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Abstract— The field of robotics, spanning task and motion
planning (TAMP), hierarchical reinforcement learning (HRL),
and neuro-symbolic AI, faces challenges in handling complex
long-horizon tasks with sparse rewards. Although planning
approaches show potential, scalability is limited by the lack of
accurate world models and symbolic abstractions. More reliable
data are needed to support learning these representations and
unifying fragmented subcommunities. This paper presents an
enhanced simulation platform, built on RLBench, designed to
meet the need for efficient data generation. While RLBench was
created purely for reinforcement learning (RL) research, our
simulator generates a richer variety of data required for the re-
search fields TAMP, RL, and neuro-symbolic AI, supporting the
study of symbolic and composable representations, multimodal
inputs, and hierarchical abstractions. Our platform supports
the evaluation of generalizable and interpretable world models,
addressing key data generation challenges in robotics. This can
foster collaboration between fragmented research areas and
contributes to the development of robust and scalable systems
for robotic planning.

I. INTRODUCTION

Robotics research, particularly long-horizon tasks with
sparse rewards, faces several technical challenges that com-
plicate the development of robust and scalable solutions.
End-to-end learning methods struggle to form reliable ab-
stractions and world models in these complex tasks, while
planning-based approaches, although more effective in such
scenarios, are limited by the lack of accurate symbolic
representations of real-world environments. This bottleneck
has hindered the effectiveness of planning methods and their
application to real-world tasks.

An important avenue of research focuses on learning sym-
bolic and composable abstractions that bridge different levels
of robotic tasks, from task and motion planning (TAMP) to
high-level symbolic reasoning and hierarchical reinforcement
learning (HRL). However, progress in this area has been
constrained by the scarcity of high-quality and diverse data
sets. The ability to quickly generate a large and high-quality
data set from simulated various environments and tasks with
flexible abstractions is crucial for advancing research on
abstraction learning and planning.

This paper introduces an enhanced simulation platform,
built on RLBench [1], that addresses these limitations by
significantly improving data generation capabilities. Our plat-
form, as illustrated in Figure 1, offers a richer and more
diverse set of task configurations, enabling us to explore key
challenges related to abstraction learning, task distribution,
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Fig. 1: Properties and capabilities of RLBench and the
capabilities added by our TAMP RLBench extension.

and integration of multimodal data (e.g., language, vision,
and sensorimotor data streams). The observation space is
extended by abstract observations. The action space al-
lows parameterized skills with skill and low-level controller
switching. TAMP-friendly skills are described for the task
with preconditions and effects. PDDL is available, and the
implementation of BDDL is ongoing work. World models
can be defined, and tasks can be built with specific properties.
The generated demonstrations are more varied with multiple
underlying skills. The simulator is designed to unlock new
research possibilities, allowing testing of symbolic repre-
sentations, composable models, and hierarchical abstractions
across a wide variety of robotic tasks.

Our platform aims at several challenges in TAMP and RL,
as discussed in [2], [3], [4], [5].

Sparse Rewards and Long-Horizon Tasks: Many robotic
tasks span long time horizons with sparse rewards, making
it difficult for traditional end-to-end learning methods to
effectively learn appropriate abstractions. The delayed or
unclear feedback often slows down the development of
models capable of reasoning over extended periods.

Absence of Accurate World Models: The effectiveness of
planning-based methods hinges on the availability of accurate
world models, often represented as symbolic abstractions that
encode the dynamics of the environment. Without reliable
abstractions, even advanced planning methods struggle to
perform well in real-world applications. Developing systems
that can autonomously learn these representations is a major
challenge.

Need for Generalizable Abstractions: Generalization re-
mains a significant issue in robotic planning. Abstractions
learned in one task or domain often fail to transfer to
new, unseen tasks, reducing the robustness of planning



systems. Developing composable abstractions that can be
reused across multiple domains is vital to achieve long-term
autonomy and adaptability in robotics.

Hierarchical Planning and Task Decomposition: Hierarchi-
cal approaches, which decompose tasks into subtasks operat-
ing at various levels of abstraction, are increasingly necessary
to manage the complexity of real-world tasks. However,
effectively learning and leveraging these hierarchies remains
a challenge, as systems must be able to identify appropriate
levels of abstraction and coordination.

Interpretable and Explainable Abstractions: The growing
importance of interpretable and explainable abstractions,
particularly in human-robot interaction contexts, presents
another challenge. It is critical that learned abstractions are
both understandable and verifiable by humans to ensure trust
and predictable behavior in robotic systems. This challenge
becomes even more pronounced when dealing with complex
models that incorporate natural language or other high-level
representations.

Data Scarcity and Simulation Limitations: High-quality,
diverse data sets are essential for developing generalizable
models. However, many existing robotic simulation plat-
forms lack the flexibility and richness needed to support
learning across a wide range of tasks. This limitation restricts
the scope of research, especially in tasks requiring complex
or composable abstractions.

By addressing these challenges, our enhanced simulation
platform offers a critical resource to advance the field of
robotic planning and learning, supporting the development
of more generalizable, interpretable, and scalable models1.

II. RELATED WORK

An excellent overview of TAMP, RL and other AI on
robots is provided by Kroemer et al. in their comprehensive
review of robot learning for manipulation tasks [6]. Our goal
is to develop a simulator benchmark that meets the needs
of multiple research disciplines. In this section, we explore
related publications to identify their requirements and discuss
existing simulators and benchmarks.

Task and Motion Planning (TAMP): Significant advances
in TAMP have demonstrated the potential of symbolic
representations and hierarchical models to enhance robotic
reasoning and generalize task planning across environments
through discovery [7]. A key challenge in this domain is
to develop robust world models that generalize to various
tasks and environments. For the environment, egocentric and
object-centric representations have been explored as effective
methods to enable task transfer [8], [9], [10]. To support
this, a simulator must facilitate both approaches, offering
different tasks using the same set of objects. Furthermore,
the simulator environment should have hierarchical concepts
such that visual concept learning can be done. On a real
robot, this has been shown in dialogue and human-robot
interaction, enabling abstract reasoning [11]. The needs of

1The code and instructions can be found on the github project page:
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these methods for egocentric and object-centric tasks, as well
as hierarchical concepts, emphasize that a suitable simulator
must allow for symbolic learning and task abstraction.

Reinforcement Learning (RL): RL approaches have ex-
plored learning reward functions [12], through inverse re-
inforcement learning [13], or language grounding to map
instructions to reward functions [14]. This highlights the
importance of simulators that provide predefined reward
functions for ground-truth comparison and language-driven
tasks with automatic generation of different levels of granular
language instructions. Furthermore, See-SPOT-Run (SSR)
and GLIB present models that improve RL sample efficiency
and task transfer, demonstrating the importance of models
that facilitate exploration and efficient task transfer [15],
[16]. These advancements necessitate simulators capable of
handling complex, multi-step tasks.

Skill Learning and Representation: Skill policies and their
representation have been extensively studied through various
approaches [17], [18], including probabilistic segmentation
of demonstrations [19], logical program-based policies [20],
and diffusion models [21]. The discovery and composition
of skills is an important area of focus, and particularly
when demonstrations are given as continuous trajectories,
segmentation is required. Autonomously generated skill li-
braries were achieved through the combined learning of
segmentation and movement primitives [22]. For example,
Skill Machines demonstrate how previously learned skills
can be combined logically and temporally to solve new tasks
efficiently [23]. These approaches highlight the need for
simulators capable of segmenting and labeling skill demon-
strations. With segment ground-truth labels an additional
evaluation metric is available and it allows to run ablation
studies to examine the algorithms for better skill discovery.

Transition Models: In model-based approaches, learning
accurate transition models is essential to predict the outcomes
of actions. Transition models have been learned through
relational frameworks and neuro-symbolic approaches [16],
[24], [14]. A simulator must support the learning of transition
models by providing environments that allow for object inter-
action and observable as well as hidden state changes, with
the flexibility to adjust the granularity of state transitions.

Hierarchical Planning: Research on hierarchical planning
and control has progressed significantly with the further
development of visuomotor skills as low-level controllers
[11], [25]. Approaches with task-level planners can be used
for long-range tasks, where agents’ capabilities to perform
up to 60 actions in a single task have been demonstrated [24].
There is a pressing need for a simulator that supports long-
horizon tasks and allows seamless integration of visuomotor
skills.

Hybrid State and Action Spaces: Although much re-
search has focused on discrete low-dimensional spaces, more
recent work has addressed hybrid, continuous, and high-
dimensional spaces [15], [10], [26]. To compare and evaluate
approaches, it is necessary that simulators can generate
multimodal data and provide tasks at varying levels of granu-
larity to accommodate low-dimensional to high-dimensional,
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continuous and discrete decision-making.
Benchmarks and Simulators: Several benchmarks and sim-

ulators have been proposed, including LIBERO [27], AI2-
THOR [28], and BEHAVIOR-100 [29], which are used
by the research community to evaluate task performance
in simulated and real (recorded) environments [26], [24],
[30]. However, none of these simulators offers an integrated
platform that brings together fragmented research efforts
from different fields into a single cohesive benchmark. To
address this gap, our proposed simulator enable us to com-
bine implementations and share them easily, on a platform
that can be simulated and re-created in reality, supporting
sim2real experiments, and allowing for cross-disciplinary
comparisons.

In summary, while significant progress has been made in
task and motion planning, reinforcement learning, and skill
representation, there remains a need for a comprehensive
simulator benchmark that can unify these fragmented efforts.
By supporting symbolic learning, multimodal state-action
spaces, long-horizon tasks, and skill composition, the pro-
posed simulator will provide a powerful platform to advance
research in these fields.

III. TOOL DESCRIPTION

Our enhanced simulation platform, built on RLBench,
addresses critical challenges in data generation for robotics
research by offering a flexible and scalable environment
for a wide range of tasks. The improvements focus on
increasing the diversity, volume, and quality of the available
data, supporting the exploration of research questions in
TAMP and RL. The extension is designed such that new RL
developments based on RLBench alone can be seamlessly
integrated and run with our extended RLBench version,
with the benefit that TAMP research can benefit from new
RL algorithms and vice versa, enabling synergies through
combination of developments in both research fields.

A non-exhaustive list of TAMP and RL research problems
is listed in Table I, which can be explored with the modified
version of RLBench.

Figure 2 shows how and from what demonstrations are
generated in RLBench and what is required. RLBench uti-
lizes simple moves that stop the robot almost completely
at each waypoint and successively actuate the gripper. This
limits the research basically to one skill (move, then actuate
gripper) and does not allow interesting TAMP research.
Highlighted in blue are the main elements that were changed
to allow for a more diverse set of demonstrations, with
several skills and ground-truth information needed for TAMP
research. In the following subsections, we will discuss these
elements in the context of which research they enable.

A. Comprehensive Data Generation for Long-Horizon Tasks

The simulator is designed for rapid and scalable data
generation, particularly suited for long-horizon tasks with
sparse rewards. This is inherent to RLBench and its under-
lying simulator CoppeliaSim [32]. By simulating a diverse
array of task environments with many possible variations,

Fig. 2: Swimlane of RLBench dataset generation and its main
modifications to achieve multi-skill demonstrations.

the platform enables the generation of large datasets with
diverse datapoints.

The comparison of RLBench with other simulators, and
how our extension improves on RLBench, is presented in
Table II, comparing the available data types. Our extension
for more data types is essential for learning segmentations,
abstractions, symbolic and composable representations, as
well as skill and visual encodings. This is achieved by
modification of the observation space by additional data
types, modules that interface with CoppeliaSim to get these
additional data, modules that augment the task description in
language through LLM interfaces, and modules that generate
PDDL descriptions through the task files. All this is done
with minimal impact on existing RLBench interfaces.

B. Flexible Environment Configurations for Model Training

Our platform supports highly configurable task environ-
ments, allowing dynamic modification of configurations and
variations. This flexibility enables experimentation with var-
ious symbolic representations, world models, and planning
algorithms.

We add the ability to describe the environment through
a world model. A declared world model and an initialized
task environment can be used to create a world description
through automatic instantiation. During the agent’s interac-
tion with the environment, updates of the world description
are done through assigning the correct values in the de-
scription. Instantiation and updates are achieved by reading
the state of the environment through an interface with the
simulator.

Second, given constraints on the world description, task
environment configurations, and variations can be launched
in line with the constrained world description, allowing the



TABLE I: Research problem formulations and assumptions

Research problems Approach Given Hidden (only for evaluation) Related work

Learning state and
action abstractions

SAT solver meta-problem: set of clas-
sical planning problems

[7]

Learning portable
representations

learn symbolic vocabulary
& operators and learn to
instantiate

transition data [8], [10]

Learning concepts unsupervised learning sys-
tem based on pre-trained
vision and language mod-
els

full observation space,
language annotations

[11]

Learning skill segments supervised learning temporal sequence of pro-
prioception, ground truth
skill segments/labels

none

unsupervised learning temporal sequence of pro-
prioception

ground truth skill segments/labels

Learning skill
preconditions and
effects

supervised learning full observation space,
ground truth skill
segments/labels, ground
truth preconditions and
effects

none

unsupervised learning full observation space,
ground truth skill
segments/labels

ground truth preconditions and ef-
fects

Combined learning of
skill segments and
conditions

unsupervised learning full observation space ground truth skill segments/labels,
ground truth pre- and postcondi-
tions

[19], [22]

Learning motions from
demonstrations

encoding or generative
methods (VAE, GAN)

temporal sequence of pro-
prioception

skill used to generate demo [31]

Learning behavior immitation learning full observation space,
logical-program elements

[20]

Learning compositions controller composition by
priority order

environment interaction,
full observation space

[9]

Learning task transfer RL environment interaction,
full observation space

[15]

Learning efficient
exploration

RL environment interaction,
full observation space

[16]

Learning reward
functions

RL environment interaction,
full observation space,
rewards

[12], [13]

grounding full observation space,
rewards, language
description

[14]

Learning transition
models

diverse full observation space [14], [16], [24]

TABLE II: Comparison of Data Produced by RLBench, LIBERO, AI2-THOR, and BEHAVIOR-100
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study of specific task cases.
These adaptable configurations are crucial for environment

modeling and understanding if and how learned abstractions
agree with ground-truth abstractions used during environ-
ment generation.

Robust and versatile abstractions are important to enable
their use across different environments and tasks, for gener-
alization, and to ensure that learned behavioral models using
these abstractions are robust as well. This is achieved by
world models with the ability to model and describe several
tasks and environments of RLBench.

C. Multimodal Data Collection for Abstraction Learning

The platform is designed to collect multimodal data,
including visual, linguistic, and proprioceptive data streams.
This feature is vital for modern learning approaches using
transformers [33]. The visual data are unchanged compared
to RLBench and contain RGB and depth data from sev-
eral cameras with different poses. We increase the amount
and variation of this linguistic data through modules inter-
facing with language models for task descriptions, world
descriptions, and skill descriptions. For more varied task
descriptions, at task environment creation time, an LLM can
be queried to give more similar sentences. The variation
of proprioceptive data is increased by enabling multi-skill
demonstrations, compared to RLBench’s single-skill demon-
strations. In RLBench, the action type is required and fixed
because it is needed to create the environment, and the
selection of action type equals one type of skill/movement.
To enable the use of several skills, we add to the action
module a new type of action that lets us/the agent change
the skill at run-time. This is done through a skill-parameter
and a list of parameters for the selected parameterized skill.

Apart from multimodal transformer approaches, these data
are useful for the refinement of symbolic world models,
particularly in the context of neuro-symbolic AI, where
symbolic representations are integrated with neural networks
processing sensory data. The availability of multimodal
data improves research on models that incorporate natural
language or vision-language pre-trained models, providing a
valuable resource for studying complex robotic tasks.

D. Support for Hierarchical Control and Action Abstractions

The simulator is optimized for hierarchical task learning,
allowing the investigation of action and state abstractions at
multiple levels of granularity. This capability facilitates the
study of the interaction between low-level motor control and
high-level symbolic planning, supporting the development
of hierarchical reinforcement learning methods and hybrid
controllers.

With the additional type of action with skill-parameter and
an associated skill description in PDDL format, as well as
a world model-based world description, a planner or high-
level controller can be used for skill and sub-goal selection.
This selection is forwarded through the skill-parameter of
the action type, and through the skill’s list of parameters an
available low-level controller can be selected.

Second, the observation space of our RLBench extension
allows for a mix of high-level/abstract observations of the
environment’s state, as well as low-level/raw observations,
such as image or sensor data. This is achieved by extending
the configuration of the available observation space and
additional modules to extract abstract information. Thus, it is
possible to explore how different levels of abstraction affect
RL algorithms.

Overall, our enhanced simulator provides a critical re-
source for advancing research in robotic planning and
learning, offering comprehensive data generation, flexible
configurations, and support for multimodal and hierarchical
abstraction learning. These capabilities enable the research
community to push the boundaries of current robotic systems
and explore new frontiers in planning and abstraction.

IV. RESULTS

The results section presents the findings of our experi-
ments to substantiate our claims of the tool description and
its properties. We identified the following key areas.

A. Data compatibility with related work methods

As shown in Table I, related works in the field of TAMP
and RL examine different research problems and use differ-
ent types of data. Our extended RLBench version provides
the data types shown in Table II, which covers most of the
related work discussed in Section II. The implementation
of BDDL is ongoing work. To try out an existing method
and its algorithm implementation, one has to pre-process the
extended RLBench data to be in a format to be consumed
by the algorithm.

B. Segmentation

Some related works, such as [19], [33], [34] require or
learn segmented trajectories. In Figure 3 we show the seg-
mentation method2 for the functioning of [33], [34], which
defines keyframes at points in time when the arm is stopped
or the gripper changes states (open/closed). In contrast to the
single-skill demos (move, then actuate gripper) used in these
works, the shown demonstration was generated with two
parameterized skills; one of which moves the robot smoothly,
without stopping, through an approach waypoint. Since the
other approaches assume simple full-stop moves between
waypoints, they would fail by crashing into the object at an
angle, due to the wrong approach direction. This approach
only works on demonstrations that have these properties,
which is in the above cases conveniently generated through
the demonstration generating algorithm. This approach will
fail if the skills do not require stopping the arm, do not rely
on a motion planner, and are generated through other means
(e.g., by human demonstrations). Our version of RLBench
allows for ground truth segmentation by labeling trajectories
at demo generation time, and enables learning trajectory
segmentation through supervised means, or for evaluation of
unsupervised learned segmentation models, as shown in [19].

2https://github.com/stepjam/ARM/blob/main/arm/demo_loading_utils.py#L21



Fig. 3: Comparison between keyframe discovery and ground
truth skill segments when multiple types of skills are present
in one demonstration. Norm of all joint velocities (blue),
showing stops of the robot near the x-axis. Keyframes
discovered (red) by the related work method [34], assuming
a single specific skill. Undetected waypoint (orange) for
approach required for success. Boxes showing ground-truth
segments of pick skill (green) and retraction (red).

C. TAMP modifications maintain RL algorithm applicability

To enable the synergies between RL and TAMP devel-
opments, we demonstrate that existing RL algorithms work
on the extended RLBench version and show that the version
does not break developments based purely on RLBench. We
run RL algorithms [35] in the gym environment and the
C2F-ARM algorithm [34] on the extended demonstration
data. Both algorithms work on the modified data without any
alterations. This is trivial since the python objects Demo and
Observation contain all original RLBench data that are
read by these methods, while the additional data is ignored,
see an example Observation instance in Listing 1.

vars(demo._observations[0])

{’left_shoulder_rgb’: None,
’left_shoulder_depth’: None,
’left_shoulder_mask’: None,
’left_shoulder_point_cloud’: None,

.

.

.
’joint_velocities’: array([ 7.62939453e-05, ...]),
’joint_positions’: array([ 4.80415110e-07, ...]),
’joint_forces’: array([-2.20681336e-02, ...]),
’gripper_open’: 1.0,
’gripper_pose’: array([ 2.78499901e-01, ...]),
’gripper_matrix’: array([[-9.70800757e-01, ...]]),
’gripper_joint_positions’: array([0.03999685, ...]),
’gripper_touch_forces’: array([ 1.78904529e-03, ...]),
’task_low_dim_state’: array([ 2.79052228e-01, ...]),
’misc’: {’left_shoulder_camera_extrinsics’: array([[

1.73648179e-01, ...]]),
’left_shoulder_camera_intrinsics’: array

([[-175.8385604, ...]]),
’left_shoulder_camera_near’: 0.00999999977...,
’left_shoulder_camera_far’: 3.200000047683716,

.

.

.
}

Listing 1: Demonstration data.

D. Simulation to reality

To apply in-simulation-learned policies on the real robot,
also known as sim2real, the data and setup need to be aligned
between simulation and reality. In Figure 4 we show visual
examples of the alignment of simulated and real vision data.
The cameras were calibrated and their poses (position and
orientation) determined through a developed workflow [36].
This allows us to get visual data with the same perspective
and distance as in the standard RLBench environment, and
makes re-training of pre-trained models done on RLBench
unnecessary. The values of the Intel RealSense depth data
stream are scaled to match the range of RLBench.

The proprioceptive data from the simulated robot, gener-
ated by CoppeliaSim’s physics engine, and the proprioceptive
data of the real robot are sufficiently matching in position
and velocity. Torque readings show different characteristics,
but can be mitigated through advanced sim2real algorithms
[37], which augment simulated torque readings to make them
appear more realistic during simulated training. Torque is
inherently difficult to match since each real robot differs in
torque behavior due to a plethora of environmental factors
(version, age, temperature/friction, mount). If the use of
torque observations is required to solve the task at hand,
then realistic noise during learning in simulation is a good
option to allow for transfer of behavior.

V. DISCUSSION

Our simulator provides a powerful tool to address several
key challenges in robotic planning and abstraction learning.
By generating large and diverse datasets, the platform fa-
cilitates exploration of critical objectives such as soundness,
completeness, and planning efficiency, as possible goals for
abstraction learning. Its flexibility enables experimentation
with various levels of abstraction across different task dis-
tributions, supporting the development of effective planning
strategies.

In addition, the simulator’s multimodal data capabili-
ties, combined with integration with large language models
(LLMs) and vision-language models (VLMs), facilitate the
creation of interpretable and explainable abstractions. This
feature allows to study how symbolic representations can
be communicated effectively to humans. Furthermore, the
compatibility of the platform with pre-trained models enables
us to leverage these models for abstraction learning.

Overall, the simulator provides a flexible and scalable
environment to tackle critical challenges such as developing
generalizable abstractions, improving hierarchical planning,
and enhancing neuro-symbolic AI. Its ability to simulate
diverse tasks and environments supports the development
of robust world models essential for long-term autonomy in
robotics.

VI. CONCLUSIONS

This paper presents an enhanced simulation platform that
significantly improves data generation for robotics research,
with particular relevance to task and motion planning, hier-
archical reinforcement learning, and neuro-symbolic AI. By



simulated setup real setup

(a) Poses of cameras in simu-
lation

(b) Poses of cameras in reality

(c) RGB image of wrist cam-
era in simulation

(d) RGB image of wrist cam-
era in reality

(e) Depth image of wrist cam-
era in simulation

(f) Depth image of wrist cam-
era in reality

Fig. 4: Comparison of RLBench setup and its replication in
reality.

providing a rich, flexible, and scalable data source, the sim-
ulator enables the tackling of critical questions surrounding
the learning of symbolic and composable representations for
robotic planning.

The platform addresses key challenges in robotics, such as
sparse rewards, long-horizon tasks, and the need for general-
izable and interpretable abstractions, pushing the boundaries
of current robotic systems. Its advanced data generation capa-
bilities lay the foundation for developing robust, scalable, and
autonomous robotics, making it a vital tool to advance the
field and to foster collaboration between fragmented research
areas. This, in turn, helps bridge the gap between learning
and planning approaches.

Ongoing work includes improving trajectory segmentation

methods to enable skill learning, including preconditions
and effects, improvements to the extension to enable more
TAMP developments to be transferred (such as BDDL),
and the transfer of in-simulation learned policies to transfer
to the real robot setup. Future work is the exploration of
combinations of RL and TAMP algorithms in one system to
extend our existing efforts [38], and learning skill-primitive
representations through encoding and generative methods
[31].
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