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(y − f̄(x))2︸ ︷︷ ︸
Ensemble MSE

=
1

M

M∑
m=1

(y − fm(x))2︸ ︷︷ ︸
Average Individual MSE

− 1

M

M∑
m=1

(f̄(x)− fm(x))2︸ ︷︷ ︸
Ambiguity (Prediction Variance)

. (2)

Here, the ambiguity is simply the variance of the predictions around the ensemble mean, providing a
clear, label-independent measure of diversity.

Cross-Entropy The same principle extends to classification, though the decomposition for Cross-
Entropy (CE) loss is more nuanced. Using the geometric mean to average probabilities across the
ensemble yields a clean, label-independent decomposition, as in regression (Wood et al., 2024). An
exact decomposition is also available for the arithmetic mean:

−y · ln f̄︸ ︷︷ ︸
Ensemble CE Loss

= − 1

M

M∑
m=1

y · ln fm︸ ︷︷ ︸
Avg. Individual CE Loss

−
C∑

c=1

yc ln
1
M

∑M
m=1 fm,c

(
∏M

m=1 fm,c)1/M︸ ︷︷ ︸
Ambiguity (Label-Dependent)

, (3)

although here the ambiguity term is explicitly a function of the true label vector y (where yc is the
true probability of class c), making it label-dependent (Wood et al., 2024). Crucially, this ambiguity
term is still guaranteed to be non-negative, ensuring that the ensemble loss is always less than or
equal to the average individual loss.

Because the ensemble consensus is provably superior to the average individual model, using it as a
consistency target for unlabeled data is both effective and theoretically well-justified. In addition,
the ensemble prediction will be a useful signal as long as the models are better than random. This
suggests the ensemble prediction does not need to incorporate a warm-startup to provide a useful
predictive signal, as other works have observed (Tarvainen & Valpola, 2018) and used (Filipiak et al.,
2022; Platanios, 2018).

4 METHOD

4.1 FORMAL DESCRIPTION

We address a standard semi-supervised learning problem with a small set of labeled data, DL =
{(xi, yi)}NL

i=1, and a large set of unlabeled data, DU = {uj}NU
j=1. We assume that both datasets are

drawn from the same underlying distribution. Our method utilizes a deep ensemble of M models,
f̄ = {fθm}Mm=1, initialized with different random weights.

The training objective is defined on each model fθm within the ensemble. At each training step, its
parameters θm are updated to minimize a composite loss, Lm, which combines a standard supervised
signal Lsup with an ensemble-driven consistency signal Lconsistency:

Lm = Lsup(fθm , BL) + γLconsistency(fθm , f̄ , BU ), (4)

where BL and BU are mini-batches of labeled and unlabeled data, respectively, and γ is the coupling
weight. During training, all models are updated simultaneously by minimizing the sum of their
individual losses i.e. L =

∑M
m=1 Lm. The first term, Lsup, is the standard task-specific loss for model

fθm on the labeled batch, such as mean squared error (MSE) for regression or cross-entropy (CE)
for classification. The second term, Lconsistency, provides the semi-supervised signal. It is calculated
for the model fθm but depends on the outputs of the entire ensemble. For each unlabeled sample
u ∈ BU , a consensus prediction, f̄(u), is computed by averaging the predictions of all M models:

f̄(u) =
1

M

M∑
m=1

fθm(u). (5)

The Consensus prediction serves as the augmentation-free consistency target for model fθm . We
penalize the discrepancy between model prediction and the ensemble consensus as

Lconsistency(fθm , f̄ , BU ) =
1

|BU |
∑

u∈BU

D
(
fθm(u), f̄(u)

)
. (6)
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Here, D is a suitable distance metric, for example, the task-specific supervised loss (e.g., L2 or
KL-divergence). In practice, when minimizing the loss we detach the gradient through f̄(u), as the
consensus prediction is at least as accurate as the individual members’ predictions on average (see
Appendix 3), ensuring that the ensemble is not encouraged to match the less accurate individual
predictions. Note, detaching the gradient has been observed to result in failure cases such as learner
collusion (Jeffares et al., 2023), but in our experience it does not appear to affect results negatively.

4.2 CONSENSUS–DIVERSITY DYNAMICS

Our proposed SSL training scheme directly manipulates the trade-off between accurate individual
models and high diversity among them. The unsupervised loss term, Lu(xu) = L(fθi(xu), fe(xu)),
creates a pull towards consensus by guiding each model fθi to agree with the more stable ensem-
ble prediction fe. This directly reduces the average individual error by providing a high-quality
supervisory signal for unlabeled data.

Simultaneously, this pull is counteracted by forces that preserve diversity. Each model begins from
a unique random initialization and follows a distinct optimization path due to the stochastic nature
of mini-batch SGD. This dynamic allows the models to converge to different solutions in parameter
space while still agreeing in function space.

Therefore, our method does not eliminate diversity but rather regulates it. The hyperparameter γ in
the total loss L = Ll + γLu serves as a direct control over this balance, allowing us to leverage the
unlabeled data to improve individual model accuracy without forcing a complete collapse in diversity.

Another benefit of this continuous learning between models is that we should be less likely get stuck
on early bad predictions, as can be the case with many forms of pseudo-labeling. This is because the
ensemble targets are "moving" with the ensemble. This can explain why we do not need to warmup
the coupling loss.

5 EXPERIMENTAL SETUP

We evaluate our method in two settings: First, on a quantum chemistry benchmark to demonstrate its
relevance for 3D-geometry-based molecular property prediction, and then across a diverse suite of
graph-level tasks to assess its broader applicability. All ensemble members were trained on identical
mini-batches of supervised data to simplify implementation. While this strategy reduces ensemble
diversity, potentially limiting the ensemble’s predictive power, it allows for a fair direct comparison
with single models.

Semi-supervised Protocol To simulate the common scenario of data scarcity, we restrict the
supervised portion of our training to a small fraction for each task (10%). The remaining training
data (90%) is treated as unlabeled and is used exclusively for our ensemble consistency loss. Our
primary baseline is a standard deep ensemble of the same architecture, trained only on this small
labeled data subset. This setup allows us to directly measure the performance gain from leveraging
unlabeled data.

Datasets We test our method on a wide range of different datasets. We perform a prediction of
molecular properties in the QM9 dataset (Wu et al., 2018) for the main 12 targets, using the PaiNN
architecture Schütt et al. (2021) and an ensemble of size M = 4. To investigate how our method
scales, we study and compare performance on a single target (internal energy at 0K) for different
ensemble sizes (M ∈ {1, 2, 3, 4}). For broader validation of our method, we adopt a comprehensive
benchmark suite of graph-level tasks. We use three different graph-based architectures: GCN (Kipf &
Welling, 2017), GIN (Xu et al., 2019), and GatedGCN (Bresson & Laurent, 2018), adapting the code
from Luo et al. (2025) and following the testing procedure from Rampášek et al. (2023). We refer to
this suite of benchmarks as GNN+ benchmarks. The ensemble size is fixed to M = 4. To demonstrate
the general applicability of our method beyond the molecular domain, we perform experiments on
a benchmark of non-molecular graph datasets (see Appendix A.3). Further experiments showing
broader applicability beyond graphs are included in Appendix A.1. All datasets were split into 80%
training data, 10% validation data and 10% test data. While 10% of the training data is used as
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Table 1: PaiNN performance (MAE) on QM9 targets. Results are reported as mean ±1.96 standard
error of the mean over 3 seeds.

Individual Member Ensemble (M=4)

Target Unit Supervised Supervised + SSL Supervised Supervised + SSL Mean-teacher

µ D .0740±.0009 .0619±.0004 .0683±.0005 .0613±.0004 .0721±.0024

α a30 .1626±.0006 .1327±.0002 .1423±.0005 .1307±.0002 .1570±.0020

ϵHOMO meV 80.4961±.5696 74.3067±.2874 76.3702±.4998 73.4216±.2602 80.6±2.0

ϵLUMO meV 62.0410±.6873 57.7005±.3890 59.3295±.7226 57.2248±.3748 62.0±.8

∆ϵ meV 125.1425±.7803 116.8389±.7476 119.2652±.6489 115.5238±.7658 125.0±2.6

⟨R2⟩ a20 .8141±.0194 .6189±.0321 .6405±.0133 .5696±.0320 .799±.040

ZPVE meV 2.2163±.0031 2.0117±.0072 2.0714±.0036 1.9884±.0077 2.18±.04

U0 meV 24.8996±.2355 19.9535±.1812 20.8927±.2374 19.3611±.1819 24.7±.85

U meV 25.1262±.3544 20.1439±.1736 21.0568±.3108 19.5466±.1586 25.0±1.00

H meV 25.1391±.3319 20.1217±.1890 21.0790±.3171 19.5235±.1905 24.8±.96

G meV 25.3738±.3001 20.2668±.2044 21.3625±.2596 19.6880±.1955 25.2±.75

Cv
cal

mol K .0569±.0005 .0450±.0003 .0491±.0005 .0440±.0004 .0557±.0005

labeled training data, the labels for the remaining 90% are discarded and this data is used as unlabeled
(unsupervised) training data.

Hyperparameter Tuning To ensure well-tuned models for datasets, the training hyperparameters
(learning rate and weight decay) were optimized for each target and model based on the valida-
tion performance of a single model in the supervised setting on the reduced labeled data. These
hyperparameters were kept fixed across different SSL methods tested to ensure fair comparison.
The parameters associated with each specific SSL method (coupling weight, mean-teacher decay,
etc.) were optimized based on validation accuracy for each target on QM9, and selected for the
GNN+ datasets based on the best value of ZINC. Details about the tuning procedures and selected
hyperparameters can be found in Appendix B.

Evaluation We evaluate the predictive performance for a single model, a standard ensemble, an
ensemble using SSL via ensemble consensus (ours) and an individual member from the latter. All
results are reported as the mean along with 1.96 times the standard error of the mean across different
seeds.

6 RESULTS

6.1 MOLECULAR PROPERTY PREDICTION ON QM9

The performance of our method on the 12 regression targets of the QM9 dataset is presented in Table 1.
The results indicate that training with the ensemble consistency loss (“Supervised + SSL”) reduces the
MAE across all evaluated targets when compared to the supervised-only baseline. This is observed for
both the individual PaiNN models and the four-member ensembles. Furthermore, n single individual
model from the coupled ensemble consistently outperforms the traditional supervised ensemble on
all targets.

The results for molecular property prediction on QM9 for different ensemble sizes are shown in
Table 2. Our SSL method outperforms a traditional ensemble for all sizes tested. Additionally,
using an individual member from an ensemble trained using our proposed SSL method, we not only
outperform a standard single model but also perform at a similar level to an ensemble that has only
been trained on the supervised data. The results are consistent across all ensemble sizes. Performance
increases with more ensemble members.

6.2 GNN+ BENCHMARK

To assess the broader applicability of our method, we evaluate it on several molecule-related bench-
marks using three different GNN architectures. The results are summarized in Table 3, and are
consistent with the performance on QM9. Looking at a single model, the addition of the SSL task
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Table 2: PaiNN performance (MAE) on QM9 internal energy at 0K in eV (U0) for different ensemble
sizes averaged across 3 seeds, with mean ±1.96 standard error of the mean.

Individual member Ensemble

Size (M) Supervised Supervised + SSL Supervised Supervised + SSL

1 24.8996±.2355 – – –
2 – 20.7268±.3312 21.9658±.6189 20.2639±.3139

3 – 20.4214±.2054 21.2858±.3761 19.8955±.1882

4 – 19.9535±.1812 20.8927±.2374 19.3611±.1819

Table 3: Performance on molecule-related benchmarks using different GNN architectures averaged
across 5 seeds.

GCN GIN GatedGCN

Dataset Training Metric Individual Ensemble Individual Ensemble Individual Ensemble

ZINC

Supervised

MAE ↓
.3163±.0121 .2934±.0094 .2765±.0247 .2516±.0136 .2920±.0113 .2646±.0235

Consensus .2406±.0150 .2367±.0148 .2519±.0246 .2485±.0232 .2717±.0230 .2658±.0177

Pairwise .2462±.0108 .2390±.0102 .2500±.0083 .2462±.0092 .2653±.0158 .2597±.0171

Mean teacher .2884±.0128 – .2791±.0117 – .2830±.0159 –

Peptides-struct

Supervised

MAE ↓
.3047±.0098 .2932±.0084 .2966±.0067 .2918±.0058 .2994±.0105 .2908±.0101

Consensus .2868±.0062 .2866±.0061 .2944±.0072 .2938±.0068 .2854±.0061 .2848±.0068

Pairwise .2933±.0031 .2892±.0029 .2916±.0030 .2901±.0029 .2898±.0042 .2870±.0041

Mean teacher .2985±.0029 – .2948±.0023 – .2953±.0034 –

Peptides-func

Supervised

AP ↑
.4931±.0346 .5105±.0342 .4566±.0224 .4765±.0327 .4289±.0051 .4444±.0200

Consensus .5070±.0141 .5160±.0141 .4756±.0180 .4815±.0179 .4509±.0144 .4580±.0062

Pairwise .5055±.0151 .5163±.0150 .4739±.0110 .4811±.0117 .4463±.0067 .4548±.0069

Mean teacher .4893±.0169 – .4611±.0130 – .4352±.0058 –

ogbg-molhiv

Supervised

AUROC ↑
.7216±.0193 .7357±.0212 .7329±.0166 .7346±.0165 .7312±.0081 .7341±.0107

Consensus .7308±.0218 .7357±.0212 .7339±.0149 .7347±.0153 .7361±.0069 .7383±.0073

Pairwise .7247±.0160 .7336±.0146 .7273±.0128 .7294±.0128 .7375±.0052 .7403±.0050

Mean teacher .7213±.0161 – .6996±.0207 – .7295±.0165 –

ogbg-molpcba

Supervised

AP ↑
.1368±.0025 .1578±.0030 .1421±.0026 .1567±.0029 .1615±.0034 .1779±.0043

Consensus .1476±.0023 .1585±.0026 .1496±.0033 .1567±.0039 .1701±.0036 .1781±.0034

Pairwise .1471±.0027 .1597±.0028 .1498±.0021 .1574±.0024 .1674±.0032 .1765±.0034

Mean teacher .1435±.0016 – .1479±.0037 – .1669±.0028 –

consistently improves performance over the supervised-only baseline across all datasets and architec-
tures. This performance gain also translates to the full ensembles, which show improvement when
trained with the consistency loss. The performance of a single model trained with our SSL method
often exceeds that of an entire ensemble trained only on labeled data.

7 DISCUSSION

Our experiments on QM9 and the more varied GNN+ benchmark show that our ensemble-based
SSL framework consistently improves model performance in low-data regimes. The most significant
finding is the substantial boost in accuracy for individual models, a direct result of the knowledge
transferred from the ensemble’s consensus on unlabeled data. This finding is similar to the idea
ensemble distilling (Hinton et al., 2015), where the knowledge of an ensemble is transferred to a
single, smaller model, except that our method inherently produces knowledgeable single models.
This is explained through the semi-supervised effect on the entire ensemble, resulting in even better
ensemble consensus targets for individual models to learn from. This has a key practical benefit:
while the method requires an ensemble during training, a single, improved model can be deployed for
inference. This offers a valuable trade-off, where an increased one-time training cost yields a final
model that is both highly accurate and computationally efficient at inference time. Chemical property
screening is a compelling use case, as vast databases of molecules need to be screened resulting in a
high inference cost, while the available labeled data and models are small making training cheap. It
is noteworthy that for datasets where the parameter related to SSL (γ or the mean-teacher decay) was
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not directly tuned, the improvement in predictive accuracy was noticeably smaller. This indicates the
SSL parameter is highly dependent on the specific dataset.

As shown in Table 2, the predictive performance scales with the number of members in the coupled
ensemble. Individual models from the ensemble trained with our method consistently perform at
a similar level to an entire traditional ensemble across all ensemble sizes. This finding is further
supported in Appendix A.1.

Limitations The primary limitation of our approach is the computational overhead associated with
training an ensemble consensus model. Transfer learning is another method that is often used in
sparsely-labeled settings, which we have not compared against.

Future work Our findings suggest several promising avenues for future research. While this work
created a semi-supervised split from a fully labeled dataset, a compelling next step would be to
use all available labeled data for supervision while introducing a separate, truly unlabeled dataset.
This would more directly quantify the benefit of leveraging vast, external chemical libraries and
be of interest in a practical setting. Using ensembles for semi-supervised learning also opens the
direction for improving accuracy in a principled manner by diversifying the ensemble members
through existing techniques. Furthermore, different strategies for how to couple our ensemble can be
investigated. While first experiments (Appendix D.4) suggest that a constant coupling weight and an
inclusion of the ensemble consistency loss throughout the whole training yield the best results, these
findings still need to be validated through further experimentation on a broader range of datasets to
find the optimal strategy. Only including the unsupervised data in the later part during training could
potentially result in similar predictive performance, while reducing computational cost.
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SUPPLEMENTARY MATERIAL

A EXTENDED STUDIES

A.1 SCALING WITH NUMBER OF ENSEMBLE MEMBERS

We also investigate the predictive accuracy scaling with the number of ensemble members to larger
than 4 sizes. Ensembles of these sizes were not feasible to do on any of the graph datasets, so
we instead use the original computer vision version of CIFAR-10. This also validates that our
method works for other domains than graphs. We use ResNet-18 (He et al., 2015) with 5,000 labeled
and 40,000 unlabeled data-points without any data augmentations. We performed an exhaustive
hyperparameter sweep using a single seed over learning rate (0.1, 0.075, 0.05, 0.025, 0.01, 0.0075,
0.005, 0.0025, 0.001), and weight decay (0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5) for the purely
supervised model. The number of epochs and learning rate annealing was fixed at a number informally
found to work. The parameters of best performing model on validation accuracy at the last epoch was
selected. The optimal values can be found in 14. The coupling weight was fixed kept at γ = 1.

The hyper-parameters can be found in Appendix B.3. From the accuracy results in Table 4 and
calibration scores in section A.2, we see a significant increase in accuracy and calibration scores
going from a single model to a coupled ensemble with just two models. Interestingly, the individual
prediction accuracy of a model trained in a coupled ensemble of two models outperforms the ensemble
prediction from all decoupled ensemble sizes tested. This highlights the semi-supervised effect from
using unlabeled data for training. Looking at the calibration metrics in Appendix A.2, we see that
the calibration results for the coupled ensemble are worse than the uncoupled one. This is often
seen in self-supervised learning, as the "self-validating" training can result in worse calibration
from confirmation bias (Arazo et al., 2020; Mishra et al., 2024). Surprisingly, we see the individual
calibration improving over the decoupled model (i.e., a single model), and also improving as the
number of ensemble members increases.

Table 4: Predictive accuracy (%) on CIFAR-10 validation, comparing Decoupled and Coupled models.
The values represent mean ± 1.96 standard error of the mean.

Individual Accuracy % Ensemble Accuracy (%)

Ensemble size Decoupled Coupled Decoupled Coupled

1 59.08±1.35 · · · · · · · · ·

2
... 66.36±0.45 62.51±0.40 66.96±0.47

4
... 67.24±0.40 64.65±0.46 67.92±0.49

8
... 67.64±0.35 65.73±0.51 68.34±0.34

16
... 67.75±0.32 66.41±0.57 68.54±0.45

32
... 67.75±0.30 66.64±0.37 68.52±0.35
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A.2 CALIBRATION METRICS ON CIFAR-10

Table 5: NLL on CIFAR-10, comparing decoupled and coupled models. The values represent mean
± 1.96 standard error of the mean.

NLL

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 1.543±0.109 · · · · · · · · ·

2
... 1.217±0.021 1.267±0.020 1.161±0.021

4
... 1.169±0.019 1.121±0.012 1.096±0.019

8
... 1.142±0.017 1.048±0.015 1.064±0.016

16
... 1.126±0.015 1.007±0.015 1.047±0.014

32
... 1.123±0.019 0.990±0.011 1.042±0.018

Table 6: AUC-ROC on CIFAR-10, comparing decoupled and coupled models. The values represent
mean ± 1.96 standard error of the mean.

AUC-ROC

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 .8885±.0075 · · · · · · · · ·

2
... .9250±.0020 .9125±.0021 .9292±.0020

4
... .9295±.0019 .9266±.0016 .9349±.0019

8
... .9316±.0019 .9336±.0021 .9377±.0018

16
... .9323±.0016 .9384±.0019 .9386±.0015

32
... .9329±.0019 .9409±.0017 .9394±.0019

Table 7: ECE on CIFAR-10, comparing decoupled and coupled models. The values represent mean
± 1.96 standard error of the mean.

ECE

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 .2210±.0357 · · · · · · · · ·

2
... .1713±.0041 .1128±.0057 .1512±.0049

4
... .1609±.0034 .0591±.0043 .1369±.0040

8
... .1548±.0031 .0320±.0043 .1301±.0035

16
... .1494±.0028 .0243±.0033 .1235±.0030

32
... .1485±.0044 .0207±.0043 .1226±.0043
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Table 8: Brier score on CIFAR-10, comparing decoupled and coupled models. The values represent
mean ± 1.96 standard error of the mean.

Brier

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 .4854±.0271 · · · · · · · · ·

2
... .5594±.0042 .4585±.0041 .5530±.0040

4
... .5654±.0040 .4422±.0047 .5572±.0040

8
... .5676±.0048 .4316±.0050 .5588±.0047

16
... .5652±.0044 .4283±.0049 .5563±.0043

32
... .5649±.0030 .4263±.0033 .5558±.0030

A.3 NON-CHEMICAL GNN+ DATASETS

Results for non-chemical GNN+ datasets are shown in Table 9. Note the consensus and mean-teacher
run for the GatedGCN models were not computed, as the models were too large to fit in memory.

Table 9: Performance on non-molecule-related benchmarks, comparing supervised models with those
using additional self-supervised learning (SSL). Results are shown for individual models (Individual)
and the full ensemble (Ensemble). Results are the mean ±1.96 standard error of the mean over 5
different seeds.

GCN GIN GatedGCN

Dataset Training Metric Individual Ensemble Individual Ensemble Individual Ensemble

CIFAR-10

Supervised

Acc (%)↑
50.44±0.33 55.38±0.49 50.46±0.34 53.90±0.50 57.69±0.34 61.23±0.45

Consensus 55.33±0.31 57.11±0.42 54.30±0.36 55.60±0.31

Mean teacher 50.64±0.28 50.99±0.86 - - -

MNIST

Supervised

Acc (%)↑
96.61±0.07 96.97±0.04 96.26±0.10 96.73±0.13 96.96±0.05 97.38±0.11

Consensus 96.82±0.08 96.93±0.11 96.68±0.09 96.82±0.11 97.48±0.06 97.57±0.07

Mean teacher 96.55±0.06 - 96.31±0.11 - 96.84±0.13 -

B HYPERPARAMETERS

B.1 QM9

Our hyperparameter search for QM9 followed a two-step process. First, we started with baseline
hyperparameters from a fully supervised setting and tuned the learning rate and weight decay for a
single model on the 10% labeled data subset. Second, using these optimized parameters, we then tuned
the coupling weight (γ) for the size-4 ensemble by searching over {1.0, 0.1, 0.01, 0.001, 0.0001}. The
coupling weight swept for the mean-teacher was {0.9, 0.95, 0.99, 0.995, 0.999}. Final a architectural
and training configurations are detailed in Table 10 and Table 11.
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Table 10: Hyperparameter Configuration for QM9. These are fixed across all targets.
Hyperparameter Value

Training

Batch size 32
Epochs 1000
Optimizer AdamW
Scheduler Cosine annealing

Coupling

Unsupervised loss criterion L2

Table 11: Additional hyperparameter Configuration for QM9 for different targets.
Target Learning rate Weight decay Coupling weight Mean teacher decay

µ 1e-3 1e-3 0.1 0.995
α 1e-4 1e-3 0.1 0.99
ϵHOMO 1e-3 0 0.01 0.95
ϵLUMO 5e-4 1e-6 0.01 0.9
∆ϵ 1e-3 0 0.01 0.99
⟨R2⟩ 5e-4 1e-4 0.1 0.99
ZPVE 5e-4 1e-5 0.001 0.99
U0 1e-4 1e-4 0.01 0.99
U 1e-4 0 0.01 0.9
H 1e-4 1e-4 0.01 0.9
G 1e-4 1e-5 0.01 0.995
Cv 1e-4 1e-5 0.01 0.995

B.2 GNN+ DATASETS

We keep the hyperparameters for the different datasets and models the same as in the original paper,
except for the number of epochs, weight decay, and learning rate. As we are training with 10% of the
original data, we double the number of epochs to mitigate the fewer parameter updates. We then made
a two-step hyper-parameter sweep; initially the learning rate using original weight decay values, and
afterwards the weight decay using the found best learning rates. The learning rates investigated were
(0.25, 0.5, 1.0, 2.0, 4.0) times the original learning rate value for that model and dataset. The weight
decays investigated was (10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0). We could not simply multiply the
weight decay values by a fixed factor, as some of the original weight decay values were 0. These
sweeps were performed for a single uncoupled model following the same tuning procedure as in
the original paper. Notably, this means that the predictive accuracy report from each run is the best
validation performance seen during any of the epochs. The found learning rates are listed in Table 13,
and weight decays Table 13 below. The train, validation, and test splits follow the same procedure as
Luo et al. (2025). Each seed shuffles the labeled and unlabeled part of the training data.

The SSL parameters were selected based on the best performing values on the validation score on
ZINC. The mean-teacher values investigated was (0.9, 0.99, 0.995, 0.999), and the coupling weight
for the consensus and pair-wise methods were (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0). The optimal
value of mean-teacher was found to be 0.999, and coupling weight for the consensus learning
was 1.0, and the pairwise loss was tied between 0.5 and 0.75, so we went with 0.5 based on the
recommendations in Filipiak et al. (2022).
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Table 12: Tuned learning rates for GNN models across datasets.
Dataset GCN GINE GATEDGCN
CIFAR-10 0.002 0.0005 0.001
CLUSTER 0.0005 0.0005 0.002
ogbg-molhiv 0.0001 0.00005 0.0004
MalNet-Tiny 0.00025 0.002 0.002
MNIST 0.001 0.002 0.001
PATTERN 0.004 0.001 0.000125
ogbg-molpcba 0.000125 0.000125 0.00025
peptides-func 0.0005 0.002 0.002
peptides-struct 0.002 0.0005 0.002
ogbg-ppa 0.0006 0.0012 0.0003
PascalVOC-SP 0.004 0.002 0.0005
ZINC 0.004 0.001 0.004

Table 13: Tuned weight decays for GNN models across datasets.
Dataset GCN GINE GATEDGCN

CIFAR-10 10−2 10−1 10−2

CLUSTER 0 10−1 10−6

ogbg-molhiv 10−3 10−1 10−5

MalNet-Tiny 10−4 10−2 10−4

MNIST 10−1 10−2 10−5

PATTERN 10−3 10−2 10−1

ogbg-molpcba 10−1 10−2 10−5

peptides-func 0 10−1 10−3

peptides-struct 10−3 10−5 10−1

ogbg-ppa 10−1 10−1 10−2

PascalVOC-SP 10−1 10−4 10−2

ZINC 10−1 10−5 10−3

B.3 CIFAR-10

The hyperparameter configurations for CIFAR-10 are shown in Table 14.
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Table 14: Hyperparameter Configuration for CIFAR-10.
Hyperparameter Value

Learning Rate

Learning rate 0.005
Annealing method Step
Step size 1
Learning rate reduction 0.975

Regularization

L2 Weight Decay 0.075

Optimizer

Optimizer SGD
Momentum 0.9

Training

Epochs 250

Loss Function

Coupled loss weighting 1.0
Ensemble coupled loss KL-divergence
Supervised loss Cross-entropy

C CALIBRATION SCORES FOR THE OGBG-MOLHIV

We also investigate the calibration on the ogbg-molhiv benchmark. We do not investigate the datasets
ogbg-pcba and peptides functional due to the to the large skewing of classes and missing values. The
results are included in Table 15 and Table 16. We see across different architectures that the coupling
of the ensemble improves the calibration scores, especially NLL. One notable exception is the MCE
score for the GIN ensemble model, where the coupled ensemble becomes significantly worse.

Table 15: Individual Performance on the ogbg-molhiv dataset
GCN GIN GatedGCN

Metric Decoupled Coupled Decoupled Coupled Decoupled Coupled

Accuracy 95.78±0.38 96.18±0.48 95.97±0.68 96.30±0.35 95.66±0.72 96.01±0.57

ROC-AUC .721±.0193 .731±.0218 .733±.017 .734±.015 .731±.008 .736±.007

NLL .375±.185 .230±.0662 .147±.015 .140±.012 .200±.033 .180±.023

ECE .0312±.0092 .0246±.0039 .0113±.0045 .0105±.0048 .0232±.0069 .0201±.0049

MCE .2041±.0994 .2058±.0763 .1113±.0620 .1058±.0246 .1154±.0399 .0985±.0287

Table 16: Ensemble Performance on the ogbg-molhiv dataset
GCN GIN GatedGCN

Metric Decoupled Coupled Decoupled Coupled Decoupled Coupled

Accuracy 96.66±0.33 96.60±0.20 96.11±0.66 96.39±0.33 96.03±0.62 96.12±0.56

ROC-AUC .7350±.0228 .7357±.0212 .7346±.0165 .7347±.0153 .7341±.0107 .7383±.0073

NLL .2437±.1051 .1760±.0275 .1432±.0130 .1383±.0108 .1821±.0249 .1729±.0208

ECE .0261±.0057 .0224±.0046 .0121±.0039 .0109±.0037 .0201±.0051 .0193±.0045

MCE .2587±.0793 .2617±.0564 .1585±.0760 .1933±.0852 .1566±.0576 .1533±.0251
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D ABLATION STUDIES

D.1 SOFT OR HARD LABELS FOR CLASSIFICATION

Often semi-supervised methods use some form of "hard-labeling" as the consistency target. Usually,
this is implemented as setting the ensemble target for an unlabeled datapoint to be the most likely
label, as predicted by the individual model (Filipiak et al., 2022; Tarvainen & Valpola, 2018) or the
ensemble (Platanios, 2018). This removes the underlying uncertainty information of the estimates, and
risking drastically reducing the calibration of the model by making it overconfident. The motivation
for using hard-labeling is the assumption of label smoothness, as it forces the model to pick the
same label for data points close together. We investigate this assumption in table 17. The results
on accuracy show that hard-labelling slightly benefits the accuracy, it comes at the cost of worse
calibration metrics such as ECE and MCE for the individual models. The reason for such a small
increase in accuracy can be explained by the label-smoothens assumption can be violated for graphs
and especially molecules.

Table 17: Calibration metrics on graph CIFAR-10.
Non-Ensemble Ensemble

Metric Mean Hard Label Mean Hard Label

Accuracy (%)↑ 56.0220±0.2233 56.2020±0.5595 56.7640±0.2742 57.1920±0.4124

ROC ↑ .9040±.0017 .8936±.0025 .7598±.0015 .7621±.0022

F1 ↑ .5586±.0021 .5607±.0051 .5661±.0023 .5706±.0034

ECE ↓ .1514±.0030 .3034±.0052 .4324±.0027 .4281±.0041

MCE ↓ .2307±.0030 .4252±.0141 .4324±.0027 .4281±.0041

D.2 PAIRWISE OR COUPLED ENSEMBLE

There is a strong theoretical connection between the pairwise loss between ensemble members used
in n-CPS and the coupled ensemble loss presented in this work. For a convex loss L that can be
written on the form L(x− y), then Jensen’s inequality yields

L
(
fθi(x)− Em[fθm(x)]

)
= L

(
Em[fθi(x)− fθm(x)]

)
≤ Em[L

(
fθi(x)− fθm(x)

)
=

1

M

M∑
m=1

L
(
fθi(x)− fθm(x)

)
≤ 1

M − 1

M∑
m=1

L
(
fθi(x)− fθm(x)

)
.

As fθi(x)− fθm(x) = 0 if i = m this upper bound is exactly the n-CPS loss. In general this upper
bound is not tight, but if M = 2 and L is of the form (x− y)l, e.g. the l1 or l2-loss we get

L(fθ1 − Em[fθm(x)]) =
(
fθ1 −

fθ1 + fθ2
2

)l

=
1

2l
(fθ1 − fθ2)

l.

We see that the two losses are equal up to a scaling factor that disappears if we tune the learning rate.

D.3 ROBUSTNESS OF COUPLED WEIGHTING

To investigate the robustness of the coupled weighting γ, we followed the same experimental setup
on CIFAR-10 with a Resnet18 model. The results can be seen in Figure 1. From the figure, we see
that the validation accuracy is somewhat flat as soon as γ > 1, but there is a small optimum around
γ = 6. This illustrates that at least for CIFAR-10, the choice of γ is robust.
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Figure 1: Validation accuracy as a function of the weighting of the ensemble consistency loss.

D.4 HOW TO SCHEDULE THE COUPLED LOSS

Initially, during training, the members of the ensemble models only have weak prediction strength.
This results in the ensemble prediction serving only as a weak signal guiding the models. Intuitively,
this suggests that the weighting of the coupled loss should be added or increased as training progresses.
We investigate if this is the case in the same CIFAR-10 setting. We let the ensemble coupling
weighting be a linear function of the number of epochs, and vary the starting value and slope of the
ensemble coupling weighting. The results can be seen in Figure 2, where negative coupling weights
are clipped to 0, while Figure 3 shows the un-clipped results (in the relevant area). From Figure 2, we
see that for CIFAR-10, there is no large benefit to begin coupling later compared to selecting a good
constant coupling value. Note that a delayed start corresponds to a negative start value and a positive
increase pr. epoch, as an initial coupling of -1 and a pr. epoch increase of 0.1 means it starts at epoch
10, due to clipping.

Figure 2: Validation accuracy as a function of the initial coupling weight and the increase in coupling
weights per epoch for an individual model (left) and a coupled ensemble with two members (right).
The results are averaged over 3 seeds.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 3: Validation accuracy as a function of the weighting of the ensemble consistency loss.

D.5 DIFFERENT LOSSES

We also investigated the sensitivity to different formulations of the ensemble consistency loss. The
results are shown in Table 18. We ran with the same setup for the computer vision CIFAR-10 and
two ensemble members. While the best performing loss function was KL-divergence (the same form
as the supervised loss), the "regression" functions (L1, L2, L∞) performed about the same. Only
the reversed KL-divergence, DKL(E||I), resulted in lower accuracy, at around the same level as a
decoupled model (see Table 4).

Table 18: Validation accuracy with different ensemble consistency loss functions. Results averaged
over 10 seeds. Here, I is the individual prediction and E is the ensemble consensus.

Ensemble Loss Individual Accuracy

L∞ 66.23±0.29

DKL(I||E) 66.62±0.51

DKL(E||I) 59.37±0.78

L1 66.01±0.51

L2 66.12±0.45

D.6 DIFFERENT COUPLING STRATEGIES

We investigated different strategies for coupling the unsupervised loss on QM9. This includes various
combinations of three parameters: the coupling weight, the coupling start and the coupling schedule.

Coupling weight The coupling weight parameter defines how much the unsupervised loss should
contribute to the total loss. When set to 0, only the supervised loss will be taken into account.

Coupling start The coupling start refers to when the unsupervised loss in included during training,
i.e. for the first x% of epochs, the model is only trained on the labeled data and only afterwards, the
unsupervised loss with be included via coupling. Depending on the dataset and task, it intuitively
can make sense to first let the model learn a little bit before evaluating the loss on unlabeled data.
Specifically, in regression tasks this can be the case, since the model output is not bounded, as
opposed to classification tasks. When set to 0, coupling will be used through the whole training. This
parameter is given in percentage, i.e. percentage of total training epochs after which the coupling
should start.

Coupling schedule Three different coupling schedules were tested: constant, increase and bell.
Constant refers to the the coupling weight being constant from onset until the end of training. Increase
means that the there will be a smooth ramp up until the coupling weight reaches its maximum (i.e. the
coupling weight parameter). Bell means that there is a smooth bell curve over the coupling weight,
i.e. first in increases, then decreases. Here, it will start and end at 0, and peak at a maximum which is
set via the coupling weight parameter.
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Figure 4 and Figure 5 shows the impact of different coupling strategies on the model performance,
here for target 4 and 7 of QM9 respectively. We can see that a good choice of the coupling weight
is crucial for our method to result in a significant improvement in MAE compared to the fully
supervised baseline. The optimal coupling weight seems to differ per task, as both targets have a
different optimum (0.1 for target 4 and 0.01 for target 7). A good value for the coupling start seems to
depend on the choice of coupling weight, however a trend can be observed that for the best coupling
weight options for each target, the optimal coupling start is 0, i.e. using coupling from the start of
training. The optimal choice of coupling schedule seems to depend on both of the other choices, but
in the specific case of target 4, the increase schedule led to the best performance. For target 7, the
bell schedule resulted in the best ensemble performance, while the constant schedule led to the best
individual performance.

One interesting finding here is that if we couple too strongly, meaning we are weighing the unsuper-
vised loss to high, the ensemble performance gets worse than the baseline, while at the same time the
individual members from the ensemble are outperforming the baseline. This is due to the models
collapsing, so while each individual model is better than an individual model that was not coupled,
ensembling has no significant benefit anymore.
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Figure 4: Performance (MAE) of coupled ensembles (left) and individual models from coupled
ensembles (right) for different coupling strategies, for QM9 target 4.
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Figure 5: Performance (MAE) of coupled ensembles (left) and individual models from coupled
ensembles (right) for different coupling strategies, for QM9 target 7.

D.7 EVALUATING OVERFITTING ON UNLABELED DATA

To evaluate potential overfitting to the unlabeled data, we compare the final model’s performance
on the unlabeled training set against its performance on the unseen test set. For this analysis, we
leverage our access to the ground-truth labels of the unlabeled set to compute its MAE. As presented
in Table 19, the performance is nearly identical across both datasets for all 12 QM9 targets. This
strong correspondence indicates that our method avoids overfitting to the unlabeled data used during
training. This has a significant practical benefit, as it means the model’s predictions on the entire
unlabeled set can be reliably used for downstream tasks.
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Table 19: PaiNN performance (MAE) on QM9 targets, comparing the held-out test set with the
unlabeled dataset used during training. Results are reported for 3 seeds.

Target Unit Data Individual Member Ensemble (M=4)

µ D Test .0619±.0004 .0613±.0004

Unlabeled .0597±.0005 .0596±.0005

α a30
Test .1327±.0002 .1307±.0002

Unlabeled .1271±.0003 .1264±.0003

ϵHOMO meV Test 74.3067±.2874 73.4216±.2602

Unlabeled 71.9862±.3985 71.9587±.3975

ϵLUMO meV Test 57.7005±.3890 57.2248±.3748

Unlabeled 56.8535±.2745 56.8405±.2741

∆ϵ meV Test 116.8389±.7476 115.5238±.7658

Unlabeled 114.0289±.4605 113.9998±.4630

⟨R2⟩ a20
Test .6189±.0321 .5696±.0320

Unlabeled .6011±.0306 .5643±.0303

ZPVE meV Test 2.0117±.0072 1.9884±.0077

Unlabeled 1.9892±.0065 1.9849±.0065

U0 meV Test 19.9535±.1812 19.3611±.1819

Unlabeled 19.2928±.2250 18.9534±.2191

U meV Test 20.1439±.1736 19.5466±.1586

Unlabeled 19.5014±.1851 19.1608±.1790

H meV Test 20.1217±.1890 19.5235±.1905

Unlabeled 19.4933±.2367 19.1509±.2335

G meV Test 20.2668±.2044 19.6880±.1955

Unlabeled 19.7077±.2041 19.3852±.2030

Cv
cal

mol K
Test .0450±.0003 .0440±.0004

Unlabeled .0443±.0002 .0439±.0002
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