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Abstract

Recent advances in generative modeling have shown significant promise in de-
signing novel periodic crystal structures. Existing approaches typically rely on
either large language models (LLMs) or equivariant denoising models, each with
complementary strengths: LLMs excel at handling discrete atomic types but often
struggle with continuous features such as atomic positions and lattice parame-
ters, while denoising models are effective at modeling continuous variables but
encounter difficulties in generating accurate atomic compositions. To bridge this
gap, we propose CrysLLMGen, a hybrid framework that integrates an LLM with
a diffusion model to leverage their complementary strengths for crystal material
generation. During sampling, CrysLLMGen first employs a fine-tuned LLM to
produce an intermediate representation of atom types, atomic coordinates, and
lattice structure. While retaining the predicted atom types, it passes the atomic
coordinates and lattice structure to a pre-trained equivariant diffusion model for
refinement. Our framework outperforms state-of-the-art generative models across
several benchmark tasks and datasets. Specifically, CrysLLMGen not only achieves
a balanced performance in terms of structural and compositional validity but also
generates more stable and novel materials compared to LLM-based and denoising-
based models Furthermore, CrysLLMGen exhibits strong conditional generation
capabilities, effectively producing materials that satisfy user-defined constraints.
Code is available at https://github.com/kdmsit/crysllmgen

1 Introduction

Discovery of novel three-dimensional crystal materials with desired chemical properties remains a
fundamental challenge in the field of materials design. These materials play a critical role in driving
innovations such as development of batteries, solar cells, and semiconductors [1, 2]. Generating
crystal materials presents a significant challenge due to its intrinsic complex structure. Unlike
molecules, which are typically represented as regular graphs, crystal materials are typically modeled
by a minimal unit cell containing all the constituent atoms in different coordinates, repeated infinite
times in 3D space on a regular lattice, which makes material structures periodic in nature [3]. Hence,
generating stable crystal material requires the simultaneous prediction of both discrete (atomic types)
and continuous components (atomic coordinates and lattice structures).

Traditionally, material discovery has relied on either computationally expensive density functional the-
ory (DFT) simulations [4, 5, 6] or labor-intensive experimental procedures. However, recent advances
in generative modeling have opened up promising directions for designing novel crystal structures
with greater efficiency and scalability. Current generative approaches for material generation can be
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Validity Metric Denoising Models LLMs LLM+Diffusion
CDVAE [8] DiffCSP [10] FlowMM [14] LLaMA-2(7B) [7] CrysLLMGen(7B)

Structural Validity 100 100 96.85 96.40 99.94
Compositional Validity 86.70 83.25 83.19 93.30 93.55

Table 1: Validity Evaluation of Crystal Generation across model classes: Denoising models tend
to achieve higher structural validity, while LLMs excel in compositional validity. CrysLLMGen
demonstrates a balanced performance, delivering both high structural and compositional validity.

broadly classified into two main categories: (1) autoregressive large language models (LLMs) [7], and
(2) denoising-based frameworks, including diffusion models [8, 9, 10, 11, 12, 13] and flow matching
techniques [14, 15]. Each of these generative models has distinct advantages and drawbacks. LLMs
excel at capturing discrete information, making them particularly effective at predicting atomic
types and achieving high compositional validity. However, they often face challenges in accurately
generating continuous data such as atomic positions and lattice parameters due to limitations in finite
precision encoding, leading to reduced structural validity. In contrast, denoising-based models are
inherently better at handling continuous variables and preserving geometric equivariances, resulting
in higher structural validity. Nevertheless, these models struggle with discrete components, such as
correctly identifying atomic types, which leads to lower compositional validity (Table-1).

In this work, we aim to harness the complementary strengths of both LLMs and denoising models
to mitigate their individual limitations. To this end, we introduce CrysLLMGen, a novel hybrid
framework for periodic material generation, which consists of two modules: a fine-tuned LLM
and a pre-trained Diffusion Model. Our sampling process begins with the LLM that generates
intermediate predictions for atom types, coordinates, and lattice. Given that LLMs excel at modeling
discrete information, the generated atom types are well-aligned with the true atomic distributions
observed in material datasets. Hence, we retain atomic types and then pass the predicted atomic
coordinates and lattice structures to a pre-trained equivatiant diffusion model, which refines and
adjusts these continuous components to produce more stable and structurally valid crystal materials.
Our simple yet effective hybrid approach enables the joint modeling of multimodal features, both
discrete and continuous, of crystal materials, significantly enhancing the validity, stability, and
novelty of the generated structures. A major advantage of incorporating large language models
(LLMs) is their ability to process natural language prompts, allowing for conditional generation.
Additionally, denoising models handle crystal symmetries and the equivariant nature of material
data distributions. Importantly, our proposed framework is architecture-agnostic, meaning it can
readily accommodate future advancements in both LLMs and denoising networks without requiring
substantial modifications.
Extensive experiments on benchmark datasets demonstrate that hybrid models can effectively capture
both the discrete and continuous aspects of crystal structures, resulting in improvements in both
compositional and structural validity. Furthermore, our results show that CrysLLMGen generates 32%
and 68% more stable materials compared to state-of-the-art LLM-based models and best-performing
denoising model. To sum up, our novel contributions in this work are as follows:

• To the best of our knowledge, CrysLLMGen is the first hybrid model that combines large
language models (LLMs) with diffusion models for crystal material generation.

• Extensive experiments on benchmark datasets demonstrate that CrysLLMGen consistently
outperforms state-of-the-art models in both structural and compositional validity. It also
generates more stable, unique, and novel crystal structures compared to existing approaches.

• CrysLLMGen shows strong generative capability under conditional prompts, effectively pro-
ducing materials aligning with specified atomic compositions and space group constraints.

2 Related Work: Crystal Material Generation

Earlier works on periodic material generation primarily focused on atomic composition, often
overlooking 3D structural details. With the rise of generative models, approaches using VAEs or
GANs have aimed to generate 3D periodic structures by representing materials as voxel images [16,
17, 18, 19] or embedding vectors [20, 21, 22]; however, these methods neither ensure structural
stability nor maintain invariance to Euclidean or periodic transformations.
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Diffusion Models. Recently, equivariant diffusion models have become the leading approach for
stable crystal material generation due to their ability to utilize the physical symmetries of periodic
structures. Models like CDVAE [8] and SyMat [9] combine VAEs with score-based denoising
networks operating on atomic coordinates through equivariant GNNs, ensuring Euclidean and periodic
invariance. Subsequent models, including DiffCSP [10] and MatterGen [11], jointly learn atomic
composition, coordinates, and lattice parameters via diffusion frameworks. UniMat [13] extends
this idea with a unified 4D tensor representation that models discrete atom types and continuous
coordinates using a probabilistic diffusion model. More recently, text-guided diffusion models such
as TGDMat [23] and Chemeleon [24] integrate contextual embeddings from pretrained models like
MatSciBERT or CLIP into GNN-based denoising networks to generate stable periodic materials
aligned with textual descriptions.

Symmetry-Aware Generation. While conventional diffusion models learn atomic positions inde-
pendently, incorporating space group symmetry greatly reduces model complexity. DiffCSP++ [12]
is the first to extend DiffCSP by enforcing symmetry constraints on lattice parameters and atomic
coordinates, ensuring correct lattice systems and restricting atoms to Wyckoff positions from training
templates. SymmCD [25] further advances this by jointly learning fractional coordinates and Wyckoff
positions using a site-symmetry–aware representation. By modeling only one representative atom per
crystallographic orbit, both methods substantially reduce generative complexity.

Latent Diffusion Models. A major limitation of current diffusion-based methods is their reliance
on high-dimensional feature spaces that jointly model atom types, fractional coordinates, and lattice
structures: an inherently multimodal distribution with distinct statistical characteristics for each
component. This leads to high computational costs during training and inference, restricting their
use in resource-limited settings. Recent works such as CrysLDM [26] and ADiT [27] address these
challenges through latent diffusion models, which operate in a compact latent space to significantly
reduce sampling time and computational overhead, offering improved efficiency over conventional
feature-space diffusion approaches.

Flow matching. Flow matching (FM) [28, 29, 30] has recently emerged as a strong alternative to
diffusion-based methods for crystalline material generation. Unlike diffusion models that iteratively
denoise samples from a Gaussian prior, FM directly learns a time-dependent velocity field that
continuously transports an arbitrary base distribution toward the target distribution of stable crystals.
The first such application, FlowMM [14], introduced a representation that preserves global rotational
and translational symmetries and enforces periodic boundary conditions through equivariant flows to
ensure symmetry invariance. Building on this, FlowLLM [15] combines geometric inductive biases
with base distributions guided by large language models [7]. Additionally, CrysBFN [31] employs
periodic Bayesian Flow Networks with entropy conditioning and non-monotonic dynamics to better
capture periodicity in non-Euclidean space, enhancing both sampling efficiency and generation
quality.

Large Language Models. Large language models (LLMs) are increasingly applied in the natural
sciences as versatile priors for reasoning over sequences, graphs, and spatial data, a trend that has
recently extended to materials generation. By representing crystal structures as textual descriptions of
unit cells and atomic positions, token-based language models [32, 7] have shown strong performance
in generating stable and valid materials.

Key Differences with FlowLLM [15]. By design, our proposed CrysLLMGen comes close to
FlowLLM [15], however here are key distinctions in design and methodology. Our approach
differs from FlowLLM in three key aspects. (1) Generative Module: While FlowLLM employs
a flow-matching framework as its generative component, our method, CrysLLMGen, utilizes a
diffusion-based model. Through comparative analysis on unconditional material generation (Table-2),
we observed that the diffusion-based DiffCSP consistently outperforms the flow-matching model
FlowMM across most benchmark metrics. (2) Parallel Training: Unlike FlowLLM’s sequential
training paradigm, where a large language model (LLaMA-2) is first fine-tuned on the dataset and its
generated samples are subsequently used to train the flow-matching model, our approach trains both
the LLM and the diffusion module in parallel on the same training dataset. (3) Integration Strategy:
In FlowLLM, the material structures generated by the LLM are directly refined by the flow-matching
module. In contrast, we treat the LLM-generated material structures as intermediate representations,
which are injected into our diffusion model at an intermediate timestep τ (where 0 ≤ τ ≤ T ) to
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initiate denoising from that point. This integration strategy allows more effective refinement and
generation, harnessing the complementary strengths of both the LLM and the diffusion model.

3 Preliminaries

3.1 Crystal Structure Representation

The crystal structure can be visualized as a three-dimensional point cloud, where atoms are positioned
at specific coordinates within a minimal unit cell that repeats periodically in space to form the infinite,
periodic crystal lattice. Given a material with N number of atoms in its unit cell, we can describe
the unit cell by two matrices: Atom Type Matrix (A) and Coordinate Matrix (X). Atom Type Matrix
A = [a1, a2, ..., aN ]T ∈ RN×k denotes set of atomic type in one hot representation (k: maximum
possible atom types). On the other hand, Coordinate Matrix X = [x1, x2, ..., xN ]T ∈ RN×3 denotes
atomic coordinate positions, where xi ∈ R3 corresponds to coordinates of ith atom in the unit
cell. Further, there is an additional Lattice Matrix L = [l1, l2, l3]T ∈ R3×3, which describes how
a unit cell repeats itself in the 3D space towards l1, l2 and l3 direction to form the periodic 3D
structure of the material. Formally, a given material can be defined as M = (A,X,L) and we can
represent its infinite periodic structure as X̂ = {x̂i|x̂i = xi +

∑3
j=1 kj lj}; Â = {âi|âi = ai} where

k1, k2, k3, i ∈ Z, 1 ≤ i ≤ N .

3.2 Symmetry in Crystal Structure

Crystal structures inherently exhibit a range of physical symmetries, which are fundamental to
their characterization and physical properties. Consequently, a major challenge for any generative
model designed for crystal generation is to ensure that the learned distribution satisfies periodic E(3)
invariance, meaning invariance to permutation, translation, rotation, and periodic transformations.
Permutation invariance implies that reordering the indices of the constituent atoms does not alter the
identity of the material, whereas translation invariance means that shifting all atomic coordinates
by a constant vector leaves the material structure unchanged. Rotational invariance indicates that
rotating both the atomic coordinates and the lattice matrix does not affect the material’s identity.
Periodic invariance arises from the fact that atoms in a unit cell repeat infinitely along the lattice
vectors, allowing multiple valid representations through different choices of unit cells and coordinate
matrices for the same material.

4 Methodology

4.1 Problem Formulation

In this work, we consider generative modeling of 3D crystal structures from scratch, to discover
new stable materials. Formally, given a datasetM = {Mi}mi=1, containing crystal structure Mi =
(Ai,Xi,Li), the goal is to capture the underlying data distribution p(M) via learning a generative
model fθ(M), where θ is a set of learnable parameters. While training, we need fθ to ensure that the
learned distribution is invariant to different symmetry transformations mentioned in Section 3.2. Once
trained, the generative model can sample valid and stable material structures that remain invariant
under various symmetry transformations (unconditional generation). Additionally, by providing
specific constraints during sampling, the model can generate structures that meet desired criteria
(conditional generation).

4.2 Proposed Framework: CrysLLMGen

Our proposed framework, CrysLLMGen, is a hybrid model that combines a large language model
(LLM) with a diffusion model (DM) for crystal material generation. We fine-tune the LLM and
train the diffusion model independently as standalone components using the training dataset. The
sampling process begins by prompting the LLM to generate initial predictions for A, X, and L. Given
the LLM’s strong capability in modeling discrete information, we assume that the predicted atom
types closely align with the true atomic distributions found in material datasets. Therefore, we
retain these predicted atom types as the final atomic composition of the generated material. The
atomic coordinates and lattice parameters are then passed to a diffusion model, which refines these
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Below is a description 
of a bulk material. 
<The space group 
number is 164. The 
chemical formula is 
Mg(AlSi)2. The crystal 
system is trigonal.> 
Generate a description 
of the lengths and 
angles of the lattice 
vectors and then the 
element type and 
coordinates ….

Denoising Process Intermediate Representation
Prompt 

(Unconditional/Conditional)

Generated 
Material

LLM Inference

Figure 1: Model Architecture of our proposed CrysLLMGen. The sampling process begins with
prompting the LLM to generate intermediate representations for A, X, and L. The predicted atom
types (A) are retained as-is, while the atomic coordinates (X) and lattice parameters (L) are further
refined through a denoising diffusion network.

continuous components to ensure structural validity and enhance the stability of the generated crystal
materials. Next, we will explain in details both the components of our proposed framework.

4.3 Large Language Model (LLM) fLLM
ϕ for Crystal Materials

We build upon prior work [7] to develop our LLM-based component, in which crystal structures are
converted into sequential representations and fed into the LLM for further processing. Fundamentally,
LLMs model a distribution over sequences using autoregressive next-token prediction task, where each
token is generated based on a categorical distribution conditioned on all preceding tokens in the input
sequence. We transform a dataset of crystal structuresM = {Mi}mi=1 into a corresponding dataset
of sequencesW = {W1,W2, . . . ,Wm}, where each sequence Wi represents the CIF text format of
the crystal structure Mi. Next, we tokenize each text sequence representing a crystal structure. We
represent each crystal material Mi using fixed-precision values: fractional 3D coordinates are rounded
to two decimal places, lattice lengths to one decimal place, and angles are encoded as integers. Atom
types are treated as discrete tokens. For our LLM backbone, we adopt the state-of-the-art LLaMA-2
models, which have demonstrated strong performance in material generation tasks across several
recent studies. Additionally, LLaMA-2 tokenizes numbers as individual digits by default, a feature
shown to significantly enhance performance on arithmetic-related tasks.
We use the pre-trained LLaMA-2-7B base model as our starting point. It is fine-tuned on a dataset
of crystal structures represented as text sequences. We use task-specific prompts to fine-tune the
model on different tasks like unconditional or text-conditional generation. Although larger LLaMA
variants such as LLaMA-2-13B, LLaMA-2-70B, or the newer LLaMA-3 models may offer enhanced
performance, we opted for the LLaMA-2-7B model to balance computational efficiency, the scale of
available pretraining data, and practical deployment considerations for the broader materials science
community. Exploring higher-end models is left as a direction for future work.
Crystal structures exhibit translational and rotational symmetries, which standard LLM architectures
are not inherently equipped to capture. To address this, we adopt the data augmentation strategy
proposed by [7]. Once trained, the LLM can generate sequences by sampling tokens sequentially
from the learned categorical distribution.

4.4 Diffusion Model fDiff
θ for Crystal Materials [Atom Coordinates, Lattice Structures]

Prior works leverage equivariant diffusion models to jointly learn atom types A, atomic fractional
coordinates X, and lattice structure L. However, in our setup, we retain the atom types predicted by
the LLM as the final atomic composition of the generated material, while the atomic coordinates and
lattice structure are refined using a diffusion model. To enable this, we train the diffusion model on
a structure prediction task, where, given the atom types A of a crystal material, it learns the joint
distribution of atomic fractional coordinates X and lattice structure L.

Diffusion on Atom Coordinates (X). Atom coordinates can be diffused in two ways: by apply-
ing noise to either the cartesian coordinates or the fractional coordinates. Prior works such as
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CDVAE [8] adopt cartesian coordinate diffusion, while DiffCSP [10] operates on fractional coordi-
nates. In our approach, since we jointly learn atomic positions and the lattice matrix, we follow the
methodology of DiffCSP and perform diffusion on the fractional coordinates. Coordinate Matrix
X = [x1, x2, ..., xN ]T ∈ RN×3 contains fractional coordinates of constituent atoms, that resides in
quotient space RN×3/ZN×3 induced by the crystal periodicity. Since the Gaussian distribution used
in DDPM is unable to model the cyclical and bounded domain of X, it is not suitable to apply DDPM
to model X. Hence at each step of forward diffusion, we add noise sample from Wrapped Normal
(WN) distribution [33] to X and during backward diffusion leverage Score Matching Diffusion
Networks [34, 35] to model underlying transition probability q(Xt | X0) = NW (Xt | X0, σ

2
t I).

In specific, at each tth step of diffusion, we derive Xt as : Xt = fw(X0 + σtϵ
X) where, ϵX is a

noise, sampled from N (0, I), σt is the noise scale following exponential scheduler and fw(.) is a
truncation function. Given a fractional coordinate matrix X, truncation function fw(X) = (X − ⌊X⌋)
returns the fractional part of each element of X. As argued in [10], q(Xt|X0) is periodic translation
equivariant, and approaches uniform distribution U(0, 1) for sufficiently large values of σT . We use a
denoising network Φθ(At,Xt,Lt, t) to model the backward diffusion process, which is trained using
the following score-matching objective function :

Lcoord = EXt∼q(Xt|X0)
t∼U(1,T )

∥∇Xt
logq(Xt|X0)− ϵ̂X(Mt, t)∥22 (1)

where ∇Xt
logq(Xt|X0) ∝

∑
K∈ZN×3 exp(− ∥Xt−X0+K∥2

F

2σ2
t

) is the score function of transitional distri-

bution and ϵ̂X(Mt, t) denoising term.

Diffusion on Lattice Structure (L). Lattice Matrix L = [l1, l2, l3]
T ∈ R3×3 is a global feature

of the material which determines the shape and symmetry of the unit cell structure. Since L is in
continuous space, we leverage the idea of the Denoising Diffusion Probabilistic Model (DDPM) [36]
for diffusion on L. Specifically, given an initial lattice matrix L0 ∼ p(L), the forward diffusion
process gradually corrupts it over T timesteps, resulting in a noisy lattice matrix LT . At each timestep
t, the transition is governed by a conditional probability distribution q(Lt | L0), which can be formally
expressed as: q(Lt | L0) = N (Lt |

√
ᾱtL0, (1 − ᾱt)I), where, ᾱt =

∏t
k=1 αk, αt = 1− βt and

{βt ∈ (0, 1)}Tt=1 controlling the level of noise added at each step. By reparameterization, we can
rewrite as: Lt =

√
ᾱtL0 +

√
1− ᾱtϵ

L where, ϵl is a noise, sampled from N (0, I), added with
original input sample L0 at tth step to generate Lt. After T such diffusion steps, noisy lattice matrix
LT is generated from prior noise distribution ∼ N (0, I). During denoising, the reverse conditional
distribution can be expressed as follows : p(Lt−1|Mt) = N{Lt−1 | µL(Mt), βt

(1−ᾱt−1)
(1−ᾱt)

I}, where
µL(Mt) = 1√

αt

(
Lt − 1−αt√

1−ᾱt
ϵ̂L(Mt, t)

)
. Intuitively, ϵ̂l is the denoising term that needs to be

subtracted from Lt to generate Lt−1. We use a denoising network Φθ(At,Xt,Lt, t) to model the
noise term ϵ̂L(Mt, t). Following the simplified training objective proposed by [36], we train the
aforementioned denoising network using l2 loss between ϵ̂L and ϵL

Llattice = EϵL,t∼U(1,T )∥ϵL − ϵ̂L∥22 (2)

Denoising Network. For the denoising network fθ(At,Xt,Lt, t) in the reverse diffusion process,
we extend the CSPNet architecture [10], which is built upon the Equivariant Graph Neural Network
(EGNN) [37]. This architecture is specifically designed to satisfy the periodic E(3) invariance
conditions inherent in periodic crystal structures. At the kth layer message passing, the Equivariant
Graph Convolutional Layer (EGCL) takes as input the set of atom embeddings hk = [hk

1 , h
k
2 , ...,h

k
N ],

atom coordinates xk = [xk1 , xk2 , ..., xk
N ] and Lattice Matrix L and outputs a transformation on hk+1.

Formally, we can define the kth layer message passing operation as follows :

mi,j = ρm{hk
i , hk

j , LT L, ψFT (xk
i − xk

j )}; mi =

N∑
j=1

mi,j ; hk+1
i = hk

i + ρh{hk
i ,mi} (3)

where, ρm and ρh are multi-layer perceptrons (MLPs), and ψFT denotes a Fourier Transformation
function applied to the relative difference between fractional coordinates xk

i and xkj . The use of Fourier
Transformation ensures invariance to periodic translations and captures a spectrum of frequencies
from the relative fractional distances, which is beneficial for modeling the periodic nature of crystal
structures. Input atom features h0 and coordinates x0 are fed through K layers of EGCL to produce
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ϵ̂L and ϵ̂X as follows :

ϵ̂L = LρL(
1

N

i=1∑
N

hK); ϵ̂X = ρX(hK) (4)

where ρL, ρX are multi-layer perceptrons on the final layer embeddings.

Algorithm 1 Sampling Process of CrysLLMGen

1: Input: A pretrained LLM fLLM
ϕ , A pretrained Diffusion Model fDiff

θ , (Condi-
tional/Unconditional) Prompt for Material P , Intermediate step τ

2: Step 1: Sample from LLM fLLM
ϕ

3: Sample Â, X̂ and L̂ from LLM given prompt P : (Â, X̂, L̂) ∼ fLLM
ϕ (P)

4: Step 2: Refinement using Diffusion Models fDiff
θ

5: A0 := Â/ ∗Retain ∗ /
6: Lτ := L̂; Xτ := X̂
7: for t← τ to 1 do
8: ϵ̂X, ϵ̂L ← fθ(Â,Xt,Lt, t)

9: Lt−1 ← 1√
αt
(Lt − βt√

1−ᾱt
ϵ̂L) +

√
βt

1−ᾱt−1

1−ᾱt
ϵ; ϵ ∼ N(0, I)

10: Xt− 1
2
← w(Xt + (σ2

t − σ2
t−1)ϵ̂

X +
σt−1

√
σ2
t−σ2

t−1

σt
ϵ; ϵ ∼ N(0, I)

11: _, ϵ̂X ← fθ(Â,Xt− 1
2
,Lt−1, t)

12: ηt ← step_size ∗ σt−1

σt

13: Xt−1 ← w(Xt− 1
2
+ ηtϵ̂

X +
√
2ηtϵ

X)

14: end for

15: Output: New Generated Crystal Material: Mnew = (Â,X0,L0)

4.5 Training and Sampling

We train both components of our proposed framework, CrysLLMGen, the LLM and the diffusion
model, independently using the training dataset. For the LLM component, we start with the pre-
trained LLaMA-2-7B base model and fine-tune it with the Low-Rank Adapters (LoRA) method on
crystal structures represented as text sequences, guided by task-specific prompts for either conditional
or unconditional generation. In this work, we adopt the prompt formats proposed in [7] for both
tasks. The diffusion model is trained for a structure prediction task using a combined loss function:
L = Llattice + Lcoord.

Once trained, the sampling process begins with the LLM component. A task-specific prompt is
provided as input, and the LLM generates a sequence by sampling tokens sequentially from its
learned distribution.1 This yields an intermediate representation consisting of predicted atom types
Â, atomic coordinates X̂, and lattice structure L̂. Given the LLM’s strong capacity for modeling
discrete information, we hypothesize that Â closely aligns with the true atomic distributions observed
in material datasets. Therefore, we retain Â as the final atomic composition of the generated material.
But, the continuous variables X̂ and L̂ require further refinement and hence we need to feed them
to the diffusion model. Typically, diffusion models begin the sampling process with fully noisy
inputs, i.e., XT ,LT ∼ N (0, I) and iteratively denoise them over T steps to generate X0 and L0,
approximating the target data distribution. However, in our case, X̂ and L̂ produced by the LLM
are not pure noise but meaningful intermediate representations. Therefore, instead of starting the
denoising process at step T , we inject these representations at an intermediate timestep τ , where

1LLMs sometimes hallucinate and generate invalid or unphysical chemical elements. To address this, we
employ a simple validation strategy that checks and filters compositions during sampling, immediately discarding
any invalid ones. On average, about 2–5% of the sampled structures are removed due to invalid atom types or
compositions.
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Dataset Category Model Validity Coverage Property
Structural ↑ Compositional ↑ Precision ↑ Recall ↑ Density ↓ # Element ↓

MP-20

Diffusion Models

CDVAE 100 86.70 99.49 99.15 0.687 1.432
DiffCSP 100 83.25 99.76 99.71 0.352 0.339

DiffCSP++ 99.94 85.12 99.59 99.73 0.235 0.375
MatterGen 100 86.34 99.45 99.59 0.459 0.254

UniMat 97.20 89.40 99.70 99.80 0.088 0.056
SymmCD 92.30 87.13 98.78 97.33 0.531 0.210

Flow Matching FlowMM 96.85 83.19 99.58 99.49 0.239 0.083
FlowLLM 99.94 90.84 99.82 96.95 1.142 0.150

Bayesian Flow Networks CrysBFN 100 87.51 99.79 99.09 0.206 0.163

LLMs Lama-2 (7B) 97.70 93.55 99.32 96.95 1.575 0.272

LLM + Diffusion CrysLLMGen (7B) 99.94 93.55 99.84 98.52 0.972 0.272

Perov-5

Diffusion Models

CDVAE 100 98.59 98.46 99.45 0.126 0.063
DiffCSP 100 98.85 98.27 99.74 0.111 0.013

DiffCSP++ 100 98.77 98.80 99.60 0.066 0.004
MatterGen 99.84 98.21 98.17 98.96 0.109 0.036

UniMat 100 98.80 98.20 99.20 0.076 0.025

Flow Matching FlowMM 100 97.91 88.91 99.31 1.210 0.061
FlowLLM 99.70 98.06 90.27 99.40 0.892 0.060

Bayesian Flow Networks CrysBFN 100 98.86 98.63 99.52 0.073 0.010

LLMs Llama-2 (7B) 99.09 98.92 98.36 98.46 0.649 0.043

LLM + Diffusion CrysLLMGen (7B) 100 98.92 98.82 99.31 0.137 0.043

Table 2: Summary of results on De Novo Generation Task of Different Class of Generative Models.

0 ≤ τ ≤ T , and initiate the denoising process from there to refine both the coordinates and the
lattice structure. τ is a hyper-parameter, which we choose based on the validation set for each dataset.
The final atomic coordinates X0 and lattice structure L0, combined with the retained atom types Â,
constitute the generated crystal material, denoted as: Mnew = (Â,X0,L0). The full sampling process
is described in Algorithm 1.

5 Experiments

In this section, we present a comprehensive evaluation of our method against several baselines on
three benchmark tasks: De Novo Material Generation (Section 5.1), Stable, Unique, and Novel
(S.U.N.) Materials Generation (Section 5.2), and Text-Conditioned Generation (Section 5.3).

5.1 De Novo Material Generation (Gen)

Setup. First, we focus on De Novo Material Generation (Gen), an unconditional generation task
aimed at producing novel, stable crystal materials that are distributionally similar to those in the
test dataset. To evaluate the effectiveness of CrysLLMGen in this task, we compare it against
seven state-of-the-art generative models across different categories: CDVAE [8], DiffCSP [10],
DiffCSP++ [12], MatterGen [11], UniMat [13] and SymmCD [25] from the class of denoising
models; FlowMM [14] and FlowLLM [15] from the flow matching paradigm; CrysBFN [31] from
the Bayesian Flow Networks and LLaMA-2(7B) [7] representing the LLM-based approach. We
use two popular material datasets for this task: Perov-5 [38, 39] and MP-20 [40]. While training all
competitive models, we followed the standard dataset split of 60% for training, 20% for validation,
and 20% for testing. Following [8], we assess all models using seven evaluation metrics grouped
under three broad categories: validity, coverage, and property statistics. (More details in Appendix
C) Results. We present the results in Table 2. We observe that across both datasets, denoising
models such as diffusion and flow matching frameworks excel in structural validity, while LLM
models perform better in compositional validity. In contrast, CrysLLMGen, as a unified model,
surpasses all baseline models in both structural and compositional validity. Specifically, on MP-20
dataset, CrysLLMGen demonstrates a 4.64% improvement in compositional validity over leading
denoising models and a 2.29% gain in structural validity over LLM-based models. Furthermore,
in coverage metrics, CrysLLMGen achieves the highest performance in COV-Precision, however
in COV-Recall, it outperforms LLMs and delivers competitive results against denoising models.
Lastly, in terms of property statistics, recent denoising models such as UniMat and FlowMM
demonstrate strong performance, while approaches incorporating LLMs (e.g., LLaMA or FlowLLM)
tend to underperform. We observe that CrysLLMGen consistently surpasses LLM-based baselines
and performs comparably to SOTA denoising models. Overall, CrysLLMGen exhibits promising
performance in the material generation task, effectively leveraging the strengths of both LLMs
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and diffusion models to enhance generative capability and produce more valid, periodic 3D crystal
structures.

5.2 Stable, Unique and Novel (S.U.N.) Materials

The ultimate objective of materials discovery is to efficiently screen for stable, unique, and innovative
materials. Thermodynamic stability provides a strong indication of a material’s synthesizability. A
crystal is considered stable when it is energetically more favorable than any alternative structures
composed of the same atomic elements, but in different proportions or arrangements.The stability
gap can be rationalised by considering the factors contributing to the energy above the convex
hull for a given material structure (A,X,L). Ehull(A,X,L) can be conceptually decomposed into
contributions related to the intrinsic stability of the composition A itself, and the relative stability of
the specific structure (X,L) for that composition,

Ehull(A,X,L) = ∆Estruct(X,L | A)︸ ︷︷ ︸
Polymorph
energy split

+ ∆Echem(A)︸ ︷︷ ︸
Compositional

instability

. (5)

Such stable structures lie directly on or below the convex hull [11]. Once a
set of stable materials is obtained after structural relaxation, the next objective is
to identify those that are structurally unique and truly novel within that stable set.

Method % Meta-Stable ↑ % M.S.U.N. ↑ % Stable ↑ % S.U.N ↑
CDVAE 23.58 21.99 3.08 2.56
DiffCSP 35.04 32.19 7.36 5.61

DiffCSP++ 42.39 30.56 8.58 6.55
FlowMM 31.64 22.46 4.76 3.06
SymmCD 40.01 31.69 9.99 6.76

Llama-2 (7B) 56.60 26.66 12.67 4.84
CrysLLMGen (7B) 62.02 35.94 16.79 9.21

Table 3: Results on S.U.N. metrics for different SOTA models.

In this section, we evalu-
ate the effectiveness of our
proposed framework in
generating stable, unique,
and novel materials. To
this end, we adopt the
S.U.N. (Stability, Unique-
ness, and Novelty) met-
rics introduced in prior
work [11] and compare
our model’s performance
against several baseline
approaches. Specifically, we follow the evaluation protocol used in [14, 15], wherein 10,000
candidate structures are generated for each state-of-the-art model and subsequently relaxed using
a pretrained CHGNet [41] model to estimate their formation energies. These energies are then
compared against a convex hull constructed from the Materials Project database. Relaxed structures
are labeled as stable if Ehull < 0.0 eV/atom and as metastable if Ehull < 0.1 eV/atom. Finally, we
assess whether the relaxed stable and metastable structures are also unique and novel, reporting them
as % S.U.N. and % M.S.U.N., respectively.

We present the results of all competing baseline models along with CrysLLMGen on the MP-20
dataset in Table 3. Overall, CrysLLMGen demonstrates substantial improvements in generating
stable, unique, and novel structures. In specific, compared to the best-performing denoising model,
CrysLLMGen achieves relative gains of 46.29% in metastable rate, 11.65% in MSUN rate, 68.07%
in stability rate, and 36.27% in SUN rate. Furthermore, when compared to the LLM-based baseline,
the improvements are 9.56% in metastable rate, 34.80% in MSUN rate, 32.53% in stability rate, and
90.29% in SUN rate. Finally, to further assess how effectively CrysLLMGen generates low-energy
structures compared to baseline models, we plotted the histogram of the computed Ehull distribution
for relaxed structures across different methods, as shown in Figure 2(a). The results indicate that
CrysLLMGen produces a greater proportion of low-energy structures than all other baseline models,
confirming its ability to generate more stable materials. As mentioned, CrysLLMGen introduces
a hybrid approach where the LLM predicts chemically valid compositions A, which are then fixed
while a diffusion model refines lattice and atomic coordinates. This separation leverages the LLM’s
chemical prior to prioritize stable compositions, resulting in lower formation energies compared to
fully joint diffusion models like DiffCSP.(Check detailed analysis in Appendix E)

5.3 Text Conditioned Generation

Next, we evaluate CrysLLMGen on conditional crystal generation task. Following the experimental
setup proposed by [7], we extend the idea of text-conditional material generation by providing
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(a) Histogram of Ehull.

Below is a description 
of a bulk material. 
The chemical formula is 
SnO. The space group 
number is 31. 
Generate a description 
of the lengths and 
angles of the lattice 
vectors and then the 
element type and 
coordinates ….

Conditional Prompt Conditions Satisfied

(b) Results of Conditional Generation.

Figure 2: (a) Histogram of (Ehull) distribution computed after relaxation with CHGNet.(b) Results
of Text-Conditional Generation on atomic compositions and space group.

the LLM component with user-defined prompts that specify desired conditions for the generated
materials. Specifically, we explore conditioning on atomic composition and space group number
by incorporating the target chemical formula and space group into the prompt. This prompt is then
passed to the LLM component of our model, which generates materials that aim to satisfy the given
constraints. To assess the model’s ability to generate crystal materials that satisfy specified atom
types and space group constraints, we compare the generated outputs with available ground-truth
labels. For chemical composition, we parse the atomic formula from each generated CIF file and
check for a match with the target composition. Further, we use Pymatgen’s SpacegroupAnalyzer [42]
with a tolerance of 0.2 Å to determine the space group of both generated and ground truth materials
and compute the match rate. These experiments are conducted on the MP-20 test dataset, and the
results are presented in Figure 2(b), where we compare the performance of CrysLLMGen against
the LLM baseline proposed by [7]. For atom types, we report match rates across three classes of
materials based on the number of atoms: ≤5,≤10, and≤25. We observe that CrysLLMGen performs
comparably to the LLM baseline across all three categories. Specifically, the model is able to generate
materials with the correct composition in most cases, although accuracy declines as the number of
atoms in the chemical formula increases. This similar performance is primarily due to CrysLLMGen
retaining the atomic compositions provided by the LLM component. However, in the case of space
group prediction, CrysLLMGen outperforms the LLM baseline by 42%. This improvement can be
attributed to the diffusion model’s structural refinement, which enables CrysLLMGen to better align
the generated structures with the desired space group.

6 Conclusion

In this work, we explore a hybrid approach that integrates large language models (LLMs) with
diffusion models for crystal material generation. We propose CrysLLMGen, a two-stage framework
that first uses a fine-tuned LLM to generate an intermediate representation of atom types, atomic
coordinates, and lattice parameters, and then refines the coordinates and lattice using a pre-trained
diffusion model. Extensive experiments on popular material generation tasks demonstrate that
CrysLLMGen maintains both structural and compositional validity, outperforming existing baseline
models by a good margin. Moreover, CrysLLMGen generates crystal structures that are more stable,
unique, and novel than those produced by prior methods. Additionally, it exhibits strong conditional
generation capabilities, effectively synthesizing materials that meet user-defined constraints.

7 Limitations and Future Work

In our current proposed framework, there is no interaction between the LLM and the diffusion model;
both components are trained independently as standalone modules. During sampling, the LLM first
generates predictions, which are then passed to the diffusion model for further processing. This
separation suggests a potential avenue for future research: exploring whether these two components
could benefit from mutual guidance or feedback mechanisms to enhance the overall generation quality.
Also, At present, we use a pre-trained LLaMA-2-7B base model as the LLM component, coupled
with a vanilla diffusion model that extends DiffCSP. Nonetheless, our framework is designed to be
flexible, allowing seamless integration of more advanced LLM variants, such as LLaMA-3, or more
fine-grained diffusion models for crystal material generation in future work.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the source code and data, along with complete instructions to
reproduce the main experimental results in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See section 5 and appendix C
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We followed the experimental setup of earlier works, none of them reported
Statistical Significance on experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See section 5 and appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research we conducted in the paper conforms, in every respect, with
the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The work performed in this paper has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: This paper does not pose any such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See section 5 and appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See section 5 and appendix C.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not have any such risk.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: See section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

B Related Work(In Details)

Deep learning models are increasingly being applied across various downstream tasks in mate-
rials science, including scalable materials design [43], property prediction [44], knowledge-base
construction [45], database generation [46], and entity extraction [47]. In this work, we present a
comprehensive survey of state-of-the-art methods for crystal material representation learning and
generation.

B.1 Crystal Representation Learning

In recent times, graph neural network (GNN) based approaches have emerged as a powerful model
in learning robust representation of crystal materials, which enhance fast and accurate property
prediction. CGCNN [48] is the first proposed model, which represents a 3D crystal structure as an
undirected weighted multi-edge graph and builds a graph convolution neural network directly on
the graph. Following CGCNN, there are a lot of subsequent studies [49, 50, 51, 52, 53, 54], where
authors proposed different variants of GNN architectures for effective crystal representation learning.
Recently, graph transformer-based architecture Matformer [55] is proposed to learn the periodic
graph representation of the material, which marginally improves the performance, however, is much
faster than the prior SOTA model. Moreover, scarcity of labeled data makes these models difficult to
train for all the properties, and recently, some key studies [56, 57] have shown promising results to
mitigate this issue using transfer learning, pre-training, and knowledge distillation respectively.

B.2 Crystal Material Generation

In the past, there were limited efforts in creating novel periodic materials, with researchers concen-
trating on generating the atomic composition of periodic materials while largely neglecting the 3D
structure. With the advancement of generative models, the majority of the research focuses on using
popular generative models like VAEs or GANs to generate 3D periodic structures of materials, how-
ever, they either represent materials as three-dimensional voxel images [16, 17, 18, 19] and generate
images to depict material structures (atom types, coordinates, and lattices), or they directly encode
material structures as embedding vectors [20, 21, 22]. However, these models neither incorporate
stability in the generated structure nor are invariant to any euclidean and periodic transformations.

Diffusion Models. In recent times equivariant diffusion models have become the leading method
for generating stable crystal materials, thanks to their capability to utilize the physical symmetries
of periodic material structures. In specific, state-of-the-art models like CDVAE [8] and SyMat [9]
integrate a variational autoencoder (VAE) and powerful score-based denoising network, work directly
with the atomic coordinates of the structures and uses an equivariant graph neural network to ensure
euclidean and periodic invariance. Subsequent models, such as DiffCSP [10] and MatterGen [11],
adopt a joint diffusion framework to simultaneously learn atomic composition, fractional coordinates,
and lattice parameters. In contrast, UniMat [13] introduces a unified 4D tensor-based crystal represen-
tation that jointly models discrete atom types and continuous atomic coordinates using a probabilistic
diffusion model with interleaved attention and convolution layers. Lately, there have been a few
efforts to develop text-guided diffusion models for text-conditional material generation. Models such
as TGDMat [23] and Chemeleon [24] incorporate contextual representations, leveraging pretrained
models like MatSciBERT or CLIP, into a GNN-based denoising network. This enables the generation
of valid and stable periodic materials that align with the conditions specified in textual descriptions.

Symmetry-Aware Generation. While conventional diffusion models independently learn atomic
positions within a unit cell, incorporating space group symmetry significantly reduces the model’s
degrees of freedom. DiffCSP++ [12] is the first approach which builds upon DiffCSP by enforcing
space group constraints on both lattice parameters and atomic coordinates. In this approach, lattices
are parameterized to ensure the generated structures conform to the correct lattice system, while
atomic fractional coordinates are restricted to Wyckoff positions derived from templates in the
training data. SymmCD [25] advances this idea by jointly learning the fractional coordinates and
corresponding Wyckoff positions of atoms through a site-symmetry–aware representation. By
modeling only one representative atom per crystallographic orbit, both SymmCD and DiffCSP++
achieve a substantial reduction in generative complexity.
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Latent Diffusion Models. A major limitation of current diffusion-based methods lies in their
operation within a high-dimensional feature space, where they model the joint distribution of atom
types, fractional coordinates, and lattice structures: an inherently multimodal distribution with distinct
statistical properties for each component. As a result, these models entail substantial computational
cost for both training and inference, limiting their applicability in resource-constrained settings. Few
of the recent works like CrysLDM [26], ADiT [27] utilize a latent diffusion model to address the
above limitations, reducing sampling time for crystal material generation. Operating in the latent
space, these offers unique advantages in generative modeling complexity over existing feature-domain
diffusion models, making it more efficient in terms of time and resource consumption.

Flow matching. Flow matching (FM) [28, 29, 30] has recently emerged as a promising alternative to
diffusion-based methods for crystalline material generation. Unlike diffusion models that iteratively
denoise samples from a Gaussian prior, FM directly learns a time-dependent velocity field that
continuously transports an arbitrary base distribution toward the target distribution of stable crystals.
The first application of this framework, FlowMM [14], introduced a representation that enforces
global rotational and translational symmetries along with periodic boundary conditions, while
defining base distributions with equivariant flows to ensure symmetry invariance. Building on this,
FlowLLM [15] integrates geometric inductive biases with base distributions informed by large
language models [7]. Moreover, CrysBFN [31] employs periodic Bayesian Flow Networks (BFNs)
with entropy conditioning and non-monotonic dynamics to more effectively capture periodicity in
non-euclidean space, thereby improving both sampling efficiency and generation quality.

Large Language Models. Large language models (LLMs) are increasingly adapted in the natural
sciences as versatile priors for reasoning over sequences, graphs, and spatial data, and this trend
has recently extended to materials generation. By encoding crystal structures as textual descriptions
of unit cells and atomic positions, token-based language models [32, 7] have demonstrated good
performances in generating stable and valid materials.

C Experimental Results

C.1 Benchmark Task

• De Novo Material Generation (Gen): In Gen task, the goal of the generative model is to
generate novel stable materials (atom types, fractional coordinates, and lattice structure).

• Conditional Material Generation: In this task, specific criteria are provided, and the objective
is to generate stable crystal materials that satisfy those given conditions.

• Crystal Structure Prediction (CSP): Atom types of the materials are given and the goal is to
predict/match the crystal structure (atom coordinates and lattice).

C.2 Datasets

Following prior works [8] we evaluate our model on three baseline datasets: Perov-5, Carbon-24
and MP-20.

• Perov-5 [38, 39] dataset consists of 18,928 perovskite materials, each with 5 atoms in a
cell. They generally can be denoted by ABX3 indicating the three different types of atoms
usually observed in such materials.

• Carbon-24 [58] dataset has 10,153 materials with 6 to 24 atoms of carbon in the crystal
lattice.

• MP-20 [40] dataset has 45,231 materials curated from the Materials Project library [59],
where each material has at most 20 atoms in the lattice.

• MPTS-52 is a more challenging extension of MP-20, consisting of 40,476 structures up to
52 atoms per cell, sorted according to the earliest published year in literature.

Crystals from Perov-5 dataset share the same structure but differ in composition, whereas Crystals
from Carbon-24 share the same composition but differ in structure. Crystals from MP-20 and
MPTS-52 differs in both structure and composition.
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C.3 Hyper-parameter Details

LLM Component : We finetune the LLaMA-2 7B model for 1 epoch using the AdamW optimizer
implemented via the ‘transformers.Trainer‘ interface. The learning rate is set to 0.0001.

Diffusion Model : For the diffusion component, we use a batch size of 256 and adopt a cosine noise
schedule. The model is trained for 1000 diffusion steps and inference is performed using 900 steps.
The denoising network is implemented using a 6-layer CSPNet. Optimization is done using the Adam
optimizer with a learning rate of 0.001.

C.4 Evaluation Metrics for CSP Task

We evaluate the performance of CrysLLMGen and baseline models on stable structure prediction
using standard metrics proposed in prior works [10, 8], by assessing how well the generated structures
match the corresponding ground truth structures in the test set. We compute the Match Rate
and RMSE metrics using the StructureMatcher class from Pymatgen, which identifies the best
correspondence between two structures while accounting for all material invariances. The Match
Rate measures the percentage of generated structures in the test set that successfully match the ground
truth structures under the thresholds: stol = 0.5, angle_tol = 10, and ltol = 0.3. The RMSE is
calculated between atomic positions of the ground truth and the best-matching generated structure,
normalized by 3

√
V/N , where V is the lattice volume and N is the number of atoms, and averaged

over all matched structures.

C.5 Validity Metrics for Gen Task

• Validity : In line with previous studies [16, 8], we assess both structural and compositional
validity. Structural validity represents the percentage of generated crystals with valid periodic
structures, while compositional validity refers to the percentage of structures with correct
atom types. A structure is considered valid if the shortest distance between any pair of atoms
exceeds 0.5 Å, and its composition is deemed valid if the overall charge remains neutral, as
determined by SMACT [60].

• Coverage : We consider two coverage metrics, COV-R (Recall) and COV-P (Precision).
COV-R measures the percentage of the test set materials being correctly predicted, whereas
COV-P measures the percentage of generated materials that cover at least one of the test set
materials.

• Property Statistics : We evaluate the similarity between the generated materials and those
in the test set using various property statistics, where we compute the earth mover’s distance
(EMD) between the distributions in element number (# Elem) and density (ρ, unit g/cm3).

C.6 Stability Metrics for Gen Task

• % Meta-Stable : We report the percentage of structures, among 1,000 generated materials,
that achieve Ehull < 0.1 eV/atom after relaxation using CHGNet.

• % M.S.U.N : Among the metastable structures, we report the percentage of crystal materials
that are unique and novel.

• % Stable : Out of 1,000 generated materials, we report the percentage of structures that
achieve Ehull < 0.0 eV/atom after relaxation using CHGNet. This metric reflects the
thermodynamic stability of the generated materials.

• % S.U.N : Out of all stable structures, we report the percentage of crystal materials that are
both unique and novel.

D Crystal Structure Prediction (CSP)

We also evaluate our proposed model on the Crystal Structure Prediction (CSP) task, where the goal
is to generate a complete crystal structure, including atomic coordinates and lattice parameters, given
only the atomic composition.
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Category Method Perov-5 Carbon-24 MP-20 MPTS-52
Match Rate ↑ RMSE ↓ Match Rate ↑ RMSE ↓ Match Rate ↑ RMSE ↓ Match Rate ↑ RMSE ↓

Diffusion Models CDVAE 45.31 0.1138 17.09 0.2969 33.90 0.1045 5.34 0.2106
DiffCSP 52.02 0.0760 17.54 0.2759 51.49 0.0631 12.19 0.1786

Flow Matching FlowMM 53.15 0.0992 23.47 0.4122 61.39 0.0566 17.54 0.1726
LLMs Llama-2-7B 97.60 0.0096 97.21 0.0255 73.22 0.1546 39.96 0.1092

LLM+Diffsuion CrysLLMGen (7B) 98.30 0.0066 98.81 0.0136 74.24 0.1276 42.16 0.0977

Table 4: Summary of results on CSP Task of Different Classes of Generative Models.

Setup. In this setting, we incorporate the atom types directly into the input prompt and use Crys-
LLMGen to generate the corresponding fractional coordinates and lattice structure. We conduct
experiments on three benchmark datasets: Perov-5, Carbon-24, MP-20 & MPTS-52 and compare the
performance against four strong baselines: CDVAE [8], DiffCSP [10], FlowMM [14], and LLaMA-
2(7B) [7]. To assess the effectiveness of our model and baselines in generating stable structures, we
adopt two widely used evaluation metrics, Match Rate and RMSE, as defined in prior works [8, 10],
by comparing the generated structures to ground truth structures from the test set.

Results. We report the results in Table 4. We observe that CrysLLMGen consistently outperforms
competing baseline models across all benchmark datasets, including challenging and realistic ones
like MP-20. In particular, it shows significant gains over denoising-based approaches such as diffusion
and flow matching models, and achieves notable improvements over standalone LLM-based methods.

E Comparison of CrysLLMGen and other Joint Diffusion Frameworks in
terms of stability

CrysLLMGen adopts a hybrid strategy that combines a large language model (LLM) with a symmetry-
equivariant diffusion network. First, the LLM proposes a chemically plausible composition A; this
stoichiometry is subsequently frozen. A second stage then performs score-based denoising of the
lattice vectors L and fractional coordinates X . In contrast, joint diffusion frameworks (for example,
DIFFCSP) operate directly on the triplet (A,L,X), requiring a single score network to denoise both
discrete and continuous variables simultaneously. The latter increases the dimensionality of the
sample space and introduces high-variance gradients associated with the one-hot representation of A.

Both pipelines optimise a likelihood-based diffusion loss, yet the LLM in CrysLLMGen is pre-trained
on extensive corpora that embed chemical knowledge (ICSD entries, Materials Project abstracts,
patents, etc.). Consequently, the LLM internalises empirical rules of charge balance, common
oxidation states, and frequency-weighted formation energies that are largely invisible to structure-
only datasets. This chemical prior endows CrysLLMGen with a selective bias toward compositions
empirically known to be low-enthalpy, translating into systematically smaller energies above the
convex hull, Ehull, than those produced by fully coupled diffusion.

The stability gap can be rationalised by considering the factors contributing to the energy above the
convex hull for a given material structure (A,X,L). Ehull(A,X,L) can be conceptually decomposed
into contributions related to the intrinsic stability of the composition A itself, and the relative stability
of the specific structure (X,L) for that composition,

Ehull(A,X,L) = ∆Estruct(X,L | A)︸ ︷︷ ︸
Polymorph
energy split

+ ∆Echem(A)︸ ︷︷ ︸
Compositional

instability

. (6)

Here, ∆Estruct(X,L | A) is the energy difference between structure (X,L) and the most stable
known structure for composition A, while ∆Echem(A) represents the minimum energy above the
convex hull for composition A. Empirical data from high-throughput density functional theory calcu-
lations across large materials databases clearly shows that ∆Echem values (reflecting compositional
instability) are typically an order of magnitude or more larger than ∆Estruct values (reflecting poly-
morph energy differences) [61, 62]. Because ∆Echem is the dominant term, enforcing a chemically
informed prior on A via the LLM is the most effective route to generating thermodynamically stable
structures with lowEhull. In a fully coupled model, rare yet low-∆Echem formulas are under-sampled
by the standard likelihood objective, forcing the generator to explore a chemically broader and there-
fore statistically higher-energy compositional subspace. In other words, sampling compositions A
that are thermodynamically very stable (∆Echem(A) )but rare in existing structural databases poses a
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significant challenge, as they correspond to low-density regions in the training data. The diffusion
process, driven by gradients of the log-likelihood, may struggle to explore or converge effectively in
these sparse regions.
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