
Pseudo-Label Enhanced Prototypical Contrastive Learning
for Uniformed Intent Discovery

Anonymous ACL submission

Abstract

New intent discovery is a crucial capability001
for task-oriented dialogue systems. Existing002
methods focus on transferring in-domain (IND)003
prior knowledge to out-of-domain (OOD) data004
through pre-training and clustering stages.005
They either handle the two processes in a006
pipeline manner, which exhibits a gap between007
intent representation and clustering process008
or use typical contrastive clustering that over-009
looks the potential supervised signals from the010
whole data. Besides, they often deal with ei-011
ther open intent discovery or OOD settings in-012
dividually. To this end, we propose a Pseudo-013
Label enhanced Prototypical Contrastive Learn-014
ing (PLPCL) model for uniformed intent dis-015
covery. We iteratively utilize pseudo-labels to016
explore potential positive/negative samples for017
contrastive learning and bridge the gap between018
representation and clustering. To enable bet-019
ter knowledge transfer, we design a prototype020
learning method integrating the supervised and021
pseudo signals from IND and OOD samples.022
In addition, our method has been proven ef-023
fective in two different settings of discovering024
new intents. Experiments on two benchmark025
datasets and two task settings demonstrate the026
effectiveness of our approach.1027

1 Introduction028

New intent discovery, aiming to uncover and cate-029

gorize out-of-domain intents absent in training data030

has received increasing attention due to its crucial031

role in dialogue systems (Min et al., 2020; Vedula032

et al., 2019). Initially, researchers focused on ex-033

ploring unsupervised clustering methods (Hakkani-034

Tür et al., 2015; Liu et al., 2021; Shi et al., 2018).035

However, real-world scenarios typically involve036

limited labeled data, prompting a shift to semi-037

supervised approaches, notably OOD and open in-038

tent discovery (Lin et al., 2020; Mou et al., 2022b,c;039

1The codes and datasets will be publicly accessible upon
acceptance

Figure 1: Two basic task setting for intent discovery.
In open-setting: Partially labeled IND data for training,
all categories in test (IND and OOD). In OOD setting:
Fully labeled IND data for training, only OOD cate-
gories in test.

Shen et al., 2021; Zhang et al., 2021b, 2022). OOD 040

intent discovery clusters solely unlabeled OOD in- 041

tents using labeled IND data, while open intent 042

discovery aims to recognize both known and new 043

categories from unlabeled data (see Figure 1). 044

The existing approaches for new intent discovery 045

typically use a two-stage contrastive clustering ap- 046

proach, involving IND pretraining and OOD clus- 047

tering. For open intent discovery, researchers focus 048

on effectively utilizing the small amount of labeled 049

data for weakly supervised (Lin et al., 2020) or 050

semi-supervised clustering methods (Shen et al., 051

2021; Zhang et al., 2021b). For OOD intent dis- 052

covery, previous works commonly employ a con- 053

trastive clustering framework (Li et al., 2021) with 054

approaches such as multi-head contrast learning 055

(Mou et al., 2022b) or neighbor-enhanced con- 056

trastive strategies (Mou et al., 2022c). 057

Although previous methods in intent discovery 058

have achieved notable success, several challenges 059

in the field remain unexplored. (1) One key chal- 060

lenge is efficiently integrating labeled and unla- 061

beled data for joint representation learning and 062

clustering. While some methods focus on con- 063

trastive clustering for joint learning (Mou et al., 064

2022b), they often overlook critical supervised sig- 065

nals from IND samples during the clustering stage. 066

1



Leveraging labeled information for this process re-067

mains underexplored, particularly given the limited068

availability of labeled data and the risk of overfit-069

ting. (2) Another critical issue is devising effective070

transfer learning mechanisms between IND and071

OOD data while preventing catastrophic forgetting.072

Existing methods often discard classifiers trained073

on prior knowledge, retaining only feature extrac-074

tion during clustering with OOD samples (Zhang075

et al., 2021b). This requires additional alignment076

strategies, potentially introducing noise if subopti-077

mal. There’s an urgent need for methods preserving078

prior knowledge while adapting better to new in-079

tent data, ensuring seamless transfer learning. (3)080

Moreover, the predominant focus of prior research081

has been either on open intent discovery or OOD082

intent discovery individually, disregarding the prac-083

tical need for a unified method capable of handling084

both scenarios (Mou et al., 2022b; Zhang et al.,085

2021b). Real-world dialogue systems frequently086

encounter situations necessitating updates or mi-087

gration, highlighting the imperative for a uniform088

intent discovery approach adaptable to varying sys-089

tem changes.090

To address these limitations, we propose a091

Pseudo-Label enhanced Protypical Contrastive092

Learning (PLPCL) model which is built upon con-093

trastive clustering for joint representation learn-094

ing and clustering. Our approach begins by pre-095

training the contrastive clustering model using la-096

beled IND data. To effectively harness labeled097

information, we integrate IND samples with unla-098

beled data using a semi-supervised clustering strat-099

egy, employing distinct contrastive learning strate-100

gies for labeled and unlabeled data. To prevent101

overfitting and maximize the utilization of unla-102

beled data, we iteratively select reliable unlabeled103

samples with confident pseudo-labels. These reli-104

able samples serve as potential positive/negative105

samples during contrastive learning, enhancing the106

overall contrastive clustering process.107

To bridge the gap between IND and OOD data,108

we introduce a prototype learning strategy. It keeps109

the prototype matrix by integrating instance and110

cluster features from both the IND and reliable111

unlabeled samples. Our method seamlessly inte-112

grates contrastive clustering and prototypical learn-113

ing, eliminating the need for an extra aligning mod-114

ule. This integration facilitates improved knowl-115

edge transfer from IND to OOD without discarding116

label information from IND samples. Furthermore,117

our framework is purposefully designed for uni-118

form intent discovery, demonstrating effectiveness 119

in both open-setting and OOD-setting scenarios. 120

The contribution of our work is threefold: 121

• We introduce a novel method that lever- 122

ages both labeled and unlabeled data through 123

pseudo-label enhanced semi-supervised con- 124

trastive learning. This approach facilitates 125

joint representation learning and clustering by 126

effectively leveraging the whole data. 127

• We propose a prototypical contrastive learn- 128

ing framework for uniformed intent discov- 129

ery integrating prototypical learning and con- 130

trastive clustering utilizing labeled and unla- 131

beled samples to bridge the gap between IND 132

prior knowledge and OOD categories. 133

• We conduct extensive experiments on both 134

OOD intent discovery and open intent discov- 135

ery scenarios and the results demonstrate the 136

effectiveness of our proposed method. 137

2 Related Work 138

2.1 Intent Discovery. 139

Recent research for intent discovery can be broadly 140

categorized into OOD-setting and open-setting. As 141

shown in Figure 1, open intent discovery involves 142

clustering both IND and OOD intents with IND 143

priori knowledge. Samples with IND intents are 144

not all labeled. Whereas OOD intent discovery 145

focuses on accurately handling OOD intents and 146

assumes that the intents of labeled and unlabeled 147

data do not overlap, which means all IND sam- 148

ples are labeled. (Lin et al., 2020) proposed a self- 149

supervised clustering method that utilizes limited 150

labeled data. (Zhang et al., 2021b) proposed a k- 151

means-based semi-supervised clustering method 152

that can effectively use prior knowledge in intent 153

discovery. (Mou et al., 2022b) proposed a disen- 154

tangled contrastive learning framework that mainly 155

focuses on OOD intent clustering and decouples in- 156

stance and cluster-level features to disentangle the 157

knowledge of IND and OOD samples. (Han et al., 158

2019) extended deep embedded clustering to trans- 159

fer learning setting, incorporating prior knowledge 160

for OOD clustering. 161

2.2 Contrastive Clustering 162

Contrastive clustering has been widely used in var- 163

ious clustering scenarios, such as unsupervised se- 164

mantic segmentation (Hamilton et al., 2022) and 165
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generalized self-supervised contrastive learning166

(Hu et al., 2022). It has also been applied in OOD167

intent detection and discovery tasks (Kumar et al.,168

2022; Mou et al., 2022b,c). (Li et al., 2021) pro-169

posed a contrastive clustering framework with two170

contrastive learning heads. It provided objective171

guidance for clustering, avoiding interference from172

prior knowledge. (Mou et al., 2022b) extended con-173

trast clustering to the semi-supervised scenario and174

designed a two-stage contrastive learning process175

that includes both supervised pre-training and un-176

supervised clustering. It achieved state-of-the-art177

results for OOD intent discovery.178

2.3 Prototype Learning.179

The prototype learning method is widely used in180

clustering analysis and classification problems. In181

semi-supervised clustering scenarios, coarsely as-182

signed pseudo-labels may result in mismatches be-183

tween instances and prototypes, introducing noise184

that significantly affects the clustering performance.185

(An et al., 2023) used weighted pseudo-labels to re-186

duce the effect of mismatched prototypes. (Huang187

et al., 2022) proposed the approach of prototype188

scattering, which enhances the variance between189

the clusters by maximizing the distances between190

prototype features, to obtain well-separated clus-191

ters. The prototype learning method is robust to192

noise and outliers. Compared to other clustering193

methods, it is an intuitive and interpretable ap-194

proach that can provide references for the entire195

cluster based on representative examples.196

3 Preliminaries197

First, we define the problem of uniformed intent198

discovery. Then we briefly introduce the con-199

trastive clustering framework.200

3.1 Problem Statement201

OOD intent discovery suppose we have a set of202

labeled IND data DIND and unlabeled OOD data203

DOOD, and aim at clustering OOD intents. Note204

that there is no overlap between the IND data and205

the OOD data. Indeed, extending the OOD classi-206

fier to an all-category classifier is the extreme case207

of open intent discovery. Open intent discovery208

assumes that we have an intent analysis dataset209

Dl, Du, whereDl = {(xl, yl)|yl ∈ Yk},Du =210

{(xu, yu)|yu ∈ Yk,Yuk} . Yk are known intents211

and Yuk are unknown intents. In the extreme case,212

all the samples of the known categories in the train-213

ing set are labeled, and only data with unknown214

intents are contained in Du. Then the prior labeling 215

information is the same as the OOD classification. 216

Since we do not have a priori assumptions that 217

yl ∩ yu = ∅, the setting is different from the gen- 218

eralized intent discovery (Mou et al., 2022a). In 219

fact, we also compared the results under different 220

labeled ratios with the same IND intent division. 221

Uniformed intent discovery includes both OOD 222

intent discovery and open intent discovery. On the 223

one hand, we consider the open setting when IND 224

and OOD intents are not separated, i.e., when new 225

intent detection needs to be introduced. On the 226

other hand, we consider merely OOD intent clus- 227

tering. This helps the system to adapt or transform 228

to different scales of change. 229

3.2 Contrastive Clustering 230

Our model is based on a contrastive clustering 231

framework. It performs instance-level and cluster- 232

level contrastive learning. Specifically, for a given 233

dataset, positive and negative instance pairs are 234

constructed through data augmentation and then 235

projected into a feature space. Instance-level and 236

cluster-level contrastive learning are performed in 237

the row space and column space, respectively. 238

Unsupervised instance-level contrastive learning 239

(ILCL) is performed on unlabeled data, where the 240

augmented sample of each sample is considered as 241

a positive sample and other samples are considered 242

as negative samples. fi,fj refer to the augmented 243

samples that are generated from the same samples 244

after passing through the dropout layer. 245

ℓinsi,j = −log
exp (sim(fi, fj)/τ)∑2N

k=1 1i ̸=k exp (sim(fi, fk)/τ)

(1)
246

On the cluster-level contrastive learning head g, it 247

performs cluster-level contrastive learning (CLCL). 248

The cluster representation of the augment sample 249

is considered as a positive sample, and the other 250

cluster representations are considered as negative 251

samples. yi refers to the representations of the clus- 252

ters, which are columns in the cluster-level feature 253

matrix. yj are the dropout-augment representations 254

for the cluster level. 255

ℓclui,j = −log
exp (sim(yi, yj)/τ)∑2N

k=1 1i ̸=k exp (sim(yi, yk)/τ)

(2)
256
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Figure 2: The overall architecture of the proposed PLPCL. Instance-Level Head and Cluster-Level Head are two
separate MLPs. The pre-train stage involves labeled IND data. Through confident pseudo-label filtering, the whole
training dataset is divided into supervised and unsupervised parts, which are then subjected to different contrastive
learning strategies. Prototype features are computed based on instance-level features and cluster-level features.

4 Methods257

Overall Architecture: The overall framework of258

PLPCL is illustrated in Figure 2. Our framework259

follows a two-stage pipeline. In the pre-train stage,260

IND-labeled samples are utilized for supervised261

multi-head contrastive learning to acquire prior262

knowledge. This model is adapted from contrastive263

clustering and includes intent representation along-264

side two independent heads. These heads are in-265

strumental in decoupling the representation into266

instance-level and cluster-level spaces, facilitating267

joint representation learning and clustering.268

After pretraining, the prototypes of known cate-269

gories are obtained, serving as a foundation for effi-270

cient knowledge transfer across IND and OOD data.271

In the second stage, the multi-head contrastive272

model is further trained on the entire dataset includ-273

ing IND and OOD samples. Specifically, this stage274

comprises three iterative steps: pseudo-label se-275

lecting, semi-supervised contrastive learning, and276

prototype contrastive learning. These steps col-277

lectively aim to transfer prior knowledge to new278

categories and enhance the model’s adaptability.279

4.1 Intent Representation280

To facilitate effective knowledge transfer between281

IND and OOD samples, we aim to achieve joint282

intent representation and clustering by learning283

instance-level and cluster-level features for each 284

sample. 285

Drawing inspiration from (Mou et al., 2022b), 286

we first extract the intent representation using a 287

pre-trained BERT model and a pooling layer to 288

extract text representation. Then we utilize two 289

independent MLPs to map the intent representation 290

zi into two disentangled latent vectors: fi = f(zi) 291

and gi = g(zi). 292

4.2 Supervised Pre-training 293

To familiarize the model with the prior knowledge 294

obtained from labeled IND samples and to establish 295

initial cluster prototypes, we conduct pre-training 296

on IND samples. Based on the multi-level intent 297

representation, we conduct two-level pertaining. 298

For instance-level representation, we adopt su- 299

pervised contrastive learning (SCL) to maximize 300

inter-class variance and minimize intra-class vari- 301

ance within the IND samples. 302

Formally, for a sample xi in a mini-batch of 303

size N , the samples within N sharing the same 304

label are considered as positive samples, while the 305

remainder is treated as negative samples. The SCL 306

loss is computed as follows: 307
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LSCL =

N∑
i=1

− 1

|Nyi − 1|

N∑
j=1

1i ̸=j1yi=yj

log
exp (fi · fj/τ)∑N

k=1 1i ̸=k exp (fi · fk/τ)

(3)308

where yi, yj are the labels of samples xi, xj and 1309

is an indicator function. Nyi denotes the number310

of samples in N with the label yi. fi, fj indicate311

the instance-level representation of xi, xj . t is the312

temperature parameter for contrastive learning.313

For the cluster-level representation, we apply314

cross-entropy loss (CE) to learn cluster-friendly315

features. Note that we use a classifier with both316

IND and OOD classes for open-setting to better317

reserve the priori knowledge extracted at this stage,318

allowing our model to better retain the prior knowl-319

edge acquired during the pre-training stage com-320

pared to previous works.321

4.3 Semi-supervised Training322

After pretraining with labeled data, we achieve a323

good initialization of representation learning and324

clustering. The challenge now lies in transferring325

the prior knowledge to new intents. There are two326

critical problems to be addressed: (1) Effectively327

utilizing both labeled and unlabeled data to enhance328

the joint representation and clustering process; (2)329

Transferring learned knowledge from IND to OOD330

data while continually refining representation learn-331

ing to enhance cluster-friendly features without en-332

countering catastrophic forgetting. To tackle these333

challenges, we introduce a pseudo-label enhanced334

contrastive learning scheme tailored for iterative335

clustering and updating. This scheme starts from re-336

liable pseudo-label filtering for unlabeled samples,337

followed by semi-supervised contrastive learning338

and prototypical contrastive learning.339

4.3.1 Pseudo-label Selecting340

It’s important to note that the multi-level intent rep-341

resentation heads are pre-trained on limited labeled342

data. To fully leverage the valuable information em-343

bedded within unlabeled data, we employ pseudo-344

labeling techniques to iteratively select unlabeled345

samples as weak supervised signals for subsequent346

contrastive learning processes.347

In the context of semi-supervised contrastive348

learning (4.3.2), reliable pseudo-labeled data are349

amalgamated with labeled data, augmenting the350

pool of potential contrastive samples. Regarding351

prototypical contrastive learning (4.3.3), pseudo- 352

labels are employed to enrich the learning process 353

of the prototype matrix. Furthermore, the integra- 354

tion of pseudo-labeled data introduces supplemen- 355

tary constraints to mitigate overfitting and enhance 356

the model’s generalization performance to novel 357

unseen categories. 358

However, it’s important to note that the quality 359

of pseudo-labels is crucial, as noisy or incorrect 360

pseudo-labels can degrade model performance. It 361

is crucial to ensure the accuracy and reliability of 362

pseudo-labels to maintain the effectiveness of the 363

model’s training. We treat pseudo-labels with prob- 364

abilities greater than a confidence threshold as true 365

labels and use them as supervised signals to guide 366

model training: 367

p(k|x) > σ (4) 368

where p(k|x) denotes the probability that x be- 369

longs to class k, σ represents confidence proba- 370

bility. When a certain probability is greater than 371

the confidence threshold, we have enough confi- 372

dence to consider it as belonging to this category. 373

The choice of confidence probability will impact 374

the strength of the supervised signal and the intro- 375

duced noise. A high confidence probability will re- 376

sult in inadequate supervised information, whereas 377

a low confidence probability will introduce erro- 378

neous pseudo-labels. To simplify the threshold 379

selection, a suitable value is chosen directly as 380

σ = 1 − 10−k. In this paper, we set k = 2. We 381

also compare performance at different confidence 382

thresholds. 383

4.3.2 Semi-supervised Contrastive Learning 384

During the training stage, we utilize distinct con- 385

trastive learning strategies for IND labeled data 386

and OOD unlabeled data. Firstly, we compare 387

confidence probabilities of pseudo-labels with a 388

predefined confidence threshold, and if they are 389

greater than this threshold, we consider them as 390

reliable pseudo-labels. Unlabeled samples with re- 391

liable pseudo-labels are considered as labeled data. 392

SCL is applied on the instance-level contrastive 393

learning head f for labeled data, while unsuper- 394

vised instance-level contrastive learning (ILCL) is 395

performed on unlabeled data. 396

On the cluster-level contrastive learning head 397

g, we perform cross-entropy loss (CE) for labeled 398

data and perform cluster-level contrastive learn- 399

ing (CLCL) for OOD classes (OOD-setting) or 400

5



Dataset Classes Classes-IND Classes-OOD Training Validation Test
Banking 77 54 23 9003 1000 3080

Stackoverflow 20 14 6 12000 2000 6000

Table 1: Statistics of BANKING and STACKOVERFLOW datasets.

all classes(open-setting). During the training pro-401

cess, the number of unlabeled samples with reliable402

pseudo-labels will gradually increase.403

4.3.3 Prototypical Contrastive Learning404

Decoupling knowledge from different levels is ben-405

eficial for separating the features of the source do-406

main and target domain, thereby improving the407

efficiency of transfer learning and reducing over-408

fitting. However, previous work only disentangled409

the instance-level and cluster-level features and ap-410

plied constraints on them independently, without411

considering the inherent connection between the412

two levels of features. Each sample potentially be-413

longs to a cluster, and each cluster consists of a414

certain number of samples. In order to extract the415

relationship between instance features and cluster416

features and enhance the discrimination between417

clusters, we propose to maintain a cluster proto-418

type matrix, which is of size k ∗m and stores the419

prototype features of each cluster.420

For each batch, the output of f is an n ∗m ma-421

trix containing the feature vectors of each sam-422

ple, n is the batch size and m is the feature vec-423

tor dimension. The output of g is an n ∗ k ma-424

trix, with each row corresponding to the proba-425

bility that a sentence belongs to each class, i.e.,426

p(k|x), and each column corresponds to the rep-427

resentation of a cluster. The cluster prototype ma-428

trix is computed by averaging the instance-level429

representations over all samples belonging to the430

class. For labeled data and unlabeled data with re-431

liable pseudo-label, we use ground truth or pseudo-432

label, i.e.Hard Label Constraint Feature Com-433

bination; for other unlabeled data, we perform434

probability-weighted calculations, i.e.Soft Seman-435

tic Weighted Feature Combination. As shown436

in equation, G is the cluster-level feature matrix437

[g1; g2; · · · ; gm; 1ym+1 , 1ym+2 , · · · , 1yN ], F is the438

instance-level feature matrix [f1; f2; · · · ; fN ], m439

is the number of labeled data in this batch. G′ and440

F ′ are the cluster-level feature matrix and instance-441

level feature matrix of the augmented samples.442

Mc = GTF (5)443

The cluster prototype matrix Mc is a k ∗m ma-444

trix consisting of the features of each clustering 445

centre and can be written as [m1,m2, · · · ,mK ]. 446

The obtained vector mi is normalized and used as 447

the clustering centre zi as shown in equation. 448

zc, i =
mi

∥mi∥2
(6) 449

After explicitly decoupling the cluster prototype 450

vector zi, the augmented features of each cluster 451

prototype are used as positive samples, and the rest 452

of the features are used as negative samples for con- 453

trastive learning at the cluster prototype level, as 454

shown in the equation. Optimization of prototype 455

contrastive loss (PCL) enables pulling apart differ- 456

ent clusters and thus enhancing the discrimination 457

between categories. 458

ℓpcli,j = −log
exp (sim(zc,i, zc,j)/τ)∑2N

k=1 1i ̸=k exp (sim(zc,i, zc,k)/τ)

(7)
459

The final loss in the training process is obtained 460

by combining SCL, ILCL, CE, CLCL and PCL.2 461

5 Experiments 462

5.1 Datasets 463

In order to fairly compare the effectiveness of the 464

models, we use two public datasets STACKOVER- 465

FLOW(Xu et al., 2015) and BANKING(Casanueva 466

et al., 2020). BANKING and STACKOVERFLOW 467

are both single-domain intent datasets. BANKING 468

consists of 13,083 queries covering 77 intents in the 469

banking domain, while the STACKOVERFLOW 470

dataset contains 20 intents related to the program- 471

ming domain. Detailed statistics are shown in Table 472

1, the division of the training set, validation set and 473

test set remains consistent with previous works. We 474

take 30% categories as unknown categories in both 475

datasets, and all data with known intent is labeled. 476

5.2 Baselines 477

We selected a series of semi-supervised methods 478

as benchmarks for comparing OOD intent discov- 479

2We simply set the weight coefficients of each loss to 1.
We compared the effects of different weights for supervised
losses in appendix A.1.
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Method
Banking-OOD Stackoverflow-OOD Banking-Open Stackoverflow-Open

ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI
DTC_BERT(Hsu et al., 2017) 45.76 42.88 74.97 57.83 32.31 37.29 42.56 31.72 69.12 52.7 35.19 49.3
KCL_BERT(Han et al., 2019) 47.61 36.5 64.51 41.33 28.74 34.42 64.87 54.52 80.07 63.43 50.42 61.83
MCL_BERT(Hsu et al., 2019) 45.87 34.85 62.83 42.39 27.04 33.71 65.39 55.21 79.53 63.55 47.51 57.18
CDAC+(Lin et al., 2020) 59.78 44.58 69.19 61.56 28.22 52.76 45.00 33.10 69.49 67.05 48.66 66.03
DeepAligned (Zhang et al., 2021b) 63.86 52.84 73.66 79.68 63.18 65.52 74.84 64.37 84.86 76.77 59.42 71.97
DKT(Mou et al., 2022b) 66.50 52.07 72.22 82.22 61.53 67.05 70.38 61.16 83.71 72.57 58.6 69.12
Llama2(Touvron et al., 2023) 27.82 45.26 3.25 71.24 67.62 48.63 25.13 43.21 2.06 69.26 66.00 40.64
PLPCL 68.37 53.19 72.04 86.28 69.64 66.95 76.50 67.13 85.99 77.63 63.58 72.2

Table 2: The results on two datasets and two task settings. Overall 1st/2nd in bold/underline.We randomly sample
30% of all classes as OOD intents for both datasets. Results are averaged over three random runs. (p < 0.05 under
t-test)

ery and open intent discovery. We hope to per-480

form lightweight operations and reduce reliance481

on external data, and MTP-CLNN (Zhang et al.,482

2022), which used a lot of externally labeled data483

during the pre-training phase, was not included484

in the comparison. For BANKING-OOD, results485

of CDAC+, DeepAligned and DKT are extracted486

from (Mou et al., 2022b), and others are obtained487

from the text open intent recognition platform488

(Zhang et al., 2021a). For BANKING-all and489

STACKOVERFLOW-all, all baselines use the same490

BERT backbone and the results of baselines except491

DKT are obtained from (Zhang et al., 2021a).492

5.3 Evaluation Matrics493

We use three cluster evaluation metrics ACC, ARI,494

and NMI to evaluate the model effect, followed by495

DeepAligned(Zhang et al., 2021b). To obtain the496

results of ACC, we use the Hungarian algorithm to497

map prediction categories to ground-truth.498

5.4 Implementation Details499

We use the pre-trained bert-base-uncased model as500

the backbone consistent with the previous work,501

and pooling the context embeddings for each token502

using GRU and dense layers. The feature vector503

dimension is 768, the dropout probability is 0.1,504

and the GRU layer number is 1. In OOD discovery,505

the batch size of IND pre-training is 128, the batch506

size of STACKOVERFLOW-OOD and BANKING-507

OOD in the OOD clustering stage are both 400.508

For open intent discovery, the batch_size is 128 for509

both STACKOVERFLOW-ALL and BANKING-510

ALL for the pre-training and training stages. As511

with DKT, the learning rate of the pre-training pro-512

cess is set to 5e-5 of the training process is set to513

0.0003, and the instance-level feature dimension514

is 128. Therefore, the cluster prototype feature di-515

mension is also 128. The training epochs for both516

pre-training and training stages are 100. The exper-517

iment was conducted on an RTX 2080 GPU, and 518

the running process takes 4 hours. 519

5.5 Main Results 520

Table 2 shows the performance of different models 521

under the two task settings of two datasets. Our 522

model achieved the best performance in OOD clus- 523

tering of both datasets, outperforms DKT by 1.87% 524

(ACC) and 1.02% (ARI) in BANKING, 4.06% 525

(ACC), 8.11% (ARI) in STACKOVERFLOW. 526

For open-settings, the performance of our model 527

is significantly better than DKT. Our model outper- 528

forms DKT dy 5.06% (ACC), 4.98% (ARI), and 529

3.08% (NMI) on STACKOVERFLOW. And the 530

results exceeded DKT by 6.12% (ACC), 5.97% 531

(ARI) and 2.28% (NMI) on BANKING. This in- 532

dicates that our improvement has a significant ef- 533

fect on all-class classification, enhancing the con- 534

trastive learning framework’s ability to distinguish 535

between multiple categories and compensating for 536

the limitations caused by an insufficient contrastive 537

sample. On the BANKING dataset, our method 538

outperforms the best baseline by 1.66% (ACC), 539

2.76% (ARI), and 1.13% (NMI). On the STACK- 540

OVERFLOW dataset, our method outperforms the 541

best baseline by 0.86% (ACC), 4.16% (ARI), and 542

0.23% (NMI). Our method outperformed previous 543

approaches on both the banking and Stackoverflow 544

datasets, indicating that it adapts well to single- 545

domain intent classification datasets and has better 546

discriminability for professional intents with se- 547

mantically similar meanings. 548

5.6 Comparison with Large Language Model 549

Considering the rapid development of large lan- 550

guage models in recent years, many tasks in natu- 551

ral language processing can be easily addressed by 552

leveraging the text generation capabilities of these 553

models. In the last row of the experiment results ta- 554

ble 2, we compared our results with the latest local 555
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llama2-13B model(Touvron et al., 2023). Taking556

into account the input tokens’ limitations and their557

relatively weaker clustering abilities, we employed558

the large models for classification tasks with the559

provision of category names.560

The example of a prompt template is shown561

in the appendix A.3 The results indicate that the562

performance of LLM is inferior to our method in563

both settings of the two datasets. On the STACK-564

OVERFLOW dataset with few categories, LLM565

outperforms some previous methods. However,566

on the banking dataset with a larger number of567

categories, LLM clustering shows poor clustering568

performance.569

5.7 Ablation study and further analysis570

Table 3 shows the effects of each module in our571

model, experimenting on BANKING-ALL. The572

results show that including SCL and CE during573

training helps to fully utilize the supervised signal.574

The absence of the supervised signal will result in575

a partial loss of pre-training information and a sig-576

nificant decrease in effectiveness. The addition of577

contrastive learning of prototypes (PCL) improved578

the model’s performance by 3.91% (ACC), 4.74%579

(ARI), and 1.65% (NMI), indicating that explic-580

itly decoupling and separating the cluster centers581

is beneficial for distinguishing and separating dif-582

ferent category features in the feature space, in-583

creasing the distance between clusters, reducing584

the probability of confusion, and enhancing clus-585

tering performance. The results of the following586

cluster visualization further demonstrate this point.587

The addition of confident pseudo-labels (PL) im-588

proved the model’s performance by 2.21% (ACC),589

1.23% (ARI), and 0.63% (NMI), indicating that590

gradually including samples with sufficiently high591

confidence in the supervised signal during model it-592

eration is beneficial for obtaining prior information,593

compensating for the limitations of simple sample594

scattering in unsupervised contrastive learning.595

ACC ARI NMI
ILCL,CLCL 46.07 36.79 37.00

+SCL,CE 70.38 61.16 83.71
+PCL 74.29 65.90 85.36

+PL 76.50 67.13 85.99

Table 3: Ablation Study of different training objectives.

Table 4 shows the effect of different confidence596

thresholds on the effectiveness of the model. When597

the threshold is 1, no pseudo-labels are used. When598

σ ACC ARI NMI
1 74.29 65.90 85.36
0.99 76.50 67.13 85.99
0.9 76.43 66.25 86.16
0.8 74.38 65.25 85.48
0.7 73.18 64.75 85.35
0.5 70.78 62.39 84.19
0 66.17 17.66 80.72

Table 4: Results under Different Confidence Thresholds.

the threshold is 0, pseudo-labels are used for all 599

samples. 600

Figure 3 illustrates the clustering performance 601

(ACC) of various models at different labeled ratios 602

for IND intents while maintaining an IND category 603

ratio of 70%. The results demonstrate the robust 604

performance of our models across different labeling 605

ratios. More results showing the effects of labeled 606

ratio and known cluster ratio can be checked in 607

appendix A.1. 608

Figure 4 demonstrates the performance of our 609

model on the banking dataset under different 610

weights of supervised contrastive loss, showing 611

that our model is insensitive to loss weights. 612

Figure 3: Influence of the labeled ratio on BANKING
dataset.

6 Conclusion 613

In this paper, we have proposed a pseudo-label en- 614

hanced prototypical contrastive learning approach 615

for both open intent discovery and OOD intent 616

discovery. The pseudo-label filtering strategy en- 617

hances supervised signal during training process, 618

while the prototypical contrastive learning module 619

addresses the isolation issue between two indepen- 620

dent contrastive learning heads. Compared with 621

previous methods, our approach provides better 622

knowledge transfer. Experiments on two task set- 623

tings and two benchmark datasets demonstrate the 624

effectiveness of our proposed method. We hope 625

to explore more self-supervised methods for OOD 626

and open intent discovery in the future. 627
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Limitations628

Our model considers the inherent connection be-629

tween two levels of features while decoupling630

instance-level and cluster-level features. We also631

consider the potential relation between different un-632

labeled samples. Our proposed model is effective633

in both open intent discovery and OOD intent dis-634

covery scenarios. In order to determine the update635

of categories, it is necessary to accurately predict636

the number of categories. Although we used intent637

understanding datasets in our work, our approach638

also holds promise as a novel contrastive learning639

method that can be applied widely to clustering sce-640

narios, such as topic classification and multi-view641

clustering.642
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A Appendix764

A.1 Further Analysis of loss weights and765

settings766

Figure 4 demonstrates the performance of our767

model on the banking dataset under different768

weights of supervised contrastive loss, showing that769

our model is insensitive to loss weights. Figure 7770

illustrates the impact of different labeled ratios and771

known cluster ratios on the model performance.

Figure 4: Influence of the supervisory loss weight on
BANKING dataset772

A.2 Visualization 773

Figure 5 shows the clustering visualization results 774

of DKT and our model on BANKING-ALL and 775

BANKING-OOD. For fair comparison, we use the 776

same representation after the pooling layer. We 777

can find that after adding contrastive learning for 778

prototype and reliable pseudo label, while keeping 779

the samples of the same cluster compact, the dis- 780

tance between different clusters is widened, and the 781

different clusters become scattered on the whole 782

feature space.Unlike scattering of unlabeled sam- 783

ples, the premise for contrastive learning in cluster 784

prototype is that each cluster has its own unique fea- 785

tures, and cluster center scattering aims to separate 786

these features. 787

Figure 6 shows the visualization results of the 788

confusion matrix for DKT and our model on 789

BANKING-ALL, with a total of 77 categories in 790

the test set, and we show the first 20 categories. It 791

can be found that the DKT model may completely 792

confuse two certain categories, i.e. the samples of 793

two certain categories are grouped into the same 794

cluster. However, our model avoids this problem 795

well, and rarely there is no correct sample in a 796

certain category. 797

A.3 Prompt Template of LLM 798

The prompt template is shown in the table5.

Below is an instruction that describe a task. Write a response
that appropriately completes the request.
###instruction:
Please give the intent label for the following sentences.
Select one label in the set {...}
For example:
Input:
Can I exchange currencies with this app? .
Output:
{ intent_label:"exchange_via_app"}
###question:
Input:
{data sample}
Provide intent label in JSON format with the following keys: intent_label
###Response:

Table 5: An example of the prompt templates we used.

799
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(a) DKT_OOD (b) ours_OOD

(c) DKT_ALL (d) ours_ALL

Figure 5: OOD intent visualization of different models. We use the same test set of Banking-ALL.

(a) DKT_cm (b) ours_cm

Figure 6: Confusion matrix visualization of different models.We use the same test set of Banking-ALL.

Figure 7: Influence of the labeled ratio and known cluster ratio on BANKING dataset.
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