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ABSTRACT

Engineering biocatalysts is central for sustainable chemical synthesis, but ham-
pered by a lack of sequence-function data which is costly and slow to obtain.
We introduce a new microfluidic workflow, ‘Droplet lrDMS’, which allows us to
screen tens of thousands of enzyme variants within two weeks, a scale, speed and
cost not feasible with plate screening or robotic workflows. Using this workflow,
we generate large-scale sequence-function data of an imine reductase and ratio-
nally engineer improved variants with an up to 11-fold improvement in catalytic
efficiency (kcat/KM) vs wild type. With machine learning, we further enhance
catalytic efficiency up to 16-fold vs wild type, 4-fold better than the best variant in
the dataset, by combining rational engineering and predictions from the AI model.
The improvement is driven by a 24-fold improvement of catalytic rate (kcat) over
wild type significantly higher than rate improvements observed in an AI-informed
campaign with a similar enzyme. Our study demonstrates the potential of droplet
lrDMS sequence-function data to accelerate directed evolution by AI-informed
biocatalyst engineering.

1 INTRODUCTION

Biocatalysts will enable the transition to a green chemical industry by providing a sustainable and
atom efficient route to valuable chemicals (Buller et al., 2023; Sheldon, 2023; France et al., 2023).
For example, both the economic viability and environmental footprint of the synthesis of chiral
amines, important high-value intermediates in the pharmaceutical industry, can be improved using
imine reductases (IREDs) (Kumar et al., 2021; Schober et al., 2019).
Biocatalysts are usually sourced from naturally occurring enzymes, but often have insufficient activ-
ity towards the non-natural substrates under the desired reaction conditions. To engineer biocatalysts
for industrial application, directed evolution – an iterative cycle of mutagenesis and experimental
testing to screen for variants with the desired properties – is the method of choice (Arnold, 2019).
However, functional enzymes are rare in the vastness of sequence space (Keefe & Szostak, 2001) and
trajectories to higher fitness can be hampered by the non-additivity of mutations (Miton & Tokuriki,
2016). Consequently, directed evolution is labor, time and resource intensive with unpredictable
outcomes, making it a hit-and-miss approach (Buller et al., 2023; Truppo, 2017).
Artificial intelligence (AI)-based methods are promising alternative avenues for faster and in silico
engineering of enzymes (Lu et al., 2022; Ma et al., 2021; Büchler et al., 2022). Zero shot ap-
proaches are often aimed at producing more stable and foldable enzymes while approaches aiming
for improving catalytic activity are bottlenecked by the availability of assay-labelled data.
The success of directed evolution depends on the throughput of experimental screens: the more ran-
domly generated mutants can be experimentally tested, the more likely is it to identify an improved
catalyst. However, this experimental process is expensive when carried out at scale. A massive scale-
down of screening volumes (and thus reagent costs) is possible when water-in-oil emulsion droplets
(formed in microfluidic devices) with picoliter volumes are used instead of multiwell plates. Droplet
microfluidics offers a screening capacity of millions of enzyme variants a day and is cheap (with an
assay cost as low as 10−5 cents per library member (Agresti et al., 2010) and versatile (Gantz et al.,
2023; Debon et al., 2019; Schnettler et al., 2022).
By combining droplet microfluidics with next-generation and nanopore sequencing (Zurek et al.,
2020), we generate sequence-function data at ultrahigh-throughput for engineering an exemplary
IRED. This data can then be used to perform rational and AI-enabled in silico biocatalyst engineer-
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ing to rapidly extrapolate beyond the improvements encoded in the library, accelerating biocatalyst
engineering by maximizing the improvement of each round of directed evolution. In summary, our
key contributions are:

1. We introduce a new microfluidic workflow (droplet lrDMS) to rapidly generate quantitative
sequence-function data at large scale. Specifically, droplet lrDMS allows us to quantify the
function of 104 randomly selected single and higher-order variants within 2 weeks, at a scale,
speed and cost not feasible with plate screening or robotic workflows.

2. We introduce an analytical framework to use the unique structure of droplet lrDMS data to
successfully perform rational engineering on an imine reductase, achieving up to an 11-fold
improvement in catalytic efficiency (kcat/KM) over wild type.

3. We utilize machine learning to extrapolate from the observed single mutants to all single and
double mutants. We further test the value of these extrapolations for protein engineering by
assaying the top 5 predicted single and double mutants, identifying variants with better catalytic
efficiency than the best variant in the dataset. By combining AI extrapolation with rational
engineering, we achieve an up to 16-fold catalytic efficiency improvement, driven by a 24-fold
improvement in kcat.

2 RESULTS

Droplet lrDMS workflow We develop a data-generation workflow for enzyme engineering,
droplet long-read deep mutational scanning, for screening the catalytic activity of randomly gen-
erated mutants (Figure 1A). The workflow starts by generating a library of multiple 104 random
mutants via error-prone PCR (ePCR). Each mutant gene is tagged via a unique molecular identi-
fier (UMI) and the library is sequenced with long-read consensus sequencing (Zurek et al., 2020)
to create an ID-to-sequence dictionary. Another portion of the amplified library is combined with
the substrates into picoliter sized droplets and incubated. Sensor dye is injected, which couples the
amount of leftover substrate to optical absorbance, into each droplet. This allows to rapidly sort the
incubated library for activity above a defined absorbance threshold (Gielen et al., 2016). We then
sequence the UMI-ID of the active bin, as well as the input library, and count the occurrences of
each unique UMI-ID. The ratio of counts of each UMI-ID, and therefore variant, at the sorted output
versus the input gives an enrichment score that is linked to catalytic activity. By normalising the
enrichment ratios to the wild type enrichment, we obtain quantitative fitness scores of each variant
relative to the wild type. Droplet lrDMS can be executed within 2 weeks to generate 104 unique
sequence-function mappings.

Generation of sequence-function data for an IRED To test this new workflow we aim to im-
prove the activity of an IRED as exemplary enzyme engineering challenge. For our IRED starting
point (SrIRED, (Lenz et al., 2018)) we used droplet lrDMS to obtain 10905 individual variants
(single & higher order mutations) with assigned fitness scores and additional 6238 variants which
were classified as entirely inactive. To assess whether lrDMS fitness captures quantitative informa-
tion about catalytic activity, we picked 14 random variants, 7 from the input library and 7 from the
output library after sorting, and measured conversion in a lysate assay in plates. The logarithmic
activity in plates correlates well with the fitness score (Pearson r = 0.92) suggesting that lrDMS
fitness captures quantitative catalytic activity information of variants with both, smaller and larger
activity than wild type (Figure 1B).

Mutability and combinability as a tool for rational IRED engineering. Droplet lrDMS fitness
scores provide us with a profile that quantifies how mutations across the SrIRED sequence and struc-
ture affect activity and how they can be combined to achieve high activity in higher-order variants.
As a proxy for mutability, i.e. the capacity of a site to be functional after mutation, we calculated the
median fitness of all single variant fitness scores for each position of the IRED (Figure 2A, Equa-
tion (1)). Positions with high mutability are defined as hotspots for IRED engineering. Additionally,
we mapped mutability onto the IRED crystal structure, a domain-swapped dimer with two identical
active sites with one reaction partner and the NADPH cofactor bound. First shell (residues contact-
ing the substrate directly) and the proposed catalytic resides (Sharma et al., 2018; Lenz et al., 2018)
show very low mutability except for T241 which contacts the ketone substrate and is positioned in
the binding pocket flanked by all three catalytic residues (Figure 2C). Hotspots are especially abun-
dant in regions flanking the cofactor binding pocket (around positions 38 and 69) and in the dimer
interface (e.g. at position 203). Upon characterization of 12 single point mutations with a fitness > 0
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Figure 1: Droplet lrDMS: A microfluidic workflow for rapid large-scale sequence function data
generation of enzymes. (A) The droplet lrDMS workflow is explained in the main text and allows
generating a sequence-function mapping for 104 randomly generated variants around a wild type in
2 weeks. (B) Correlation of lrDMS fitness scores with plate-based colorimetric lysate assay data
relative to the wild type for 14 random variants from the input library and the library after sorting.
The high correlation of lrDMS fitness with plate based lysate activity indicates that lrDMS data can
give quantitative fitness information about variants.

from hotspots and other positions and the variant with the highest fitness in the dataset (the double
mutant V6L V67I), we concluded that the 4-fold improvement in catalytic efficiency (kcat/KM) of
T241A represents the highest improvement present in the droplet lrDMS library.
Hotspots are useful for the identification of highly active point mutants, but combining them into
improved higher-order variants is often hampered by unpredictable, negative non-linear effects (neg-
ative epistasis). Positive synergistic effects, on the other hand, are highly desirable but much less
common and equally hard to predict. To inform the engineering of higher-order variants we define
a combinability metric (Equation (2)) as the occurrence of mutations in higher-order variants which
(1) improving over wild type and (2) are not negatively epistatic. According to this definition, we
find T241A a global combinability hotspot (Figure 2B).
We next used this information to extrapolate to higher-order variants that have not been observed
in the dataset by combining the combinability hotspot T241A with a set of variants with different
background. We chose P203A, which lies at the dimer interface and has high mutability and combin-
ability. Individually P203A’s improvements in kcat (rate under substrate saturation) are offset by an
increased KM (a proxy of the affinity to the substrate). We also chose K38E and D69H from hotspots
flanking the active site. Individually, they each have modest improvements in kcat, with position
38 showing higher combinability than position 69. Finally, we chose the variant with the second-
highest fitness in the first shell, L174V, which features a high improvement in kcat which is however
offset by an increase in KM. Three of four combined variants show a high synergistic improvement
in kcat/KM, as compared to what would be expected from a purely additive effect, with the highest
improvement 11-fold for T241A P203A. We hypothesise that the unsuccessful combination T241A
L174V may be related to similar redundant mechanisms of improvement of L174 and T241 that can
be rationalised by their close proximity in the active site. In summary, the rational engineering re-
sults show that droplet lrDMS-based combinability information combined with fitness information
on individual variants can be used to rationally engineer highly efficient higher-order variants.
Single mutant AI-engineering. To assess whether AI modelling can successfully extrapolate to
the single-mutant space, we follow Hsu et al. (2022) and build an ensemble of a ridge regression
model, which is augmented with an evolutionary density from a large language model, to predict
fitness scores for unobserved single mutants. As language model score we use the sequence pseudo-
log-likelihood (PLL) of ESM2 (Rives et al., 2021). For the ridge-regression we swap the one-hot en-
coding of amino acids for the first 19 principal components of the AAINDEX database (Kawashima
& Kanehisa, 2000), a database of physicochemical properties of amino acids. As compared to the
one-hot encoding, this chemically informed encoding better captures the similarity of amino acids.
Using the lrDMS data, we train the model on the observed single mutants and evaluate retrospec-
tively on a hold-out test set, achieving Spearman ρ = 0.41 and Top100 normalized discounted
cumulative gain (NDCG) of NDCG100 = 0.21 (details in Appendix A.3). While these scores are
modest, they are not uncommon for noisy biological data (Hsu et al., 2022; Notin et al., 2022) and
significantly improve over the zero-shot performance of ESM2-PLL (ρ = 0.33,NDCG100 = 0.14)
alone on our dataset (c.f. Appendix A.3).
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Figure 2: A mutagenic profile of an IRED enables rational engineering. (A) Median fitness
per position (mutability) and the number of productive higher order combinations produced per
position (combinability) along the IRED sequence. Proposed catalytic resides, first shell (around
the ketone and amine binding pocket), surface and cofactor binding residues along with residues
at the dimer interface are marked as indicated. (B) A map of mutability onto the IRED structure
(5OCM) reveals hotspots e.g. around K38, D69 and at multiple positions central domain, e.g. at
position P203. (C) Combining T241A with mutations at hotspots K38E, D69H, and P203A yields
highly improving synergistic improvements (up to 11-fold kcat/KM).

To see whether the model can inform protein engineering, we clone the top 5 predicted single mu-
tants and assay their functional characteristics (Figure 3A). We find that 2 of 5 predictions exceed
kcat/KM and 3 of 5 exceed kcat of the wild type by more than a standard deviation. The top pre-
diction, T241G, exceeds the catalytic efficiency of the best variant in the droplet lrDMS dataset by
improving over wild type catalytic efficiency by 7-fold (Figure 3B). To understand whether this pre-
diction was enabled by the droplet lrDMS data, we ablate the ESM component of the model and
retrain it on the same data. Doing so does only change one of the top 5 predictions, with T241G re-
maining among the top 5. Conversely, to ablate the droplet lrDMS data we order all single mutants
by the ESM score alone and find T241G ranked 457th out of 5510 possible single mutants. This
suggests that the lrDMS data was crucial to align the model to what constitutes better for our task.

Double mutant AI-engineering. We next ask whether AI modelling can identify highly functional
variants within the space of double mutants. We conjecture that, in addition to the language model
score, combinability, lrDMS fitness of the individual mutants, structural and dynamic information
are relevant to predict the interaction of two mutations. To this end we derive a set of structural
and dynamic features from the wildtype structure (5OCM) (Appendix A.3). Based on these features,
we train a simple gradient-boosted tree model (Chen & Guestrin, 2016) to predict the fitness of
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Figure 3: AI modelling with lrDMS data. (A) The fraction of the top 5 single mutant predictions
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green. (B) The catalytic efficiency of the top two single mutants in the lrDMS dataset and the best
model prediction. (C) The top 5 predictions for the double mutant model are assayed as in (A). (D)
The catalytic efficiencies of the 5 best predicted double mutants. (E) The catalytic efficiency and
catalytic rates of the best single and double mutants in the dataset and the best model predictions.

unobserved double mutants. As with the single mutant model, we perform a retrospective evaluation
of the double mutant model via cross-validation, achieving Spearman 0.38 and Top100 NDCG of
0.2 (details in Appendix A.3). Similar to the single mutant model, these scores are modest but again
clearly improve over zero-shot ESM2-PLL (ρ = 0.24,NDCG100 = 0.14) alone, indicating that the
models can learn from the droplet lrDMS data.
For prospective evaluation of the model’s use for protein engineering, we evaluate the model on the
over 1 Mio. possible double mutants constituted of single mutants observed in the lrDMS dataset
and synthesize the top 5 predicted double mutants. The restriction on the double mutant space was
chosen to ensure the model does not extrapolate too far from the lrDMS data given the limited ex-
perimental budget of 5 mutants. In practice one could extrapolate to all possible double mutants (or
higher-order mutants with some model adjustments). In contrast to the zero-shot models, the model
identifies T241A as a key mutation for building double mutants from the data and ranks many dou-
ble mutants containing T241A among the top 100 predictions and 4 of the top 5 predictions contain
T241A. This aligns with the rational analysis in Section 2, which identified T241A as a combinability
hotspot. Of the top 5 predictions, 4 exceed the wild type in catalytic efficiency, catalytic rate, lysate
activity and thermostability by more than a standard deviation (Figure 3C). The best prediction,
T241A E36A leads to an 8-fold increase in catalytic efficiency over wild type (Figure 3D), which is
better than the best variant in the droplet lrDMS dataset.The best variants were engineered by com-
bining the results from the single mutant AI model with rational engineering and the double mutant
AI model. Substitution of T241A with T241G from the single mutant model improves kcat/KM by
10-fold for T241A E36A and 16-fold for T241G P203A (Figure 3E).

3 DISCUSSION & CONCLUSION

Using ultra-fast data generation in microdroplets combined with AI-based extrapolation, we accel-
erate directed evolution by improving the catalytic efficiency of a biocatalyst beyond the limited
improvement observed in the dataset. The improvement is driven by a 24-fold rate (kcat) improve-
ment, which is significantly higher than the rate improvements in AI-informed campaigns with a
similar IRED (Ma et al., 2021). We identity the following features of our study as key for success:
(i) The dataset was unbiased by position and included variants far off the first shell of interaction
with the substrate, the focus of many enzyme engineering campaigns (Reetz, 2022). (ii) The dataset
includes higher-order mutations which gives information on synergistic improvements and prevents
negative epistatic effects. (iii) The dataset includes variants with neutral and negative effects. Neu-
tral or deleterious mutations, such as K38E, deleterious in both kcat/KM and lysate activity, give high
synergistic improvements when combined with T241A. Consequently, protein engineering strategies
that only carry improving mutations forward can miss out on highly improving, synergistic variants
that are impossible to predict from single mutation data alone. (iv) As our learning curves indicate,
fine-tuning zero shot models for catalysis requires large datasets. Obtaining dataset sizes > 104

would be extremely costly to achieve with traditional plate screening efforts and liquid handling
robots.
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A APPENDIX

A.1 CHARACTERISATION OF VARIANTS OF INTEREST

Variants with > 0 fitness

Variants from rational engineering

Variants suggested by the AI model

Figure 4: Michaelis Menten kinetics were conducted with variable concentrations of ketone sub-
strate (0.05 mM - 35 mM) with a constant concentration of amine (150 mM) in Tris pH 8.0 with
NADPH (0.5 mM) with variable enzyme concentrations (from 0.03 µM to 0.3 µM) depending on
the rate. Each curve was measured in three replicates. Errors represent standard errors of the fit and
three technical replicates with a 95% confidence interval.

A.2 RATIONAL ENGINEERING – MUTABILITY & COMBINABILITY

To perform rational engineering, we define two key metrics – mutability and combinability – that
guide our search for rational designs. For clarity, we describe these in detail below.

We use (p, a) to denote the substitution of position p in the sequence of a wild type to amino acid
a. A variant v is then defined as a collection of K substitutions v = {(pk, ak)}Kk=1, where each
position may only occur at most once. The mutation order |v| is the number of mutations K in v.
For example, the single mutant T241A would be denoted {(241, A)}. The double mutant T241A
P203A would be {(203, A), (241A)}, and so on.

Given these definitions, we define mutability of a position p0 as

Mutatability(p0) = Median({f(v)|v = {(p0, a)} ∧ |v| = 1}), (1)

where f(v) is the logarithmic lrDMS fitness score vs wildtype. In words, the mutatability of position
p0 is the median fitness over all single mutants in the dataset that occur at position p0.
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Further, we define combinability of position p0 as

Combinability(p0) =
∑

{v|(p=p0,·)∈v∧|v|>1}

|v| · 1[f(v)>0] · 1[f(v)≥∑
(p,a)∈v f((p,a))], (2)

with 1 the indicator function, which is 1 if the condition is fulfilled and 0 otherwise. I.e. the combin-
ability of position p0 is the weighted sum over all higher order mutants, which contain a mutation
at p0 and have positive and non-negatively epistatic fitness. The weighting is given by the mutation
order |v|. Note that this definition can be extended naturally to a combinability score for individual
mutations (p, a) and not just for positions p.

A.3 AI MODELLING

Since droplet lrDMS allows us to functionally annotate a local region of sequence space, we hy-
pothesized that lrDMS can successfully kick-start an AI modelling campaign. We were specifically
interested in three questions:
1. Can AI modelling extrapolate successfully to the single-mutant space? This is important as

diversity in droplet lrDMS libraries are generated via ePCR, which can generate only about a
third of single mutants, because mutating more than one nucleotide per codon is unlikely.

2. Can AI modelling identify highly functional variants with higher mutation order in a low N
regime, so that we can use it as an input for protein engineering?

3. How well would comparative zero-shot models perform and how crucial is droplet lrDMS data
to align the model to what constitutes fitness for our task.

To answer these questions, we built two simple models: a single mutant model ridge regression
model inspired by Hsu et al. (2022) and a double mutant gradient boosted tree model Chen &
Guestrin (2016) based on a few curated features we deemed important for predicting the fitness
of double mutants, most notably the input from lrDMS via combinability and single mutant fit-
ness scores. Although there are more complex models available, we opted for these simpler and
interpretable models to gain insights into the model components and the amount of training data
required. We acknowledge that performance could potentially be enhanced by utilizing more com-
plex models, such as those leveraging structural data through micro-environments (Lu et al., 2022)
or incorporating assay labeled data similar to language models, which have been shown to provide
complementary information (Boca & Mathis, 2023). Additionally, models that remodel significant
portions of the protein, like inverse folding or diffusion models (Dauparas et al., 2022; Zhou et al.,
2023), could also be explored. However, preliminary experiments indicate that more complex mod-
els are prone to overfitting on more noisy (albeit lrDMS data and finding the best ways of using
more complex models with lrDMS data is an exciting avenue for future research. Given the focus
of this study on understanding the value of droplet lrDMS data, we chose to employ simple, robust
models.

We then evaluated these single and double mutant models in a retrospective manner, by performing
cross-validation in multiple replicas on the observed lrDMS data, and in a prospective manner, by
using the model to predict the fitness of unobserved single and double mutants and assaying the
top 5 predictions in the lab. We also perform ablation and learning curve studies to understand the
importance of the different components of the model and the amount of data required to train the
model. The results of these studies are summarised in the main text in Figure 3 and Figure 6 and
Figure 7. Below and in Figure 5 we proceed to describe the models and the results in more detail.

A.3.1 SINGLE MUTANT MODEL

The single mutant model is a ridge regression model, which is augmented with an evolutionary den-
sity from a large language model, to predict fitness scores for unobserved single mutants. As lan-
guage model score we use the sequence pseudo-log-likelihood (PLL) of ESM2 (Rives et al., 2021).
For the ridge-regression we swap the one-hot encoding of amino acids for the first 19 principal com-
ponents of the AAINDEX database (Kawashima & Kanehisa, 2000), a database of physicochemical
properties of amino acids. The 19 principal components capture over 98% of the variance in the
AAINDEX database and are a chemically informed encoding of amino acids. As compared to the
one-hot encoding, this chemically informed encoding better captures the similarity of amino acids.
This chemical similarity between amino acids is crucial to help the model understand the effects of
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unseen mutations at positions: The top prediction T241G for example substitutes glycine (G) instead
of alanine (A) as in T241A, which is chemically similar but smaller than alanine (c.f. Figure 3B,
where the side-chains of three highly performing T241 variants are shown). A schematic of the
model is shown in Figure 5A.
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Figure 5: Single and double mutant model schematics. (A) Schematic of the single mutant model.
The model is trained on the observed single mutants and uses the ESM2 (Lin et al., 2023) pseudo-
log-likelihood (PLL) and the first 19 principal components of the AAINDEX database (Kawashima
& Kanehisa, 2000) as features in a simple ridge regression (Hsu et al., 2022). The model is used
to rank single mutants and the top 5 predictions are assayed. The pie charts show the fraction of
these top 5 predictions that improve over the wild type in a given parameter by over one standard
deviation in the lab. (B) Schematic of the double mutant model. The model combines lrDMS assay
data (red) with structural (light green), dynamics (dark green) and sequence features (blue) to predict
the fitness of unobserved double mutants. The features are passed to a simple gradient-boosted tree
model (Chen & Guestrin, 2016), which is trained on the observed double mutants. After using the
model to rank around 1 Mio. double mutants, the top 5 predictions are assayed experimentally for
important catalytic properties as in (A).

A.3.2 DOUBLE MUTANT MODEL

For the double mutant model, we decided to use a gradient boosted tree model (xgboost, Chen &
Guestrin (2016)) on a few selected features. The features can be grouped into four categories:

1. Assay derived features: Here we include the (1) fitness of single of the least fit mutation
in the double mutant, as well the (2) additive fitness of both single mutations. This data
can be derived directly from the dataset, or extrapolated from a single mutant model when
the single mutations in question were not observed. Finally, we also include combinability
information (3).

2. Structural information: To give the model a rough idea of the structural context of a
given double mutation we provide (1) the minimum distance of the singles that comprise
the double mutant to the NADPH binding pocket, (2) the minimum distance of said singles
to the dimer interface and (3) the catalytic site residues. We also include (4) the pairwise
distance between the Cα atoms of the two mutants.

3. Coarse grained dynamics information: We use normal mode analysis on an elastic net-
work model of the protein structure to derive the mean squared expected fluctuation, a
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value that mimics b-factors, of each position. We use provide the mean squared fluctuation
of both single mutants (min & max) as a feature.

4. Language model information: Finally, we include sequence and evolutionary information
through (1) the pseudo-log likelihood (PLL) of the ESM2 language model as well as an
ESM2 ‘epistasis’ feature (2) which predicts the difference between ESM2 PLL for the
double mutant versus the sum of the PLL predictions for the single mutants.

We investigated the relative importance of these features for our top 10 double mutant predictions
(Figure 9 & Figure 10) as well as for all double mutant predictions Figure 11. As can be seen,
the assay derived features play a key role in the predictions as a whole, and particularly for the
predictions at the top end.

A.3.3 RETROSPECTIVE ANALYSIS: LEARNING CURVES AND ABLATIONS

To understand the scale of data that is needed to inform a model about function in our IRED engi-
neering task we perform learning curves, which evaluate the model’s performance on hold-out data
for increasing training set sizes.

For the single mutant model we only have about 1′200, so we perform 10 replicas of 3-fold cross
validation (30 replicas in total) to reduce batch effects at the evaluation due to small evaluation
datasets. For the double mutant model we perform 5 replicas of 6-fold cross validation. The learning
curves are described in more detail in the captions of Figure 6 and Figure 7.

A conclusion from the learning curves is that the single mutation model needs to see a mutation
(other than WT) at each position of the sequence at least once to get information about how the local
chemistry at that position influences the final readout. Real improvements are then only obtained
from an order of magnitude of 300 onwards – which corresponds to the sequence length of our
IRED. We could also show that ESM has a minor influence on the prediction of top hits with the
model mostly relying on lrDMS data for its prediction.
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Figure 6: Evaluation of the effect of dataset size on training outcome. Learning curves representing
training of the model with different amounts of data. We produced 30 replica (10 replicas of 3-
fold cross validation). For each replica, we successively increase the dataset size that we train the
model on from 0% to the full 67%of the singles data (the remaining 33% are the holdout of that
replica and what we evaluate on). At each point we compute success metrics of the model (a-d) and
then compute the median and quantiles across 30 replica. The black line corresponds to the median
performance across 30 replicas (3 fold cross validation with 10 replicas each). The top / bottom
dashed gray line corresponds to the 75% and 25% quantiles respectively. The dotted red line shows
the “zero-shot” performance that one would get on the entire single mutant dataset when using the
3B parameter ESM2 model and using pseudo log likelihood (PLL) as fitness. The dotted green line
shows the “zero-shot” median performance that the ESM-PLL strategy would have across the 30
replicas (this is different from the red line because of batch effects: each replica has a distinct 33%
of the data that is used to evaluate performance, rather than the entire 100% of the data that are used
to obtain the dotted red line). The blue line is an ablation of ESM derived features, which are the
most expensive to compute, and demonstrate that our model can be performant even on a table-top
computer without GPU, where one would omit the ESM features. It also demonstrates that the key
information is carried by the lrDMS data itself, rather than the language model.
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Figure 7: Learning curves for the double mutant model. The learning curves were calculated in the
same way as learning curves for the single mutation model (Figure 6), but we used 6 replicas of
5-fold cross validation (30 replicas in total) instead to explore extrapolation at higher dataset sizes.
The black line corresponds to the median performance across 30 replicas. The top / bottom dashed
gray line corresponds to the 75% and 25% quantiles respectively. The dotted red line shows the
“zero-shot” performance that one would get on the entire single mutant dataset when using the 3B
parameter ESM2 model and using pseudo log likelihood (PLL) as fitness. The dotted green line
shows the “zero-shot” median performance that the ESM-PLL strategy would have across the 30
replicas (this is different from the red line because of batch effects. The blue line is an ablation of
ESM derived features, which are the most expensive to compute, and demonstrate that our model
can be performant even on a table-top computer without GPU, where one would omit the ESM
features. It also demonstrates that the key information is carried by the lrDMS data itself, rather
than the language model.
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Figure 8: Mutability plotted across the entire SrIRED (high mutability in red, low mutability in
blue), which is a homodimer (composed of two identical chains) with two catalytic sites to the left
and right of the figure. The bound ligands (NADPH and ketone) are shown in sticks.
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Figure 9: Mean absolute SHAP values (Lundberg & Lee, 2017) as feature importance for the top 10
double mutant predictions.
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Figure 10: SHAP (Lundberg & Lee, 2017) values as a proxy for feature importance for the top 10
double mutant predictions.
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Figure 11: SHAP Lundberg & Lee (2017) values as a proxy for feature importance for all double
mutant predictions.
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