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Abstract

New intent discovery is a crucial capability
for task-oriented dialogue systems. Existing
methods focus on transferring in-domain (IND)
prior knowledge to out-of-domain (OOD) data
through pre-training and clustering stages.
They either handle the two processes in a
pipeline manner, which exhibits a gap between
intent representation and clustering process
or use typical contrastive clustering that over-
looks the potential supervised signals from the
whole data. Besides, they often deal with ei-
ther open intent discovery or OOD settings in-
dividually. To this end, we propose a Pseudo-
Label enhanced Prototypical Contrastive Learn-
ing (PLPCL) model for uniformed intent dis-
covery. We iteratively utilize pseudo-labels to
explore potential positive/negative samples for
contrastive learning and bridge the gap between
representation and clustering. To enable bet-
ter knowledge transfer, we design a prototype
learning method integrating the supervised and
pseudo signals from IND and OOD samples.
In addition, our method has been proven ef-
fective in two different settings of discovering
new intents. Experiments on two benchmark
datasets and two task settings demonstrate the
effectiveness of our approach.'

1 Introduction

New intent discovery, aiming to uncover and cate-
gorize out-of-domain intents absent in training data
has received increasing attention due to its crucial
role in dialogue systems (Min et al., 2020; Vedula
et al., 2019). Initially, researchers focused on ex-
ploring unsupervised clustering methods (Hakkani-
Tiir et al., 2015; Liu et al., 2021; Shi et al., 2018).
However, real-world scenarios typically involve
limited labeled data, prompting a shift to semi-
supervised approaches, notably OOD and open in-
tent discovery (Lin et al., 2020; Mou et al., 2022b,c;

'The codes and datasets will be publicly accessible upon
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Figure 1: Two basic task setting for intent discovery.
In open-setting: Partially labeled IND data for training,
all categories in test (IND and OOD). In OOD setting:
Fully labeled IND data for training, only OOD cate-
gories in test.

Shen et al., 2021; Zhang et al., 2021b, 2022). OOD
intent discovery clusters solely unlabeled OOD in-
tents using labeled IND data, while open intent
discovery aims to recognize both known and new
categories from unlabeled data (see Figure 1).

The existing approaches for new intent discovery
typically use a two-stage contrastive clustering ap-
proach, involving IND pretraining and OOD clus-
tering. For open intent discovery, researchers focus
on effectively utilizing the small amount of labeled
data for weakly supervised (Lin et al., 2020) or
semi-supervised clustering methods (Shen et al.,
2021; Zhang et al., 2021b). For OOD intent dis-
covery, previous works commonly employ a con-
trastive clustering framework (Li et al., 2021) with
approaches such as multi-head contrast learning
(Mou et al., 2022b) or neighbor-enhanced con-
trastive strategies (Mou et al., 2022c).

Although previous methods in intent discovery
have achieved notable success, several challenges
in the field remain unexplored. (1) One key chal-
lenge is efficiently integrating labeled and unla-
beled data for joint representation learning and
clustering. While some methods focus on con-
trastive clustering for joint learning (Mou et al.,
2022b), they often overlook critical supervised sig-
nals from IND samples during the clustering stage.



Leveraging labeled information for this process re-
mains underexplored, particularly given the limited
availability of labeled data and the risk of overfit-
ting. (2) Another critical issue is devising effective
transfer learning mechanisms between IND and
OOD data while preventing catastrophic forgetting.
Existing methods often discard classifiers trained
on prior knowledge, retaining only feature extrac-
tion during clustering with OOD samples (Zhang
et al., 2021b). This requires additional alignment
strategies, potentially introducing noise if subopti-
mal. There’s an urgent need for methods preserving
prior knowledge while adapting better to new in-
tent data, ensuring seamless transfer learning. (3)
Moreover, the predominant focus of prior research
has been either on open intent discovery or OOD
intent discovery individually, disregarding the prac-
tical need for a unified method capable of handling
both scenarios (Mou et al., 2022b; Zhang et al.,
2021b). Real-world dialogue systems frequently
encounter situations necessitating updates or mi-
gration, highlighting the imperative for a uniform
intent discovery approach adaptable to varying sys-
tem changes.

To address these limitations, we propose a
Pseudo-Label enhanced Protypical Contrastive
Learning (PLPCL) model which is built upon con-
trastive clustering for joint representation learn-
ing and clustering. Our approach begins by pre-
training the contrastive clustering model using la-
beled IND data. To effectively harness labeled
information, we integrate IND samples with unla-
beled data using a semi-supervised clustering strat-
egy, employing distinct contrastive learning strate-
gies for labeled and unlabeled data. To prevent
overfitting and maximize the utilization of unla-
beled data, we iteratively select reliable unlabeled
samples with confident pseudo-labels. These reli-
able samples serve as potential positive/negative
samples during contrastive learning, enhancing the
overall contrastive clustering process.

To bridge the gap between IND and OOD data,
we introduce a prototype learning strategy. It keeps
the prototype matrix by integrating instance and
cluster features from both the IND and reliable
unlabeled samples. Our method seamlessly inte-
grates contrastive clustering and prototypical learn-
ing, eliminating the need for an extra aligning mod-
ule. This integration facilitates improved knowl-
edge transfer from IND to OOD without discarding
label information from IND samples. Furthermore,
our framework is purposefully designed for uni-

form intent discovery, demonstrating effectiveness
in both open-setting and OOD-setting scenarios.
The contribution of our work is threefold:

* We introduce a novel method that lever-
ages both labeled and unlabeled data through
pseudo-label enhanced semi-supervised con-
trastive learning. This approach facilitates
joint representation learning and clustering by
effectively leveraging the whole data.

We propose a prototypical contrastive learn-
ing framework for uniformed intent discov-
ery integrating prototypical learning and con-
trastive clustering utilizing labeled and unla-
beled samples to bridge the gap between IND
prior knowledge and OOD categories.

* We conduct extensive experiments on both
OOD intent discovery and open intent discov-
ery scenarios and the results demonstrate the
effectiveness of our proposed method.

2 Related Work

2.1 Intent Discovery.

Recent research for intent discovery can be broadly
categorized into OOD-setting and open-setting. As
shown in Figure 1, open intent discovery involves
clustering both IND and OOD intents with IND
priori knowledge. Samples with IND intents are
not all labeled. Whereas OOD intent discovery
focuses on accurately handling OOD intents and
assumes that the intents of labeled and unlabeled
data do not overlap, which means all IND sam-
ples are labeled. (Lin et al., 2020) proposed a self-
supervised clustering method that utilizes limited
labeled data. (Zhang et al., 2021b) proposed a k-
means-based semi-supervised clustering method
that can effectively use prior knowledge in intent
discovery. (Mou et al., 2022b) proposed a disen-
tangled contrastive learning framework that mainly
focuses on OOD intent clustering and decouples in-
stance and cluster-level features to disentangle the
knowledge of IND and OOD samples. (Han et al.,
2019) extended deep embedded clustering to trans-
fer learning setting, incorporating prior knowledge
for OOD clustering.

2.2 Contrastive Clustering

Contrastive clustering has been widely used in var-
ious clustering scenarios, such as unsupervised se-
mantic segmentation (Hamilton et al., 2022) and



generalized self-supervised contrastive learning
(Hu et al., 2022). It has also been applied in OOD
intent detection and discovery tasks (Kumar et al.,
2022; Mou et al., 2022b,c). (Li et al., 2021) pro-
posed a contrastive clustering framework with two
contrastive learning heads. It provided objective
guidance for clustering, avoiding interference from
prior knowledge. (Mou et al., 2022b) extended con-
trast clustering to the semi-supervised scenario and
designed a two-stage contrastive learning process
that includes both supervised pre-training and un-
supervised clustering. It achieved state-of-the-art
results for OOD intent discovery.

2.3 Prototype Learning.

The prototype learning method is widely used in
clustering analysis and classification problems. In
semi-supervised clustering scenarios, coarsely as-
signed pseudo-labels may result in mismatches be-
tween instances and prototypes, introducing noise
that significantly affects the clustering performance.
(An et al., 2023) used weighted pseudo-labels to re-
duce the effect of mismatched prototypes. (Huang
et al., 2022) proposed the approach of prototype
scattering, which enhances the variance between
the clusters by maximizing the distances between
prototype features, to obtain well-separated clus-
ters. The prototype learning method is robust to
noise and outliers. Compared to other clustering
methods, it is an intuitive and interpretable ap-
proach that can provide references for the entire
cluster based on representative examples.

3 Preliminaries

First, we define the problem of uniformed intent
discovery. Then we briefly introduce the con-
trastive clustering framework.

3.1 Problem Statement

OQOD intent discovery suppose we have a set of
labeled IND data Dy p and unlabeled OOD data
Doop, and aim at clustering OOD intents. Note
that there is no overlap between the IND data and
the OOD data. Indeed, extending the OOD classi-
fier to an all-category classifier is the extreme case
of open intent discovery. Open intent discovery
assumes that we have an intent analysis dataset
Dy, D,, whereD; = {(z,y1)lyi € Vi},Du =
{(@w, Yu)|yu € Vis Vur} . Vi are known intents
and ), are unknown intents. In the extreme case,
all the samples of the known categories in the train-
ing set are labeled, and only data with unknown

intents are contained in D,,. Then the prior labeling
information is the same as the OOD classification.
Since we do not have a priori assumptions that
Yy Ny, = 0, the setting is different from the gen-
eralized intent discovery (Mou et al., 2022a). In
fact, we also compared the results under different
labeled ratios with the same IND intent division.

Uniformed intent discovery includes both OOD
intent discovery and open intent discovery. On the
one hand, we consider the open setting when IND
and OOD intents are not separated, i.e., when new
intent detection needs to be introduced. On the
other hand, we consider merely OOD intent clus-
tering. This helps the system to adapt or transform
to different scales of change.

3.2 Contrastive Clustering

Our model is based on a contrastive clustering
framework. It performs instance-level and cluster-
level contrastive learning. Specifically, for a given
dataset, positive and negative instance pairs are
constructed through data augmentation and then
projected into a feature space. Instance-level and
cluster-level contrastive learning are performed in
the row space and column space, respectively.

Unsupervised instance-level contrastive learning
(ILCL) is performed on unlabeled data, where the
augmented sample of each sample is considered as
a positive sample and other samples are considered
as negative samples. f;, f; refer to the augmented
samples that are generated from the same samples
after passing through the dropout layer.

exp (stm(fi, f;)/7)

SN Lz exp (sim(fi, fi)/7)
(1)

6" = —log

On the cluster-level contrastive learning head g, it
performs cluster-level contrastive learning (CLCL).
The cluster representation of the augment sample
is considered as a positive sample, and the other
cluster representations are considered as negative
samples. y; refers to the representations of the clus-
ters, which are columns in the cluster-level feature
matrix. y; are the dropout-augment representations
for the cluster level.

exp (sim(yi, y;)/7)
S Vi exp (sim(ys, yi)/7)
()

Effj“ = —log
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Figure 2: The overall architecture of the proposed PLPCL. Instance-Level Head and Cluster-Level Head are two
separate MLPs. The pre-train stage involves labeled IND data. Through confident pseudo-label filtering, the whole
training dataset is divided into supervised and unsupervised parts, which are then subjected to different contrastive
learning strategies. Prototype features are computed based on instance-level features and cluster-level features.

4 Methods

Overall Architecture: The overall framework of
PLPCL is illustrated in Figure 2. Our framework
follows a two-stage pipeline. In the pre-train stage,
IND-labeled samples are utilized for supervised
multi-head contrastive learning to acquire prior
knowledge. This model is adapted from contrastive
clustering and includes intent representation along-
side two independent heads. These heads are in-
strumental in decoupling the representation into
instance-level and cluster-level spaces, facilitating
joint representation learning and clustering.

After pretraining, the prototypes of known cate-
gories are obtained, serving as a foundation for effi-
cient knowledge transfer across IND and OOD data.
In the second stage, the multi-head contrastive
model is further trained on the entire dataset includ-
ing IND and OOD samples. Specifically, this stage
comprises three iterative steps: pseudo-label se-
lecting, semi-supervised contrastive learning, and
prototype contrastive learning. These steps col-
lectively aim to transfer prior knowledge to new
categories and enhance the model’s adaptability.

4.1 Intent Representation

To facilitate effective knowledge transfer between
IND and OOD samples, we aim to achieve joint
intent representation and clustering by learning

instance-level and cluster-level features for each
sample.

Drawing inspiration from (Mou et al., 2022b),
we first extract the intent representation using a
pre-trained BERT model and a pooling layer to
extract text representation. Then we utilize two
independent MLPs to map the intent representation
z; into two disentangled latent vectors: f; = f(z;)

and g; = g(z;).

4.2 Supervised Pre-training

To familiarize the model with the prior knowledge
obtained from labeled IND samples and to establish
initial cluster prototypes, we conduct pre-training
on IND samples. Based on the multi-level intent
representation, we conduct two-level pertaining.

For instance-level representation, we adopt su-
pervised contrastive learning (SCL) to maximize
inter-class variance and minimize intra-class vari-
ance within the IND samples.

Formally, for a sample x; in a mini-batch of
size N, the samples within NV sharing the same
label are considered as positive samples, while the
remainder is treated as negative samples. The SCL
loss is computed as follows:
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where y;, y; are the labels of samples x;, z; and 1
is an indicator function. N,, denotes the number
of samples in NV with the label y;. f;, f; indicate
the instance-level representation of x;, x;. t is the
temperature parameter for contrastive learning.

For the cluster-level representation, we apply
cross-entropy loss (CE) to learn cluster-friendly
features. Note that we use a classifier with both
IND and OOD classes for open-setting to better
reserve the priori knowledge extracted at this stage,
allowing our model to better retain the prior knowl-
edge acquired during the pre-training stage com-
pared to previous works.

4.3 Semi-supervised Training

After pretraining with labeled data, we achieve a
good initialization of representation learning and
clustering. The challenge now lies in transferring
the prior knowledge to new intents. There are two
critical problems to be addressed: (1) Effectively
utilizing both labeled and unlabeled data to enhance
the joint representation and clustering process; (2)
Transferring learned knowledge from IND to OOD
data while continually refining representation learn-
ing to enhance cluster-friendly features without en-
countering catastrophic forgetting. To tackle these
challenges, we introduce a pseudo-label enhanced
contrastive learning scheme tailored for iterative
clustering and updating. This scheme starts from re-
liable pseudo-label filtering for unlabeled samples,
followed by semi-supervised contrastive learning
and prototypical contrastive learning.

4.3.1 Pseudo-label Selecting

It’s important to note that the multi-level intent rep-
resentation heads are pre-trained on limited labeled
data. To fully leverage the valuable information em-
bedded within unlabeled data, we employ pseudo-
labeling techniques to iteratively select unlabeled
samples as weak supervised signals for subsequent
contrastive learning processes.

In the context of semi-supervised contrastive
learning (4.3.2), reliable pseudo-labeled data are
amalgamated with labeled data, augmenting the
pool of potential contrastive samples. Regarding

prototypical contrastive learning (4.3.3), pseudo-
labels are employed to enrich the learning process
of the prototype matrix. Furthermore, the integra-
tion of pseudo-labeled data introduces supplemen-
tary constraints to mitigate overfitting and enhance
the model’s generalization performance to novel
unseen categories.

However, it’s important to note that the quality
of pseudo-labels is crucial, as noisy or incorrect
pseudo-labels can degrade model performance. It
is crucial to ensure the accuracy and reliability of
pseudo-labels to maintain the effectiveness of the
model’s training. We treat pseudo-labels with prob-
abilities greater than a confidence threshold as true
labels and use them as supervised signals to guide
model training:

p(kx) >0 @

where p(k|x) denotes the probability that x be-
longs to class k, o represents confidence proba-
bility. When a certain probability is greater than
the confidence threshold, we have enough confi-
dence to consider it as belonging to this category.
The choice of confidence probability will impact
the strength of the supervised signal and the intro-
duced noise. A high confidence probability will re-
sult in inadequate supervised information, whereas
a low confidence probability will introduce erro-
neous pseudo-labels. To simplify the threshold
selection, a suitable value is chosen directly as
o = 1 — 107%. In this paper, we set k = 2. We
also compare performance at different confidence
thresholds.

4.3.2 Semi-supervised Contrastive Learning

During the training stage, we utilize distinct con-
trastive learning strategies for IND labeled data
and OOD unlabeled data. Firstly, we compare
confidence probabilities of pseudo-labels with a
predefined confidence threshold, and if they are
greater than this threshold, we consider them as
reliable pseudo-labels. Unlabeled samples with re-
liable pseudo-labels are considered as labeled data.
SCL is applied on the instance-level contrastive
learning head f for labeled data, while unsuper-
vised instance-level contrastive learning (ILCL) is
performed on unlabeled data.

On the cluster-level contrastive learning head
g, we perform cross-entropy loss (CE) for labeled
data and perform cluster-level contrastive learn-
ing (CLCL) for OOD classes (OOD-setting) or



Dataset Classes  Classes-IND  Classes-OOD  Training  Validation — Test
Banking 77 54 23 9003 1000 3080
Stackoverflow 20 14 6 12000 2000 6000

Table 1: Statistics of BANKING and STACKOVERFLOW datasets.

all classes(open-setting). During the training pro-
cess, the number of unlabeled samples with reliable
pseudo-labels will gradually increase.

4.3.3 Prototypical Contrastive Learning

Decoupling knowledge from different levels is ben-
eficial for separating the features of the source do-
main and target domain, thereby improving the
efficiency of transfer learning and reducing over-
fitting. However, previous work only disentangled
the instance-level and cluster-level features and ap-
plied constraints on them independently, without
considering the inherent connection between the
two levels of features. Each sample potentially be-
longs to a cluster, and each cluster consists of a
certain number of samples. In order to extract the
relationship between instance features and cluster
features and enhance the discrimination between
clusters, we propose to maintain a cluster proto-
type matrix, which is of size k * m and stores the
prototype features of each cluster.

For each batch, the output of f is an n * m ma-
trix containing the feature vectors of each sam-
ple, n is the batch size and m is the feature vec-
tor dimension. The output of g is an n * k ma-
trix, with each row corresponding to the proba-
bility that a sentence belongs to each class, i.e.,
p(k|x), and each column corresponds to the rep-
resentation of a cluster. The cluster prototype ma-
trix is computed by averaging the instance-level
representations over all samples belonging to the
class. For labeled data and unlabeled data with re-
liable pseudo-label, we use ground truth or pseudo-
label, i.e.Hard Label Constraint Feature Com-
bination; for other unlabeled data, we perform
probability-weighted calculations, i.e.Soft Seman-
tic Weighted Feature Combination. As shown
in equation, G is the cluster-level feature matrix
[9139% 5 9ms Ly Lymagas s 1yN]a F'is the
instance-level feature matrix [f1; fo; - ; fn], m
is the number of labeled data in this batch. G’ and
F' are the cluster-level feature matrix and instance-
level feature matrix of the augmented samples.

M.=G'F 5)

The cluster prototype matrix M, is a k * m ma-

trix consisting of the features of each clustering
centre and can be written as [my, ma,- -, M.
The obtained vector m; is normalized and used as
the clustering centre z; as shown in equation.

my;

llmill2

(6)

Ze, 1 =

After explicitly decoupling the cluster prototype
vector z;, the augmented features of each cluster
prototype are used as positive samples, and the rest
of the features are used as negative samples for con-
trastive learning at the cluster prototype level, as
shown in the equation. Optimization of prototype
contrastive loss (PCL) enables pulling apart differ-
ent clusters and thus enhancing the discrimination
between categories.

exp (5im(2e,is Ze,j)/T)

SN Ligg exp (sim(zei, Zex) /T)

(N

pel
Ei,j = -l

The final loss in the training process is obtained
by combining SCL, ILCL, CE, CLCL and PCL.?

S Experiments

5.1 Datasets

In order to fairly compare the effectiveness of the
models, we use two public datasets STACKOVER-
FLOWXu et al., 2015) and BANKING(Casanueva
et al., 2020). BANKING and STACKOVERFLOW
are both single-domain intent datasets. BANKING
consists of 13,083 queries covering 77 intents in the
banking domain, while the STACKOVERFLOW
dataset contains 20 intents related to the program-
ming domain. Detailed statistics are shown in Table
1, the division of the training set, validation set and
test set remains consistent with previous works. We
take 30% categories as unknown categories in both
datasets, and all data with known intent is labeled.

5.2 Baselines

We selected a series of semi-supervised methods
as benchmarks for comparing OOD intent discov-
*We simply set the weight coefficients of each loss to 1.

We compared the effects of different weights for supervised
losses in appendix A.1.



Method Banking-OOD Stackoverflow-OOD Banking-Open Stackoverflow-Open
ACC ARI NMI | ACC ARI NMI | ACC ARI NMI | ACC ARI NMI
DTC_BERT(Hsu et al., 2017) 4576 42.88 7497 | 57.83 3231 37.29 | 4256 31.72 69.12 | 52.7 35.19 493
KCL_BERT(Han et al., 2019) 47.61 365 6451 | 41.33 28774 34.42 | 64.87 5452 80.07 | 6343 5042 61.83
MCL_BERT(Hsu et al., 2019) 4587 34.85 62.83 | 4239 27.04 33.71 | 65.39 5521 79.53 | 63.55 47.51 57.18
CDAC+(Lin et al., 2020) 59.78 4458 69.19 | 61.56 2822 5276 | 45.00 33.10 69.49 | 67.05 48.66 66.03
DeepAligned (Zhang et al., 2021b) | 63.86 52.84 73.66 | 79.68 63.18 65.52 | 74.84 64.37 84.86 | 76.77 59.42 71.97
DKT(Mou et al., 2022b) 66.50 52.07 7222 | 82.22 61.53 67.05 | 70.38 61.16 83.71 | 72.57 58.6  69.12
Llama2(Touvron et al., 2023) 27.82 4526 325 | 7124 67.62 48.63 | 25.13 4321 2.06 |69.26 66.00 40.64
PLPCL 68.37 53.19 72.04 | 86.28 69.64 66.95 | 76.50 67.13 85.99 | 77.63 63.58 72.2

Table 2: The results on two datasets and two task settings. Overall 1°¢/2"¢ in bold/underline. We randomly sample
30% of all classes as OOD intents for both datasets. Results are averaged over three random runs. (p < 0.05 under

t-test)

ery and open intent discovery. We hope to per-
form lightweight operations and reduce reliance
on external data, and MTP-CLNN (Zhang et al.,
2022), which used a lot of externally labeled data
during the pre-training phase, was not included
in the comparison. For BANKING-OOQOD, results
of CDAC+, DeepAligned and DKT are extracted
from (Mou et al., 2022b), and others are obtained
from the text open intent recognition platform
(Zhang et al., 2021a). For BANKING-all and
STACKOVERFLOW-all, all baselines use the same
BERT backbone and the results of baselines except
DKT are obtained from (Zhang et al., 2021a).

5.3 Evaluation Matrics

We use three cluster evaluation metrics ACC, ARI,
and NMI to evaluate the model effect, followed by
DeepAligned(Zhang et al., 2021b). To obtain the
results of ACC, we use the Hungarian algorithm to
map prediction categories to ground-truth.

5.4 Implementation Details

We use the pre-trained bert-base-uncased model as
the backbone consistent with the previous work,
and pooling the context embeddings for each token
using GRU and dense layers. The feature vector
dimension is 768, the dropout probability is 0.1,
and the GRU layer number is 1. In OOD discovery,
the batch size of IND pre-training is 128, the batch
size of STACKOVERFLOW-OOD and BANKING-
OOD in the OOD clustering stage are both 400.
For open intent discovery, the batch_size is 128 for
both STACKOVERFLOW-ALL and BANKING-
ALL for the pre-training and training stages. As
with DKT, the learning rate of the pre-training pro-
cess is set to Se-5 of the training process is set to
0.0003, and the instance-level feature dimension
is 128. Therefore, the cluster prototype feature di-
mension is also 128. The training epochs for both
pre-training and training stages are 100. The exper-

iment was conducted on an RTX 2080 GPU, and
the running process takes 4 hours.

5.5 Main Results

Table 2 shows the performance of different models
under the two task settings of two datasets. Our
model achieved the best performance in OOD clus-
tering of both datasets, outperforms DKT by 1.87%
(ACC) and 1.02% (ARI) in BANKING, 4.06%
(ACC), 8.11% (ARI) in STACKOVERFLOW.

For open-settings, the performance of our model
is significantly better than DKT. Our model outper-
forms DKT dy 5.06% (ACC), 4.98% (ARI), and
3.08% (NMI) on STACKOVERFLOW. And the
results exceeded DKT by 6.12% (ACC), 5.97%
(ARI) and 2.28% (NMI) on BANKING. This in-
dicates that our improvement has a significant ef-
fect on all-class classification, enhancing the con-
trastive learning framework’s ability to distinguish
between multiple categories and compensating for
the limitations caused by an insufficient contrastive
sample. On the BANKING dataset, our method
outperforms the best baseline by 1.66% (ACC),
2.76% (ARI), and 1.13% (NMI). On the STACK-
OVERFLOW dataset, our method outperforms the
best baseline by 0.86% (ACC), 4.16% (ARI), and
0.23% (NMI). Our method outperformed previous
approaches on both the banking and Stackoverflow
datasets, indicating that it adapts well to single-
domain intent classification datasets and has better
discriminability for professional intents with se-
mantically similar meanings.

5.6 Comparison with Large Language Model

Considering the rapid development of large lan-
guage models in recent years, many tasks in natu-
ral language processing can be easily addressed by
leveraging the text generation capabilities of these
models. In the last row of the experiment results ta-
ble 2, we compared our results with the latest local



llama2-13B model(Touvron et al., 2023). Taking
into account the input tokens’ limitations and their
relatively weaker clustering abilities, we employed
the large models for classification tasks with the
provision of category names.

The example of a prompt template is shown
in the appendix A.3 The results indicate that the
performance of LLM is inferior to our method in
both settings of the two datasets. On the STACK-
OVERFLOW dataset with few categories, LLM
outperforms some previous methods. However,
on the banking dataset with a larger number of
categories, LLM clustering shows poor clustering
performance.

5.7 Ablation study and further analysis

Table 3 shows the effects of each module in our
model, experimenting on BANKING-ALL. The
results show that including SCL and CE during
training helps to fully utilize the supervised signal.
The absence of the supervised signal will result in
a partial loss of pre-training information and a sig-
nificant decrease in effectiveness. The addition of
contrastive learning of prototypes (PCL) improved
the model’s performance by 3.91% (ACC), 4.74%
(ARI), and 1.65% (NMI), indicating that explic-
itly decoupling and separating the cluster centers
is beneficial for distinguishing and separating dif-
ferent category features in the feature space, in-
creasing the distance between clusters, reducing
the probability of confusion, and enhancing clus-
tering performance. The results of the following
cluster visualization further demonstrate this point.
The addition of confident pseudo-labels (PL) im-
proved the model’s performance by 2.21% (ACC),
1.23% (ARI), and 0.63% (NMI), indicating that
gradually including samples with sufficiently high
confidence in the supervised signal during model it-
eration is beneficial for obtaining prior information,
compensating for the limitations of simple sample
scattering in unsupervised contrastive learning.

ACC | ARI | NMI

ILCL,CLCL | 46.07 | 36.79 | 37.00
+SCL,CE | 70.38 | 61.16 | 83.71
+PCL | 74.29 | 65.90 | 85.36

+PL | 76.50 | 67.13 | 85.99

Table 3: Ablation Study of different training objectives.

Table 4 shows the effect of different confidence
thresholds on the effectiveness of the model. When
the threshold is 1, no pseudo-labels are used. When

o ACC | ARI | NMI
1 74.29 | 65.90 | 85.36
0.99 | 76.50 | 67.13 | 85.99
0.9 7643 | 66.25 | 86.16
0.8 74.38 | 65.25 | 85.48
0.7 73.18 | 64.75 | 85.35
0.5 70.78 | 62.39 | 84.19
0 66.17 | 17.66 | 80.72

Table 4: Results under Different Confidence Thresholds.

the threshold is 0, pseudo-labels are used for all
samples.

Figure 3 illustrates the clustering performance
(ACC) of various models at different labeled ratios
for IND intents while maintaining an IND category
ratio of 70%. The results demonstrate the robust
performance of our models across different labeling
ratios. More results showing the effects of labeled
ratio and known cluster ratio can be checked in
appendix A.1.

Figure 4 demonstrates the performance of our
model on the banking dataset under different
weights of supervised contrastive loss, showing
that our model is insensitive to loss weights.

aaaaaaaaaaaa

Figure 3: Influence of the labeled ratio on BANKING
dataset.

6 Conclusion

In this paper, we have proposed a pseudo-label en-
hanced prototypical contrastive learning approach
for both open intent discovery and OOD intent
discovery. The pseudo-label filtering strategy en-
hances supervised signal during training process,
while the prototypical contrastive learning module
addresses the isolation issue between two indepen-
dent contrastive learning heads. Compared with
previous methods, our approach provides better
knowledge transfer. Experiments on two task set-
tings and two benchmark datasets demonstrate the
effectiveness of our proposed method. We hope
to explore more self-supervised methods for OOD
and open intent discovery in the future.



Limitations

Our model considers the inherent connection be-
tween two levels of features while decoupling
instance-level and cluster-level features. We also
consider the potential relation between different un-
labeled samples. Our proposed model is effective
in both open intent discovery and OOD intent dis-
covery scenarios. In order to determine the update
of categories, it is necessary to accurately predict
the number of categories. Although we used intent
understanding datasets in our work, our approach
also holds promise as a novel contrastive learning
method that can be applied widely to clustering sce-
narios, such as topic classification and multi-view
clustering.
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A Appendix

A.1 Further Analysis of loss weights and
settings

Figure 4 demonstrates the performance of our
model on the banking dataset under different
weights of supervised contrastive loss, showing that
our model is insensitive to loss weights. Figure 7
illustrates the impact of different labeled ratios and
known cluster ratios on the model performance.

Performance Metrics
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Figure 4: Influence of the supervisory loss weight on
BANKING dataset
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A.2 Visualization

Figure 5 shows the clustering visualization results
of DKT and our model on BANKING-ALL and
BANKING-OOD. For fair comparison, we use the
same representation after the pooling layer. We
can find that after adding contrastive learning for
prototype and reliable pseudo label, while keeping
the samples of the same cluster compact, the dis-
tance between different clusters is widened, and the
different clusters become scattered on the whole
feature space.Unlike scattering of unlabeled sam-
ples, the premise for contrastive learning in cluster
prototype is that each cluster has its own unique fea-
tures, and cluster center scattering aims to separate
these features.

Figure 6 shows the visualization results of the
confusion matrix for DKT and our model on
BANKING-ALL, with a total of 77 categories in
the test set, and we show the first 20 categories. It
can be found that the DKT model may completely
confuse two certain categories, i.e. the samples of
two certain categories are grouped into the same
cluster. However, our model avoids this problem
well, and rarely there is no correct sample in a
certain category.

A.3 Prompt Template of LLM
The prompt template is shown in the table5.

Below is an instruction that describe a task. Write a response
that appropriately completes the request.

###instruction:

Please give the intent label for the following sentences.
Select one label in the set {...}

For example:

Input:

Can I exchange currencies with this app? .

Output:

{ intent_label:"exchange_via_app"}

###question:

Input:

{data sample}

Provide intent label in JSON format with the following keys: intent_label

###Response:

Table 5: An example of the prompt templates we used.
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Figure 5: OOD intent visualization of different models. We use the same test set of Banking-ALL.
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Figure 6: Confusion matrix visualization of different models.We use the same test set of Banking-ALL.
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Figure 7: Influence of the labeled ratio and known cluster ratio on BANKING dataset.
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