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ABSTRACT

Large Reasoning Models (LRMs) demonstrate strong performance in complex tasks
but often face the challenge of overthinking, leading to substantially high inference
costs. Existing approaches synthesize shorter reasoning responses for LRMs to
learn, but are inefficient for online usage due to the time-consuming data generation
and filtering processes. Meanwhile, online reinforcement learning mainly adopts a
length reward to encourage short reasoning responses, but it tends to lose reflection
ability and harm performance. To address these issues, we propose REA-RL,
which introduces a small reflection model for efficient scaling in online training,
offering both parallel sampling and sequential revision. Besides, a reflection
reward is designed to further prevent LRMs from favoring short yet non-reflective
responses. Experiments show that both methods maintain or enhance performance
while significantly improving inference efficiency. Their combination achieves
a good balance between performance and efficiency, reducing inference costs by
36% without compromising performance. Further analysis demonstrates that our
methods are effective by maintaining reflection frequency for hard problems while
appropriately reducing it for easier ones without losing reflection ability. Code is
available at https://anonymous.4open.science/r/REA-RL.

1 INTRODUCTION

Large Reasoning Models (LRMs) have demonstrated impressive performance in downstream applica-
tions (Jaech et al., 2024; Team, 2025; Kilpatrick, 2025). Their human-like deliberation and insightful
self-reflection ability facilitate thorough question consideration and verification, thereby improving
performance on complex reasoning tasks (Guo et al., 2025; Du et al., 2025). However, this often leads
to excessive reasoning with minimal performance benefits, i.e., overthinking, substantially increasing
the inference cost (Xu et al., 2025; Chen et al., 2025; Qu et al., 2025a).

Prior research (Munkhbat et al., 2025; Xia et al., 2025; Han et al., 2025) attempts to generate shorter
reasoning responses for supervised fine-tuning (SFT) or reinforcement learning (RL) to encourage
concise response generation. However, this method relies on static datasets, the distribution of which
may deviate from the trained model, especially later in training, leading to suboptimal results (Tang
et al., 2024). Furthermore, the time-consuming data generation and filtering processes severely limit
its feasibility as an online data generation solution.

To address these problems, another line of work (Luo et al., 2025a; Shen et al., 2025; Aggarwal &
Welleck, 2025) employs online reinforcement learning. To enhance the efficiency of online data
generation, multiple reasoning paths are sampled in parallel for a single query, with accuracy and
length rewards used to encourage correct and concise responses (Zhang & Zuo, 2025; Yeo et al.,
2025). However, this self-iterative training paradigm can lead to unpredictable behavior. As illustrated
in Figure 1, it can cause the LRM to completely lose its reflection capability, reverting to a naive
chain-of-thought style, resulting in suboptimal performance on complex reasoning tasks.

In this paper, we propose REA-RL, a reflection-aware RL framework that integrates the strengths of
the aforementioned ones. First, we introduce a small reflection model into the online RL process to
identify the first reflection position in a sampled response that is very likely to lead to the final answer,
and truncate the response to a shorter revision for optimization. It enables us to perform both parallel
sampling and sequential revision, which has been demonstrated to achieve computationally optimal
test-time scaling during inference (Snell et al., 2024). Second, we introduce a reflection reward to
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REA-RLDeepSeek-R1-Distill-Qwen-7B Naive Online RL

Question: John drives for 3 hours at a speed of 60 mph and then turns around because he realizes he forgot something very important at
home.  He tries to get home in 4 hours but spends the first 2 hours in standstill traffic.  He spends the next half-hour driving at a speed of 30mph,
before being able to drive the remaining time of the 4 hours going at 80 mph.  How far is he from home at the end of those 4 hours?
Answer: 45 miles

Wait, is that right? So, after driving back for 2.5 hours, he
covered 15 miles ... ... to 45 miles away from home.

1974 tokens in total

<think>Alright, let's try to figure out how far John is from home
after his driving and his trip back. ... ... that's 2.5 hours. So, the
remaining time he can spend driving at 80 mph is 4 - 2.5 = 1.5
hours. ... ... So, 165 - 120 = 45 miles.

But wait, let me think again. ... ... So, total return distance is 135
miles, leaving him 45 miles away. That seems right.      
Alternatively, maybe I can approach this problem by calcu-lating
his total displacement ... ... 45 miles from home.  

But hold on, let me verify the time breakdown again. He turned
around, ... ... 45 miles from home.

516 tokens

79 tokens

150 tokens

58 tokens

59 tokens

Wait, another way: Let me calculate each segment. ... ... 45 miles
away from home after those 4 hours.
But wait, hold on a second. When he turns around, he starts
driving back, but ... ... 180 - 135 = 45 miles.
 Alternatively, I can think in terms of total displacement. ... ... 2 +
0.5 + 1.5 = 4 hours. That's correct.
Wait, but sometimes when people say \"remaining time\", ... John
is \boxed{45} miles away from home. </think>   

John drives for 3 hours at a speed of 60 mph, covering a dis-tance
of ... ... John is \boxed{45} miles away from home.     

139 tokens

242 tokens

115 tokens

271 tokens

345 tokens

<think>Alright, let's try to figure out
how far John is from home after his
driving and his trip back. ... ... spent 2
hours in traffic and 0.5 hours driving.
So, that's 2.5 hours. Therefore, the
remaining time is 4 minus 2.5, which is
1.5 hours. ... .... now 180 - 135 = 45
miles away from home. 

668 tokens in total

Wait, but let me double-check. So, first,
he went 180 miles away. Then, he drove
back for 2 hours (distance 0), then 0.5
hours at 30 mph (15 miles), then 1.5
hours at 80 mph (120 miles). So total
return distance is 135 miles. 180 minus
135 is indeed 45 miles. So, he's 45 miles
away from home. </think>

**Final Answer:** John is \boxed{45}
miles away from home at the end of
those 4 hours.

532 tokens

109 tokens

27 tokens

Reasoning Answer

Reflection Token Count

<think>First, I'll calculate the distance
John traveled during the initial 3
hours at 60 mph. Next, he turned
around and spent the first 2 hours in
standstill traffic, so he didn't cover
any distance during that time. Then,
he drove for half an hour at 30 mph.
After that, he drove for the remain-
ing half-hour at 80 mph. Finally, I'll
sum up the distances from each seg-
ment to determine the total distance
from home. </think>

521 tokens in total

Let's determine how far John is from
home after his 4-hour journey. ###
Step 1: Calculate the Distance ... ... 3.
**Driving at 80 mph for the Remain-
ing Half-Hour:** ... ... = 180 - 55 =
125 \, \text{miles} \]

[\boxed{125\text{miles}}]

103 tokens

403 tokens

15 tokens

Figure 1: Overthinking and non-reflective cases from GSM8k. The left shows the output of DeepSeek-
R1-Distill-Qwen-7B (R1-7B), which reflects eight times before finishing generation. The middle
presents the output after online RL training using length rewards, which only spends 103 tokens in
“think” part and no reflection, where an error occurs (underlined). The right shows the output of our
method, which uses a similar budget to R1-7B in reasoning but only performs a single reflection.

prevent the models from favoring short yet non-reflective responses. The reward is calculated based
on the density of keywords (e.g., “wait”, “but”) that signal reflective thinking in the response.

Results reveal that employing only the length reward leads to substantial performance degradation. In
contrast, both the reflection model and the reflection reward improve performance and prevent non-
reflective behavior. The reflection reward is better at maintaining performance, while the reflection
model achieves higher efficiency. Combining the approaches achieves a 36% response shortening
across all datasets without performance reduction. Further analysis demonstrates these improvements
stem from maintaining the reflection tendency on difficult questions and appropriately reducing
reflection on easy questions without losing reflection ability. Our contributions are:

• We design an efficient overthinking detection method, enabling small models to perform this task.
Furthermore, we train a reflection model for the online generation of shorter response revisions,
facilitating both parallel sampling and sequential revision to achieve more efficient scaling.

• We design a reflection reward to prevent non-reflective behavior in online RL and significantly
enhance model performance compared to using only the length reward.

• Results demonstrate that each method reduces inference cost while preserving model performance.
Combining both methods achieves a 36% response shortening without performance degradation.

2 RELATED WORK

Efficient reasoning with response revision. Training on revised responses with less overthinking
via SFT and RL enhances reasoning efficiency. Several methods employ parallel sampling. Munkhbat
et al. (2025) construct concise reasoning via best-of-N sampling. Yu et al. (2024) skip reasoning
for high-confidence samples, while NoThink (Ma et al., 2025) forces LRMs to skip reasoning for
all samples. Other methods utilize stronger models to generate shorter revisions (Kang et al., 2025;
Chen et al., 2025; Han et al., 2025; Wen et al., 2025). Still others rely on heuristic algorithms
and time-consuming post-verification. SPIRIT-FT (Cui et al., 2025) identifies crucial steps using
perplexity. LM-skip (Liu et al., 2024b) stimulates step-skipping behavior by iteratively refining.
TokenSkip (Xia et al., 2025) omits less important tokens detected by LLMLingua-2 (Pan et al., 2024).
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However, their efficiency is often too low for online settings due to complex generation and filtering
processes, which incur more than double the generation cost compared to naive sampling.

Efficient reasoning with length reward. DeepSeek-R1 (Guo et al., 2025) achieves promising
results using RL with verifiable rewards (RLVR). Several methods further introduce length rewards
to enhance efficiency, often normalized by a baseline budget. O1-Pruner (Luo et al., 2025a) estimates
the budget from a reference model, Liu et al. (2024a) from pairs, while Arora & Zanette (2025)
from groups. ShorterBetter (Yi et al., 2025) estimates using shortest correct response, while Arora
& Zanette (2025) uses Leave One Out estimator. Kimi K1.5 (Du et al., 2025) normalizes length
with the minimum and maximum lengths of generations, while GRPO-LEAD (Zhang & Zuo, 2025)
bases it on the length distribution. Other approaches predict the required maximum length budget.
DAST (Shen et al., 2025) estimates the budget based on problem difficulty. Yeo et al. (2025) propose
a cosine reward that only penalizes excessive length. L1 (Aggarwal & Welleck, 2025) rewards the
model for following the length limit in prompts. However, most methods depend solely on multiple
samplings of a query, which may cause unpredictable behavior in RL. To address this, we provide
online revision and refined reward design, better guiding the model’s optimization direction.

3 OVERTHINKING DETECTION

Previous works (Du et al., 2025; Chen et al., 2025; Xu et al., 2025; Qu et al., 2025a) observe that
LRMs like QwQ-32B-Preview (Team, 2025) and DeepSeek-R1 (Guo et al., 2025) tend to generate
more solution rounds for easy math problems, allocating excessive computational resources with
limited utility. We extend this analysis to smaller LRMs, and propose an effective detection method
that does not necessitate the use of powerful closed-source LLMs for detection.

3.1 AUTO-DETECTION OF OVERTHINKING

Problem definition. As illustrated in Figure 1, we observe a similar phenomenon in R1-7B: the
model tends to engage in excessive reflection after completing reasoning and obtaining the correct
answer, leading to overthinking. In preliminary experiments, we find that weaker LLMs struggle to
extract the boundaries of each reflection. However, we note that the conclusion of both reasoning and
reflection is often a restatement of the answer. Therefore, we prompt LLMs to determine if each part
of the response contains the correct answer, which is easier for LLMs. The thought process preceding
the first occurrence of the correct answer is considered effective reasoning, while each subsequent
appearance is an additional reflection, i.e., overthinking.

Detection method. Given inconsistent formatting and incidental early mentions of the answer in
reasoning, regex-based extraction is unreliable. Thus, we employ Qwen2.5-32B-Instruct (Qwen-
32B; Qwen et al., 2024) to identify these positions within the “think” part of LRMs. Specifically,
we segment the think part into smaller chunks and provide the question along with these chunks,
prompting the model to determine whether each chunk contains the correct answer. To ensure
accuracy, we apply a filtering step: chunks containing the answer are verified again one by one with
Qwen-32B, and only those confirmed as positive in both detections are considered correct. We design
prompts with and without the inclusion of the gold answer as input, detailed in Appendix A.

Response revision. The tokens after the first correct answer are identified as overthinking and
subsequently removed. Following this, we generate the revision by forcibly terminating the “think”
part and compelling the LRM to continue generating the final answer, prefixed with "**Final
Answer:**", which yields a revision without overthinking. For verification, the revision is deemed
correct if the LRM can accurately generate the final answer. Finally, to prevent excessively long
generations from skewing the average length, we limit the generation budget to 16k tokens.

3.2 EFFICIENCY OF AUTO-DETECTION

Experimental setup. We first use R1-7B to answer each question, and then apply the above
response revision method from the previous section to truncate the generated reasoning path and
complete it with R1-7B. We evaluate the correctness of response revision by the accuracy of the
final answers after completion. “Model Revise” and “+Gold” represent revision using our method
without and with the gold answer as input, respectively. Our baseline for comparison is “Fixed Trunc
(n)”, which denotes fixed truncation of the original generated response, retaining n% of the thinking
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Method GSM8K Math500 Gaokao23 Amc23 Aime24 Average
Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓

Original 91.66 1001344 92.00 1003893 81.82 1003785 88.12 1005840 48.33 10010460 80.39 1005064

Fixed Trunc (90) 89.39 80.51 91.40 83.51 81.30 83.20 85.00 85.68 44.17 88.72 78.25 84.32
Fixed Trunc (80) 88.25 72.47 89.60 75.52 79.22 75.22 78.44 77.67 37.08 80.09 74.52 76.19
Fixed Trunc (70) 87.26 64.73 86.00 66.76 75.58 66.61 73.12 68.99 33.33 71.02 71.06 67.62

Model Revise 89.46 62.43 93.20 71.85 80.52 70.41 89.06 79.95 50.83 93.59 80.61 75.65
+ Gold 88.78 54.09 92.00 57.80 79.48 59.71 87.19 67.71 51.67 92.31 79.82 66.32

Table 1: Performance and efficiency after model revision. “Original” denotes the R1-7B performance
before revision. “Acc” represents the response accuracy, and “TR” represents the efficiency, calculated
as its token cost divided by that of “Original”. Therefore, the TR in the first row is 100, and its
subscript indicates its token cost. “Average” is the macro-average across datasets. The best and
second-best results in the “Average” column are marked bold and underline, respectively. Considering
the trade-off between TR and Acc, for TR, only methods whose accuracy does not decrease are
bolded or underlined. Abbreviations of the methods are defined in §3.2.

tokens and truncating the response at the nearest newline. Subsequently, similar to response revision,
the “think” part is terminated, and the LRM is compelled to generate the final answer. Results before
and after revision are in Table 1. The evaluated math datasets are introduced in Appendix B.2, and
are ordered from left to right with increasing difficulty.

Awesome auto-detection ability. Without the gold answer as input, we can automatically remove
24% of tokens without performance degradation. When provided, 34% of tokens are removed with a
minor performance decrease. However, fixed truncation shows a considerable performance decline
with increasing truncation ratios. These results demonstrate the effectiveness of our detection method
and underscore the severity of the overthinking problem.

Greater overthinking on easier problems. Across three easier and two harder datasets, overthink-
ing tokens our method detects decrease progressively, at 37% and 17%, respectively. This indicates
that overthinking is more prevalent in easier datasets and less prevalent in more challenging ones.

4 REFLECTION-AWARE ONLINE REINFORCEMENT LEARNING

To maintain model performance while reducing inference costs, a fundamental method is to employ
online RL with a length reward (§4.1), which ensures distributional alignment between the data and
the model. Building upon this, we make improvements from two perspectives. First, based on the
detection method in §3, we introduce a reflection model that provides revisions online (§4.2). This
not only augments the data but also provides shorter, non-overthinking paths that serve as positive
examples for training, which are lacking in parallel sampling. Second, we refine the reward by
including a reflection reward to penalize non-reflective behavior (§4.3), which would otherwise lead
to a significant performance drop. The workflow is illustrated in Figure 2.

4.1 ONLINE REINFORCEMENT LEARNING

Online RL. We adopt Grouped Relative Policy Optimization (GRPO, Shao et al., 2024). Specif-
ically, for each question in a given dataset, GRPO samples a group of paths S = {s1, ..., sG} in
parallel from the policy model. Then, for each path si, we calculate its reward ri as the sum of
several reward functions introduced later. These rewards are normalized within the group S to get the
advantage of each path, i.e., ai =

ri−mean(r)
std(r) . Finally, the policy model is optimized by increasing the

probability of paths with high advantage and decreasing the probability of those with low advantage.

Following Shao et al. (2024), we apply the rule-based accuracy reward RAcc to mitigate reward
hacking. Specifically, we extract the final answer and compare it with the gold answer to verify its
correctness. The reward is 1 for a correct answer and 0 otherwise.

Length reward. Following Kimi K1.5 (Du et al., 2025), we incorporate a length reward to improve
efficiency. Formally, given a group of sampled responses {s1, ..., sG}, where max_len is the length
of the longest response and min_len is that of the shortest, the length reward for the i-th response is:

RLen(si) =

{
λ if si is correct

min(0.5, λ) if si is incorrect , where λ = 1− len(si)− min_len
max_len − min_len

. (1)
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Figure 2: Workflow of REA-RL. We first parallel sample G paths as in GRPO. Then, the reflection
model identifies and truncates overthinking tokens (red ones with ×), retaining the preceding yellow
segments. After that, the policy model finishes the truncated paths, generating revised tokens (blue
ones with ✓), and yielding G revised paths. Finally, both the G original and G revised paths are used
for training. Cases are in Appendix B.1. In addition to the naive accuracy reward RAcc and length
reward RLen, we refine the length reward (RRLen) and introduce a new reflection reward (RReflect).

4.2 REFLECTION MODEL FOR ONLINE SEQUENTIAL REVISION

Design principle. We use a reflection model to produce shorter online revisions of the trained
model’s reasoning path, using the same revision definition as §3.1. The task is simple, but enforcing
per-sentence judgments over long traces is challenging. As evaluated in §3.2, a 32B LLM performs
well with a two-step annotation, but is too slow. Qwen2.5-7B-Instruct (Qwen-7B) is faster, yet in
17% of cases its outputs violate the required judgment count. Given the task’s simplicity, we distill
the 32B two-step revision ability into Qwen-7B with SFT and run it in one step to ensure efficiency.

Reflection model training. To construct SFT data, we generate four responses per question on the
training dataset using R1-7B, retaining only correct responses. Each chunk within these responses is
labeled based on whether it contains the correct answer following §3.1. We then construct the SFT
data using the question and all response chunks as input, training the reflection model to predict the
category of each chunk in a single step. For efficiency, we adopt a concise output format, directly
generating the ID and its category without additional deliberation, as detailed in Appendix A.

Online RL with sequential revision. As depicted in Figure 2, following the parallel sampling of
multiple responses in online RL, we utilize the reflection model for sequential revision. Specifically,
for the sampled responses S = {s1, ..., sG}, we first use the reflection model MReflect to remove
overthinking tokens (red segment), copy the preceding segments from the original responses S
(yellow segment), and prompt the policy model MPolicy to generate a final answer (blue segment),
which forms the revision Sr = {sr1, ..., srG}. Cases are shown in Appendix B.1. Ultimately, both
the original responses S and the revised responses Sr are used as training data for the policy model,
enabling an additional dimension of scaling and guiding the optimization direction of RL. Formally:

{s1, ..., sG, sr1, ..., srG}
Online RL−−−−−−→ MPolicy, where sri = MPolicy(MReflect(si)). (2)

Equivalence to a partial advantage. We find that our method is equivalent to a partial penalty
only for the overthinking portion. Given the substantial similarity between the pre- and post-revision
responses, we can decompose the advantage into two components. Let ai and ari represent the
advantages of the original response si and revised response sri , respectively. The first component
is the average advantage for all tokens in both responses, formulated as (ari + ai)/2. The second
component is a partial advantage for the different parts. The overthinking tokens (red) receive a
penalty of −(ari − ai)/2, while the revised tokens (blue) receive (ari − ai)/2. When revision is
successful, the length reward ensures ari > ai, effectively penalizing overthinking.

However, if revision transforms a correct answer into an incorrect one, the opposite effect occurs,
potentially encouraging overthinking. Furthermore, if both the original and revised responses are
incorrect, it suggests a need for more extensive reasoning, making a preference for shorter outputs
detrimental. Therefore, we discard the revised responses in such cases and retain the original ones.
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4.3 REFLECTION-AWARE REWARD REFINEMENT

Reflection reward. To prevent the models from favoring short yet non-reflective responses due
to the length reward, we introduce a reflection reward based on the presence of reflective tokens,
i.e., “wait”, “alternatively”, “check”, and “but”. We calculate the density of these tokens, and count
closely clustered occurrences as a single instance to prevent consecutive reflective tokens within a
single reflection. Formally, for the current response si, let NToken be the total number of tokens in the
response and NReflect be the number of reflective tokens. The reflection reward RReflect is:

RReflect(si) = min(0,
Di

D0.2
− 1), where Di =

NReflect

NToken
. (3)

Here, D0.2 represents the 0.2 quantile of the reflection density in the training data, and Di is the
density of si. This reward penalizes responses only when their density falls within the lowest 20%
of observed densities, thereby preventing the reward from inadvertently promoting overthinking.
Empirically, using any quantile ≤ 0.2 yields similarly strong performance; a smaller quantile places
greater emphasis on efficiency, whereas a larger one trades efficiency for accuracy.

Length reward refinement. The length reward in Kimi K1.5 demonstrates a bias towards shorter
responses even when incorrect. However, for challenging queries, more extensive reasoning is often
required, conflicting with the current reward mechanism. Thus, we follow Zhang & Zuo (2025) to set
the length reward to zero if the response is incorrect, i.e.:

RRLen(si) =

{
λ if si is correct
0 if si is incorrect , where λ = 1− len(si)− min_len

max_len − min_len
. (4)

5 EXPERIMENTS

We maintain most settings across all experiments, detailed in Appendix B.2. Baselines are:

Online RL training. “MReflect” represents online revision in §4.2. “RLen” represents adding the
Kimi K1.5 length reward, “RRLen” represents adding our refined length reward, and “RReflect” repre-
sents adding the reflection reward in §4.3. Accuracy reward is used in all GRPO settings. The primary
baselines are 1) GRPO, which uses accuracy reward only. 2) GRPO RLen, which uses accuracy
reward along with the Kimi K1.5 length reward.

Offline training. We also compare with commonly used offline baselines. We use the revised
responses generated from the 32B model as the training data, following §3, with other generation
settings consistent with the online approach. Only data that the answer is correct after revision is
used for training. We then conduct training using 1) SFT (Zhang et al., 2023): We simply fine-tune
the model using the aforementioned revised dataset. 2) RPO (Pang et al., 2024): We treat the revised
responses as positive examples and the original responses as negative examples.

For further comparison, we evaluate against related methods initialized from R1-7B, including DAST
(Shen et al., 2025), Light-R1 (Wen et al., 2025), ShorterBetter (Yi et al., 2025), and Arora & Zanette
(2025). We download their publicly available checkpoints and run the same evaluation. For the
prompt-based method NoThink (Ma et al., 2025), we use its released prompt configuration.

5.1 MAIN RESULT

Improved performance compared to offline method. The results are in Table 2. The final three
rows showcase the performance of the reflection model, reward refinement, and their combined
approach. While RPO shares similar ideas with the sequential revision, the primary distinction lies in
the offline dataset. RPO achieves comparable performance at an 8k budget but significantly degrades
on two more challenging datasets at a 16k budget. In contrast, our method demonstrates better
performance, highlighting the advantage of online training over offline training.

Improved efficiency and performance balance compared to online methods. GRPO, using only
an accuracy reward, shows no significant performance improvement, suggesting that gains are not
solely due to more training. Adding a length reward greatly reduces inference costs but severely hurts
performance. Relative to all other baselines including GRPO RLen, we consistently obtain higher
accuracy at comparable truncation ratios. While some baselines achieve notably more aggressive
truncation, they incur large accuracy drops that undermine their practicality.
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Method GSM8K Math500 Gaokao23 Amc23 Aime24 Average
Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓

B
ud

ge
t:

8k

Original 91.58 1001312 88.40 1003389 77.40 1003270 77.50 1004746 40.83 1006815 75.14 1003906

SFT 89.92 64.63 89.20 69.25 77.92 72.91 82.81 72.67 41.25 89.98 76.22 73.89
RPO 90.14 51.22 89.80 53.35 83.12 55.20 80.62 59.54 41.67 74.78 77.07 58.82
GRPO 92.80 117.99 89.00 100.74 79.22 101.31 79.69 96.23 39.17 98.88 75.98 103.03
GRPO RLen (Du et al., 2025) 85.97 32.01 87.60 59.04 70.91 58.84 85.62 71.43 45.42 87.42 75.10 61.75

NoThink (Ma et al., 2025) 85.06 20.50 83.20 27.94 65.71 25.81 65.00 28.82 20.42 44.37 63.88 29.49
ShorterBetter (Yi et al., 2025) 85.37 15.17 83.40 29.30 66.75 25.96 76.56 43.43 48.33 68.67 72.08 36.51
Light-R1 (Wen et al., 2025) 86.28 39.25 87.00 77.40 68.05 80.89 75.31 97.01 42.92 96.92 71.91 78.29
DAST (Shen et al., 2025) 87.79 34.60 89.20 77.49 81.30 78.62 84.06 87.40 42.50 96.71 76.97 74.96
Arora & Zanette (2025) 90.45 40.32 91.20 73.21 76.10 70.55 82.50 84.68 43.33 94.34 76.72 72.62

GRPO RLen MReflect 89.23 37.80 91.20 48.66 78.44 52.23 86.56 59.65 41.67 84.15 77.42 56.50
GRPO RRLen+Reflect 92.72 67.07 91.40 69.52 80.52 72.54 85.62 75.64 47.92 91.37 79.64 75.23
GRPO RRLen+Reflect MReflect 89.99 53.12 89.60 61.79 81.30 61.19 85.62 71.39 42.92 88.45 77.89 67.19

B
ud

ge
t:

16
k

Original 91.66 1001344 92.00 1003893 81.82 1003785 88.12 1005840 48.33 10010460 80.39 1005064

SFT 89.99 68.75 90.60 69.25 79.48 74.37 88.44 72.11 48.75 89.68 79.45 74.83
RPO 90.14 50.00 89.80 46.90 83.12 47.77 82.19 50.75 42.92 51.41 77.63 49.37
GRPO 92.87 116.52 93.40 99.20 82.34 100.26 87.19 97.31 50.42 97.18 81.24 102.09
GRPO RLen (Du et al., 2025) 85.97 31.25 88.40 56.43 72.21 55.88 87.81 65.65 50.00 76.96 76.88 57.23

NoThink (Ma et al., 2025) 85.06 20.01 84.20 27.23 66.23 24.70 66.25 26.10 23.33 38.38 65.01 27.28
ShorterBetter (Yi et al., 2025) 85.37 14.81 83.40 27.02 66.75 22.85 76.88 37.52 50.00 51.59 72.48 30.76
Light-R1 (Wen et al., 2025) 86.28 38.32 91.60 77.40 74.55 81.88 88.75 96.73 54.17 88.15 79.07 76.50
DAST (Shen et al., 2025) 87.79 34.67 91.40 79.84 83.12 80.79 88.44 87.12 51.67 98.41 80.48 76.17
Arora & Zanette (2025) 90.45 39.58 93.20 70.15 77.14 70.20 86.88 83.39 48.33 90.25 79.20 70.71

GRPO RLen MReflect 89.23 36.90 92.40 45.11 79.74 47.50 88.12 56.04 47.92 75.82 79.48 52.27
GRPO RRLen+Reflect 92.72 65.48 92.80 66.71 81.82 68.27 88.75 72.17 54.58 86.21 82.13 71.77
GRPO RRLen+Reflect MReflect 89.99 52.08 91.00 60.78 82.08 55.85 89.38 67.76 51.25 81.09 80.74 63.51

Table 2: Main results of our proposed methods. Most abbreviations align with Table 1. Baseline
definitions are in §5. “GRPO RLen MReflect” represents the addition of the reflection model, “GRPO
RRLen+Reflect” represents the addition of the reward optimization, and “GRPO RRLen+Reflect MReflect”
represents the combination of both optimizations. “Budget” is the max tokens allowed per question.

Reflection model and reflection reward target distinct dimensions. The reflection model is
more effective in reducing response length, whereas reflection reward contributes more to accuracy
enhancement. By integrating both strategies, a balanced outcome can be achieved, yielding a 36%
efficiency improvement without compromising performance. However, the improvement under an
8k budget remains limited. This can be attributed to the advantage of shorter generations under a
constrained budget, and the reflection model’s inherent ability to foster reflection, as analyzed in §5.3.
The effectiveness of RRLen and RReflect and the choice of quantile is verified in Appendix B.3.

5.2 REFLECTION MODEL ANALYSIS

Experimental setup. We follow §3.2 to verify our reflection model MReflect. We use MReflect to
truncate paths generated by R1-7B, then have R1-7B produce the final answer. The truncation is
validated by the correctness of this answer. We compare against the untrained 7B and 32B LLMs
and a fixed truncation strategy. For MReflect, we define three revision strengths: Normal truncates at
the first identified correct answer; Weak truncates at the second such position; and Strong truncates
before the first position where the truncation probability exceeds 0.25. If no such position exists, the
Normal position is used. Fixed Trunc truncates at the closest sentence-ending position matching the
truncation ratio achieved by our method, and then prompts R1-7B to generate the final answer.

Comparable performance to 32B at a significantly lower cost. Results are shown in Table 3.
Our reflection model does not incorporate the gold answer as input. It significantly outperforms
its 7B base model (7B Revise). In comparison to the 32B model revised without gold input, our
Strong strategy achieves a comparable compression ratio while exhibiting minimal performance
degradation, demonstrating that our model achieves comparable results at a substantially reduced
cost. Furthermore, our method also outperforms fixed truncation, especially when the truncation
ratio is large. Finally, we observe that under certain evaluations, the accuracy actually increases after
revision. This indicates that the model may have already arrived at the correct answer, but fails to
explicitly state this conclusion under the 16k token budget.

REA-RL outperforms inference with reflection model. To ensure revision accuracy, we employ
the Normal strategy during training. However, REA-RL with the reflection model achieves a higher
compression ratio than the Strong strategy while maintaining comparable performance, despite the
increased inference cost associated with the generate-then-revise approach of the Strong strategy.
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Method GSM8K Math500 Gaokao23 Amc23 Aime24 Average
Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓

B
ud

ge
t:

16
k

Original 91.66 1001344 92.00 1003893 81.82 1003785 88.12 1005840 48.33 10010460 80.39 1005064
7B Revise 86.50 63.32 89.20 64.60 77.40 66.16 82.81 73.17 42.92 80.98 75.77 69.65

+ Gold 85.90 55.36 85.60 56.59 76.62 55.96 79.06 61.25 42.92 76.58 74.02 61.15
32B Revise 89.46 62.43 93.20 71.85 80.52 70.41 89.06 79.95 50.83 93.59 80.61 75.65

+ Gold 88.78 54.09 92.00 57.80 79.48 59.71 87.19 67.71 51.67 92.31 79.82 66.32

MReflect Weak 90.75 84.82 92.40 86.64 82.86 86.71 88.75 88.90 50.00 93.10 80.95 88.03
Fixed Trunc (88.47) 89.84 84.23 92.00 86.75 81.04 86.92 88.12 89.30 47.50 93.55 79.70 88.15
MReflect Normal 90.22 79.02 91.80 81.09 82.86 81.82 89.06 83.80 49.17 91.75 80.62 83.50
Fixed Trunc (84.17) 89.23 78.50 91.40 82.02 80.52 82.51 86.25 85.14 46.67 92.48 78.81 84.13
MReflect Strong 90.07 72.99 92.00 75.65 82.08 77.75 87.81 77.16 48.75 89.04 80.14 78.52
Fixed Trunc (78.93) 88.32 72.77 90.00 76.73 79.22 78.76 80.94 80.02 45.83 90.12 76.86 79.68

GRPO 92.87 116.52 93.40 99.20 82.34 100.26 87.19 97.31 50.42 97.18 81.24 102.09
GRPO Gen8 92.42 103.35 92.00 97.82 82.34 100.24 90.00 92.74 50.00 93.60 81.35 97.55
GRPO RLen 85.97 31.25 88.40 56.43 72.21 55.88 87.81 65.65 50.00 76.96 76.88 57.23
GRPO RLen Gen8 85.52 25.74 88.20 51.68 72.21 56.78 83.12 63.78 53.33 82.51 76.48 56.10

GRPO RLen MReflect 89.23 36.90 92.40 45.11 79.74 47.50 88.12 56.04 47.92 75.82 79.48 52.27
GRPO RRLen+Reflect 92.72 65.48 92.80 66.71 81.82 68.27 88.75 72.17 54.58 86.21 82.13 71.77
GRPO RRLen+Reflect MReflect 89.99 52.08 91.00 60.78 82.08 55.85 89.38 67.76 51.25 81.09 80.74 63.51

Table 3: Results of our proposed reflection model. “7B Revise” and “32B Revise” refer to the
two-step revision method introduced in §3, using Qwen-7B and Qwen-32B without training. “MReflect”
uses our 7B reflection model with one-step revision. “Fixed Trunc” denotes a fixed truncation strategy
with the same ratio as our method. Truncation strengths are defined in §5.2.

Method GSM8K Math500 Gaokao23 Amc23 Aime24 Average
Acc↑ Reflect↓ Acc↑ Reflect↓ Acc↑ Reflect↓ Acc↑ Reflect↓ Acc↑ Reflect↓ Acc↑ Reflect↓

B
ud

ge
t:

16
k

Original 91.66 105.48 92.00 107.75 81.82 90.94 88.12 102.72 48.33 84.82 80.39 98.34

SFT 89.99 87.73 90.60 104.43 79.48 79.97 88.44 90.00 48.75 82.30 79.45 88.89
RPO 90.14 156.68 89.80 146.65 83.12 130.13 82.19 127.03 42.92 100.61 77.63 132.22
GRPO 92.87 97.50 93.40 107.52 82.34 88.69 87.19 98.06 50.42 82.28 81.24 94.81

GRPO RLen 85.97 813.96 88.40 128.32 72.21 114.74 87.81 120.09 50.00 99.07 76.88 255.24
GRPO RLen MReflect 89.23 194.97 92.40 135.54 79.74 120.05 88.12 107.91 47.92 89.34 79.48 129.56
GRPO RRLen+Reflect 92.72 141.63 92.80 118.61 81.82 99.24 88.75 106.08 54.58 86.13 82.13 110.34
GRPO RRLen+Reflect MReflect 89.99 150.87 91.00 126.51 82.08 109.91 89.38 105.89 51.25 90.25 80.74 116.69

Table 4: Reflection density of REA-RL and baselines. “Reflect” represents the average number of
tokens between each reflective token, i.e., a smaller value indicates more frequent reflection.

This improvement can be attributed to the length reward and the online training, which iteratively
train the model and provide further guidance for shortening already concise responses.

Online revision as an efficient scaling strategy. The reflection model provides revised responses,
which doubles the dataset size. To evaluate whether other methods could yield similar benefits, we
extend the GRPO baseline generation to 8 paths, i.e., “Gen8”, to verify whether scaling parallel
sampling is more effective. However, Gen8 indicates no consistent improvement over parallel
sampling of 4 paths, while our combination with sequential revision, under the same reward RLen,
demonstrates superior performance and truncation ratios, thereby establishing the enhanced efficacy
of our scaling method compared to mere parallel sampling.

Regarding training time, we optimize the implementation by deferring the update of the vllm inference
model, which enables parallel execution of training and data generation, resulting in approximately a
twofold speedup. On 3 NVIDIA A800 80G GPUs, GRPO with sampling 4 paths requires 80 hours,
while sampling 8 paths requires 110 hours. Our method, incorporating the reflection model, requires
120 hours. Given the significant performance improvement, this additional computational cost is
deemed acceptable. If training efficiency is a primary concern, utilizing the reflection reward alone
also requires only 80 hours and achieves improved performance.

5.3 REFLECTION ABILITY ANALYSIS FOR THE TRAINED MODEL

Length reward impacts reflection frequency. We calculate the average number of tokens between
reflective tokens in the responses, and the results are in Table 4. Introducing only a length reward
in online RL leads to a severe decrease in the frequency of reflective tokens on easy problems.
However, for challenging problems, the model retains its reflection capability, as reflection is crucial
for obtaining the accuracy reward. An example is shown in the middle of Figure 1, where the solution
only performs planning in the “think” part and solves the problem without any reflection. Due to the
minimal token consumption, an error occurs during planning. In contrast, our method preserves the
style of R1 by reasoning with sufficient tokens, and performing reflection after reasoning.
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Figure 3: Changes in accuracy and generation length during training on five test sets on average. The
x-axis represents the training steps. The left plot shows the average accuracy, and the right plot shows
the average token consumption per answer. Abbreviations are aligned with Table 2.

Both reflection model and reflection reward enhance reflection. Across the three easier datasets,
our three approaches yield an average 47% increase in reflection probability and a 5% performance
improvement over GRPO RLen, demonstrating that REA-RL mitigates non-reflective behavior.

Mitigating overthinking on easy problems. LRMs often overthink on easy problems. Our method
appropriately reduces reflection on easy problems while maintaining it on difficult ones. While our
approach increases the reflection frequency on easier problems compared to RLen, it remains lower
than that of the original model. Specifically, on the three easiest datasets, we reduce the reflection
frequency by 22%, with a 45% efficiency enhancement. Whereas on challenging ones, the reduction
in reflection is only 4%, with a 27% efficiency enhancement. This demonstrates that our approach
achieves a favorable balance, mitigating overthinking on easy problems while preserving reflection
capabilities. Furthermore, we provide additional evidence demonstrating that our method reduces
overthinking while preserving reflection capabilities in Appendix B.4.

Training dynamics analysis. To provide further analysis, we illustrate the training dynamics in
Figure 3. For GRPO RLen, after 1,000 steps, when the length falls below 70% of its original value, its
performance begins to drop, indicating that the model begins to remove meaningful steps. However,
the reflection reward enables a gradual improvement in efficiency with minimal change in accuracy.
Besides, the reflection model greatly accelerates length reduction. Although it initially causes severe
performance degradation, the targeted penalties that it imposes on overthinking tokens avoid deleting
valid reflection tokens, halt further length shortening, and gradually recover performance. After 1,000
steps, it consistently outperforms the baseline in both accuracy and efficiency. Finally, the reflection
model’s goal remains to penalize overthinking, which is inherently at odds with the reflection reward
that indiscriminately encourages reflection. Therefore, their combination achieves a trade-off between
efficiency and accuracy, yielding a balance rather than a synergistic gain.

6 CONCLUSION AND LIMITATIONS

To enhance the inference efficiency of LRMs without compromising model performance, we propose
REflection-Aware online Reinforcement Learning, REA-RL, to achieve improved online scaling
and better performance retention. Specifically, we introduce a reflection model for efficient scaling,
offering sequential revision to augment parallel sampling data generation for online RL. Furthermore,
we introduce a reflection reward to better maintain model performance. Experiments show that
REA-RL reduces token cost by 36% with no performance loss. Analysis shows that our method is
effective by maintaining reflection frequency for challenging problems while appropriately reducing
it for easier ones, thus balancing performance and efficiency.

Our paper has the following limitations. First, our approach is only validated on distilled 7B LRMs.
Due to the large model size and long training time, we do not perform validation on LRMs pre-trained
from scratch, which aligns with prior work (Zhang & Zuo, 2025; Huang et al., 2025; Qu et al.,
2025b). Second, the detection method proposed in §3 is based on LLMs. While it outperforms
fixed truncation, it cannot guarantee the complete elimination of overthinking. Nevertheless, our
goal is to train the reflection model, and as long as it can reduce overthinking to a certain extent, it
can effectively shorten the reasoning process during iterative training. Finally, our scaling method
introduces approximately 10% additional cost compared to using parallel scaling only. This is due to
the use of sequential scaling, which results in poorer parallelism for vllm. However, considering our
significant improvement and the cost-free improvement of the reflection reward, this is acceptable.
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ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics and uses publicly available datasets for reproducibility.
LLMs may exhibit racial and gender biases, so we strongly recommend users assess potential biases
before applying the models in specific contexts. Additionally, due to the difficulty of controlling
LLM outputs, users should be cautious of issues arising from hallucinations.

REPRODUCIBILITY STATEMENT

We make our code, configuration files, and evaluation scripts available at the anonymous repository
linked in the abstract (https://anonymous.4open.science/r/REA-RL ). All hyperpa-
rameters required to reproduce our method are provided in Appendix B.2. The required hardware
and runtime are reported in §5.2. Trained model checkpoints will be released upon acceptance. The
use of large language models is discussed in Appendix B.5.
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A PROMPTS

We introduce all prompts used in the main text. Parts enclosed in “{}” represent external input.

• The Prompts for Detecting Overthinking: These prompts are used in §3.1. We first
segment the response into chunks, specifically by splitting on a blank line (i.e., two con-
secutive newline characters, \n\n). To prevent a single formula from being split across
multiple chunks, we merge chunks until the combined chunk ends with a sentence-ending
punctuation mark or exceeds 128 tokens. Subsequently, we feed all the chunks into the first
prompt for initial detection. To prevent the model from generating excessively long labeling
strings, we feed at most 1k tokens at a time. Each chunk subsequently labeled as "Right
Result" is then fed into the second prompt for secondary labeling. "With / without Gold
Answer" indicates whether the gold answer is included as input.

• The SFT Prompt for Reflection Model Training: These prompts constitute the SFT data in
§4.2 to train a 7B reflection model. We employ simpler definitions and non-chain-of-thought
output to ensure both effectiveness and efficiency. The gold answer is not used as input to
ensure usability during training and evaluation.

The First Prompt for Detecting Overthinking with Gold Answer

**Question:** {Question}
**Gold Answer:** {Answer}
**Response:** {All Chunked Responses}
You are provided with a math Question, a Gold Answer and a model-generated Response.
The response is divided into {N} parts. For each part, analyze it and classify it based on its
relationship to the provided context. For each part, assign one of the following labels:

- Reasoning: The part represents the reasoning process that leads to the answer.
- Right Result: The part is the answer provided by the model, where the model may provide

the answer in the middle of its response, and the answer aligns with the Gold Answer.
- Wrong Result: Same as Right Result, but the answer does not align with the Gold Answer.

For each of the {N} parts, please reply in format:
[1]. Think: [Explanation for label choice]
Label: Reasoning/Right Result/Wrong Result
[2]. Think: [Explanation for label choice]
Label: Reasoning/Right Result/Wrong Result
...

The First Prompt for Detecting Overthinking without Gold Answer

**Question:** {Question}
**Response:** {All Chunked Responses}
You are provided with a math Question and a model-generated Response. The response is
divided into {N} parts. For each part, analyze it and classify it based on its relationship to the
provided context. For each part, assign one of the following labels:

- Reasoning: The part represents the reasoning process that leads to the answer.
- Right Result: The part is the answer provided by the model, where the model may provide

the answer in the middle of its response, and the answer aligns with the Gold Answer.
- Wrong Result: Same as Right Result, but the answer does not align with the Gold Answer.

For each of the {N} parts, please reply in format:
[1]. Think: [Explanation for label choice]
Label: Reasoning/Right Result/Wrong Result
[2]. Think: [Explanation for label choice]
Label: Reasoning/Right Result/Wrong Result
...
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• The Prompt for Math Evaluation: We follow Yang et al. (2024) to design the prompts for
math evaluation. For NoThink, we append “Okay, I think I have finished thinking. </think>”
after the prompt to force LRMs to skip reasoning. When forcing the model to complete
generation and provide the final answer, we append “</think> **Final Answer:**” after
the thought process and allow the model to continue generating up to 1k tokens. During
training, to ensure efficiency, we reduce the budget to 256 tokens.

The Second Prompt for Detecting Overthinking with Gold Answer

**Question:** {Question}
**Gold Answer:** {Answer}
**Response:** {One Chunked Response}
Evaluate whether the model correctly answered the question. As long as the model provides
the correct result, it counts as correct, regardless of format or wording. The response I
provided is part of the complete response, so thereś no need to include the entire reasoning
process. Please judge only if the model has provided the correct answer up to this point.
Please reason step by step first after "Reasoning:", then answer only with Yes or No after
"Answer:".

The Second Prompt for Detecting Overthinking without Gold Answer

**Question:** {Question}
**Response:** {One Chunked Response}
Evaluate whether the model has already answered the question. The response I provided
is part of the complete response, so thereś no need to include the entire reasoning process.
Please judge only if the model has provided the answer up to this point. Please reason step by
step first after "Reasoning:", then answer only with Yes or No after "Answer:".

The SFT Prompt for Reflection Model Training

**Question:** {Question}
**Response:** {One Chunked Response}
You are provided with a math Question and a model-generated Response. The response is
divided into {N} parts. For each part, analyze it and classify it based on its relationship to the
provided context. For each part, assign one of the following labels:

- Think: The part represents the reasoning process that leads to the answer.
- Result: The part is the answer provided by the model, where the model may provide the

answer in the middle of its response.
For each of the {N} parts, please reply in format:
[1]. Think/Result
[2]. Think/Result
...

The Prompt for Math Evaluation

Please reason step by step, and put your final answer within \boxed{}.
Question: {Question}
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B FURTHER ANALYSIS

B.1 CASE STUDY FOR REA-RL

To illustrate how our method works, we provide a case study demonstrating the workflow of online
data generation for online RL, containing both parallel sampling and sequential revision, as shown
in Figure 4. Specifically, we first perform parallel sampling, obtaining the yellow and red parts.
Here, the red part represents the overthinking section, which is detected by the reflection model.
Subsequently, we perform sequential revision by removing the red part and allowing the policy model
to finish the response with the blue part. In detail, we force the termination of the thinking process by
adding a “</think>” token and enforce the generation of the answer by adding “**Final Answer:**”
to avoid further redundant reasoning. Based on this process, the blue part is generally much shorter
than the red part, thus providing positive cases with less overthinking online.

Since we enforce a limit that no more than half of the tokens in the original response can be removed,
and the reflection model cannot always identify the first correct answer, not all additional reflections
can be removed. Therefore, the yellow part may also contain some reflection, which also helps
REA-RL retain its reflection ability. Additionally, in the second case, the model fails to complete
generation within the 8k token budget, resulting in the answer not being formatted as required (within
\boxed), and thus marked as incorrect. However, the model has already generated the correct answer,
making its response correct after revision. This explains why truncation can sometimes improve
performance.

 <think> Okay, so I have this problem where I need to find
the minimum value of the expression , where 
, , and  are positive real numbers. ... ... So, the minimal
value is . Alternatively, it can be expressed as , but

both are correct. Wait, let me compute  ... ... which is
.

Wait, that's different. Wait, hold on, perhaps I made a
miscalculation earlier. ... ... Wait, no, wait:

. So, yes, that's correct. But
when I did the substitution, I had an expression that

</think> **Final Answer:** The minimum possible value is
\boxed{ }.

7494 tokens

Advantage: -1.10-0.83506 tokens

30 tokens Advantage: -1.10+0.83

 <think> Okay, so I have this problem where I need to find
the minimum value of the expression ... ... Hence, the
minimum value of  is:  ... ...  Wait, but
let me double-check that calculation because sometimes
when I manipulate cube roots, I might make a mistake. ... ...
so , which confirms that the minimum
value is indeed .

 But let me just confirm if this makes sense. ... ... So, after
careful consideration and verification, the minimum value of
the given expression is . **Final Answer** The minimum
possible value is \boxed{ }. </think> To determine ... ...
Therefore, the minimum possible value of the given expres-
sion is \boxed{ }.

</think> **Final Answer:** The minimum possible value of
the sum is \boxed{ }.

3638 tokens

Advantage: 0.95-0.452307 tokens

35 tokens

Advantage: 0.95

Advantage: 0.95+0.45

Advantage: -1.10

Question: Determine the minimum possible value of the sum  , where  , , and  are positive real numbers.

Answer: 

Figure 4: Case study of online data generation in REA-RL. We illustrate how the parallel sampling
and sequential revision parts work. Specifically, the yellow, red, and blue parts in this figure
correspond to the tokens of the same colors in Figure 2. Since the yellow parts in both completion
and revision are identical, they are shown only once in this figure.

B.2 ADDITIONAL EXPERIMENTAL SETUP

Evaluation dataset. We follow Yang et al. (2024) in evaluating our approach on five math test sets,
ordered by difficulty: GSM8K (Cobbe et al., 2021), 8.5K grade school math problems; MATH500
(Hendrycks et al., 2021), 500 challenging high school competition problems; Gaokao23 (Liao
et al., 2024), English-translated math questions from the 2023 Chinese Gaokao exam; Amc231,

1https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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Method GSM8K Math500 Gaokao23 Amc23 Aime24 Average
Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓

B
ud

ge
t:

8k
Original 91.58 1001312 88.40 1003389 77.40 1003270 77.50 1004746 40.83 1006815 75.14 1003906
GRPO RLen 85.97 32.01 87.60 59.04 70.91 58.84 85.62 71.43 45.42 87.42 75.10 61.75
GRPO RRLen 86.05 29.42 88.20 50.19 68.83 51.10 86.88 63.27 48.75 84.92 75.74 55.78
GRPO RLen+Reflect 92.95 89.63 91.60 81.74 81.30 84.68 83.12 87.00 44.58 95.52 78.71 87.71

w/ D0.1 92.34 80.26 91.60 76.54 79.22 78.87 84.06 82.64 40.00 93.25 77.44 82.31
w/ D0.4 93.25 108.46 88.00 93.24 80.52 96.51 81.88 92.82 37.50 100.18 76.23 98.24

GRPO RRLen+Reflect 92.72 67.07 91.40 69.52 80.52 72.54 85.62 75.64 47.92 91.37 79.64 75.23

B
ud

ge
t:

16
k

Original 91.66 1001344 92.00 1003893 81.82 1003785 88.12 1005840 48.33 10010460 80.39 1005064
GRPO RLen 85.97 31.25 88.40 56.43 72.21 55.88 87.81 65.65 50.00 76.96 76.88 57.23
GRPO RRLen 86.05 28.72 89.20 46.62 69.35 47.03 88.12 56.59 54.17 75.40 77.38 50.87
GRPO RLen+Reflect 92.95 88.10 93.20 79.58 82.86 79.39 87.50 83.30 51.67 89.54 81.64 83.98

w/ D0.1 92.34 78.65 93.20 73.67 81.56 77.31 89.06 80.62 47.92 91.85 80.82 80.42
w/ D0.4 93.40 107.59 91.60 93.68 83.90 92.26 89.69 92.47 46.25 101.19 80.97 97.44

GRPO RRLen+Reflect 92.72 65.48 92.80 66.71 81.82 68.27 88.75 72.17 54.58 86.21 82.13 71.77

Table 5: Results of the ablation study. The table presents two sets of experiments using RLen and
RRLen to demonstrate the effectiveness of our length reward optimization, as well as an ablation study
on the hyperparameters of the reflection reward. “w/ D0.1” and “w/ D0.4” are defined in Equation 3,
representing the use of the 0.1 and 0.4 quantiles of the reflection density for the reflection reward,
respectively. Other abbreviations are defined in Table 2.

2023 American Mathematics Competitions; and Aime242, 2024 American Invitational Mathematics
Examination. We employ the math validator provided by rStar (Guan et al., 2025). Considering the
limited size of Amc23 and Aime24, we sample 8 paths for each question to mitigate randomness.

Common training configuration. Unless explicitly stated otherwise, we maintain the following
experimental settings. We use the DeepScaleR 40k dataset (Luo et al., 2025b) as the training data
and DeepSeek-R1-Distill-Qwen-7B (R1-7B) as the base model. We only retain questions for which
the model can provide at least one correct answer within 4 samples as the training data, resulting in
30k questions. We train for one epoch for GRPO-based methods and the same number of steps for
all other methods and baselines. Each batch contains 16 different questions and 4 different paths
generated for each question, with a maximum generation length of 8k. We use a learning rate of
2× 10−5, integrating low-rank adaptation (Hu et al., 2022) with all attention and MLP parameters,
setting the LoRA rank r to 16 and alpha to 32. During the data generation process, we follow R1 to
use a temperature of 0.6 and a top_p of 0.95. Finally, following Yu et al. (2025), when all generated
trajectories yield incorrect answers, we skip these instances to avoid unintended optimization.

Reflection model training. We employ R1-7B to generate reasoning processes on DeepScaleR,
sampling four paths for each question. In 74.03% of the questions, the model generates at least
one correct answer in 8k tokens, and in 46.54% of the questions, all four answers are correct.
Subsequently, we label the paths with correct answers as in §3.1 to form the training data. We
then fine-tune Qwen2.5-7B-Instruct for one epoch. During online sequential revision, we set the
temperature to 0.

B.3 ABLATION STUDY OF REWARD REFINEMENT

To further validate our proposed reward refinement scheme, including the improvements to reflection
reward and length reward, the results are presented in Table 5.

Refined length accelerates response shortening. We evaluate the performance of the length
reward before and after optimization (Len vs. RLen) when using only the accuracy reward and when
using both the accuracy reward and the reflection reward. The results demonstrate that RLen can
significantly reduce the number of tokens used while maintaining or even improving performance.
We attribute this to the removal of positive signals for incorrect answers, which avoids encouraging
erroneous responses and reduces input noise, thereby accelerating convergence.

2https://huggingface.co/datasets/AI-MO/aimo-validation-aime
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Method GSM8K Math500 Gaokao23 Amc23 Aime24 Average
Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓ Acc↑ TR↓

B
ud

ge
t:

16
k

Original 91.66 1001344 92.00 1003893 81.82 1003785 88.12 1005840 48.33 10010460 80.39 1005064

Model Reflect 89.46 62.43 93.20 71.85 80.52 70.41 89.06 79.95 50.83 93.59 80.61 75.65
+ Gold 88.78 54.09 92.00 57.80 79.48 59.71 87.19 67.71 51.67 92.31 79.82 66.32

GRPO RRLen+Reflect 92.72 100880 92.80 1002597 81.82 1002584 88.75 1004215 54.58 1009018 82.13 1003859

Model Reflect 92.42 72.73 93.00 78.17 80.26 75.46 87.19 84.01 54.58 94.72 81.49 81.02
+ Gold 91.74 68.75 91.60 69.77 79.74 70.51 85.94 77.27 54.58 93.70 80.72 76.00

GRPO RLen MReflect 89.23 100496 92.40 1001756 79.74 1001798 88.12 1003273 47.92 1007931 79.48 1003051

Model Reflect 88.02 90.73 91.40 92.54 79.22 92.99 88.75 93.92 45.42 95.51 78.56 93.14
+ Gold 87.72 88.91 89.80 84.85 78.96 88.65 86.56 90.53 46.25 95.21 77.86 89.63

GRPO RRLen+Reflect MReflect 89.99 100700 91.00 1002366 82.08 1002114 89.38 1003957 51.25 1008482 80.74 1003524

Model Reflect 90.30 86.29 91.60 88.08 80.78 88.69 88.75 90.90 50.42 96.24 80.37 90.04
+ Gold 89.46 80.86 90.40 80.85 79.74 82.64 87.19 88.10 50.83 95.48 79.52 85.59

Table 6: Results of the overthinking analysis. Each group of results is divided into three rows. The
first row shows the performance of the original model or the trained model directly. The following
two rows represent the results of shortening the responses of the first-row model using different
methods to remove overthinking. “Model Reflect” and “+ Gold” are defined in Table 3, representing
revision using the 32B model. Other abbreviations are defined in Table 2.

Reflection reward improves performance but reduces efficiency. Across all experiments, we
observe an average performance gain of 4.26 compared to the scenarios without the reflection reward.
However, this improvement comes at the cost of an average 23.26 reduction in the truncation ratio.
Nevertheless, we believe that maintaining performance is a more critical objective than shortening
the response. Only with the addition of the reflection reward can we achieve a reduction in model
response length without sacrificing model performance, and we anticipate further shortening of the
response with continued training, as illustrated in Figure 3. Conversely, continuing training with only
the length reward may lead to a further decline in accuracy.

Quantile hyperparameter settings in reflection reward. In the reflection reward, we utilize the
0.2 quantile of the reflection density during training, i.e., D0.2. To investigate the impact of other
quantiles on the experimental results, we further explore the effects of the 0.1 and 0.4 quantiles.
Specifically, D0.1 = 1/299, D0.2 = 1/225, and D0.4 = 1/157, where the denominator represents
the number of tokens between reflection tokens at that quantile. The results indicate that as the
quantile increases, the penalty for reflection density becomes more severe, leading to longer responses.
However, its impact on performance is relatively small, especially with a sufficient budget. This
demonstrates that the effectiveness of the reflection reward stems from discouraging non-reflection
behavior rather than unconditionally encouraging reflection.

B.4 OVERTHINKING ANALYSIS AFTER TRAINING

Significantly lower overthinking. To verify that our method alleviates the overthinking issue,
we employ the same evaluation approach as in §3, which uses an LLM to identify overthinking
tokens and remove them with model reflection. The results are presented in Table 6. Compared to
directly truncating the response from the original model, our approach exhibits a considerably lower
truncation ratio for overthinking tokens, especially for methods employing our reflection model for
training. This demonstrates that REA-RL effectively mitigates the issue of overthinking.

Preserving reflection capability. While our method reduces the truncation ratio, often indicating
less additional reflection, it does not eliminate it entirely. A certain proportion of truncation is still
maintained across our methods, particularly in experiments utilizing our reflection reward. This
indicates that our method still retains a certain token budget for the final reflection, thus proving that
REA-RL preserves the reflection capability.

B.5 THE USE OF LARGE LANGUAGE MODELS

As a general-purpose assist tool, large language models are used only to aid writing (e.g., grammar,
clarity, and phrasing). They are not used to design methods, generate ideas, run experiments, or create
results. All technical content and conclusions are written and verified by the authors.
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