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ABSTRACT

We introduce SatBench, a realistic and flexible benchmark for coordinated satellite
tasking in Earth observation (EO) missions. In this setting, multiple satellites
potentially in different orbits must coordinate to capture images of ground targets
under time constraints. While real-world satellites involve complex sensing and
control dynamics, SatBench abstracts these into an agent-based learning frame-
work with a standardized, user-friendly interface. This enables the application
of reinforcement learning (RL) methods while preserving critical realism in the
environment. SatBench supports a diverse set of configurable scenarios that capture
varying EO requirements, including different satellite formations, target distribu-
tions, and prioritization schemes. We evaluate representative multi-agent rein-
forcement learning (MARL) algorithms across these scenarios, highlighting key
challenges such as coordination under temporal coupling and scalability. SatBench
aims to foster progress in both autonomous satellite coordination and the devel-
opment of more robust, generalizable MARL methods. SatBench is available at
https://anonymous.4open.science/r/SatBench-43DB.

1 INTRODUCTION

Modern satellite constellations are transforming the way we observe and monitor Earth’s surface,
with significant implications for disaster management (Santilli et al., 2018), agriculture (Sciddurlo
et al., 2021), and urban planning (Song et al., 2025). The emergence of autonomous, coordinated
constellations, comprising large fleets of Earth observation (EO) satellites operated by government and
commercial actors such as SpaceX (McDowell, 2020) and BlackSky (Wagner et al., 2024), introduces
new challenges for sequential decision-making under uncertainty, with the goal of achieving near
real-time monitoring over dynamic regions of interest.

Manually designing coordination strategies for modern satellite constellations is increasingly im-
practical (Zilberstein et al., 2025). The tight coupling between sensing and mobility across multiple
satellites introduces coordination challenges that are difficult to solve using fixed rules or expert-
crafted heuristics. Multi-agent reinforcement learning (MARL) offers a compelling solution (Saeed
et al., 2024; Holder et al., 2025), where each satellite is modeled as an agent that learns a decentralized
coordination policy. These agents can adapt to dynamic EO tasks, make long-term decisions under
partial observability, and respond to the behavior of other agents.

Conversely, satellite EO tasking also serves as a rich testbed for advancing MARL research. Many
existing MARL benchmarks, such as MPE (Lowe et al., 2017), SMAC (Samvelyan et al., 2019), and
MAMuJoCo (Peng et al., 2020), operate in stylized environments with simplified dynamics and coor-
dination structures. In contrast, real-world satellite tasking scenarios involve high-dimensional action
and observation spaces, delayed and sparse rewards, and geospatially grounded constraints (Wang
et al., 2021c; Saeed et al., 2024). These complexities introduce new challenges into the current
MARL algorithm design with strong robustness and higher scalability.

In this work, we introduce SatBench, a realistic and flexible benchmark for coordinated satellite
tasking designed for MARL, as shown in Figure 1. SatBench simulates EO missions involving
multiple satellites in diverse orbits and configurations, operating under partial observability with large
yet constrained action spaces. It provides a standardized, easy-to-use interface for agent-environment
interaction, together with configurable environments that capture a wide range of EO requirements,
including variations in satellite formations, target distributions, and priority levels. This design allows
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Figure 1: SatBench overview. The left panel illustrates EO satellites operating in coordinated
formations over the Earth’s surface. The right panel highlights the core components of SatBench:
configurable satellite formations, target distributions, and a standardized API. These components
enable the definition of diverse task scenarios and support seamless integration with MARL libraries
for training and evaluation.

users to readily develop MARL frameworks for satellite EO missions without requiring specialized
domain expertise, while still benefiting from the physical realism preserved by SatBench.

The contributions of this benchmark work are three-fold. First, we introduce a realistic multi-
satellite simulator that models the physical dynamics and constraints relevant to EO missions, enabling
coordination among satellites as a decentralized multi-agent system. Second, we design a suite of
configurable, realistic EO mission scenarios that support structured evaluation. Third, we benchmark
a range of MARL algorithms, identifying performance trends and coordination behaviors.

The remainder of this paper is organized as follows. Sec. 2 reviews related work on satellite simulation
platforms and prior approaches to planning and learning for autonomous satellite operations. Sec. 3
describes the SatBench design, including its four-layer architecture of orbit environment, satellite
agents, API, and MARL with a visualization interface. Sec. 4 reports experiments across six scenarios
with task setups, results, and coordination findings. Sec. 5 and Sec. 6 discuss future directions,
potential impacts, and conclusions.

2 RELATED WORK

This section reviews prior work at the intersection of satellite simulation and task planning. We group
the related literature into two categories: (1) existing simulators on space and satellite, and (2) diverse
planning and learning frameworks that have been developed for satellite tasking.

2.1 SATELLITE SIMULATION PLATFORMS FOR SPACE MISSIONS

Simulation platforms play a central role in the development of satellite autonomy, evolving from
simplified orbital tools to modular, physically grounded environments. In Table 1, we categorize the
progression of these simulators across three dimensions: Orbital dynamics, Satellite modeling, and
Coordination features.
Orbital dynamics. Early simulators such as EPOS (Abramson et al., 2002) enabled initial testing of
mission planning logic but relied on static or kinematic orbital representations. SGP4 (Vallado et al.,
2006) introduced realistic orbital propagation based on two-line elements, allowing for physically
meaningful trajectory modeling. Later simulators, including Orekit (Maisonobe et al., 2010) and
GMAT (Hughes et al., 2014), incorporated configurable propagators and perturbation models. More
recent platforms such as Basilisk (Kenneally et al., 2020), STK (Wall, 2024) and LEOADCS (El wafi
et al., 2024) provide high-fidelity orbital dynamics suitable for closed-loop simulations and onboard
autonomy development.
Satellite modeling. In parallel, platform-level modeling has advanced from simple abstractions to rich
dynamic representations. Early simulators like Orekit (Maisonobe et al., 2010) and GMAT (Hughes
et al., 2014) support basic satellite properties such as attitude modes and ground station visibility.
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Table 1: Comparison of satellite simulation platforms across orbital dynamics, satellite modeling, and
coordination features. SatBench supports all categories, including formation control and configurable
target distributions.

Simulator Orbital Dynamics Satellite Modeling Coordination Features
Multi-Orbit Physical Attr. Multi-Sat Sat-Dynamics Formation Target Dist. Target Priority

EPOS (Abramson et al., 2002) ✗ ✗ ✓ Simplified ✗ Sparse ✓
SGP4 (Vallado et al., 2006) ✓ ✓ — — — — —
Orekit (Maisonobe et al., 2010) ✗ ✓ ✗ Moderate ✗ Sparse ✗
GMAT (Hughes et al., 2014) ✓ ✓ ✓ Moderate ✗ Sparse ✗
DARTS (Jain, 2020) ✓ ✓ ✓ Realistic Limited — —
Basilisk (Kenneally et al., 2020) ✓ ✓ ✓ Realistic Limited Sparse ✓
STK (Wall, 2024) ✓ ✓ ✓ Realistic Limited Sparse ✓
LEOADCS (El wafi et al., 2024) ✗ ✓ ✗ Realistic ✗ — —
SatBench (Ours, 2025) ✓ ✓ ✓ Realistic ✓ Sparse & Dense ✓

DARTS (Jain, 2020), Basilisk (Kenneally et al., 2020) and STK (Wall, 2024) expanded this to include
realistic actuator dynamics, energy management, and sensor control. LEOADCS (El wafi et al., 2024)
offers similar physical fidelity in a computationally efficient package for single-satellite simulations.
However, few platforms offer standardized interfaces for interactive or learning-driven control.
Coordination features. Coordinated satellite operations, such as collaborative imaging, forma-
tion control, and multi-target scheduling, require simulation features beyond individual dynamics.
EPOS (Abramson et al., 2002) provided early support for multi-satellite testing with prioritized
targets, though lacking physical realism. DARTS (Jain, 2020) added support for event-driven tasking
and limited formation operations. Basilisk (Kenneally et al., 2020) and STK (Wall, 2024) enable
scripted multi-satellite simulations, but lack native abstractions for complex task environments. These
limitations pose challenges for benchmarking learning-based autonomy in coordination settings.
To address these gaps, our SatBench provides a configurable space simulation platform that supports
multi-satellite physical realism alongside features essential for learning-based coordination. It
integrates accurate orbital and satellite dynamics with abstractions for multi-satellite formations,
dense target fields, and prioritized tasking. SatBench also exposes a structured interaction interface,
enabling researchers to evaluate autonomous decision-making strategies in simulation environments
that reflect real-world complexity.

2.2 PLANNING AND LEARNING METHODS FOR SATELLITE TASKING

Effective satellite autonomy relies not only on simulation fidelity but also on robust strategies for
dynamic tasking with various targets. Here, we review the evolution of decision-making algorithms,
from classical planning techniques to recent advances in learning-based coordination.
Traditional planning methods. Classical approaches to satellite tasking have relied on rule-based
or optimization-based scheduling, particularly for single-satellite and static scenarios. For example,
Lin et al. (2005) applied heuristic optimization to daily target imaging schedules, while Liang et al.
(2021) used precedence rules to manage activity planning under resource constraints. To better
handle dynamic conditions, Han et al. (2022) proposed a simulated annealing-based heuristic to
prioritize high-value targets with minimal disruption. These methods are interpretable and efficient in
deterministic environments, but they struggle to scale or adapt in uncertain, dynamic multi-satellite
contexts. Nevertheless, they demonstrate the potential of automated heuristics as substitutes for fully
human-crafted rules.
RL approaches. A range of data-driven methods have been explored to support adaptive satellite
tasking and operation, including supervised learning and imitation learning techniques (Shirobokov
et al., 2021; Ashith Shyam et al., 2021). Among learning-based methods, reinforcement learning
(RL) has gained particular attention due to its ability to learn adaptive policies through trial-and-
error interaction with the space environment. Early RL efforts on satellite operations focused on
maximizing task completion under simplified dynamics (Chen et al., 2019; Huang et al., 2021),
whereas more recent work incorporates realistic operation demands, such as power, actuator, and
sensor (Herrmann & Schaub, 2023). RL has also been extended to multi-satellite problems (Lin
et al., 2024), and dynamic planning techniques have enabled satellites to adapt to changing task target
priorities in near real time (Li et al., 2025). These advances demonstrate RL’s potential as a flexible
approach for autonomous decision-making in complex space environments.
However, most existing RL-based approaches still focus on operation-level policy optimization with
oversimplified dynamics, and rarely consider how policies can be optimized when inter-satellite
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Figure 2: SatBench rollout loop: agents act based on local observations, and the environment
simulates orbital dynamics, applies actions, and returns rewards for valid imaging.

cooperation is critical to mission success. To this end, multi-agent reinforcement learning (MARL)
offers a promising framework, enabling distributed policies and cooperative behavior among satellites
(Saeed et al., 2024; Lei et al., 2025). Realizing this potential requires realistic and extensible
benchmarks, which motivates the design of SatBench.

3 SATBENCH: A BENCHMARK FOR SATELLITE COORDINATION VIA MARL

To address the identified gaps above, we design SatBench, a MARL environment modeling EO task-
ing as a cooperative decision-making problem. SatBench provides a physically grounded simulation
platform that captures the structure and difficulty of realistic EO missions while offering a flexible
API for MARL integration. SatBench consists of four modular layers: (1) a space environment
that simulates orbital motion, satellite constraints, and ground target visibility; (2) an agent
modeling layer that defines the observation, action, and reward interface for each satellite; (3)
a standardized API layer that wraps the environment using PettingZoo (Terry et al., 2021)
and Gymnasium (Towers et al., 2024) conventions; and (4) plug-and-play compatibility
with widely used MARL libraries. The remainder of this section introduces these components in turn.

3.1 SPACE ENVIRONMENT: MODELING ORBITAL TASKING CONSTRAINTS

SatBench simulates the physical substrate in which satellite coordination decisions unfold. It models
a number of EO satellites tasked with imaging fixed ground targets under realistic physical constraints,
including orbital trajectories, satellite dynamics, and target sensing range.
Orbit. Each satellite follows a deterministic trajectory defined by Classical Orbital Elements
(COEs) (Stojanovski & Savransky, 2024), a standard 6-parameter representation that enables precise
and flexible orbit propagation. This formulation supports a wide range of constellation configurations,
including sun-synchronous, polar, and inclined orbits through direct control of orbital geometry.
Compared to simplified alternatives like TLE+SGP4 (Vallado et al., 2006), which are optimized for
short-term orbit prediction, COE-based propagation provides greater long-term numerical stability
and tunability, making it more suitable for simulating realistic, temporally extended tasking scenarios.
Satellite. In SatBench, all satellites are equipped with a 3-degree-of-freedom (3-DoF) attitude control
model, allowing them to steer their sensors using pitch, yaw, and roll commands (Crisp et al.,
2018). These motions are subject to actuator dynamics that constrain angular velocity, acceleration,
and control frequency. As a result, pointing changes occur gradually, reflecting the agility limits of
real EO satellites such as Planet’s FLOCK series (Foster et al., 2017). The left panel of Figure 2
illustrates this control process and its implications for sensing coverage. Satellites must continuously
adjust their attitude to bring targets into view, often under motion constraints and coordination
demands with other satellites. When the number of satellites exceeds two, their spatial configuration
is also considered, a setting referred to as formation flying (Thangavel et al., 2024). SatBench models
three commonly used formations: (1) Clustered, where all satellites share the same orbit and remain
in close proximity; (2) Trailing, where satellites are spaced at greater distances along the same orbit,
following one another; and (3) Constellation, where satellites are distributed across multiple orbits to
achieve global coverage.
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Target. A target is defined as a fixed ground location on the Earth’s surface, specified by latitude
and longitude, with optional attributes such as priority. In real-world EO missions, a target
corresponds to an area of interest (AoI) with high value that requires monitoring (e.g., high-risk
environmental zones (Zhang et al., 2022)). The distribution of targets can be configured from sparse
to dense: sparse layouts reflect broad regional coverage, while dense layouts create local contention
and coordination pressure (Gu et al., 2022).
The details of orbital setup, satellite dynamics, and target modeling can be found in Appendix A.

3.2 AGENT MODELING LAYER: OBSERVATION, ACTION, AND REWARD

SatBench models each satellite as an autonomous agent that perceives its local environment, makes
control decisions, and receives feedback based on mission outcomes. As shown in Figure 2 right
panel, the agent’s behavior is shaped by three core components: its observations, the set of available
actions, and the reward signals tied to successful EO tasking execution for capturing ground targets.
These components reflect both the physical constraints of space operations and the decision-making
challenges of coordinated satellite tasking, forming the foundation for the following learning pipelines.
Observation. Each agent observes a compact, task-relevant state composed of (i) its own satellite
status, including orbital position, attitude, and angular velocity, and (ii) a filtered list of observable
targets that fall within its sensing range. Visibility is determined by geometric constraints such as the
minimum elevation angle, which align with real-world EO tasks constraints (Lv et al., 2022).
Action. The agent’s action is defined as a three-dimensional real-time control vector, specifying
the attitude adjustments applied to its current orientation. The rate of change along each axis is
bounded by the satellite’s physical constraint, known as the slew rate (Gorr et al., 2023). By default
in SatBench, all satellites are limited to a maximum slew rate of 0.25◦ per second per axis, consistent
with typical real-world satellite capabilities (Petermann et al., 2025). For example, if the current
orientation is [3◦, 5◦, 1◦] and the agent outputs an action of [0.25◦, 0.25◦,−0.25◦] for 4 seconds, the
accumulated orientation change will be [1◦, 1◦,−1◦], resulting in a new orientation of [4◦, 6◦, 0◦].
Reward. Rewards are granted only for successful, non-redundant imaging of valid targets. To qualify,
a target must (i) be physically visible from the satellite’s current orbit, (ii) lie within the field of view
given the current attitude, and (iii) not have already been imaged by another agent. The reward is
re-weighted by target priority, encouraging intelligent selection and inter-agent deconfliction.
We provide the detailed mathematical definitions and implementation of the agent-based observation,
action, and reward design in Appendix B.

3.3 STANDARDIZED API AND INTEGRATION FOR MARL RESEARCH

SatBench supports MARL through a standardized interface that allows researchers to run algorithms
with minimal setup effort. The environment is designed to work with existing MARL toolkits, while
retaining the flexibility for customizing the learning pipeline.
API compatibility. SatBench adheres to the PettingZoo (Terry et al., 2021) and Gymnasium (Towers
et al., 2024) interfaces for agent-environment interaction in both single-agent and multi-agent settings.
This standardization enables smooth integration into RL and MARL pipelines without the need for
additional wrappers or conversion code. For MARL, the environment supports commonly used
training features such as Centralized Training with Decentralized Execution (CTDE) (Schmidt et al.,
2022), sequential and parallel agent rollouts, and parameter sharing across agents.
Training. SatBench is compatible with established MARL frameworks, including PyMARL
(Samvelyan et al., 2019), EPyMARL (Papoudakis et al., 2021), and MARLlib (Hu et al., 2023). Users
can launch training runs directly from the command line using built-in scenario configurations. The
example below shows how to train a MAPPO (Yu et al., 2022) policy on a predefined task using
EPyMARL:

$ python src/main.py --config=mappo --env-config=scenario1

Details on computing resources, hyperparameter settings, and additional training configurations are
provided in Appendix C.
Usage example. SatBench can be easily instantiated for standalone evaluation or integration into
larger training pipelines. The following code demonstrates how to initialize the environment and run
a full episode rollout. Setting render=True will generate and save a visualization of the trajectory.
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from SatBenchMaps import make_satbench_env
env = make_satbench_env(map_name="scenario1",render=True)
env.reset()
done = False
while not done:

action = env.action_space.sample()
observation, reward, termination, truncation, info = env.step(action)
if terminated or truncated:

done = True

Customization and modular design. SatBench is built with a modular structure that separates the
learning interface, simulation backend, and visualization logic. This design makes it easy to extend or
replace components without modifying core files. Users can customize reward functions, observation
spaces, environment arguments, or policy architectures through clean and isolated interfaces. This
allows for rapid prototyping while preserving the integrity of the core environment, supporting both
reproducible research and tailored experimentation. We illustrate how to design customized scenarios
for future MARL research in Appendix D.
Source code and guide. We provide step-by-step instructions to install SatBench and run standard
MARL experiments, along with the source code, in Appendix E.

4 EXPERIMENTS

To assess the utility of SatBench as both a benchmarking tool and a research testbed, we evaluate
representative MARL algorithms across a suite of diverse satellite tasking scenarios. These experi-
ments are carefully designed to probe the strengths and limitations of learning-based coordination in
environments that closely mirror real-world conditions. By varying the number of satellites, orbital
configurations, and spatial layouts of imaging targets, we aim to establish baseline performance and
expose coordination challenges critical for advancing robust and generalizable MARL methods.

4.1 SCENARIO

To systematically evaluate coordination under varying spatial and temporal constraints, SatBench
introduces six benchmark scenarios (see Table 2). Scenarios 1-4 are inspired by real-world satellite
formation missions developed by the European Space Agency (Liu & Zhang, 2018; Shestov et al.,
2021), while Scenarios 5-6 model constellations with more satellites, motivated by commercial
Earth observation systems such as DigitalGlobe and Airbus (Denis et al., 2017). Collectively, these
scenarios are designed to capture a progressive increase in Earth observation tasking complexity
by varying the number of orbits, formation geometries, target distributions, and the total number
of satellites and imaging tasks, thereby enabling rigorous evaluation of MARL algorithms under
realistic and challenging coordination settings.

To be more specific, Scenarios 1 and 2 simulate close-proximity satellite operations within a single
orbit, representing low-complexity cluster formations. Scenario 1 involves two satellites and 60
sparsely distributed targets, serving as a baseline with minimal sensing conflicts (Chen et al., 2019).
Scenario 2 increases the target density to 70, requiring tighter coordination to avoid redundant
observations and to manage limited actuation resources more effectively. Scenarios 3 and 4 employ a
trailing formation with satellites allocated across two different orbits. Compared to Scenarios 1 and
2, these settings introduce spatial and temporal separation, shifting the coordination challenge from
local interference avoidance to long-horizon planning (Wu et al., 2022). The number of targets is

Table 2: Six benchmark scenarios’ configuration with diverse orbit number, satellite allocation, and
target distribution settings.
Scenario Num. of Orbits Num. of Satellites Formation Type Num. of Targets Target Distribution
Scenario 1 (1Orb_2Sat_Cl_60Tgt_Sp) 1 2 Cluster 60 Sparse
Scenario 2 (1Orb_2Sat_Cl_70Tgt_Dn) 1 2 Cluster 70 Dense
Scenario 3 (2Orb_4Sat_Tr_120Tgt_Sp) 2 4 Trailing 120 Sparse
Scenario 4 (2Orb_4Sat_Tr_140Tgt_Dn) 2 4 Trailing 140 Dense
Scenario 5 (3Orb_6Sat_Cn_240Tgt_Sp) 3 6 Constellation 240 Sparse
Scenario 6 (6Orb_6Sat_Cn_280Tgt_Dn) 6 6 Constellation 280 Dense
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Figure 3: MARL training performance of IPPO, MAPPO, and HAPPO across SatBench scenarios
(a)-(f), measured by cumulative reward. Solid lines indicate the mean reward over 4 random seeds,
and shaded regions represent the standard deviation.

also increased, creating more overlap and requiring stronger inter-satellite cooperation. Scenarios
5 and 6 model the most realistic and most challenging systems: all satellites are distributed across
more than three orbits, forming a large constellation (Chatterjee & Tharmarasa, 2022), with over
200 ground targets that are either sparsely or densely distributed and observable by six satellites.
These scenarios reflect real-world commercial Earth observation networks that demand wide-area
coverage. For MARL, they are the most challenging, as the observation tasks are more complex,
while opportunities for inter-satellite coordination are urgently required during the mission.

4.2 RESULTS AND ANALYSIS

We evaluate representative MARL algorithms, such as IPPO (de Witt et al., 2020), MAPPO (Yu
et al., 2022), and HAPPO (Kuba et al., 2021b), across 6 SatBench scenarios, each trained for 25
million steps. Figure 3 presents MARL performance through the cumulative rewards per episode,
which correspond to the total value of successfully imaged targets by satellites. To complement
this metric, we also report the target completion rate (see Table 3), defined as the percentage of
targets that are captured at least once by the end of an episode. The cumulative reward reflects
each algorithm’s ability to coordinate satellites in prioritizing high-value targets, while the target
completion rate provides insight into overall coverage and coordination efficiency across varying
scenario complexities.

Across all scenarios reported in Table 3, MAPPO consistently achieves the highest final task com-
pletion performance, benefiting from its centralized critic that facilitates coordinated task allocation.
IPPO performs moderately, as its decentralized structure limits inter-agent awareness and coordination.
HAPPO demonstrates rapid early learning but fails to maintain performance in later stages, particu-
larly in complex settings. To further understand the observed performance differences, we analyse
results through the lens of two core structural factors: satellite formation and target distribution.

Role of satellite formation. Different satellite formations demand varying levels of cooperation.
Intuitively, satellites within the same cluster require stronger coordination skills, while those farther
apart, such as in trailing configurations, require less. Our experimental results confirm this assumption:
in clustered formations (Scenarios 1-2), explicit coordination is necessary due to overlapping FOVs.
Here, MAPPO performs best with centralized training, IPPO underperforms due to limited inter-
agent awareness, and HAPPO learns quickly at first but soon plateaus, indicating inefficiency in
tightly coupled settings. In contrast, in trailing formations (Scenarios 3-4), where overlap between
satellites is greatly reduced, the performance gap between MAPPO and the other algorithms narrows.
Finally, in constellation formations (Scenarios 5-6), the wide separation minimizes coordination
needs, making MAPPO and IPPO comparable.
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Table 3: MARL training performance measured by task completion rate (%) across 6 SatBench sce-
narios. All values are reported as mean ± standard deviation over 4 random seeds. Best performance
in each scenario is highlighted in bold.

Scenario Algorithm Training Timesteps

1M 5M 10M 15M 25M

Scenario 1
IPPO 5.12% ± 1.83% 11.07% ± 1.25% 40.16% ± 17.42% 62.41% ± 5.91% 77.33% ± 1.12%
MAPPO 5.23% ± 1.61% 13.14% ± 3.93% 31.62% ± 9.73% 67.53% ± 4.31% 83.42% ± 1.31%
HAPPO 3.65% ± 0.92% 23.08% ± 8.21% 41.35% ± 1.92% 46.82% ± 3.01% 49.02% ± 2.24%

Scenario 2
IPPO 5.01% ± 1.52% 10.93% ± 3.74% 24.71% ± 5.31% 57.93% ± 4.03% 59.61% ± 8.03%
MAPPO 4.52% ± 1.72% 14.53% ± 5.01% 22.12% ± 3.43% 64.31% ± 8.43% 73.42% ± 3.12%
HAPPO 3.41% ± 0.71% 15.94% ± 4.81% 39.13% ± 4.62% 42.81% ± 3.83% 44.53% ± 3.73%

Scenario 3
IPPO 9.33% ± 2.43% 16.53% ± 1.94% 23.63% ± 1.84% 35.72% ± 9.01% 65.41% ± 1.03%
MAPPO 8.79% ± 0.82% 14.91% ± 2.21% 19.44% ± 2.63% 30.01% ± 11.43% 66.21% ± 0.63%
HAPPO 8.22% ± 0.53% 21.73% ± 4.14% 41.51% ± 5.91% 46.19% ± 3.71% 56.23% ± 4.03%

Scenario 4
IPPO 8.53% ± 2.31% 17.63% ± 2.82% 21.64% ± 2.34% 30.71% ± 7.34% 59.82% ± 1.71%
MAPPO 10.02% ± 1.53% 14.44% ± 1.54% 20.91% ± 2.83% 22.41% ± 12.21% 61.83% ± 0.52%
HAPPO 7.72% ± 0.73% 21.73% ± 4.31% 33.41% ± 4.03% 39.12% ± 2.51% 44.72% ± 2.03%

Scenario 5
IPPO 8.91% ± 2.43% 10.81% ± 0.05% 19.63% ± 1.63% 26.53% ± 5.51% 51.93% ± 3.92%
MAPPO 9.31% ± 0.62% 19.52% ± 0.82% 20.24% ± 2.21% 38.12% ± 10.42% 55.41% ± 0.22%
HAPPO 7.23% ± 2.41% 20.21% ± 5.01% 31.63% ± 6.42% 37.21% ± 3.81% 36.34% ± 9.52%

Scenario 6
IPPO 8.34% ± 1.32% 22.71% ± 1.82% 39.12% ± 8.23% 59.43% ± 1.91% 62.31% ± 1.03%
MAPPO 10.01% ± 5.03% 17.72% ± 5.92% 34.63% ± 9.73% 58.12% ± 4.23% 62.61% ± 1.03%
HAPPO 8.41% ± 0.92% 19.43% ± 2.41% 25.23% ± 0.93% 27.91% ± 0.91% 28.73% ± 1.13%

Impact of target distribution. Target density significantly affects coordination complexity. In sparse
scenarios (1, 3, and 5), lower contention allows decentralized methods like IPPO to perform well.
In contrast, dense scenarios (2, 4, and 6) lead to more overlapping observations, where MAPPO
consistently outperforms others by optimizing coverage and reducing redundancy. An exception is
Scenario 6, where wide satellite separation limits interference despite high density, showing that
formation geometry can outweigh target density in driving coordination needs.

Illustrative example. We visualize the best coordination performance, achieved by MAPPO in
Scenario 1 in Figure 4. This snapshot illustrates how SatBench supports emergent coordination in
realistic satellite tasking. Early in training (5M steps), satellites misalign with targets; by 15M steps,
they begin orienting toward observable areas; and by 25M steps, coordinated behavior emerges,
enabling successful capture of high-priority targets.

Additional experiments and demo. We report additional findings on single-satellite RL performance
in simplified scenarios for low-complexity EO tasks, comparisons showing that value-based methods
underperform relative to policy-based MARL methods, and evaluations of MARL performance on
EO-constrained cooperative tasks, as described in Appendix F. For users interested in downstream
scenarios, we provide a fire monitoring use case demonstrating how to access relevant satellite and
target data, and how MARL achieves better coordination compared to traditional scheduling methods,
as detailed in Appendix G.

5 DISCUSSION, IMPACT, AND FUTURE DIRECTIONS

SatBench is designed to bridge two communities: EO and MARL by providing a benchmark that is
both operationally realistic and algorithmically revealing.

MARL for Space. From an EO perspective, the benchmark highlights the practical difficulty of
translating RL successes into space systems. In real missions, task allocation is constrained by fixed
orbital trajectories (Lv et al., 2022), limited maneuverability (Lim et al., 2025), sensor noise (Ditmar
et al., 2012), environmental uncertainty such as cloud coverage (Han et al., 2022), and asynchronous
dynamics across spacecraft (Chen & Luo, 2024). These factors indicate that decisions about “which
target to capture” cannot be treated in isolation from “how and when to point.” SatBench’s continuous
pointing formulation explicitly captures this coupling, requiring algorithms to manage the physical
cost of retargeting while maximizing coverage and priority-weighted reward. This design ensures
that performance gains in the benchmark correspond to improvements in operational feasibility for
EO missions, particularly in applications such as disaster monitoring and resource management.
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Figure 4: Snapshots of MARL training progression (at 5M, 15M, and 25M steps) for coordinating
two satellites in Scenario 1 using MAPPO. The two satellites appear nearly overlapping due to their
close physical proximity and parallax along the orbit, consistent with the cluster formation setting.

Next-Generation MARL. From a MARL perspective, SatBench exposes a structured set of chal-
lenges that align with open questions in the field. Coordinated satellite tasking involves heterogeneous
agents with different orbital positions and capabilities (Wang et al., 2021a), limited communication
bandwidth (Wang et al., 2022), and asynchronous actuation cycles that unfold over long hori-
zons (Xiao et al., 2022). Taken together, these characteristics create natural testbeds for specialized
MARL paradigms: robust MARL for handling model and environment uncertainty (Zhang et al.,
2020), communication-aware MARL for bandwidth-limited coordination (Das et al., 2019), het-
erogeneous MARL for diverse agent roles (Wang et al., 2021b), and asynchronous MARL for
staggered decision-making (Xiao et al., 2022). The widely used baselines such as IPPO, MAPPO,
and HAPPO face systematic limitations under these conditions, not due to artificially imposed dif-
ficulty, but because the benchmark surfaces intrinsic coordination barriers, such as delayed credit
assignment, inter-agent interference, and scaling with constellation size. By making these challenges
reproducible, SatBench provides MARL researchers with a principled environment to evaluate and
advance next-generation MARL algorithms.

Broad Impact. The broader contribution of SatBench lies in creating a shared problem formulation
that is meaningful for both communities. For EO researchers, it offers a simulation environment
where algorithmic improvements can be directly linked to operational constraints, enabling a clearer
assessment of when learning-based autonomy offers advantages over traditional optimization ap-
proaches. For MARL researchers, it offers a domain where core methodological advances: credit
assignment, communication, heterogeneity, and robustness can be stress-tested against realistic physi-
cal constraints rather than stylized toy environments. In this sense, SatBench is not only a benchmark
for performance comparison but also a catalyst for cross-disciplinary progress, encouraging solutions
that are simultaneously scientifically rigorous and practically impactful.

6 CONCLUSION

We introduced SatBench, a modular benchmark for evaluating multi-agent coordination in realistic
Earth observation satellite tasking. By integrating physically grounded satellite dynamics, config-
urable scenario design, and a standardized MARL-compatible API, SatBench bridges the gap between
real-world mission simulation and autonomous multi-agent decision-making. Through experiments,
we demonstrated how formation geometry and target distribution shape coordination demands and
directly influence MARL performance. Looking ahead, SatBench provides a foundation for ad-
vancing robust and generalizable MARL methods that operate under realistic physical constraints,
with downstream impact on high-stakes EO applications such as climate monitoring, environmental
surveillance, and rapid disaster response.

9
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REPRODUCIBILITY STATEMENT

To support reproducibility, the appendices include all details necessary to replicate the SatBench ex-
periments and results presented in this work. Appendix A describes the satellite orbital configuration,
rotation control, formation flying methods, and ground target modeling. Appendix B details how
satellites are modeled as RL agents, including observation space, action space, and reward structure.
Appendix C provides hyperparameter settings, training pipelines, and environment rollout times
for fair benchmarking. Appendix D outlines the modular architecture supporting communication,
mean-field RL, heterogeneous satellites, noise and uncertainty injection, asynchronous control, and
scenario customization. Appendix E provides the source code, installation instructions, training
scripts, configuration file structure, visualization tools, and a comprehensive list of software depen-
dencies. Together, these appendices provide a comprehensive and transparent framework enabling
other researchers to fully replicate the experiments and independently validate SatBench claims and
conclusions.

ETHICS STATEMENT

The SatBench research benchmarks MARL in the context of EO missions, relying solely on publicly
available code repositories. It involves no human subjects, collects no personal data, and contains
no sensitive information. Accordingly, it is not expected to produce negative ethical consequences,
facilitate misuse, or cause societal harm.
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DECLARATION OF LLM USAGE

The core development of SatBench does not involve LLMs as essential, original, or non-standard
components. GPT5 has only been used to assist in proofreading tasks, including polishing text,
correcting grammar and spelling errors, and ensuring consistency in American English spelling.

A ENVIRONMENT SETUP

This section presents further details of the SatBench simulation environment. It outlines the config-
uration and propagation of satellite orbits, the modeling of satellite rotation control and formation
flying method, and the representation and placement of ground targets on Earth.

A.1 ORBIT

An orbit is the curved trajectory that a satellite must follow to maintain its operational path. In
SatBench, we adopt the Classical Orbital Elements (COEs) framework (Stojanovski & Savransky,
2024), a standard six-parameter model for representing orbital dynamics. Specifically, an orbit is
described by the tuple (a, e, i,Ω, ω, ν0), where each parameter defines a unique aspect of the orbit:
e ∈ [0, 1) is the eccentricity, defining the orbit’s shape from circular (e = 0) to elliptical (0 < e < 1);
i ∈ [0◦, 180◦] is the inclination, representing the tilt of the orbital plane relative to Earth’s equator.
Ω ∈ [0◦, 360◦) is the right ascension of the ascending node, which specifies the orientation of the
ascending node in the equatorial plane. ω ∈ [0◦, 360◦) is the argument of perigee, indicating the
orientation of the orbital ellipse within its plane. ν0 ∈ [0◦, 360◦] is the true anomaly at each epoch,
specifying the satellite’s initial position along its orbit at the start of the operation.

A.2 SATELLITE

SatBench models satellite dynamics through two key components: rotational control for attitude
adjustments to support EO missions and satellite formation for coordinated constellation operations.
For EO tasking, each satellite dynamically adjusts its orientation attitude using rotational control
techniques to align with and capture ground targets, maintaining a field of view (FOV) (Zhou
et al., 2023) within ±15◦. For coordinated operations, SatBench simulates satellite formation flying
(Thangavel et al., 2024), allowing multiple satellites to maintain relative positioning. This enables
collaborative observation of shared targets or broader area coverage with an increased number of
targets.

Rotation control. Each satellite in SatBench employs a rotation control method for attitude adjust-
ments along three rotational axes-pitch, yaw, and roll (Crisp et al., 2018). At each time step,
the satellite selects a desired pointing direction, and a proportional-derivative controller computes the
corresponding control torque. This torque employs internal reaction wheels to reorient the satellite
toward the target direction. To reflect practical agility constraints, the control torque is capped
at umax = 0.2 Nm, which limits the rotation rate to approximately 1◦ every 4 seconds. These
parameters are chosen to ensure that satellite behavior in the simulation remains consistent with
real-world physical capabilities.

Formation flying. SatBench supports three types of satellite formations for coordination, defined
based on six orbital parameters as detailed in Appendix A.1. To construct a satellite formation
flying, suitable orbital parameters must first be assigned to each satellite. This typically follows a
common orbital baseline: an equatorial orbit (Marshall et al., 2021). An equatorial circular orbit is
characterized by an inclination i = 0◦, right ascension of the ascending node Ω = 0◦, and argument
of perigee ω = 0◦, ensuring that the orbital plane lies on the Earth’s equatorial plane. The semi-major
axis and eccentricity are generally set to a = 6798.3 km and e = 0.000691, respectively. These
default values can be modified to reflect different scenarios as needed. Based on this configuration,
SatBench defines three types of satellite formations, as described below, with their corresponding
orbital parameters summarized in Table 4.
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Table 4: Defined orbital parameters for the three satellite formations in SatBench

Satellite a e i Ω ω ν0 Formation
Sat1 6798.3 0.000691 0 0 0 75.1185◦ Cluster
Sat2 6798.3 0.000691 0 0 0 75.12695◦ Cluster

Sat1 6798.3 0.000691 3◦ 0 0 0 Trailing; Constellation
Sat2 6798.3 0.000691 3◦ 0 0 180◦ Trailing; Constellation
Sat3 6798.3 0.000691 −3◦ 0 0 0 Trailing; Constellation
Sat4 6798.3 0.000691 −3◦ 0 0 180◦ Trailing; Constellation

Sat1 6798.3 0.000691 2◦ 0 0 0 Constellation
Sat2 6798.3 0.000691 −2◦ 0 0 0 Constellation
Sat3 6798.3 0.000691 4◦ 0 0 0 Constellation
Sat4 6798.3 0.000691 −4◦ 0 0 0 Constellation
Sat5 6798.3 0.000691 6◦ 0 0 0 Constellation
Sat6 6798.3 0.000691 −6◦ 0 0 0 Constellation

• Cluster: Satellites share the same orbital parameters and are placed in a single orbit, differing only
slightly in their true anomaly (ν0), resulting in close spatial proximity and highly overlapping
visibility regions, enabling dense coverage of a localized area.

• Trailing: Satellites occupy the same orbital plane but are significantly spaced apart in true anomaly
(ν0), introducing temporal diversity for observations of the same area over time.

• Constellation: Satellites are distributed across different orbital planes by varying the inclination
(i), enabling broader geographic coverage and improved revisit frequency.

A.3 TARGET

A set of targets T is defined as objectives for satellite operation goals in Earth observation (EO)
taking. In SatBench, each target j ∈ T is represented by a fixed three-dimensional Cartesian position
vector pj ∈ R3 in an Earth-centered, Earth-fixed coordinate system (Ye et al., 2021). This vector
denotes the target’s location on the Earth’s surface. In addition, each target is associated with a scalar
priority score pj ∈ [0, 1], where higher values indicate greater importance for EO tasking (a score
of 1 represents the highest priority). SatBench supports two types of target distributions, as detailed
below.

• Sparse Distribution. Targets are uniformly distributed along the satellite’s ground track, with
large spatial gaps between consecutive locations (e.g., on the order of hundreds of kilometers).
Due to this wide separation, it is likely that only a single target falls within a satellite’s FOV at
any given time. Consequently, each satellite typically corresponds to capturing one target. In this
scenario, the level of inter-satellite coordination is low.

• Dense Distribution. Multiple targets are grouped into compact areas positioned along the
satellite’s ground track. Within each group, targets are placed in close proximity, often resulting
in multiple targets falling within a single FOV. This spatial concentration increases the likelihood
of redundant observations when multiple satellites pass over the same region. As a result, dense
target distributions demand a high level of coordination between satellites to avoid overlapping
observation coverages.

B DEFINE SATELLITE AS AN AGENT

This section provides further details on how SatBench models each satellite as a reinforcement
learning (RL) agent and coordinates them within a multi-agent reinforcement learning (MARL)
framework. We define the satellite agent model by detailing its three core components: observation,
action, and reward.
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B.1 OBSERVATION

At each time step, a satellite agent receives a compact observation consisting of (i) its own satellite
status and (ii) a filtered list of observable targets that fall within its sensing range.

Formally, each satellite agent i receives the observation:

oi =
[
si, {sj}j∈T vis

i

]
,

where environmental state si = [pi, di, ωi, vi, ωmax
rw,i, θfov

i ] (Ye et al., 2021; Fan et al., 2022),
including the satellite’s orbital position pi ∈ R3, pointing direction di ∈ R3, angular velocity
ωi ∈ R3, linear velocity vi ∈ R3, maximum reaction wheel speed ωmax

rw,i ∈ R3, and field-of-view
half-angle θfov

i ∈ [0◦, 180◦]. The set of targets is defined as T vis
i . Each satellite agent also receives a

target observation sj = [topen
j , tclose

j , ∠j , pj , pj ], where (topen
j , tclose

j ) denotes the estimated access
window during which the target is imageable, ∠j is the angle between the satellite’s pointing direction
and the target, pj ∈ R3 is the target’s geodetic position, and pj is its priority.

Only a subset of targets is visible to the satellite agent, which is determined by the following geometric
constraints (Ding et al., 2022):

• the elevation angle is above 35◦;
• the slant range is less than 1000 km;
• the line of sight is not occluded by the Earth.

B.2 ACTION

The action of each satellite agent i is designed to adjust its orientation ai ∈ Ai to align with a target
on the ground, as detailed in Appendix A.2. In SatBench, this rotation control is modeled as an action
vector over the frame:

ai = δ · [rpitch, ryaw, rroll] ∈ Ai, with rpitch, ryaw, rroll ∈ {−1, 0, +1}
where δ is the fixed per-axis rotation increment. The full action set Ai includes all 27 possible
combinations of actions across the three rotational axes. By default, δ is set to 1◦, which pro-
vides an approximation of continuous rotational control while preserving computational tractabil-
ity. To modify δ and achieve finer or coarser control, simply modify the ImagingFSWModel
class. This class controls the angle_step of each satellite’s attitude control and is located at
SatBench/src/envs/bsk_rl/src/bsk_rl/sim/fsw. Any such change must comply
with the satellite’s control torque limits, as detailed in A.2. A detailed example demonstrating how to
modify angle_step of a satellite is illustrated below:

class SatBenchContinuousImagingFSWModel(ImagingFSWModel):
...
@action
def action_image(self, action: int) -> None:

"""Attempt to image a target at a location with attitude
control.↪→

Args:
action: Integer representing different rotations.

"""

self.insControl.controllerStatus = 1
self.dynamics.instrumentPowerSink.powerStatus = 1
# Step 1: Define rotations
angle_step = 1 # Rotate by 1° each time.

B.3 REWARD

A satellite agent receives a reward only when it successfully completes the rotation required to capture
a target on the ground. The reward value is weighted by the priority score of the target, reflecting its
relative importance for EO tasking.
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Specifically, a target j is considered successfully captured at timestep t if there exists at least one
satellite agent i such that:

1. j ∈ T vis
i,t : the target is physically visible to satellite agent i

2. j /∈ T done
t : the target has not been successfully captured in any previous timesteps.

Once target j satisfies these conditions at time t, then T done
t = T done

t−1 ∪ {j} means target j marked as
successfully imaged and will be added to the completed set and its reward pj is granted to all satellite
agents. This reward at time t is then given by: rt =

∑
j∈T new

t
pj , where T new

t = T done
t \ T done

t−1 is the
set of targets captured at time t, and pj ∈ (0, 1] is the priority score of target j.

The overall objective for all satellite agents is to maximize the cumulative reward
∑

t rt, which
reflects the total prioritized coverage of targets within a single episode.

C MARL TRAINING

This section outlines the detailed experimental settings used to train and evaluate MARL algorithms
in SatBench. All MARL training configurations are kept consistent across algorithms and scenarios
to ensure fair comparisons.

C.1 HYPERPARAMETER SETTINGS

To ensure performance consistency, all training runs across different MARL algorithms follow an
identical learning pipeline, with key hyperparameters summarized in Table 5. IPPO and MAPPO
share most configuration settings, while HAPPO differs by employing a non-parameter-sharing
strategy for its actor networks. Each algorithm is trained using 4 random seeds, with training metrics
logged every 50,000 steps. Each episode simulates a complete satellite orbital period of 6,300
seconds.

Table 5: Key hyperparameters for MARL training in SatBench.

Category Parameter IPPO MAPPO HAPPO

Core Selection

Action Selector soft_policies soft_policies soft_policies
Runner parallel parallel parallel
Use RNN True True True
Buffer Size 32 32 32
Batch Size 32 32 32

Observation Setup

Obs Agent ID True True False
Obs Last Action False False False
Obs Individual Obs False False False
Agent Output Type pi_logits pi_logits pi_logits

Optimization & Training

Learning Rate 3e-4 3e-4 3e-4
Entropy Coef 0.1 0.1 0.1
Epochs per Update 5 5 5
Clip ϵ 0.2 0.2 0.2
Use Feature Norm — — True
Use Huber Loss — — True
Huber δ — — 10.0
Value Loss Coef — — 1
Standardise Rewards True True True
Gamma (γ) 0.99 0.99 0.99
GAE Lambda (λ) 0.95 0.95 0.95

All experiments were conducted on a workstation equipped with an NVIDIA RTX 4090 GPU and an
AMD EPYC 7662 CPU.
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C.2 ENVIRONMENT ROLLOUT TIME

Understanding the computational scalability of a simulation environment is crucial, especially as the
number of agents and task complexity increase. We analyze the environment rollout time per episode
to demonstrate that SatBench remains computationally tractable, even for large satellite constellations.
The experiments were conducted on an AMD Ryzen 7 7800X3D processor.

Table 6: Environment rollout time per episode in seconds, averaged over 3 runs per setting

Satellites Targets
100 200 300 400

2 3.06 ± 0.05 3.10 ± 0.03 3.13 ± 0.07 3.05 ± 0.03
4 5.34 ± 0.15 5.36 ± 0.04 5.39 ± 0.09 5.34 ± 0.10
6 9.87 ± 1.44 9.79 ± 0.17 10.03 ± 0.09 10.07 ± 0.07
50 84.61 ± 3.24 83.30 ± 0.90 84.10 ± 1.10 83.68 ± 0.68

Table 7: MARL training time (in hours) across 6 SatBench scenarios.

Algorithm Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
IPPO 19.9 17.8 40.6 37.8 84.8 72.4
MAPPO 17.2 13.7 41.6 38.3 106.2 79.1
HAPPO 23.8 20.4 45.1 39.6 87.8 81.4

Table 6 presents the environment rollout time per episode with varying numbers of satellites (agents)
and targets (task density). A key finding is that the number of targets (columns 100 to 400) has a
minimal impact on the environment step time. For any fixed number of satellites, the mean rollout
time remains highly consistent across all target densities, indicating the environment’s complexity is
not heavily dominated by task density.

Conversely, the primary scaling factor is the number of agents (satellites). This increase in computa-
tional cost is due to the increased requirement for physical modeling, including the calculation of
orbital propagation, inter-agent visibility checks, and individual satellite dynamics. Crucially, the data
confirms that the overall computation time, driven by the number of satellites, scales approximately
linearly. This pattern is also observed in Table 7, where the MARL training time scales linearly
as the number of satellites increases. This linear scaling is evident when comparing the different
constellation sizes, confirming that SatBench remains computationally tractable even as constellation
size increases. This enables its practical use in both academia and industry.

D CUSTOMIZED MODULAR DESIGN

This section details the implementation of several key features within the SatBench environment,
highlighting the modules that allow researchers to perform advanced customization for testing and
discovering different scenarios related to communication, uncertainty, heterogeneous agents and
asynchronous control in MARL research.

D.1 COORDINATION PARADIGMS

D.1.1 COMMUNICATION MODULE

SatBench incorporates a dedicated communication module located at SatBench/src/envs/
bsk_rl/src/comm. This module provides built-in base classes, such as FreeCommunication
and LineOfSightCommunication, designed to manage inter-agent communication constraints.

For researchers interested in communication-aware MARL or analyzing space systems communica-
tion, this component is readily extensible for custom designs and evaluation.
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A simple example demonstrating paired communication using the FreeCommunication class is
shown below, illustrating its function to generate all possible pairs for communication at every time
step:

class FreeCommunication(CommunicationMethod):
"""Implements free communication between every satellite at every

step."""↪→

def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)

def communication_pairs(self) -> list[tuple["Satellite",
"Satellite"]]:↪→
"""Return all possible communication pairs."""
return list(combinations(self.satellites, 2))

D.2 HETEROGENEOUS SATELLITES

The satellites in the constellation could have different FOVs, which result in different capabilities and
are common in EO missions (Wang et al., 2021a). SatBench supports heterogeneous satellites with
different FOVs in the ImagingFSWModel class, which is located at SatBench/src/envs/
bsk_rl/src/bsk_rl/sim/fsw, by simply adjusting the attErrTolerance parameter. For
example, to set up a heterogeneous satellite scenario with 2 different types of FOVs, simply create
two different ImagingFSWModel classes:

class SatBenchContinuousImagingFSWModel15degree(ImagingFSWModel):
...
class CustomImageTask(Task):
...

def update(self):
"""check if a target is within FOV"""

attErrTolerance = np.radians(15)

class SatBenchContinuousImagingFSWModel5degree(ImagingFSWModel):
...
class CustomImageTask(Task):
...

def update(self):
"""check if a target is within FOV"""

attErrTolerance = np.radians(5)

Once the two FSW models are created, allocate and link them to satellites in the environment
wrapper Bsk_wrapper, which is located at SatBench/src/envs/bsk_rl/src/bsk_rl/
Bsk_wrapper. Specifically:

class CustomSatComposed1(sats.ImagingSatellite):
...
dyn_type = CustomDynModel
fsw_type = fsw.UniqueImagerFSWModel15

class CustomSatComposed2(sats.ImagingSatellite):
...
dyn_type = CustomDynModel
fsw_type = fsw.UniqueImagerFSWModel5

Appendix F.2 reports experiments conducted with heterogeneous satellites.
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D.3 NOISE AND UNCERTAINTY MODULE

The default noise-free observations setting in SatBench follows the standard precedent in many
commonly used MARL environments (Lowe et al., 2017; Samvelyan et al., 2019), which prioritize
deterministic baselines but allow for user-defined stochasticity via wrappers or configuration (Zhang
et al., 2020; Phan et al., 2023). SatBench supports the injection of uncertainty through a standardized
API, allowing researchers to study algorithmic robustness by injecting:

• Observation Noise (Phan et al., 2023): Satellite’s observations can be corrupted, simulating
noisy sensors (Ditmar et al., 2012).

• Model Uncertainty (Zhang et al., 2020): The reward signal from the environment can be
made stochastic due to external factors, such as unpredictable cloud coverage (Han et al.,
2022).

For example, observation noise can be implemented directly within the BSK wrapper (e.g., at
Satbench/src/envs/bsk_wrapper) as follows:

def get_obs_agent(self, agent_id):
default_obs =

self.env._get_obs()[self.env.possible_agents[agent_id]]↪→
if self.noise_std > 0:

noise = np.random.normal(loc=0.0, scale=self.noise_std,
size=default_obs.shape)↪→

default_obs = default_obs + noise
return default_obs

This design enables a comprehensive analysis of algorithm robustness under various uncertain
conditions relevant to Earth Observation (EO) missions.

D.4 ASYNCHRONOUS CONTROL SUPPORT

SatBench supports asynchronous multi-agent settings through the Bsk_wrapper file, which spec-
ifies the duration of each satellite’s decision step (SatBench/src/envs/bsk\_rl/src/
bsk\_rl/Bsk\_wrapper). By configuring this parameter individually for different satellites,
researchers can define customized temporal action intervals, thereby enabling realistic modeling
of asynchronous coordination scenarios. For example, two satellites may be configured to execute
actions at different time steps, such as 4 s and 8 s, respectively.

class CustomSatComposed1(sats.ImagingSatellite):
...
action_spec = [

act.Image(n_ahead_image=27,duration=4),
]

class CustomSatComposed2(sats.ImagingSatellite):
...
action_spec = [

act.Image(n_ahead_image=27,duration=8),
]

Such heterogeneous configurations allow for asynchronous action execution without requiring further
modifications to the core SatBench architecture. Furthermore, federated learning approaches have
demonstrated effectiveness in reinforcement learning with asynchronous settings(Lan et al., 2024).

D.5 TASK-ASSIGNMENT INSPIRED APPROACHES

SatBench can accommodate task-assignment-style planning, where agents are dynamically assigned
targets and must decide how to image them over a long horizon. For instance, REDA (Holder et al.,
2025) represents an RL-enabled greedy LP-style planner for discrete target allocation, which provides
strong baseline performance for classic assignment problems. While such LP-style algorithms excel

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

at efficient discrete allocation, SatBench differs fundamentally: its focus is on continuous pointing
and imaging control, where each satellite must continuously adjust its attitude to track targets, handle
imaging constraints, and optimize long-horizon multi-agent coordination.

To support task-assignment-style strategies in SatBench, the core flight software module
ImagingFSWModel (located at SatBench/src/envs/bsk_rl/src/bsk_rl/sim/fsw)
must be substantially modified. The main difference is that instead of directly specifying continu-
ous attitude commands, the agent now issues target-based actions, which the FSW translates into
continuous pointing commands. Below is an example of how to achieve such action in SatBench:

def action_image(self, target_pos: Iterable[float], data_name: str) ->
None:↪→
"""Attempt to image a target at a specified target location.

This example demonstrates converting a target-based action into
continuous attitude commands. The FSW calculates the necessary
pointing attitude to track the target and enable imaging.

Args:
target_pos: [m] Planet-fixed target position.
data_name: Data buffer to store image data to.

"""
self.insControl.controllerStatus = 1
self.dynamics.instrumentPowerSink.powerStatus = 1
self.dynamics.imagingTarget.r_LP_P_Init = r_LP_P
self.dynamics.instrument.nodeDataName = data_name
self.insControl.imaged = 0
self.simulator.enableTask(self.LocPointTask.name +

self.satellite.name)↪→

D.6 SCENARIO CUSTOMIZATION

SatBench supports scenario customization based on specific research needs through the env_args
configuration block, which defines the key parameters for scenario setup (note that Appendix E.4
details the location and structure of the env_args block within the SatBench repository). Here, we
provide a sample configuration snippet demonstrating how to build up a dense-target, two-satellite
cluster scenario:

env_args:
map_name: Scenario2
Target_type: DenseTarget
Num_targets: 70
Target_density: 400000
rewarder: UniqueImageReward
Sat_orb_param: 2SatCluster.xlsx # Determine COEs for different

formations↪→
Target_param: Default # Automatically generate targets along orbit

In this configuration, map_name specifies the scenario identifier. The Target_type field defines
the spatial distribution pattern of ground targets, with supported options including DenseTarget
and SparseTarget. The parameters Num_targets and Target_density control the total
number of targets and their spatial concentration, respectively. The rewarder parameter determines
the reward function; the default, UniqueImageReward, grants rewards only for non-redundant tar-
get observations. The Sat_orb_param field specifies an input file (e.g., 2SatCluster.xlsx)
that defines the satellites’ orbital elements, allowing researchers to simulate various satellite forma-
tions and quantities. Finally, Target_param governs target generation, defaulting to automatic
placement along the orbit.

This flexible configuration interface enables straightforward customization of SatBench benchmark
scenarios. Once customized, SatBench automatically loads the specified configuration and initializes
the corresponding simulation environment for MARL training.
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For scalability of SatBench, mean-field MARL provides an alternative framework for scalable
coordination in multi-agent systems, such as sampling-based mean-field variants that estimate this
mean locally, enabling fully decentralized execution under partial observability (Anand & Qu, 2024;
Anand et al., 2024). For EO tasks, such approaches could allow satellites to coordinate efficiently in
medium- to large-scale constellations without relying on full global knowledge, improving scalability
and training stability. SatBench’s modular design supports such extensions, allowing the learning
interface to be adapted for mean-field RL methods while keeping the simulation backend unchanged,
facilitating future research on alternative coordination strategies without compromising fidelity or
reproducibility.

E SATBENCH SOURCE CODE AND USAGE GUIDE

We release SatBench source code, including environment modules, scenario configuration files,
and pipelines for training and evaluating MARL algorithms. The full repository is available at:
https://anonymous.4open.science/r/SatBench-43DB.

E.1 ENVIRONMENT SETUP GUIDE

This section provides a step-by-step guide for setting up the SatBench environment.

Step 1: Set Up the Python Environment. We recommend creating an isolated Conda environment
to avoid dependency conflicts:

conda create -n SatBench python=3.10 -y
conda activate SatBench

Step 2: Install the Foundation Engine. Clone the Basilisk repository and install its dependencies:

git clone https://github.com/AVSLab/basilisk.git
sudo apt-get install swig
cd basilisk
pip install -r requirements_dev.txt
python3 conanfile.py

Step 3: Install SatBench and MARL Dependencies. Install SatBench in editable mode, and then
install required MARL libraries:

cd ../../../SatBench/src/envs/bsk_rl
python -m pip install -e "." && finish_install

cd ../../../SatBench # Return to SatBench root directory
pip install -r requirements.txt

E.2 TRAINING SCRIPTS GUIDE

Training scripts are provided for MARL algorithms deployed in SatBench, using a unified command-
line interface:

python src/main.py --config=algo --env-config=scenario

Example:

python src/main.py --config=mappo --env-config=Scenario1
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E.3 DEMO VIDEO

We provide two complementary visualization modes that facilitate the interpretation of MARL
strategies in SatBench. At a high-fidelity level, satellites can be rendered as realistic 3D models with
dynamic fields of view, allowing users to directly observe how agents adjust their attitudes to bring
targets into view (Figure 5). This mode highlights the physical feasibility of learned control policies
and illustrates how local actions translate into realistic satellite maneuvers. At a more abstract level,
we can visualize the mapping between satellites and targets (Figure 6), providing a concise overview
of which agents image which targets at any given time. This abstraction makes it easier to interpret
coordination patterns and evaluate the effectiveness of cooperative strategies. Together, these two
modes offer both fine-grained and high-level perspectives, supporting comprehensive analysis of
MARL behavior in EO scenarios.

Figure 5: High-fidelity visualization of realistic satellite maneuvers with dynamic attitude and field-
of-view changes, illustrating how agents adjust their orientation to image targets.

Figure 6: Abstract visualization of task allocation, showing which satellites successfully image which
targets, enabling analysis of coordination patterns and coverage.
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E.4 CONFIGURATION GUIDE

SatBench uses a modular configuration structure. Each component of the experiment environment,
algorithm, and training setup is defined in a separate Y AML file:

• src/configs/envs/: Defines scenario-specific environment settings (e.g., number of
satellites, orbit file, and target distribution).

• src/configs/algo/: Specifies algorithm-specific hyperparameters (e.g., learning rate
and entropy).

• src/configs/default/: Contains launcher scripts that load the selected environment
and algorithm configurations to start training.

Logging record and satellite visualization guide. SatBench supports both Weights & Bi-
ases (Wandb) and TensorBoard for logging during training and evaluation. Users can enable
either option by setting the corresponding flag to True in the configuration file located at
src/configs/default/.

SatBench also provides a rendering option for visualizing MARL-driven satellite behav-
iors. To enable this feature, set render: True in the appropriate configuration file
under src/configs/envs/. When enabled, SatBench generates a .viz file that can
be viewed using an external Vizard tool, which is available for download at https:
//hanspeterschaub.info/bskFiles/Vizard_Windows64.zip for Windows and
https://hanspeterschaub.info/bskFiles/Vizard_Linux.zip for Linux OS.

E.5 LIST OF DEPENDENCIES

Table 8 lists the main open-source libraries used in SatBench and their licenses. All dependencies are
installable via pip and specified in the environment file provided with the code.

Table 8: Key software licenses used in our implementation.

Software License License Link

numpy BSD 3-Clause https://numpy.org/doc/stable/license.html
scipy BSD 3-Clause https://github.com/scipy/scipy/blob/main/LICENSE.txt
matplotlib BSD-compatible https://matplotlib.org/stable/project/license.html
pandas BSD 3-Clause https://github.com/pandas-dev/pandas/blob/main/LICENSE
PyYAML MIT https://github.com/yaml/pyyaml/blob/main/LICENSE
torch BSD 3-Clause https://github.com/pytorch/pytorch/blob/main/LICENSE
torchvision BSD 3-Clause https://github.com/pytorch/vision/blob/main/LICENSE
gym MIT https://github.com/openai/gym/blob/master/LICENSE.md
Stable-Baselines3 MIT https://github.com/DLR-RM/stable-baselines3/blob/master/

LICENSE
wandb MIT https://github.com/wandb/wandb/blob/main/LICENSE
sacred MIT https://github.com/IDSIA/sacred/blob/master/LICENSE
basilisk MIT https://github.com/AVSLab/basilisk/blob/master/LICENSE
bsk_rl MIT https://github.com/AVSLab/bsk_rl/blob/main/LICENSE

F ADDITIONAL EXPERIMENTS AND RESULTS

We conducted three additional sets of experiments. First, we benchmarked two commonly used
MARL baselines, COMA (Foerster et al., 2018) and QMIX (Rashid et al., 2020), to evaluate their
performance under the same scenario settings. Second, we introduce EO-constrained cooperative
tasks, which emphasize temporal synchronization and on-demand coordination. Third, we introduced
single-satellite scenarios to assess how various single-satellite agents based on RL algorithms perform
in settings where inter-agent coordination is not required. Together, these experiments provide a more
comprehensive view of how RL and MARL methods handle the inherent difficulty of the SatBench
environment and the challenges posed by different scenario configurations.
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F.1 MARL PERFORMANCE WITH HOMOGENEOUS SATELLITES

SatBench supports a variety of MARL algorithms. In our main experiments, we focus on PPO-based
methods in multi-agent settings, which have been widely shown to perform well in environments
with continuous control, stochastic dynamics, and sparse rewards (Wong et al., 2023). These methods
learn explicit action distributions and adaptively balance exploration and exploitation, making them
particularly effective for long-horizon decision-making.

Although the action space in SatBench is technically discrete, it closely approximates continuous
control due to fine-grained rotational increments across three attitude axes (pitch, yaw, and roll). As
described in Appendix B.2, successfully capturing a ground target often requires a long sequence
of coordinated actions, typically spanning 10 to 100 timesteps. This poses challenges for credit
assignment and effective exploration in MARL, which policy gradient methods are generally better
equipped to address.

To further validate this design choice, we additionally benchmark two widely used MARL baselines,
QMIX (Rashid et al., 2020) and COMA (Foerster et al., 2018), on the simpler cluster scenarios
(Scenarios 1 and 2). These experiments enable focused comparison under lower coordination
complexity.

Results and Analysis. As shown in Figure 7 and Table 9, both QMIX and COMA consistently
underperformed across all timesteps in Scenarios 1 and 2. Their completion rates remain low
throughout training, with limited improvement beyond the early stages. For example, in Scenario 1,
COMA peaks at 16.4% at 15M steps before declining, while QMIX fluctuates between 14% and 18%
without a clear upward trend. A similar pattern is observed in Scenario 2, where both methods fail to
exceed 16% even at 25M steps.

Figure 7: Training performance of QMIX and COMA compared to IPPO, MAPPO, and HAPPO in
Scenarios 1 and 2.

Table 9: MARL training performance measured by task completion rate (%) across the first two
SatBench scenarios. All values are reported as mean ± standard deviation over 4 random seeds. Best
performance in each scenario is highlighted in bold.

Scenario Algorithm Training Timesteps
1M 5M 10M 15M 25M

Scenario 1

IPPO 5.0 ± 1.8 11.0 ± 1.2 40.1 ± 17.4 62.4 ± 5.9 77.3 ± 1.1
MAPPO 5.2 ± 1.6 13.1 ± 3.9 31.6 ± 9.7 67.5 ± 4.3 83.4 ± 1.3
HAPPO 3.6 ± 0.9 23.0 ± 8.2 41.3 ± 1.9 46.8 ± 3.0 49.0 ± 2.2
COMA 4.6 ± 2.9 14.5 ± 5.5 16.0 ± 5.4 16.4 ± 6.0 14.0 ± 3.5
QMIX 3.1 ± 0.2 18.9 ± 5.0 17.2 ± 0.2 14.7 ± 0.8 15.7 ± 2.5

Scenario 2

IPPO 5.0 ± 1.5 10.9 ± 3.7 24.7 ± 5.3 57.9 ± 4.0 59.6 ± 8.0
MAPPO 4.5 ± 1.7 14.5 ± 5.0 22.1 ± 3.4 64.3 ± 8.4 73.4 ± 3.1
HAPPO 3.4 ± 0.7 15.9 ± 4.8 39.1 ± 4.6 42.8 ± 3.8 44.5 ± 3.7
COMA 5.0 ± 0.9 14.8 ± 4.2 13.6 ± 5.7 11.5 ± 3.7 11.4 ± 2.6
QMIX 3.4 ± 1.0 15.3 ± 3.5 15.4 ± 3.6 13.2 ± 0.9 12.1 ± 2.3
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In comparison to PPO-based methods such as IPPO, MAPPO, and HAPPO, the learning progress of
COMA and QMIX is significantly less stable. Moreover, their final performance is consistently lower,
particularly in Scenario 2, where the denser target distribution imposes greater coordination demands
among agents. Based on these observations, we chose not to evaluate COMA and QMIX in more
complex scenarios, as their performance in simpler settings already indicates substantial limitations.

F.2 MARL PERFORMANCE FOR EO-CONSTRAINED TASKS

In SatBench, we also evaluate MARL policies on EO-constrained cooperative tasks that require
coordinated imaging by multiple satellites. We instantiate four task scenarios by crossing two orbital
setups with three sensor types that differ in responsiveness, resolution, and field of view. For each
target τ , a strict temporal window Wτ = [t−τ , t

+
τ ] (width ∆tτ ) is specified; a capture counts as jointly

successful only if at least two distinct satellites acquire valid imagery at timestamps {ti} ⊆ Wτ

with pairwise slack maxi,j |ti − tj | ≤ δτ ≤ ∆tτ . This design stresses temporal synchronization and
on-demand coalition formation rather than mere single-satellite coverage. Throughout our additional
experiments, the objective prioritizes coverage of unique targets: a reward is issued once per target
upon its first joint success, and repeated or temporally misaligned acquisitions yield no additional
return. Consequently, MARL policies must learn to avoid redundant shots, expand target coverage,
and coordinate within the specified time window to earn a reward.

F.2.1 EXPERIMENT SETTING

Orbital Motion and Observation Constraints. Each satellite agent in SatBench follows a deter-
ministic Kepler orbit defined by Classical Orbital Elements (COEs) and is equipped with constrained
pointing control. The orbital parameters used in different configurations are summarized in Table 10.
All satellites share the same semi-major axis (a = 6798.3 km) and near-zero eccentricity, while
inclinations differ to produce varied ground coverage across latitude bands.

• Orbital motion: Satellites move along pre-defined Kepler orbits with fixed COEs. Inclina-
tions span {2◦, 6◦, 10◦} (prograde), yielding diverse visibility footprints globally.

• Pointing actions: Each satellite has 2-DoF control (pitch, yaw), with discrete increments
{−5◦, 0,+5◦} per axis (nine pointing directions), reflecting limited agility and control
resolution of EO platforms.

• Field of View (FOV): Each sensor defines a fixed conical viewing area; full aperture angle
depends on agent type (e.g., 10◦–20◦). A target is observable only if it lies within the
projected view cone and exceeds a minimum elevation threshold θmin (e.g., 35◦).

4 Orbits

6 Orbits

Space Environment
Sat 1

Sat 2
Sat 3

Sat 4

Sat 1
Sat 2

Sat 3
Sat 4

Sat 5
Sat 6

Type A

Orbit 1

Orbit 6

Targets

Types of Satellites

Type A

Type C

Type B

Figure 8: Experiment setting for EO-constrained cooperative tasks in SatBench.
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Visibility model. A ground target gk is visible to satellite i at time t if

gk ∈ projFOVi
(t) and elev(i, gk, t) ≥ θmin.

Here projFOVi
(t) is the FOV ground footprint, and the elevation can be written without approximation

as

elev(i, gk, t) = arcsin

(
(pi(t)− pk) · n̂k

∥pi(t)− pk∥

)
,

where pi(t) is the satellite ECEF position, pk is the target ECEF position, and n̂k is the target’s local
zenith unit vector. We define the binary visibility mask

visi,k(t) =

{
1, if gk is visible to i at t,
0, otherwise.

Table 10: Satellite COEs for EO-constrained cooperative tasks (two orbital setups). Angles in degrees.

Satellite a (km) e i Ω ω ν0

4 Orbit setup
Sat1 6798.3 0.000691 2 0 0 0
Sat2 6798.3 0.000691 6 0 0 90
Sat3 6798.3 0.000691 2 90 0 0
Sat4 6798.3 0.000691 6 90 0 90

6 Orbit setup
Sat1 6798.3 0.000691 2 0 0 0
Sat2 6798.3 0.000691 6 0 0 90
Sat3 6798.3 0.000691 10 0 0 180
Sat4 6798.3 0.000691 2 90 0 0
Sat5 6798.3 0.000691 6 90 0 90
Sat6 6798.3 0.000691 10 90 0 180

Reward structure. This EO-constrained cooperative task is to image geographically distributed
ground targets under a time-window constraint requiring joint observation. Each target gk carries a
priority wk ∈ [0.5, 1] and is considered completed only if it is successfully imaged by at least two
distinct satellites within a temporal window of length ∆t (e.g., 5 minutes) with pairwise slack ≤ δτ .
Define the success event for gk at time t:

succk(t) =
[
∃C ⊆ A, |C| ≥ 2, ∃{ti}i∈C ⊆ [t−∆t, t] s.t. visi,k(ti) = 1 ∧ max

i,j∈C
|ti−tj | ≤ δτ

]
.

Let donek(t) indicate whether gk was completed before t. The global reward is

rt =

K∑
k=1

wk ⊮[¬ donek(t) ∧ succk(t)] ,

and a completed target is removed from future reward consideration.

Task configurations. In this additional experiment, SatBench considers four scenarios with in-
creasing complexity, varying satellites, orbital planes, and sensing heterogeneity (Table 11).

Table 11: EO-constrained cooperative tasks.

Scenario Num. of Orbits Num. of Satellites Formation Type Num. of Targets Target Distribution Agent Type
EO-constrained Scenario 1 4 4 Constellation 100 Sparse Homogeneous
EO-constrained Scenario 2 4 4 Constellation 100 Sparse Heterogeneous
EO-constrained Scenario 3 6 6 Constellation 150 Sparse Homogeneous
EO-constrained Scenario 4 6 6 Constellation 150 Sparse Heterogeneous
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Scenario notes. Unless otherwise stated, we instantiate three sensor types to reflect responsive-
ness–resolution–FOV trade-offs: Type A (baseline) uses a 15◦ full FOV with balanced slew respon-
siveness and medium ground resolution; Type B is narrow (10◦), higher resolution and slightly slower
to slew/settle; Type C is wide (20◦), lower resolution but faster to slew/retask. All scenarios require a
coalition size m = 2 and a time window ∆t = 5 min with pairwise slack δτ ≤ ∆t.

EO-constrained Scenario 1. Four homogeneous satellites on four distinct orbits; all are Type A (15◦
FOV). This scenario isolates the temporal synchronization challenge without sensing heterogeneity:
policies must align passes to achieve joint success while avoiding duplicate or off-window shots.
Expected failure modes include near-simultaneous but non-overlapping timestamps and redundant
reacquisitions of already-completed targets. It serves as a baseline for non-redundant scheduling and
coverage expansion.

EO-constrained Scenario 2. Four satellites split into two sensing roles: agents {0, 2} carry Type B
(10◦ narrow, high-res) and agents {1, 3} carry Type C (20◦ wide, fast-retask). Heterogeneity intro-
duces role specialization: wide-FOV assets are effective for initial capture and timing alignment,
while narrow-FOV assets refine coverage at higher resolution. Policies must learn when to let the
wide sensor “anchor” the window and how to pair it with a narrow sensor to satisfy m = 2 without
creating redundant duplicates. Typical pitfalls are overuse of wide sensors, causing starvation of
narrow sensors, or narrow sensors missing the window due to slower slewing.

EO-constrained Scenario 3. Six homogeneous satellites across six orbits; all are Type A (15◦ FOV).
Scaling up constellation size stresses conflict resolution and load balancing: while more opportu-
nities exist for joint success, the risk of multiple agents targeting the same object simultaneously
(and thus wasting shots) increases. Strong policies demonstrate coordinated target allocation, low
synchronization slack, and improved success rate.

EO-constrained Scenario 4. Six satellites with mixed sensing: two Type A (15◦), two Type B (10◦),
two Type C (20◦). This is the most challenging setting, combining scale and heterogeneity. Effective
behaviors include forming complementary coalitions (e.g., C + B or A + B) that meet the time window
while expanding unique-target coverage. The policy must avoid redundant trios (>m) within the same
window, mitigate timing mismatches between slow-to-slew narrow sensors and fast wide sensors,
and balance workload across orbits. Failure patterns include persistent duplication on high-priority
targets and systematic off-window acquisitions by one class of sensors.

Episode timing. Each episode spans 315 simulation steps. With a step size ∆tstep (e.g., 20 s), this
corresponds to ≈ 105 min, close to a full LEO orbital period at a ≈ 6798 km, ensuring one complete
cycle of target visibility/occlusion for fair, long-horizon coordination evaluation.

F.2.2 RESULTS

Table 12 reports the mean ± standard deviation over random seeds (higher is better). Two broad
trends emerge. First, heterogeneous sensing and tighter coordination demands depress absolute scores
relative to homogeneous counterparts (cf. the right columns of Table 12), indicating the difficulty of
learning non-redundant, on-window coalitions. Second, among the three methods, HATRPO Kuba
et al. (2021a) is the most robust across scales and heterogeneity, while HAPPO can edge out others
only in the simplest setting.

On the homogeneous scenarios, HAPPO slightly outperforms in EO-constrained Scenario 1 (40.85
vs. 39.81/39.46 in Table 12), suggesting that in low-conflict regimes the alternating updates suffice
to align two-satellite captures. However, when scaling to Scenario 3, HAPPO degrades markedly
(24.59, a −39.8% drop from its Scenario 1 score), whereas HATRPO remains strong (37.56, only
−5.7% vs. its Scenario 1) and surpasses MAPPO (33.38). The trust-region step thus appears to
stabilize multi-agent coordination under increased contention for the same targets, reducing wasteful
duplicates and missed windows, consistent with the gap between the HATRPO and HAPPO bars for
Scenario 3.

On the heterogeneous scenarios, HATRPO consistently leads. In EO-constrained Scenario 2, it
improves over MAPPO by 13.3% (19.74 vs. 17.43) and over HAPPO by 11.4% (19.74 vs. 17.72).
In the more challenging EO-constrained Scenario 4, HATRPO remains best (30.58), with gains of
17.0% vs. MAPPO (26.14) and 4.9% vs. HAPPO (29.14). Notably, MAPPO exhibits high variance
in EO-constrained Scenario 4 (±6.43 in Table 12), indicative of instability in role assignment and
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Table 12: Performance on EO-constrained cooperative tasks.

Scenarios MAPPO HAPPO HATRPO
EO-constrained Scenario 1 39.46 ± 3.27 40.85 ± 0.37 39.81 ± 1.04
EO-constrained Scenario 2 17.43 ± 0.38 17.72 ± 0.26 19.74 ± 0.14
EO-constrained Scenario 3 33.38 ± 0.55 24.59 ± 1.12 37.56 ± 1.18
EO-constrained Scenario 4 26.14 ± 6.43 29.14 ± 0.11 30.58 ± 0.27

repeated, non-rewarding re-acquisitions; HATRPO maintains low dispersion (e.g., ±0.27–1.18),
suggesting steadier coalition formation and better avoidance of redundant shots. Overall, EO-
constrained cooperative tasks favor methods that keep policy updates within a conservative region
while exploiting a centralized critic for coordination benefits. HATRPO achieves the best balance
of stability and performance across all but the simplest case; HAPPO is competitive only when
conflicts are limited (EO-constrained Scenario 1); and MAPPO, while reasonable on average, is
more sensitive to heterogeneity and scale. These outcomes align with our reward design, single-use
per target, so effective policies expand unique-target coverage and synchronize captures within the
window, rather than accumulating redundant acquisitions. The same pattern is numerically confirmed
in Table 12.

To assess how coordination evolves under MAPPO in the EO-constrained Scenario 3 setting, Fig. 9
contrasts early (roughly 0–20% of training, tinitial) and late (70–100%, tend) rollouts. Early on,
several satellites keep their sensors off-nadir or outside target clusters, so the field-of-view footprints
frequently miss candidate targets and many opportunities remain un-imaged. As training proceeds,
agents learn basic nadir alignment and disperse more effectively across orbits, which increases
first-hit coverage. By the late stage, MAPPO exhibits intermittent cooperative captures within the
time window, but non-cooperative passes and duplicated attempts still occur, indicating reactive and
partially uncoordinated behavior with fragmented spatial coverage relative to what the six-orbit layout
could support.

MAPPO

tinitial tend

Sat 1 Sat 2 Sat 3 Sat 4 Sat 5 Sat 6 Sat 1 Sat 2 Sat 3 Sat 4 Sat 5 Sat 6

Imaged target

Un-imaged target

Satellite

Field-of-view

Orbit

Coop Non-coop

2 DoF actions

Figure 9: Visualization of MAPPO on Scenario 3 at early (tinitial) and late (tend) training in Satbench.

F.3 RL PERFORMANCE

F.3.1 RL SCENARIOS DEFINITION

We design four RL scenarios derived from the original SatBench environment. RL-Scenarios 1 and 2
feature sparse target layouts with 30 and 60 targets, respectively, while RL-Scenarios 3 and 4 adopt
dense layouts with 35 and 70 targets.

We also vary the priority of the target. In RL-Scenarios 1 and 3, all targets are assigned a uniform
priority of 1.0, simplifying the mission objective to maximizing the number of targets captured. In
contrast, RL-Scenarios 2 and 4 retain varying priority scores, requiring the satellite agent to weigh
the relative value of each target when planning observations.
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F.3.2 RESULTS AND ANALYSIS

Figure 10: Training performance of PPO (Schulman et al., 2017), RecurrentPPO (Kapturowski et al.,
2018), A2C (Mnih et al., 2016), DQN (Mnih et al., 2015) and QRDQN (Dabney et al., 2018) on four
SatBench RL-scenarios. Lines show mean cumulative reward over 4 seeds; shaded regions indicate
standard deviation.

Cumulative Reward. As shown in Figure 10, among all RL tested methods, PPO consistently
achieves the highest cumulative rewards across both sparse and dense target distributions. Recur-
rent PPO closely follows, demonstrating strong performance across all scenarios. A2C performs
reasonably well in the dense settings (RL-Scenarios 3 and 4). However, it struggles in sparse scenar-
ios (RL-Scenarios 1 and 2), where capturing each target often requires long sequences of attitude
adjustments. DQN and QRDQN underperform across all RL scenarios.

Task Completion Rate. As shown in Table 13, task completion rate trends are similar to the pattern
of cumulative reward. PPO achieves the highest task coverage in all scenarios. Recurrent PPO also
shows strong and stable results. A2C’s performance is still not stable across different RL scenarios.
Notably, DQN demonstrates early learning progress in sparse scenarios but plateaus or regresses
beyond around 2 million steps (e.g., in RL-Scenario 2, DQN achieves a 43.1% completion rate but
drops to 30.8% at 3 million steps), suggesting instability in long-horizon value estimation. QRDQN
exhibits low final completion rates, consistent with its performance in the cumulative reward metric.

Scenario Difficulty Levels. The performance of the same algorithm across different scenarios varies
significantly. RL-Scenario 1, which features sparse targets and uniform priority, proves to be the most
tractable-agents simply aim to maximize coverage. In contrast, Scenarios 2 and 4 present greater
challenges due to the additional complexity introduced by varying the priority of the target and the
increased total number of targets.

Summary. Our provided additional results highlight the inherent difficulty of satellite rotation control
in SatBench, even in the absence of inter-agent coordination. PPO and Recurrent PPO demonstrate
strong learning performance across both sparse and dense target distributions, while value-based
methods (DQN and QRDQN) and A2C struggle to achieve stable performance. The variation in
performance across scenarios further confirms that target distribution and prioritization each introduce
distinct challenges for single-agent policy learning.
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Table 13: Single satellite agent performance on RL-Scenarios 1-4 measured by task completion
rate (%) across training timesteps. All values are mean ± standard deviation over 4 seeds. Best
performance is highlighted in bold.

Scenario Algorithm Training Timesteps
0.1M 1M 2M 3M

RL-Scenario 1

A2C 1.7 ± 2.1 5.3 ± 1.7 7.8 ± 5.4 14.2 ± 21.1
DQN 5.0 ± 3.8 54.7 ± 15.4 51.7 ± 19.0 50.4 ± 14.5
PPO 14.7 ± 2.9 81.7 ± 10.4 90.0 ± 4.7 89.4 ± 5.8
QRDQN 5.8 ± 5.7 16.4 ± 8.0 21.1 ± 8.9 16.3 ± 7.4
RecurrentPPO 21.9 ± 12.5 71.1 ± 11.1 69.4 ± 23.3 76.7 ± 20.5

RL-Scenario 2

A2C 1.4 ± 1.5 3.3 ± 4.1 8.2 ± 4.9 8.5 ± 4.1
DQN 4.6 ± 3.8 41.8 ± 9.5 43.1 ± 18.7 30.8 ± 8.1
PPO 19.7 ± 7.4 60.4 ± 2.8 64.0 ± 9.6 68.3 ± 9.6
QRDQN 5.7 ± 7.5 13.6 ± 5.5 17.8 ± 5.6 21.0 ± 8.5
RecurrentPPO 17.1 ± 7.4 42.8 ± 9.8 53.8 ± 13.0 55.3 ± 5.8

RL-Scenario 3

A2C 4.8 ± 3.6 3.8 ± 2.1 20.5 ± 20.6 47.9 ± 12.1
DQN 4.5 ± 3.8 40.2 ± 10.8 40.7 ± 12.9 46.9 ± 9.9
PPO 11.4 ± 6.1 48.3 ± 12.4 63.3 ± 8.1 69.8 ± 8.2
QRDQN 2.1 ± 3.1 16.9 ± 12.6 15.5 ± 10.8 19.0 ± 10.0
RecurrentPPO 18.6 ± 8.6 54.5 ± 14.5 61.4 ± 8.2 63.1 ± 13.3

RL-Scenario 4

A2C 3.8 ± 3.8 17.6 ± 7.4 24.6 ± 3.7 42.9 ± 6.6
DQN 6.7 ± 4.9 37.1 ± 5.6 43.1 ± 7.3 41.3 ± 7.2
PPO 8.6 ± 3.9 43.9 ± 7.7 48.2 ± 6.0 56.0 ± 9.0
QRDQN 3.5 ± 2.7 10.7 ± 2.8 10.0 ± 3.0 17.5 ± 8.4
RecurrentPPO 12.5 ± 6.3 39.0 ± 6.5 41.8 ± 2.9 51.2 ± 3.8

G USE CASE: SATBENCH FOR FIRE MONITORING

SatBench provides a physically grounded sandbox to prototype and evaluate satellite coordination
strategies for wildfire monitoring. In SatBench, suspected or active fire hotspots are represented as
geo-referenced targets; satellite assets evolve under orbital and attitude-slew constraints with bounded
fields of view; and learning- or rule-based policies control sensor pointing and imaging to meet time-
critical response objectives. This setup enables end-to-end assessment of fire-relevant performance
metrics-such as time to first observation, revisit intervals, confirmation rates, and duplicate-imaging
ratios-while fairly comparing centralized vs. decentralized coordination strategies under identical
orbital and sensing conditions.

Building on this capability, we instantiate a FIRMS-informed fire-monitoring scenario (Singh et al.,
2022). Using NASA-FIRMS near-real-time detections, we re-select 21 fire-prone target locations
across multiple Australian states as persistent monitoring sites, and parameterize six real Earth-
observation satellites as observing assets. We then evaluate SatBench tasking policies on latency-
sensitive coverage objectives aligned with wildfire intelligence workflows.

We evaluate MAPPO across representative scenarios to validate SatBench as a realistic satellite
coordination simulator and to enable a like-for-like comparison between learning-based and traditional
approaches. Metrics include coverage and revisit adherence, mean response latency, task success rate,
and overlap/conflict rate, as well as confidence improvement from targeted revisits. Results indicate
that SatBench faithfully captures orbital geometry and visibility constraints, supporting an end-to-end
pipeline from data-driven requirements (FIRMS targets) to satellite-executable tasks, and providing a
unified, reproducible testbed for fair comparisons between MARL and industry-standard scheduling.

G.1 FIRE DATA SOURCE TO SATBENCH

SatBench models wildfire monitoring as coordinating satellites to service spatio-temporal Target
objects. Each Target encodes a geographic location, a validity window, an intended revisit cadence,
and a priority/confirmation policy. We derive these Targets from NASA’s Fire Information for
Resource Management System (FIRMS) through a reproducible, SatBench-native pipeline.
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Given a scenario start time T0, we: (i) query FIRMS near-real-time thermal anomaly feeds over a
fixed look-back window [T0 −∆, T0] within the area of interest (Australian states); (ii) apply quality
and spatial filters (e.g., confidence threshold, land mask, AOI boundaries); (iii) aggregate detections
into persistent fire sites via grid-based or density-based clustering and select the top-K sites (we
use K=21) by persistence and radiative power; (iv) materialize SatBench Targets with attributes
{id, latitude/longitude, [tmin, tmax] validity, revisit rule (e.g., first confirmation within τ1, follow-ups
every τ2), priority score, required confirmations}; (v) bind these Targets to a SatBench scenario
that instantiates six real Earth-observation satellites as assets (ephemerides and sensor models defined
elsewhere in this appendix); (vi) record data provenance and a random seed for full reproducibility.

The above steps express FIRMS detections directly in SatBench’s tasking vocabulary: satellites
receive executable Targets with timing, cadence, and priority semantics instead of raw thermal
anomalies. This enables the end-to-end evaluation used in our wildfire study (e.g., time-to-first-
observation, revisit compliance, overlap/conflict incidence, and confidence gains from targeted
revisits) under the same orbital geometry and visibility constraints that SatBench enforces.

G.1.1 FIRE TARGET IN SATBENCH

We transform NASA-FIRMS active-fire detections into SATBENCH target objects. Each FIRMS
record contributes a geo-referenced point (latitude/longitude) and timestamp that we map to a
target with explicit spatial position and a validity window around the detection time. We optionally
attach a revisit rule (e.g., initial confirmation within τ1, follow-ups every τ2), a priority score, and
a required number of confirmations. This representation expresses human-readable fire-demand
signals in the tasking vocabulary of SATBENCH: satellites do not consume raw thermal anomalies,
but schedulable targets with timing and cadence semantics.

Within SATBENCH, spacecraft operate under realistic orbital geometry, attitude-slew limits, field-
of-view bounds, and line-of-sight visibility. Using identical target sets and timing windows, we
compare a learning-based method (MAPPO) (Yu et al., 2022) with an operations-research baseline
(MILP) (Qu et al., 2022). We report SATBENCH-native metrics: coverage and revisit compliance,
mean response latency, task completion rate, overlap/conflict incidence, and confidence gains from
targeted revisits. This pipeline provides a unified and realistic setup that supports end-to-end studies
from FIRMS-derived demand to executable satellite tasking within the benchmark.

G.1.2 REAL-WORLD SATELLITE ASSETS IN SATBENCH

To ground the scenarios with realistic orbital geometry, we instantiate 6 spacecraft in sun-synchronous
orbits using representative Keplerian elements at a common epoch. Table 14 lists the semi-major axis
a, eccentricity e, inclination i, right ascension of the ascending node Ω, argument of perigee ω, and
true anomaly ν0 for each satellite used in our experiments.

Table 14: Optical satellite orbital parameters in Use Case of Fire Monitoring.

Satellite a [km] e i [◦] Ω [◦] ω [◦] M [◦] rev/day

SKYSAT-C13 6798.30 0.000691 97.0113 86.2373 284.9298 175.1185 15.4882
SKYSAT-C11 6818.38 0.0005046 97.3746 168.1553 170.8700 189.2637 15.4199
FLOCK 4Q-34 6835.57 0.0010286 97.4281 114.0842 124.5557 235.6656 15.3618
Global-19 6812.76 0.0010458 42.0049 234.8969 257.1020 102.8651 15.4390
Global-18 6811.64 0.0005709 52.9867 94.5095 348.8911 11.1964 15.4428
Global-17 6811.92 0.0009131 41.9999 90.7625 66.3025 293.8772 15.4418

We ingest these elements into SATBENCH and propagate them to the experiment epoch (SGP4 for
TLE-derived cases or a high-fidelity Kepler/J2 model otherwise) to obtain time-varying ephemerides.
From these, we compute line-of-sight, look angles, and access windows to surface targets. Sensor
characteristics (e.g., effective swath via scan/track proxies, day/night flags) are mapped to
observation constraints; optional SAR/optical mode selection enables cloud-robust sensing studies.
This process preserves the geometry and visibility conditions encountered in practice and enables
like-for-like evaluation of scheduling policies within SATBENCH using real-world satellite kinematics.
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Adding, removing, or modifying satellites only requires editing the corresponding configuration file
at SatBench/Satellites/LEO_satellite_orbit_data.xlsx.

G.2 EXPERIMENT SETTINGS

We evaluate MAPPO and a MILP baseline under scenarios that vary in the degree of dynamism in
target priorities. Here, dynamic priority means that targets do not have fixed importance values across
the experiment; instead, their priority scores are sampled from a specified interval. We consider two
ranges: a high-priority interval [0.5,1] (Scenarios 1.x) and a full-range interval [0,1] (Scenarios 2.x).
Please refer to Appendix B.3 for details. In the Base setting, three training episodes are generated
where each target is assigned a single priority value at the beginning of the episode, which remains
constant for all its revisit opportunities. This represents a lower level of dynamism, since priorities
vary only across episodes but remain stable within an episode. By contrast, the Base + condition
setting introduces a higher level of dynamism by resampling each target’s priority at every revisit,
allowing its importance to change over time within the same episode. These two configurations,
therefore, represent different levels of dynamic tasking: cross-episode variability (Base) versus
intra-episode variability (Base + condition). MAPPO is trained with multiple random seeds on the
designated training episodes, while the MILP baseline is solved independently for each episode using
the realized priority values. The performance metric is the cumulative episodic reward, defined as the
sum of the priorities of all successfully completed targets, which directly reflects the effectiveness of
each method in capturing high-value observations.

G.3 RESULTS

As reported in Table 15, overall, MAPPO and the MILP baseline achieve comparable performance in
the Base scenarios, where target priorities remain fixed within each episode. However, when the Base
+ condition setting is introduced, MILP performance declines, particularly in the 2.x scenarios with
a wider range of target priorities, where the cumulative reward drops significantly. This highlights
the advantage of MARL methods like MAPPO in adapting to dynamic tasking environments, as the
learned policy can adjust to changing target importance during revisits, whereas MILP, which relies
on static planning, is more sensitive to intra-episode variability and high priority variance.

Table 15: Comparison of MAPPO and MILP Rewards across Dynamic Tasking Scenarios (without
revisit time).

Scenario Target Priority MAPPO MILP

1.1 Base: dynamic priority for 3 episodes [0.5–1] 24.167 ± 1.592 21.099 ± 1.734
1.2 Base + condition: different priority in each revisit [0.5–1] 25.072 ± 2.093 20.288 ± 2.911
2.1 Base: dynamic priority for 3 episodes [0–1] 15.483 ± 1.791 11.463 ± 1.538
2.2 Base + condition: different priority in each revisit [0–1] 14.524 ± 2.197 6.428 ± 2.508
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