
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CODEUNLEARN: AMORTIZED ZERO-SHOT MACHINE
UNLEARNING IN LANGUAGE MODELS USING DIS-
CRETE CONCEPT

Anonymous authors
Paper under double-blind review

ABSTRACT

Language Models (LMs) offer extensive knowledge across various domains, but
they may inadvertently memorize sensitive, unauthorized, or malicious data, such
as personal information in the medical and financial sectors. Machine unlearn-
ing methods aim to remove specific information from models after training to
address this. However, current approaches require additional model training or
struggle to effectively erase particular data points and their associated context due
to LMs’ complex, dense, and continuous nature. In this study, we propose a novel
amortized unlearning approach using codebook features and Sparse Autoencoders
(SAEs). By leveraging a bottleneck to decompose the activation space and regu-
late information flow, our method efficiently unlearns targeted information while
preserving the model’s performance on unrelated data. To the best of our knowl-
edge, this is the first work that successfully enables unlearning specific topics with
contextual relevance in an LM, marking a significant step towards real-world ap-
plications of machine unlearning.

1 INTRODUCTION

Large language Models (LLMs) have been widely used in various applications, generating text re-
sponses that attempt to create the equivalent of human conversations OpenAI et al. (2024). These
models leverage vast scientific literature to facilitate and accelerate interdisciplinary research Taylor
et al. (2022) while drawing upon large datasets of human-generated content to provide professional
advice. However, in many cases, such data is a double-edged sword. Including personal informa-
tion or sensitive scientific knowledge can be beneficial or, conversely, harmful. For instance, Soice
et al. (2023) discusses how LLMs, when used by non-experts, can enable the creation of biological
agents, posing both potential benefits and significant risks.

In response to these concerns, machine unlearning has emerged as a promising research area focused
on selectively removing specific data points or information from a trained model. This approach
helps mitigate the misuse of sensitive data and addresses privacy concerns. Existing solutions, such
as Sharded, Isolated, Sliced, and Aggregated (SISA) training Bourtoule et al. (2020), primarily in-
volve partitioning the training data into disjoint shards and retraining models on these individual
shards. Although effective in certain scenarios, these methods are often time-consuming, resource-
intensive, and lack scalability when applied to large models like LLMs. Moreover, traditional ap-
proaches typically require specialized data structures or full retraining, making them impractical for
dynamic or complex tasks.

Given these limitations, there is an increasing demand for zero-shot unlearning methods, which aim
to remove specific information without retraining or specialized data structures. Unlike traditional
unlearning techniques that rely on retraining portions of the model, zero-shot unlearning seeks to
directly eliminate the influence of specific data points or pieces of information from the model’s
learned representation—without additional computational steps or parameter adjustments. More-
over, zero-shot unlearning is inherently more scalable, especially for large models like LLMs, as it
avoids the inefficiencies associated with data partitioning and retraining.

Our approach builds upon using discrete representations as the latent space for unlearning. Discrete
representations, generated through Vector Quantization (VQ) van den Oord et al. (2018), offer a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

natural structure for organizing the latent space to enable selective information removal. Discrete
representations can be seen as a form of disentanglement, a concept rooted in classical research
Bengio et al. (2014), which emphasizes learning representations that disentangle the various factors
of variation in data. This allows for the separation of different explanatory sources within the data.

Additionally, Elhage et al. (2022) explores how neurons in models can represent multiple super-
posed features, introducing the concept of using dictionaries to disentangle these superpositions.
Building on this notion, we propose employing discrete representations to disentangle the model’s
internal structure, thereby enabling selective unlearning. By tracking and modifying discrete codes
within the latent space, we aim to achieve efficient and targeted removal of sensitive or unwanted
information.

Our contributions are as follows:

• we propose a novel zero-shot unlearning method based on discrete latent representations.

• we demonstrate how Vector Quantization (VQ) can structure the latent space, facilitating
the selective removal of information in an amortized manner.

• we extend our method beyond traditional machine unlearning techniques, primarily de-
signed for classification tasks, to handle complex language tasks associated with language
models, addressing a broader scope of applications.

• Our approach provides a baseline for unlearning in language models and validates the ef-
fectiveness of our method.

2 RELATED WORK

Machine unlearning methodologies have been developed to tackle the challenges of efficiently re-
moving data from trained models. Among the early influential frameworks is the Sharded, Isolated,
Sliced, and Aggregated (SISA) approach Bourtoule et al. (2020),which partitions data into inde-
pendent shards. By retraining only the specific shards containing the data to be unlearned, SISA
reduces the computational burden. Extensions of this approach include Ginart et al. (2019), which
applies partitioning to linear models, and Brophy & Lowd (2021), which adapts it for random forests.
Schelter et al. (2021) further extended the concept to decision trees, minimizing retraining through
hierarchical partitioning. In the graph learning domain, Chen et al. (2022b) developed methods to
forget specific nodes or edges, while Chen et al. (2022a) focused on removing sensitive user data
from recommendation systems.

While these methods are effective for structured models, they struggle to scale to large, complex
models like Language Models. Additionally, the retraining costs, though reduced, remain signifi-
cant, and the reliance on specific architectures limits their generalizability to more dynamic tasks.

In a different direction, Kurmanji et al. (2023) introduced SCRUB, which treats the original model as
a teacher and trains a student model to mimic it on retained data while ’forgetting’ specific informa-
tion. Warnecke et al. (2023) proposed unlearning entire groups of features and labels using influence
functions, providing closed-form updates to model parameters for more efficient data removal.

Influence functions Guo et al. (2023); Sekhari et al. (2021); Mehta et al. (2022) also offer an al-
ternative by measuring the effect of individual data points on a model’s predictions and adjusting
parameters accordingly, providing more direct methods for unlearning.

Recently, zero-shot unlearning methods have emerged, focusing on removing information without
retraining, making them highly efficient for large models. Shah et al. (2024) introduced a method
for editing model computations to ’forget’ specific information. While this is effective for tasks
like token classification, it may struggle with the more complex context and semantics in LLMs,
underscoring the need for scalable, adaptable unlearning techniques tailored to these models.

In parallel, recent advances in sparse and discrete latent representations, such as codebook features,
have been explored for better interpretability and control of neural activations. Multiple codebooks,
as introduced in Tamkin et al. (2023), have been applied to attention heads in transformer architec-
tures. In this setup, each attention head operates with its own codebook, independently selecting
codes and concatenating their outputs to form the final layer representation. This design allows the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

model to represent a broader set of features by combining the outputs of different codebooks. How-
ever, this can lead to a superposition effect Elhage et al. (2022), where features are linearly encoded,
enabling the model to simulate more extensive networks. Although this enhances representational
capacity, tracking individual code contributions becomes challenging, making it difficult to isolate
and remove specific patterns during unlearning.

3 METHODOLOGY

To address the challenges of zero-shot machine unlearning, we propose a novel approach that lever-
ages codebook features to bottleneck latent representations within a language model, enabling the
targeted unlearning of specific knowledge by altering related codebook embeddings. Initially intro-
duced by Tamkin et al. (2023), codebook features efficiently compress the activation space of neural
networks by introducing a sparse discrete bottleneck. This bottleneck can be further optimized to
isolate the codes most relevant to specific topics in the input, offering deeper insight and control over
the model’s response and interpretation. By utilizing this discrete latent representation, we can more
effectively identify and remove the specific information encoded in the codebook corresponding to
the input’s targeted knowledge.

The following section details our approach to employing codebook features to efficiently identify
and unlearn specific areas of related information in a zero-shot manner. This process ensures that
the model can no longer effectively handle prompts that contain the target information to unlearn.

Figure 1: CodeUnlearn—Our Amortized Zero-Shot Machine Unlearning for Language Models.
Left: Discrete latent bottlenecking in the transformer architecture. After applying the residual con-
nection, the multi-head attention output is discretized using a discrete embedding vocabulary, re-
ferred to as the codebook. This approach prevents information leakage via the residual connection,
ensuring that the codebook effectively regulates and interprets the network’s behavior. Right: Zero-
shot machine unlearning is achieved by removing the discrete codes in the codebook that correspond
to the targeted information.

3.1 CODEBOOK FEATURES

The core concept behind employing codebook features is to transform the original activations from
a hidden layer into a representation regulated by a codebook. Let a ∈ RF represent the activation
vector from a hidden layer, where F denotes the dimensionality of the activations. We use a code-
book C = {ck}Kk=1 ∈ RK×F , where K represents the number of code vectors. The codebook offers

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a compressed, discrete representation of the original activations. To perform this transformation, we
calculate the cosine similarity between the activation a and each code vector ck in the codebook:

cosineSim(a, ck) =
a · ck

∥a∥∥ck∥
, (1)

for each code vector ck in the codebook. We then identify the top S (where S ≥ 1) most similar code
vectors corresponding to the activation a. The index set Ω of these top S code vectors is defined as:

Ω = TopS ({k | k ∈ {1, . . . ,K}, cosineSim(a, ck)}) . (2)

The output of the codebook transformation is given by:

â =
∑
k∈Ω

ck, (3)

where Ω is the index set of the S most similar code vectors, selected based on the highest cosine
similarity scores. In the unlearning procedure, the activated codes corresponding to a are identified
as the targets for removal.

3.2 CODEBOOK SETTINGS

Single Codebook As shown in Figure 1, to maintain interpretability, we focus on using a single
codebook, positioning it after the multi-head attention layer and residual connection to prevent infor-
mation leakage. This placement is a deliberate design choice. Residual connections in transformer
architectures are designed to propagate unaltered features, which, while beneficial for model stabil-
ity and gradient flow, can bypass bottleneck layers like the codebook. By applying the codebook
transformation after the residual connection, we ensure that all information passed downstream is
regulated through the discrete latent representation. This strict information bottleneck prevents the
model from retaining unlearned or sensitive information outside the control of the codebook, thereby
enforcing a clean separation of learned and unlearned representations.

However, in a single codebook setup, selecting only S = 1 leads to a significant drop in model
performance, as a single codebook feature is insufficient to capture the complexity of the activation
space. In Cai (2024), the author rigorously demonstrates that treating word vectors as mappings
allows a finite vocabulary to achieve infinite approximation through composition. Based on this
insight, we employ S > 1 in our approach. While this may slightly affect code discretization and
information clarity, it strikes a balance between model performance and interpretability.

3.3 CODEBOOK WITH SPARSE AUTOENCODERS

Our goal is to decompose the activation space into sparse, interpretable features rather than recon-
structing the original input. To accomplish this, we incorporate the Sparse Autoencoder (SAE) con-
cept. The SAE applies a linear transformation encoder with a ReLU activation function to project
the activations into a higher-dimensional space, effectively decomposing and sparse features. A
linear transformation decoder is employed used to reconstruct the activations.

In line with the SAE structure, we introduce a linear transformation encoder with ReLU before the
codebook and a linear transformation decoder after the codebook. The sparsity introduced by the
encoder and decoder offers a significant advantage:

The encoder maps the activation vector a ∈ Rd to a sparse representation:

henc = ReLU(Wenca+ benc), (4)

where Wenc ∈ Rd×F and benc ∈ RF represent the encoder’s weights and biases. The sparse
representation henc is passed through the codebook transformation, as described in Section 3.1.

The decoder then reconstructs the original activation from the transformed representation:

â = Wdecĥenc + bdec, (5)

where Wdec ∈ RF×d and bdec ∈ Rd are the decoder’s weights and biases.

This autoencoder framework complements the codebook by ensuring that learned representations
remain interpretable and sparse, enabling efficient and targeted unlearning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.4 TRAINING THE CODEBOOK

Reconstruction Loss As with the Sparse Autoencoder (SAE) and codebook models, we utilize
the Mean Squared Error (MSE) loss as the primary loss function. The MSE loss can be expressed
as:

LMSE =
1

N

N∑
i=1

∥ai − âi∥22, (6)

where N is the number of samples, ai is the original activation, and âi is the reconstructed activation
obtained from the decoder.

Additionally, to promote sparsity and enforce more distinct and sparse internal feature representa-
tions within each codebook vector, we introduce an L1 penalty term on the codebook activations.
This encourages the model to represent each code with sparser and more well-separated internal
features. The overall loss function incorporating this sparsity constraint is defined as:

LCodebook =
1

N

N∑
i=1

∥ai − âi∥22 + λ
∑
k∈Ω

F∑
f=1

|cfk |, (7)

where Ω represents the set of indices for the top S most similar code vectors, ck refers to the k-
th codebook vector, F denotes the dimensionality of the code vectors, and λ is a regularization
coefficient that controls the strength of the L1 penalty term. In our experiments, we set λ to 1×10−6

to balance sparsity with reconstruction accuracy.

Joint Training for Machine Unlearning Both the SAE and codebook features are used to re-
construct the input a, but this presents a critical issue in the context of machine unlearning: one
could easily remove the codebook layer, reverting the model to its original state, which negates the
unlearning process. To address this, it is vital to ensure that the model is trained so that the down-
stream components are entirely dependent on the output of the codebook. At the same time, the
upstream layers must learn to generate activations that conform to the codebook’s representations.
This joint training approach ensures that the entire model relies on the codebook’s representation,
making it harder to bypass or remove without degrading performance. The joint loss function for
this training process is defined as:

Ljoint = LCodebook + LCE, (8)

where LCodebook refers to the reconstruction loss for the codebook, and LCE represents the Cross-
Entropy loss for the original language modeling or task-specific objective.

Figure 2: Unlearning a Target Topic in a Language Model. The zero-shot unlearning process
begins by identifying codes enriched in data subsets with the target topic (DT) as opposed to the
subset without it (DT̃). Codes with p-values less than 0.05 are removed from the codebook. After
this removal, the model exhibits significantly decreased performance on target information inputs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.5 CODE RETRIEVAL

As shown in Figure 2, after training, the codebook encodes a set of representative codes C =
{ck}Kk=1 ∈ RK×F that are sparse and represent different features. To perform unlearning, we
retrieve the codes activated for specific inputs and identify which codes are enriched for a particular
topic. The model can effectively unlearn the associated information by deleting the corresponding
enriched codes from the codebook. The key steps involve retrieving these relevant codes for each
input and determining their relationship to the target topic.

Because of the nature of the attention mechanism, the activation of these codes also depends on the
surrounding context. This means we are not just identifying individual words that activate specific
codes but retrieving codes that represent the broader topic within the input context. To unlearn a
specific topic T , consider a dataset DT with samples related to topic T , alongside with the remaining
irrelevant data set DR. We create a control dataset DT̃ by replacing words associated with T in DT

with unrelated words, ensuring the context remains consistent. By comparing the code activations
between DT and DT̃ , we can identify and search for the codes linked to topic T .

For each code ck activated in the dataset, we compute its frequency in both datasets by considering
the top S′ activated codes:

fk(DT) =
1

NT

NT∑
i=1

I(k ∈ ΩT (ai)), (9)

fk(DT̃) =
1

NT̃

NT̃∑
j=1

I(k ∈ ΩT̃ (aj)), (10)

where ΩT (ai) represents the set of indices of the top S′ activated codes for activation ai in dataset
DT , and ΩT̃ (aj) is similarly defined for DT̃ . NT and NT̃ denote the sample sizes of DT and DT̃ ,
respectively. I is the indicator function that checks whether code k is in the set of activated codes.
The hyperparameter S′ controls the number of top activated codes considered, thereby influencing
the number of codes to be removed.

To quantify the enrichment of code ck for topic T , we use the following formula:

R(ck, T) = log2

(
fk(DT) + ϵ

fk(DT̃) + ϵ

)
, (11)

where ϵ is a small constant added to avoid division by zero. When R(ck, T) is positive, it indicates
that the code ck is enriched in dataset DT relative to DT̃ . However, if the frequency of ck in DT̃
is zero and its frequency in DT is very low, such codes should not be removed, as they are likely
accidental activations. Removing these codes could lead to unintended side effects, as they may not
be strongly related to the topic T despite being present in the dataset.

Therefore, we used a chi-squared test to calculate the p-value of R(ck, T) to determine if the code
ck is enriched for topic T . For those codes with p-values smaller than 0.05, we regard them as
enriched codes in DT and remove them from the codebook. We define the set of enriched codes as
ΩR>0,p<0.05 = {ck | R(ck, T) > 0 and p ≤ 0.05}.

3.6 UNDERSTANDING ZERO-SHOT UNLEARNING

The term ”Zero-shot” in this work refers to the unlearning phase of the proposed method. Specif-
ically, after the initial training, the model can unlearn targeted knowledge without requiring ad-
ditional data, retraining, or fine-tuning. The process leverages the already learned representations
stored in the codebook to identify and remove the information associated with the target topic. This
is achieved by directly modifying the entries in the codebook rather than adjusting model parameters
through retraining.

It is important to note that while the initial training phase involves data and learning, no additional
datasets or external supervision are necessary during unlearning. The training data used to con-
struct the codebook is sufficient for both the representation learning and unlearning phases. This
design ensures computational efficiency during unlearning, particularly for large-scale models, as
no additional parameter updates or gradient computations are involved.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.7 METRICS

In our work, we not solely assess the absolute drop in performance within the topic or non-topic
datasets but also need to compare the relative decline between them. Instead, to fairly compare
the models and the datasets, we used normalized percentage improvement to evaluate the perfor-
mance of the unlearning procedure. The performance improvement percentage is set to 0 for the
zero-shot model and 1 for the codebook model, which is the upper bound. In contrast, the per-
formance drop percentage is set to 1 for the zero-shot model and 0 for the codebook model. We
use four evaluation metrics to assess the effectiveness of the unlearning procedure and the overall
quality of the remaining information in the output. These metrics include: We use four evaluation
metrics to assess the impact of the unlearning procedure on translation quality and semantic preser-
vation: BLEUPapineni et al. (2002), METEORBanerjee & Lavie (2005), BERTScoreZhang et al.
(2020), and Bart-ScoreYuan et al. (2021). BLEU offers a general accuracy measure, and METEOR
builds on BLEU by considering synonymy and word order, often providing a more sensitive quality
assessment. BERTScore leverages contextual embeddings to evaluate semantic similarity, crucial
for detecting whether unlearning procedures change the sentence’s meaning. Bart-Score evaluates
fluency and informativeness using pre-trained BART models, with scores reflecting log-likelihood,
so close to zero indicates better quality. BERTScore and Bart-Score offer insight into more subtle
changes, and percentage change trends are prioritized for a comprehensive analysis.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETUP

We evaluated the proposed CodeUnlearn framework by applying it to a large language model (LLM)
trained on English-to-French translation tasks. Specifically, we used the T5-small model Raffel et al.
(2023), a 60-million-parameter transformer architecture. The task was conducted on the Opus Books
dataset (opus books/en-fr), a collection of literary texts with a vocabulary size of 25k. The dataset
was split into 80% for training, 10% for validation, and 10% for testing.

The codebook, consisting of 25,000 codes with 512 dimensions, was integrated into the third en-
coder layer. This layer was chosen based on prior studies Templeton et al. (2024) suggesting that
intermediate layers capture high-level features, making them ideal for unlearning.

4.2 DATASET CONSTRUCTION AND UNLEARNING PROCESS

The dataset was split into three subsets: Training set (for initial model training and embedding
codebook features), Validation set (for evaluating performance after unlearning specific topics),
and Test set (for assessing generalization and unintended degradation on non-target topics).

For the unlearning procedure, we created:

• DT : 500 prompts containing the target topic (e.g., love), sampled from validation and test
sets.

• DT̃ : A control dataset where target-topic words in DT were replaced with unrelated terms,
preserving structure and context.

• DR: Prompts unrelated to the target topic, used for evaluating non-target performance.

We performed the unlearning procedure by progressively deleting codes related to the target topics.
Seven values of S′ were tested, ranging from S′ = 8(1 × S) to S′ = 104(13 × S), corresponding
to deletions of approximately 0.064% to 0.828% of the total codes in the codebook.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Examples of unlearning on topic ’love’. The French translations illustrate the model’s
progressive degradation as more codes are deleted. Initially, the target word ”l’aimer” (to love him)
is preserved. As codes are removed (S′ = 8 and S′ = 24), the replacement words (l’avoir acquitté,
meaning ”to have acquitted him”; le recevoir, meaning ”to receive him”) begin to diverge from the
original meaning. By S′ = 72, the translation (le mettre en état, meaning ”to put him in a state”)
becomes completely unrelated, reflecting effective forgetting of the love concept.

Content

English She had made efforts to love him, and she had repented with tears for
having yielded to another!

Ground Truth Elle avait fait des efforts pour l’aimer, et elle s’était repentie en pleurant
d’avoir cédé à un autre.

Codebook Model Elle avait fait des efforts pour l’aimer, et elle avait repris des larmes
pour avoir renoncé à un autre!

S′ = 8, delete 16 codes Elle avait fait des efforts pour l’aimer, et elle avait repris des larmes
pour l’avoir acquitté d’un autre!

S′ = 24, delete 52 codes Elle avait fait des efforts pour le recevoir, et elle avaitrepris des larmes
pour avoir renoncé à un autre.

S′ = 72, delete 133 codes Elle avait fait des efforts pour le mettre en état, et elle avait repris des
larmes pour s’en rendre à un autre.

Table 2: Unlearning Results for Different Topics

Topic(N) Dataset
Score (Normalized Improvement Drop(%))

BLEU↓ METEOR↓ BERT − P↓ BART↓

Love(207)
D′

T 0.16 (-112.52) 0.39 (-117.76) 0.80 (-118.88) -4.80 (-143.96)

DR 0.18 (-37.80) 0.42 (-57.82) 0.81 (-58.25) -5.71 (-35.06)

Julien(255)
D′

T 0.19 (-113.12) 0.42 (-138.47) 0.80 (-134.60) -5.15 (-164.68)

DR 0.16 (-65.70) 0.39 (-64.38) 0.80 (-94.63) -6.10 (-94.60)

Captain(137)
D′

T 0.20 (-72.10) 0.47 (-140.71) 0.83 (-84.44) -5.16 (-87.90)

DR 0.19 (-9.72) 0.44 (-9.04) 0.82 (-9.66) -5.97 (-0.53)

Poor(151)
D′

T 0.18 (-70.61) 0.43 (-70.78) 0.81 (-60.84) -5.03 (-79.81)

DR 0.20 (-26.64) 0.47 (-12.48) 0.83 (-14.20) -5.81 (-36.01)

Wish(217)
D′

T 0.15 (-144.83) 0.33 (-249.51) 0.78 (-182.02) -4.95 (-309.34)

DR 0.16 (-87.65) 0.39 (-94.51) 0.81 (-74.16) -6.02 (-133.35)

White(179)
D′

T 0.12 (-157.45) 0.38 (-218.04) 0.80 (-403.04) -4.85 (-119.99)

DR 0.16 (-10.09) 0.49 (-22.99) 0.83 (-47.65) -6.12 (-27.15)

Black(190)
D′

T 0.16 (-85.16) 0.40 (-138.04) 0.80 (-115.56) -4.70 (-62.91)

DR 0.19 (-16.12) 0.47 (-2.15) 0.83 (-3.01) -5.78 (-97.36)

4.3 RESULTS AND ANALYSIS

Unlearning Conceptual Topics (e.g., love) Table 1 showcases example outputs after unlearning
love. Minor inaccuracies appear when S′ = 8 (16 codes deleted). By S′ = 72 (133 codes deleted),
the translation diverges significantly from the original meaning, effectively forgetting the love con-
cept while introducing interference in sentence comprehension. Following unlearning, the model
attempts to rely on other similar codes; however, the meanings of these codes are significantly dif-
ferent. As a result, the unlearned target topic interferes, hindering the model’s ability to comprehend
the entire sentence fully. This highlights the nuanced balance between forgetting the target and
preserving overall sentence coherence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Performance Drop after Unlearning on the Topic ’Love’. Performance Drop after
Unlearning on the Topic ’Love’. The X-axis shows the model variations, with the first column as the
original model. Columns 2 to 8 represent increasing levels of unlearning, with the number indicating
the top S codes used and removed. The Y-axis represents the percentage change in various metrics
compared to the original model. As more codes are deleted, the model’s performance on the target
topic declines rapidly, while performance on non-topic content remains more stable.

Figure 3 visualizes performance degradation as more codes related to love are deleted. BLEU and
BERTScore metrics show a consistent decline on target prompts (D′

T), while performance on non-
target prompts (DR) remains relatively stable, indicating effective unlearning with minimal impact
on unrelated content.

Figure 4: Performance Drop after Unlearning on the Topic ’Julien’. Similar to the ’love’ topic,
we tested the unlearning procedure on the name ’Julien’.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Unlearning Personal Names (e.g., Julien) To test the unlearning of personal information, we
targeted the name Julien.Names carry specific semantic significance in language models, much like
critical topics, making Julien an ideal test case to assess the method’s effectiveness in removing
personal information, such as names, while preserving performance on unrelated content. Figure 4
shows that sentences containing Julien experienced a sharp performance drop after unlearning. This
demonstrates the capability to handle both conceptual topics and specific entities effectively.

Figure 5: Metrics after unlearning topic ’love’ and test on ’like’, The model unlearned the ’love’
topic but also deteriorated the performance on the ’like’ topic, which suggests that the unlearning
procedure removes not only the specific target information but also the relevant context.

Performance on Synonyms (e.g., like for love) We evaluated the synonym like after unlearning
love. Figure 5 indicates that the model’s performance on like also deteriorated, highlighting that the
unlearning process extends to semantically related contexts. This demonstrates that CodeUnlearn
effectively addresses contextual knowledge beyond isolated data points.

Comprehensive Topic Analysis In addition to love and Julien, we tested other topics such as
Captain, Poor, Wish, White, and Black. Results in Table 2 confirm that CodeUnlearn scales effec-
tively to diverse topics, with significant degradation on target prompts and relatively small impact
on unrelated data.

5 CONCLUSION

In this work, we introduced CodeUnlearn, a novel framework for zero-shot machine unlearning in
Large Language Models (LLMs). Leveraging codebook features and Sparse Autoencoders (SAEs),
we devised a method that effectively isolates and removes specific knowledge, ensuring that the
targeted data and its contextual associations are erased from the model. Unlike previous methods,
which required retraining or were limited to classification tasks, CodeUnlearn operates amortized
and zero-shot, providing an efficient and scalable solution for unlearning in complex, generative
models like LLMs. Our approach uses a discrete concept representation to regulate the flow of
information in a language model, enabling the unlearning of specific topics while preserving overall
model performance on unrelated tasks. The results show that CodeUnlearn successfully mitigates
the model’s ability to reproduce the unlearned information without requiring additional training,
achieving substantial unlearning effectiveness and maintaining interpretability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic struc-
ture of word senses, with applications to polysemy, 2018. URL https://arxiv.org/abs/
1601.03764.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Jade Goldstein, Alon Lavie, Chin-Yew Lin, and
Clare Voss (eds.), Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Mea-
sures for Machine Translation and/or Summarization, pp. 65–72, Ann Arbor, Michigan, June
2005. Association for Computational Linguistics. URL https://aclanthology.org/
W05-0909.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives, 2014. URL https://arxiv.org/abs/1206.5538.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning, 2020. URL
https://arxiv.org/abs/1912.03817.

Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests, 2021. URL https:
//arxiv.org/abs/2009.05567.

Yongqiang Cai. Vocabulary for universal approximation: A linguistic perspective of mapping com-
positions, 2024. URL https://arxiv.org/abs/2305.12205.

Chong Chen, Fei Sun, Min Zhang, and Bolin Ding. Recommendation unlearning, 2022a. URL
https://arxiv.org/abs/2201.06820.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
Graph unlearning. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. ACM, November 2022b. doi: 10.1145/3548606.3559352. URL
http://dx.doi.org/10.1145/3548606.3559352.

David L. Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via ℓ1 minimization. Proceedings of the National Academy of Sciences, 100(5):2197–
2202, 2 2003. ISSN 0027-8424. doi: 10.1073/pnas.0437847100. [Online; accessed 2024-09-29].

Michael Elad. Sparse and Redundant Representations. Springer New York, 2010. doi: 10.1007/
978-1-4419-7011-4. [Online; accessed 2024-09-29].

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superpo-
sition, 2022. URL https://arxiv.org/abs/2209.10652.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making ai forget you: Data
deletion in machine learning, 2019. URL https://arxiv.org/abs/1907.05012.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 9301–9309, 2019. URL https://api.semanticscholar.
org/CorpusID:207863297.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten. Certified data removal
from machine learning models, 2023. URL https://arxiv.org/abs/1911.03030.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification, 2015. URL https://arxiv.org/
abs/1502.01852.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning, 2023. URL https://arxiv.org/abs/2302.09880.

11

https://arxiv.org/abs/1601.03764
https://arxiv.org/abs/1601.03764
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/1206.5538
https://arxiv.org/abs/1912.03817
https://arxiv.org/abs/2009.05567
https://arxiv.org/abs/2009.05567
https://arxiv.org/abs/2305.12205
https://arxiv.org/abs/2201.06820
http://dx.doi.org/10.1145/3548606.3559352
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/1907.05012
https://api.semanticscholar.org/CorpusID:207863297
https://api.semanticscholar.org/CorpusID:207863297
https://arxiv.org/abs/1911.03030
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/2302.09880

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N. Ravi. Deep unlearning via randomized
conditionally independent hessians, 2022. URL https://arxiv.org/abs/2204.07655.

Peter Norvig. Natural Language Corpus Data, pp. 219–242. 01 2009.

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 6 1996. ISSN 0028-0836.
doi: 10.1038/381607a0. [Online; accessed 2024-09-29].

OpenAI, Josh Achiam, and et al. Gpt-4 technical report, 2024. URL https://arxiv.org/
abs/2303.08774.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135IF:NANANA. URL https://aclanthology.org/
P02-1040.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Sebastian Schelter, Stefan Grafberger, and Ted Dunning. Hedgecut: Maintaining randomised trees
for low-latency machine unlearning. In Proceedings of the 2021 International Conference on
Management of Data, SIGMOD ’21, pp. 1545–1557, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383431. doi: 10.1145/3448016.3457239. URL https:
//doi.org/10.1145/3448016.3457239.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
you want to forget: Algorithms for machine unlearning, 2021. URL https://arxiv.org/
abs/2103.03279.

Harshay Shah, Andrew Ilyas, and Aleksander Madry. Decomposing and editing predictions by
modeling model computation, 2024. URL https://arxiv.org/abs/2404.11534.

Vedant Shah, Frederik Träuble, Ashish Malik, Hugo Larochelle, Michael Mozer, Sanjeev Arora,
Yoshua Bengio, and Anirudh Goyal. Unlearning via sparse representations, 2023. URL https:
//arxiv.org/abs/2311.15268.

Takashi Shibata, Go Irie, Daiki Ikami, and Yu Mitsuzumi. Learning with selective forgetting. In
Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pp. 989–996. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. doi: 10.24963/ijcai.2021/137. URL https://doi.org/10.24963/
ijcai.2021/137. Main Track.

Emily H. Soice, Rafael Rocha, Kimberlee Cordova, Michael Specter, and Kevin M. Esvelt. Can
large language models democratize access to dual-use biotechnology?, 2023. URL https:
//arxiv.org/abs/2306.03809.

Alex Tamkin, Mohammad Taufeeque, and Noah D. Goodman. Codebook features: Sparse and
discrete interpretability for neural networks, 2023. URL https://arxiv.org/abs/2310.
17230.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for
science, 2022. URL https://arxiv.org/abs/2211.09085.

Adly Templeton, Tom Conerly, and Jonathan Marcus et al. Scaling Monoseman-
ticity: Extracting Interpretable Features from Claude 3 Sonnet. 2024. URL
https://transformer-circuits.pub/2024/scaling-monosemanticity/
#appendix-more-safety-features/.

12

https://arxiv.org/abs/2204.07655
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://arxiv.org/abs/1910.10683
https://doi.org/10.1145/3448016.3457239
https://doi.org/10.1145/3448016.3457239
https://arxiv.org/abs/2103.03279
https://arxiv.org/abs/2103.03279
https://arxiv.org/abs/2404.11534
https://arxiv.org/abs/2311.15268
https://arxiv.org/abs/2311.15268
https://doi.org/10.24963/ijcai.2021/137
https://doi.org/10.24963/ijcai.2021/137
https://arxiv.org/abs/2306.03809
https://arxiv.org/abs/2306.03809
https://arxiv.org/abs/2310.17230
https://arxiv.org/abs/2310.17230
https://arxiv.org/abs/2211.09085
https://transformer-circuits.pub/2024/scaling-monosemanticity/#appendix-more-safety-features/
https://transformer-circuits.pub/2024/scaling-monosemanticity/#appendix-more-safety-features/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing, 2018.

Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning
of features and labels, 2023. URL https://arxiv.org/abs/2108.11577.

Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua Li, and Xiaodong Lin. Arcane: An efficient
architecture for exact machine unlearning. In Lud De Raedt (ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 4006–4013. International
Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/556.
URL https://doi.org/10.24963/ijcai.2022/556. Main Track.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text gener-
ation, 2021. URL https://arxiv.org/abs/2106.11520.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.

A TRAINING AND OPTIMIZATION DETAILS

This section provides additional details on the training and optimization of the Sparse Autoencoder
(SAE) used in CodeUnlearn.

After the SAE encoder layer, we apply layer normalization to stabilize training and improve con-
vergence. The dimensionality of the SAE is set to match both the codebook and input dimensions,
which is 512.

For the initialization of the SAE encoder layer, we use Kaiming uniform initialization He et al.
(2015), which is well-suited for layers with ReLU activation. This method helps maintain the proper
scale of the weights, preventing issues such as vanishing gradients. Additionally, since the codebook
can be regarded as an activation layer, Kaiming initialization ensures that the input distributions
to the codebook remain stable, facilitating efficient learning and representation of sparse features
within the SAE.

To promote sparsity in the activations, we introduce an l1 loss with a lambda parameter set to 1 ×
10−6. This ensures that the network learns sparse representations, which are crucial for enhancing
the interpretability and control required for the unlearning process.

Codebook size is 25k and the dimensionality is 512, we use top 8 codes to represent the input.

B SEARCHING AND RETRIEVAL PROCEDURE

B.1 DATA BUILDING

Selection of DT : We sampled 500 prompts containing the target words from the validation and
test dataset.The validated prompt never participates in the training and unlearning phases. We first
analyze word frequencies across the entire dataset to construct the target dataset DT . We select
words with frequencies between 500 and 700. Words that are too frequent tend to be overly familiar
and lack specificity, while those that are too infrequent may not provide meaningful insights. We
focus on words in the 500-700 frequency range, such as ’love,’ which are practically meaningful
and suitable for testing the unlearning process.During validation, we created D′

T by selecting topic-
specific prompt components from the test and validation sets, and we sampled an equal number of
instances from the remaining irrelevant dataset to construct DR.

Generation of DT̃ : For the control dataset DT̃ , we replace the target words in DT with common
non-synonyms of the same part of speech. The replacement words are selected based on word
frequencies reported by Norvig (2009). For instance, for names, we randomly generate other names
to replace the original ones. This ensures that DT̃ maintains the same contextual structure as DT ,
allowing us to focus on how effectively the unlearning procedure targets specific information.

13

https://arxiv.org/abs/2108.11577
https://doi.org/10.24963/ijcai.2022/556
https://arxiv.org/abs/2106.11520
https://arxiv.org/abs/1904.09675

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.2 SEARCH AND RETRIEVAL OF CODES

For code search and retrieval, we disable sampling by setting the temperature to 0 at all stages,
ensuring deterministic behavior in code activation selection.

Table 3: Runtime Mean and Standard Deviation for Different S′

S′ Runtime Mean (s) Runtime Std (s)

8 473.66 264.58
24 376.98 238.66
40 212.35 240.88
56 211.23 438.63
72 211.14 479.11
88 214.12 434.29

104 215.37 526.23

As shown in Table 3, the runtime varies significantly due to the different lengths of the prompts.
Despite this fluctuation, it can be observed that the average search time for the top 500 samples is
approximately 10 minutes, indicating an efficient unlearning process.

C EXAMPLES OF UNLEARNING

Table 4: Examples of unlearning on the topic ’Julien’

Content

English Without being the least bit in the world intimidated, Julien resumed his
narrative.

Ground Truth Sans être le moins du monde intimidé, Julien reprit sa narration.

Codebook Model Sans être le moindre obstacle du monde, Julien reprit son récit.

S′ = 8, delete 16 codes Sans être le moindre obstacle du monde, je reprit son récit.

S′ = 24, delete 52 codes Sans être le moindre objet du monde attaqué, le temps lui reprit son
récit.

S′ = 72, delete 133 codes Sans être le moindre obstacle du monde, M. Rochester reprit son récit.

As shown in Table 4, by S′ = 24, deleting 52 codes already leads to a significant performance
drop. The name ’Julien’ is no longer recognized after code deletion, and the model attempts to
fill this gap with unrelated words. This behavior interferes with the model’s understanding of the
context, as it tries to substitute Julien’s code with alternatives, making it impossible to restore the
correct information. The model provides incorrect substitutions, rather than leaving the slot vacant
for further inference.

In Table 5, we observe that the model’s performance on unrelated content, like the ’Notre—Dame’
topic, remains relatively stable even after unlearning the ’Julien’ topic. Only minor perturbations oc-
cur at higher code deletions (e.g., S′ = 72), but the overall sentence retains its meaning, demonstrat-
ing the model’s resilience on non-target content. The resulting change, which involves a preposition
shift, has a negligible effect on the overall meaning of the sentence, further confirming that the un-
learning process effectively targets only the specified concept without broadly disrupting unrelated
text generation.

D FUTURE WORK

While CodeUnlearn has demonstrated its effectiveness in unlearning specific topics in LLMs, several
areas remain for further exploration:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Non-topic samples after unlearning on the topic ’Julien’

Content

English In fact, within the bounds of Notre—Dame, the condemned girl could
not be touched.

Ground Truth En effet, dans l’enceinte de Notre—Dame, la condamnée était invio-
lable.

Codebook Model En effet, dans les limites de Notre—Dame, la condamnée ne pouvait
être touchée.

S′ = 8, delete 16 codes En effet, dans les limites de Notre—Dame, la condamnée ne pouvait
être touchée.

S′ = 24, delete 52 codes En effet, dans les limites de Notre—Dame, la condamnée ne pouvait
être touchée.

S′ = 72, delete 133 codes En effet, au milieu des limites de Notre—Dame, la condamnée ne pou-
vait être touchée.

• Enhanced Code Retrieval with Minimal Impact on Unrelated Information: Improving
the accuracy of identifying target codes can lead to more precise unlearning with reduced
unintended consequences on irrelevant information. Future work could focus on refining
the search and retrieval process to ensure that unlearning specific knowledge has minimal
impact on the model’s overall performance and generalization capabilities.

• Decentralized Code Representation: One goal is to decentralize further the information
encoded in the codebook to ensure that unlearning-specific features have an even more lo-
calized impact on the model’s behavior. This could lead to finer control over the granularity
of the unlearning process.

• Expanding to Other Tasks and Architectures: While our method has been validated on
language models, expanding CodeUnlearn to tasks like classification and extending it to
other model architectures (e.g., transformers beyond T5) will further enhance its applica-
bility across domains.

E FURTHER DETAILS ON TRADITIONAL UNLEARNING METHODS

In this appendix, we delve deeper into some of the traditional machine unlearning methods, expand-
ing on the frameworks and strategies discussed in the related work section.

SISA (Sharded, Isolated, Sliced, and Aggregated) Approach The Sharded, Isolated, Sliced, and
Aggregated (SISA) approach Bourtoule et al. (2020) partitions the training data into independent
shards, each used to train isolated models or sub-models. When a specific data point needs to be
unlearned, only the relevant shard containing that data is retrained. This approach is designed to
improve computational efficiency by reducing the need for full model retraining.

While SISA is highly efficient compared to retraining the entire model, the framework introduces
certain challenges. The isolated training of each shard can result in a lack of information integra-
tion across different shards, potentially leading to generalization issues. In large language models
(LLMs), where complex interdependencies between tokens are crucial for performance, the isolated
shard approach can cause degradation in performance. Moreover, as the size of the dataset grows,
the retraining costs, even within individual shards, remain significant, making SISA less practical
for large-scale LLMs.

Extensions to SISA: DaRE, HedgeCut, and ARCANE Other methods such as DaRE Brophy
& Lowd (2021) and HedgeCut Schelter et al. (2021) extend SISA’s principles to tree-based al-
gorithms. These approaches focus on partitioning the decision tree structure to ensure that only
specific branches or paths are retrained during unlearning. DaRE adapts the SISA framework for
random forests, while HedgeCut applies it to hierarchical decision trees, offering more flexibility
across different model architectures.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ARCANE Yan et al. (2022) represents another evolution of the SISA framework by optimizing
retraining costs through class-based partitioning. In ARCANE, the dataset is divided into class-
specific subsets, minimizing the impact of unlearning by only requiring retraining for the class in
question. This strategy enhances efficiency by limiting the scope of retraining, but it still necessitates
retraining, which can become a bottleneck, especially for high-dimensional and large-scale datasets.

Limitations of SISA and Its Variants in Complex Models Despite the advancements made by
SISA and its extensions, these methods rely heavily on specific model architectures and data struc-
tures, making them less suitable for complex and unstructured environments like LLMs. In large
language models, the intricate dependencies between tokens mean that partitioning the data into iso-
lated shards or classes may not capture the full complexity of the model’s learned representations.

The isolated training across shards can also lead to issues with model generalization, as each shard is
trained independently. This becomes particularly problematic when the model needs to generalize to
unseen data. The lack of integration between shards can cause performance degradation, particularly
in tasks requiring high-level contextual understanding, such as those found in LLMs. Moreover,
although SISA limits retraining to individual shards, the computational burden remains substantial
for large-scale datasets, making the approach less scalable for real-world deployment in LLMs.

Influence Functions for Unlearning An alternative to retraining-based methods is the use of
influence functions, which estimate the impact of a data point on the model’s learned parameters
Guo et al. (2023); Sekhari et al. (2021); Mehta et al. (2022). Influence functions allow the model to
reverse the effects of specific data points without needing full retraining. By calculating the gradient
of the loss function with respect to the training points, influence functions can adjust the model’s
parameters to ’forget’ the data.

However, while influence functions are efficient for simple models like linear classifiers or small
neural networks, they struggle with the complexity and non-linearity of deep architectures like
LLMs. The dense and interconnected structure of LLMs makes it difficult to isolate the effect
of individual data points without affecting the model’s overall performance. This limitation restricts
the scalability of influence functions in unlearning tasks within complex models.

Re-optimization After Unlearning A novel approach to selective forgetting, based on re-
optimization, was proposed by Golatkar et al. (2019), who introduced an optimal quadratic scrub-
bing algorithm designed to achieve selective forgetting in deep networks. Selective forgetting is
defined as the process of modifying network weights using a scrubbing function S(w), such that the
weight distribution becomes indistinguishable from that of a network never trained on the forgotten
data. This is quantitatively measured through the Kullback-Leibler (KL) divergence. If the KL di-
vergence between the post-scrubbing weight distribution and the weight distribution of a network
that has never encountered the forgotten data approaches zero, it indicates complete forgetting. This
method ensures that the network ’forgets’ specific information without necessitating full retraining,
and instead re-optimizes the network’s weights to achieve a distributional equivalence.

However, one of the key limitations of this approach is its computational complexity. While the
scrubbing process avoids full retraining, re-optimization still involves significant computational
overhead, especially for large-scale models like LLMs. Additionally, achieving true distributional
equivalence is highly challenging in practice, particularly when the network is fine-tuned on multi-
ple tasks or trained on diverse datasets. This often leads to incomplete forgetting, as small traces of
the forgotten data may still influence the network’s behavior.

Building on the idea of re-optimization, Shibata et al. (2021) introduced the Learning with Selective
Forgetting (LSF) framework, which aims to selectively forget specific classes in a lifelong learn-
ing setting. LSF employs a multi-component loss function that balances classification accuracy,
mnemonic embedding, selective forgetting, and regularization to prevent catastrophic forgetting of
non-target classes. This method, though promising, suffers from scalability issues when applied to
larger datasets or more complex models. The reliance on class-level removal also limits its applica-
bility to scenarios where granular, instance-level forgetting is required, making it less adaptable to
tasks beyond classification, such as generative language models.

Furthermore, both approaches struggle with model interpretability and traceability post-unlearning.
As the network weights are continuously re-optimized, it becomes difficult to verify the extent of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

forgetting or to ensure that no residual influence from the forgotten data remains. The lack of guar-
antees about complete data removal can be a significant concern in privacy-sensitive applications,
where even small data remnants could pose risks. This calls for more transparent and auditable un-
learning processes, particularly in contexts involving sensitive personal or confidential information.

Re-optimization After Unlearning Re-optimization-based approaches to selective forgetting,
such as the quadratic scrubbing algorithm proposed by Golatkar et al. (2019), aim to adjust a model’s
weights so that the distribution resembles one that has never been exposed to the forgotten data. This
is measured using Kullback-Leibler (KL) divergence, with the goal of reducing it to near zero, indi-
cating complete forgetting without full retraining. While effective, this method is computationally
expensive, especially for large models like LLMs, and achieving perfect distributional equivalence
is difficult, often leaving residual traces of the forgotten data.

The Learning with Selective Forgetting (LSF) framework introduced by Shibata et al. (2021) en-
hances this by incorporating a loss function that balances accuracy, mnemonic embedding, selective
forgetting, and regularization to remove specific classes in lifelong learning. However, both meth-
ods face scalability challenges with large datasets and struggle with more granular, instance-level
forgetting required in complex tasks like language generation.

Moreover, these approaches lack transparency and traceability, making it difficult to verify whether
forgetting has been truly achieved. This is particularly problematic in privacy-sensitive contexts,
where even minor data remnants can pose significant risks. Thus, re-optimization methods, while
promising, require further refinement to handle large-scale models and ensure complete, verifiable
unlearning.

Re-optimization After Unlearning Re-optimization-based approaches to selective forgetting,
such as the quadratic scrubbing algorithm proposed by Golatkar et al. (2019), aim to adjust a model’s
weights so that the distribution resembles one that has never been exposed to the forgotten data. This
is measured using Kullback-Leibler (KL) divergence, with the goal of reducing it to near zero, indi-
cating complete forgetting without full retraining. While effective, this method is computationally
expensive, especially for large models like LLMs, and achieving perfect distributional equivalence
is difficult, often leaving residual traces of the forgotten data.

The Learning with Selective Forgetting (LSF) framework introduced by Shibata et al. (2021) en-
hances this by incorporating a loss function that balances accuracy, mnemonic embedding, selective
forgetting, and regularization to remove specific classes in lifelong learning. However, both meth-
ods face scalability challenges with large datasets and struggle with more granular, instance-level
forgetting required in complex tasks like language generation.

Moreover, these approaches lack transparency and traceability, making it difficult to verify whether
forgetting has been truly achieved. This is particularly problematic in privacy-sensitive contexts,
where even minor data remnants can pose significant risks. Thus, re-optimization methods, while
promising, require further refinement to handle large-scale models and ensure complete, verifiable
unlearning.

F FURTHER DETAILS ON VECTOR QUANTIZATION METHODS

A promising direction to address these challenges lies in Vector Quantization (VQ) and Sparse Cod-
ing, which provide a natural framework for disentangling information encoded in models, offering
deeper insights into model interpretability Elad (2010). Numerous studies have demonstrated the
effectiveness of sparse vectors in discovering underlying sparse structures, significantly improving
interpretability.

For example, Arora et al. (2018) showed how sparse coding can reveal the linear algebraic structure
of word embeddings, enhancing their interpretability. Similarly, Olshausen & Field (1996), along
with Donoho & Elad (2003), explored how sparse coding in visual systems identifies the most rele-
vant features, underscoring the potential of sparse representations for revealing meaningful features
in complex models.

Expanding on these ideas, Shah et al. (2023) proposed a Discrete Key-Value Bottleneck (DKVB)
model that leverages sparse representations, freezing key-value pairs to prevent gradient propaga-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

tion and enabling unlearning without retraining. While effective for classification tasks, the DKVB
model faces challenges when applied to large language models (LLMs) due to the more intricate re-
lationships between tokens and context, highlighting the need for unlearning methods better suited
to the complexity of LLMs.

More recently, Elhage et al. (2022) demonstrated how sparse coding can extract and disentangle
superpositions in toy models, providing valuable insights into the structure of neural networks. By
applying sparse coding techniques, Elhage et al. (2022) were able to disentangle these superposi-
tions, offering a clearer understanding of the complex behaviors observed in deep neural networks.

Building on these advancements, Sparse Autoencoders (SAE) further enhance model interpretability
by decomposing activation spaces into distinct, sparse components Templeton et al. (2024). SAEs
allow models to identify specific features where information is encoded, making it easier to selec-
tively remove or modify individual components during the unlearning process. By leveraging the
sparsity and disentanglement properties of VQ and SAE, it is possible to develop unlearning meth-
ods that are scalable, efficient, and interpretable, offering a robust alternative to techniques that rely
on retraining or complex data partitioning.

G FUTURE WORK

One of the primary limitations of CodeUnlearn is its reliance on an initial training phase to construct
the codebook and embed representations necessary for unlearning. While this phase ensures robust
and interpretable latent spaces for effective unlearning, it introduces a dependency that could limit
the flexibility and scalability of the method in certain applications. Addressing this issue offers
several potential directions for future exploration.

A promising direction lies in reducing or eliminating the reliance on extensive initial training by en-
abling the model to dynamically construct and update codebook representations during inference or
incremental learning. This approach would allow the framework to adapt its latent representations
in real-time, making it more suitable for continuously evolving datasets and applications. Addition-
ally, incorporating self-supervised or unsupervised representation learning techniques could reduce
the need for labeled data during the training phase, making the method more generalizable and
efficient. Such approaches could also support lightweight initialization strategies, minimizing the
computational and data requirements of the initial training phase, thereby enabling deployment in
resource-constrained environments, such as edge devices or smaller-scale systems.

Future work could also focus on understanding the trade-offs between codebook quality, unlearning
effectiveness, and the extent of initial training required. By systematically analyzing these relation-
ships, researchers could identify optimal configurations that balance robustness, interpretability, and
flexibility across different application scenarios. Addressing these challenges would allow CodeUn-
learn to evolve into a more dynamic and lightweight framework, better suited for diverse and rapidly
changing environments. Ultimately, reducing the reliance on initial training would significantly
enhance the method’s scalability and broaden its applicability in real-world contexts.

18

	Introduction
	Related Work
	Methodology
	Codebook Features
	Codebook Settings
	Codebook with Sparse Autoencoders
	Training the Codebook
	Code Retrieval
	Understanding Zero-shot Unlearning
	Metrics

	Experiments and results
	Experiment Setup
	Dataset Construction and Unlearning Process
	Results and Analysis

	Conclusion
	Training and Optimization Details
	Searching and Retrieval Procedure
	Data Building
	Search and Retrieval of Codes

	Examples of Unlearning
	Future Work
	Further Details on Traditional Unlearning Methods
	Further Details on Vector Quantization Methods
	Future Work

