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Abstract
This work addresses the problem of shape comple-
tion, i.e., the task of restoring incomplete shapes
by predicting their missing parts. While pre-
vious works have often predicted the fractured
and restored shape in one step, we approach the
task by separately predicting the fractured and
newly restored parts, but ensuring these predic-
tions are interconnected. We use a decoder net-
work motivated by related work on the prediction
of signed distance functions (DeepSDF). In partic-
ular, our representation allows us to consider test-
time-training, i.e., finetuning network parameters
to match the given incomplete shape more accu-
rately during inference. While previous works
often have difficulties with artifacts around the
fracture boundary, we demonstrate that our over-
fitting to the fractured parts leads to significant
improvements in the restoration of eight different
shape categories of the ShapeNet data set in terms
of their chamfer distances.

1. Introduction
Partial objects are very common in shape analysis and pose
special challenges when further processing the geometry.
The partiality is often due to incomplete views when scan-
ning an object which leaves holes in the reconstructed sur-
face. Many methods exist to complete these kinds of sur-
faces, both traditional and learning-based methods (Sharf
et al., 2004; Anguelov et al., 2005; Wu et al., 2015). Another
setting is the completion of partial volumetric shapes. In
contrast to holes in surfaces, the boundaries of partiality are
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not obvious in this case and learned information about the
space of shapes is crucial for obtaining good results. While
such shapes can result from volumetric reconstruction al-
gorithms (Slavcheva et al., 2017), we focus on the case of
shape restoration in this paper. The assumption is that a
broken object was scanned and the parts needed to complete
it should be reconstructed (see Figure 1). In addition to
learning a distribution of complete shapes, it is necessary
to reconstruct shapes that tightly align with the given input
shape, for example to 3D print a fitting replacement part.
This is, for example, important in medical applications from
partial organ scans (Gafencu et al., 2024) or for 3D print-
ing parts for a broken object (Lamb et al., 2022a), e.g. for
cultural heritage applications.

General shape completion methods focus on the appear-
ance of the full reconstruction, which often looks good, but
struggle with precision w.r.t. the input shape and details
(Park et al., 2019). We build our work upon (Lamb et al.,
2022a) which tackles this problem and learns to complete
fractured shapes in a certain class by separating the frac-
tured part from the restoration part. However, (Lamb et al.,
2022a) still struggles to accurately align details, likely due
to the complexity of learned classes whose details are hard
to capture in a joint latent space. To overcome this issue
we propose carefully designing the latent space and im-
plementing test-time training to take the given geometric
information of the input space into account directly. This
allows us to produce restoration shapes that accurately repre-
sent the fractured area and produce a consistent joint shape,
see Figure 1.

Contributions. We make the following contributions:

• A new pipeline for generating accurate restoration
shapes in the setting of volumetric shape completion.

• An analysis and optimization of the network architec-
ture for shape restoration proposed in (Lamb et al.,
2022a).

• The introduction of test-time training for shape restora-
tion, which requires precise alignment and greatly ben-
efits from this approach.
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Fractured Input Missing Restoration Part

Combined

(a) Ground Truth (b) DeepMend (c) Ours with test-time training

Figure 1. Overview about our method. While DeepMend gets a good rough estimation for the fractured (upper left) and restoration shape
(upper right), we get via test-time training much sharper and more detailed shapes, especially w.r.t. the break surface. This results in
restoration shapes that fit much better to the original input fractured shape (bottom). In particular, 3D printing as an application case will
benefit from our approach.

• Code for Test-Time Training can be found here:
https://github.com/mschopfkuester/
shape_completion_ttt

• Experiments on several datasets showing the advan-
tages of the introduced changes.

2. Notation and Problem Description
In this section, we introduce the notation used throughout
the paper and formalize the problem of shape restoration.

We assume that a fractured shape F ⊂ R3 is given as input
which is a partial version of a complete shape C ⊂ R3.
Therefore, it holds F ⊂ C. Our goal is to find the (with
F disjoint) restoration shape R ⊂ R3 which completes F
when merged together, i.e. C = F ∪̇R. See Figure 2 for a
visualization.

We do not predict the complete shape directly, but the frac-
tured and restoration shape separately. This ensures we can
learn structural details about the relationship between the
fractured and restoration part. We need a few considerations
to reformulate the problem accordingly. Therefore we in-
troduce a so called break set B ⊂ R3 such that both, the
fractured shape F and restoration shape R, can be described
as the intersection of the predicted complete shape and the
break set (or its complement), i.e.

F = C ∩B and R = C ∩BC . (1)

This allows to model F and R separately (and pairwise

disjunctive) from each other but also guarantees an (inner)
relationship between both shapes.

We describe the surface of all shapes by occupancy functions
oS(x) : R3 → {0, 1}, S ∈ {F,R,C,B}, such that for a

(a)
Fractured

(b)
Restoration

(c)
Complete

Figure 2. Visualization of the problem setting: Given a fractured
shape F (a), we want to predict the missing restoration shape R
(b) such that we get the complete shape C = F ∪R (c).
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certain point x ∈ R3 it holds that

oS(x) =

{
1, x is inside the shape S,

0, other.
(2)

In the binary formulation, oF and oR can be easily rewritten
in the following from oC and oB :

oF (x) = oC(x) · oB(x), (3)
oR(x) = oC(x) · (1− oB(x)). (4)

This allows an efficient on-the-fly conversion between all
entities.

3. Related Work
In this section, we provide an overview of general 3D gen-
erative models as well as shape completion approaches.

3.1. 3D Generative Models

Generating 3D geometry has been a widely studied
field (Dai et al., 2017; Luo & Hu, 2021; Qiu et al., 2023)
which has greatly benefited from the advances in implicit
representations due to their flexibility (Park et al., 2019;
Erkoç et al., 2023). These methods are fundamentally dif-
ferent from mesh-based methods like deformation mod-
els (Loiseau et al., 2021) or parametric shape models (Zuffi
et al., 2018) which rely on a fixed template or topology and,
thus, are limited in the shapes they can represent. Com-
bining both can lead to great results but might suffer from
inconsistencies between them (Poursaeed et al., 2020; Mehta
et al., 2022). Generative models based on neural fields can
handle different classes and be conditioned with arbitrary
modalities, for example, images (Gao et al., 2022; Liu et al.,
2023), text (Qiu et al., 2023; Lin et al., 2023), or latent
code manipulation (Park et al., 2019; Zeng et al., 2022; Hu
et al., 2024). A special case of generative modeling is shape
completion, which takes an incomplete or broken shape as
input and aims to generate the full object.

3.2. Shape Completion

The partial input can either be an incomplete point cloud or
a partial volumetric shape for which semantic information
is necessary for completion. A partial point cloud or mesh
has identifiable holes which can be closed without any in-
formation about the object class, for example by Poisson
reconstruction which generates water-tight surfaces out of
any oriented point cloud (Kazhdan et al., 2006), by filling the
hole with structurally fitting patches (Hanocka et al., 2020)
or using learned class features (Chibane et al., 2020). Learn-
ing class-based priors for point cloud completion allowing
to complete more severe degradation is also possible (Sun
et al., 2022; Zhu et al., 2023; Cui et al., 2024).

In a volumetric representation, the boundaries of holes are
harder to identify, and semantic information about the prop-
erties of the full shapes in this class is necessary. One of the
first works in this direction applied convolutions on voxel
grids in a coarse-to-fine manner to complete incomplete
depth fusions (Dai et al., 2017). However, voxel methods
require a lot of memory to represent fine details. With
(Sellán et al., 2022) and (Lamb et al., 2023) two datasets
with complex fractured shapes were published recently. A
huge step towards more efficient detail generation was made
in DeepSDF (Park et al., 2019) which learns to predict
a signed distance function (SDF) with a neural network.
DeepSDF can do both, sample new instances from a class
as well as complete partial shapes. However, a strong class
prior learned by the network can lead to semantically mean-
ingful but not well-aligned completed shapes.

In applications where a tight fit to the input is necessary,
for example, 3D printing replacement parts of broken ob-
jects (shape restoration), this is a problem. This can be
avoided by requiring additional information, like an image
of the complete shape (Galvis et al., 2024). Another so-
lution was proposed by DeepMend (Lamb et al., 2022a)
and DeepJoin (Lamb et al., 2022b) in explicitly modeling
the fractured region and the fit of the generated part to the
fracture. Due to the more general setup, where only the
occupancy of the shapes is needed, we focus on (Lamb
et al., 2022a). We provide a more detailed description of
DeepMend in Section 4.1. But like many generative meth-
ods, DeepMend suffers from over-smoothing behavior from
having a single network for many objects, as we can see in
our numerical experiments. To that end, we propose using
test-time training for shape restoration which can adjust the
network weights to the input and ensure that a tight fit is
possible.

3.3. Test-Time Training

The power of learning methods normally comes from huge
generalization capabilities based on the training data. How-
ever, examples that stray from the training distribution might
only be captured sufficiently but not perfectly – often seen
in slightly too smooth test results. Finetuning the network
(or parts of it) during interference can prevent this in applica-
tions, where it is possible to do self-supervised adaption and
where inference time is not critical. This so-called test-time
training was proposed in (Sun et al., 2020) for generalizing
under distribution shifts and has been applied in different
applications like robust classification (Gandelsman et al.,
2022) and sketch-based image retrieval (Sain et al., 2022).
To the best of our knowledge, this work is the first to use
test-time training to improve the geometric consistency in
learning-based shape completion approaches by overfitting
the network weights to match the (fractured) input shape.
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Figure 3. Network architecture of (Lamb et al., 2022a). The archi-
tecture is separated into two parts which predict the occupancy
of the complete shape oC and the break set oB respectively. The
input for both parts is the point coordinate x ∈ R3 and a latent
code describing the geometry. Via Equation (3) and Equation (4)
we can calculate the occupancies of the fractured shape oF and the
restoration shape oR. We define the skip connection with ⊕ and
the multiplication of the outputs of the two networks with ⊙.

4. Background
In this section, we introduce the most relevant previous
work, DeepMend (Lamb et al., 2022a), which tackles the
shape restoration problem and on whose network architec-
ture our work is built, in more detail.

4.1. DeepMend

DeepMend (Lamb et al., 2022a) learns to predict the oc-
cupancy functions oC and oB , as defined in Section 2, via
neural networks and thus learns a representation for the re-
lationship between the fractured and restoration shape that
generalizes well to new class instances. The network archi-
tecture is an auto-decoder based on DeepSDF (Park et al.,
2019) which has as input parameters a latent code and a
point x ∈ R3 and predicts the corresponding occupancy
values oC(x) and oB(x). The latent code is optimized di-
rectly on every instance without a trained encoder with a
decoder-only framework, see DeepSDF for details.

To predict the occupancy of the complete shape oC(x),
(Lamb et al., 2022a) uses a network fθ1 consisting of a
8-layer MLP with a skip connection after the fourth layer
and a 128-dimensional latent code zC as input. A similar
network gθ2 is used to predict the break set but without a
skip connection and a smaller latent code zB as input. The
exact architectures can be found in (Lamb et al., 2022a).
See also Figure 3 for an overview.

Training and Inference For model training (Lamb et al.,
2022a) considers the binary cross-entropy loss (BCE) LS

between the true target Ŝ and the corresponding prediction

S for each of the four sets F,R,C,B:

LS =
∑
x

BCE(oS(x, zB , zC , θ1, θ2), oŜ(x)). (5)

The specific terms can be derived from Equation (3) and
Equation (4). Each object class is trained separately and
until the chamfer distance error on the validation set is min-
imal. Dropout is used on all hidden layers. During training,
the network parameters θ1 and θ2 are jointly optimized with
the instance-specific latent codes zB and zC :

{ẑjB}, {ẑ
j
C}, θ̂1, θ̂2 = argmin

{zj
B},{zj

C},θ1,θ2
Ltrain

= argmin
{zj

B},{zj
C},θ1,θ2

LC + LB + LF + LR,

(6)

where LC ,LB ,LF ,LR are the respective binary cross-
entropy losses for the complete shape, break set, frac-
tured, and reconstruction shape for the training examples
j = 1, . . . , n. The losses are taken from Equation (5). Dur-
ing inference, only the latent codes are optimized and the
fractured shape is given as input, such that we calculate

ẑB , ẑC = argmin
zB ,zC

LF + Lreg (7)

for each test object separately. Here Lreg is a combina-
tion of different penalty terms to ensure that the predicted
restoration shape is not empty and near the fractured shape.
The final shape is then inferred as fθ1(ẑC). For more infor-
mation see (Lamb et al., 2022a).

5. 3D Shape Restoration
In this section, we introduce our method to complete frac-
tured shapes based on test-time training. We build upon
the fact that while predicting the rough geometry of the
whole shape is important, it is equally important to fit the
prediction exactly to the partial input to not create artifacts
around the break points and, for example, allow a properly
fitting spare part to be printed, see Figure 1. To that end, we
apply test-time training on the network weights to allow a
tight fit to the input geometry, see Section 5.1. Addition-
ally, we perform an analysis of the network architecture and
loss functions used in (Lamb et al., 2022a) to increase the
performance, see Section 5.2.

5.1. Test-Time Training

During test-time training, the model’s weights are finetuned
using input data during inference (Sun et al., 2020). Mod-
els trained on complex classes often overlook finer details,
resulting in smoothed edges and missing details, as seen
in (Lamb et al., 2022a). By incorporating the detailed ge-
ometric information from the input fractured shape into
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Figure 4. Pipeline of our method with test-time training. After only optimizing the latent code to get a rough prediction of the restoration
shape (blue, this is the pipeline of DeepMend (Lamb et al., 2022a)), we use the predicted complete shape as well as the input fractured
shape to finetune all network parameters and therefore get a more detailed restoration shape (red, our addition).

test-time training, we achieve better geometric consistency,
as demonstrated in our experiments.

Since the full shape is unknown during inference, the train-
ing procedure must be adapted to a self-supervised loss
function. To that end, we predict the complete shape C us-
ing the normally trained network, conditioned on the input
fractured shape F̂ . Then, we get the corresponding restora-
tion shape R̂ := C\F̂ and use F̂ as well as R̂ to finetune the
network with two loss functions, preserving their geometry:

ẑB , ẑC , θ̂1, θ̂2 = argmin
zB ,zC ,θ1,θ2

LTTT

= argmin
zB ,zC ,θ1,θ2

LF + α · LR. (8)

In LF the geometry of the input shape is aligned and incen-
tives the network to tightly fit to the known details. To pre-
vent complete overfitting onto F̂ and an empty restoration
shape, the class information from the pretrained network
is preserved implicitly in LR. We choose α = 0.1 in all
experiments. The network is trained for 3000 epochs during
test-time training.

5.2. Network Architecture

In addition to the test-time training, we conducted an analy-
sis of the network architecture used in (Lamb et al., 2022a)
and propose two changes that increase the performance:

1. First, we increase the dimensionality of the latent codes
zC and zB . To properly capture geometric details a
larger latent space is beneficial, especially if the details
can be fine-tuned during test-time training. We see
optimal results with dim zC = dim zB = 200.

2. We change the design of the skip connection. In Deep-
Mends architecture the skip connection replaces part

of the neurons of the hidden layer instead of con-
catenating them. This architecture design reduces
the usable latent dimensionality as well as the ex-
pressivity of the network. Instead we concatenate
the information such that the hidden dimension is
512 + dim z + dimx = 715 instead of 512.

Overall, these changes increase the number of parameters
of our network design, which makes it harder to train (see
Table 1 DeepMend vs. Ours w/o TTT). However, in com-
bination with the test-time training the additional degrees
of freedom allow us to represent the input data a lot more
accurately.

6. Experiments
6.1. Implementation Details

Experiments are run in Pytorch 2.0.1 with CUDA version
11.7. All experiments are trained and evaluated on one
NVIDIA GeForce RTX 3090 and AMD Ryzen 9 5900.
Training one model took 8 hours, inference of the latent
code 20 minutes and test-time training additional 30 min-
utes. The inference time for (Lamb et al., 2022a) was 45
minutes. Our model has 3,206,652 parameters and needs
2.03 · 109 additions and multiplications for one forward
pass while (Lamb et al., 2022a) has 2,931,964 parameters
and needs 1.896 · 109 additions and multiplications for one
forward pass. We used Adam optimization with a learn-
ing rate of 5 · 10−4 for the network parameters and 10−3

for both latent codes. The choice of the hyperparameters
for inference are taken over from (Lamb et al., 2022a) and
can be found there. For all experiments, we use Marching
Cubes (Lorensen & Cline, 1987) to generate meshes from
the implicit representation.
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DeepSDF DeepMend Ours w/o TTT Ours w/ TTT
Mean Median Mean Median Mean Median Mean Median

airplanes 2.36 0.61 6.37 1.92 4.67 0.98 1.78 0.49
bottles 4.37 1.43 5.94 0.45 6.56 0.35 5.09 0.35
cars 5.18 3.07 4.70 2.60 5.21 2.82 3.15 1.14
chairs 8.36 5.31 20.08 9.50 21.69 12.57 11.13 1.5
jars 13.65 5.93 37.92 6.65 28.52 6.95 16.40 1.50
mugs 4.26 1.00 5.27 3.02 5.34 1.02 3.24 1.21
sofas 4.29 2.60 8.10 3.57 9.39 4.13 5.60 1.73
tables 8.41 3.35 28.23 9.59 26.74 12.28 17.25 4.98
Mean 6.36 2.91 14.58 4.65 13.52 5.14 7.96 1.43

Table 1. Chamfer Distance (·10−4) for the ShapeNet Dataset (Chang et al., 2015) on Dataset 1 in which the complete shapes have 5−20%
percent of their volume removed. Lower is better. The best value within each class is set bold.

DeepSDF DeepMend Ours w/o TTT Ours w/ TTT
Mean Median Mean Median Mean Median Mean Median

airplanes 12.23 4.29 8.35 1.49 5.66 1.1 4.18 1.41
bottles 15.79 8.07 11.84 9.41 13.85 9.37 13.7 9.04
chairs 49.97 29.88 22.34 10.1 24.23 16.27 24.67 12.30
jars 74.86 69.97 35.29 22.82 38.27 25.51 32.63 17.04
mugs 42.13 11.18 15.09 6.2 16.19 5.06 15.23 4.71
sofas 27.10 17.36 11.44 7.6 11.31 6.0 9.84 4.78
tables 43.29 28.52 27.63 20.57 21.89 13.08 18.79 7.62
Mean 33.62 24.18 18.85 11.17 18.77 10.21 17.00 8.13

Table 2. Chamfer Distance (·10−4) for the ShapeNet Dataset (Chang et al., 2015) on Dataset 2 in which the complete shapes have
45− 55% of their volume removed. Lower is better. The best value within each class is set bold.

6.2. Dataset

We evaluate our method on ShapeNet (Chang et al., 2015)
which contains over 50 000 real-world scanned 3D objects
of different classes. We train each object class separately
and use a 70/15/15 train/validation/test-split and 240 ob-
jects per class.

For preprocessing we fracture all objects using the approach
of (Lamb et al., 2021). For different levels of complexity
we create two different settings in which the percentage of
removed volume varies. In Dataset 1 the complete shapes
have 5 − 20% of their volume removed, and in Dataset 2
it is 45 − 55%. We sample random points within the unit
cube, calculate the signed distance function to determine
if each point is inside or outside the mesh, and use this
information to compute the occupancy of the the shape at
the given points.

6.3. Metric

As evaluation metric we use the Chamfer distance (CD)
between the ground-truth and predicted complete shape. It

is defined as follows:

dCD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

∥x− y∥22

+
1

|Y |
∑
y∈Y

min
x∈X

∥x− y∥22 , X, Y ⊂ R3. (9)

6.4. Comparison

We compare ourselves to two main competitors. First, the
classic method of DeepSDF (Park et al., 2019) which pre-
dicts the full SDF from a given partial shape. Second, the
approach of DeepMend (Lamb et al., 2022a) which, while
based on DeepSDF, proposed the separation into fractured
and restoration shape. All tables also contain ”Ours w/o
TTT” which is our adapted network architecture of Deep-
Mend (see Section 5.2) but without test-time training during
inference. Notice that test-time training cannot be applied
to DeepSDF directly as fine-tuning the complete shape to
the input directly would lead to a complete overfitting of the
input.

Our test-time training does add additional compute during
inference. To make the comparison fairer, we reduce the
number of training iterations for our method by the amount
we use for test-time training. This means for every single
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Figure 5. Qualitative examples of the different methods. Rows 1-3 and 6 are taken from Dataset 1, Rows 4-5 are from Dataset 2. Even
though the Chamfer distance does not change much, the ability of our method to fit the fractured shape well, does visually a huge
difference.

example all methods had the same computing power at their
disposal.

6.5. Results

Dataset 1, Low Partiality Table 1 summarizes the errors
on Dataset 1, which contains examples in which 5− 20% of
the shapes are removed, for DeepSDF, DeepMend and our
model with and without test-time training. For each class,
the mean and median of the Chamfer distance over all test
objects within one class is depicted. We can observe that

the small adjustments of the network architecture (dimen-
sion of latent code, skip connection, see Section 5.2) led
to improvements over DeepMend in most classes. Using
test-time training, we improve the CD of our model in each
category and overall by 41 percent (by even more for the
median distance). Even though DeepSDF beats our model
w.r.t. the mean most of the time, our median is lower in 6
of 8 categories. For a better understanding of the different
behavior for mean and median, we refer to cumulative error
curves in Figure 6. We see that our model produces more
objects with a lower error but also a few bad outlier which
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Figure 6. Logarithmic cumulative error curves (higher is better) of the chamfer distance (CD) for the different classes of Dataset 1. We
compare our approach with test-time training against DeepSDF. We see that our model produces for more objects a smaller Chamfer
distance, even though our model has more outliers.

influences the mean a lot. An example for this behaviour
can be found in Row 6 of Figure 5.

Dataset 2, High Partiality The second dataset presents
a bigger challenge as the removed volume is increased to
45− 55%. The results in Table 2 show that, as for Dataset
1, our method tends to perform slightly better than Deep-
Mend before test-time training and significantly better after.
However, test-time training only improves by 9.4% which
is due to the fact that the restoration part takes up around
half of the shape on which the test-time training has less
influence. Interestingly, DeepSDF performs much worse
in this category than with less partiality. Our assumption
for this behaviour lies in the different frameworks of the
methods: While DeepMend as well as our model is specifi-
cally designed to learn a meaningful relationship between
the fractured and restoration shape, DeepSDF has to encode
the entire class geometry in a single model which leads to
complex problems under harsh partiality. An indicator for
this is that DeepSDF does perform quite well on the bottles
class, which has the least intraclass variations, and is, thus,
easier to capture in a single model.

Qualitative Results We show some qualitative examples
of all methods in Figure 5. In the first and second row,
we can see that all base models tend to overestimate the
restoration part, but this behavior is drastically reduced with
test-time training. Row 3 shows an example with a very
fine detail that is not predicted by any of the base models.
While without test-time training the beak of the vase is
ignored, our model can adapt to these details such that we
obtain better results for the restoration shape. Cases like

this happen quite often and do not change the reconstruction
error significantly because the details are quite small, but
qualitatively the preservation of such details makes a big
difference.

A similar but more extreme effect can be observed in row 4
where the vase contains a plant, a case which is not covered
in the training data. Due to the test-time training, we can
adapt to this while the other methods cannot. The shape
of the complete vase is not quite correct but there is also
no information in the original fractured shape about the
geometry of the lower part.

6.6. Ablation Study

We evaluate the best latent dimensionality as well as the
effect of the test-time training. The difference between
using test-time training and not using it is reported in the
complete results of Table 1 and Table 2.

To evaluate the effect of the size of the latent space, we
choose dim zC = dim zB and train all models on the mugs
object class. We find that the model performance decreases
when we increase the dimensionality of the latent code
drastically. One explanation for this observation could be
that too many degrees of freedom prevent learning of class
information and instead overfit on the training data. The
results are reported in Table 3. We used the best result of
the ablation study, dim zC = dim zB = 200 for all our
experiments.
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dim zC dim zB dim zC + zB CD
128 64 192 1.9
100 100 200 1.4
200 200 400 1.2
300 300 600 3.6
400 400 800 3.1
500 500 1000 3.8
600 600 1200 3.9
1000 1000 2000 4.4
1300 1300 2600 6.0

Table 3. Ablation study for the dimension of the latent Code.

7. Conclusion
We proposed a new framework to solve the 3D volumet-
ric shape restoration problem by using test-time training.
The problem of shape restoration requires a combination of
broad class knowledge but also the ability to very accurately
fit to the input shape which is a setting particularly suited for
test-time training. A simple class-wise trained network does
often dismiss small geometric details, but we are able to
retain them through finetuning during inference. Addition-
ally, we have proposed several network improvements for
DeepMend (Lamb et al., 2022a) and shown the effectiveness
of our new pipeline on ShapeNet with two different levels
of partiality.
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