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ABSTRACT

Datasets often possess an intrinsic multiscale structure with meaningful descrip-
tions at different levels of coarseness. Such datasets are naturally described as
multi-resolution clusterings, i.e., not necessarily hierarchical sequences of par-
titions across scales. To analyse and compare such sequences, we use tools
from topological data analysis and define the Multiscale Clustering Bifiltration
(MCbiF), a 2-parameter filtration of abstract simplicial complexes that encodes
cluster intersection patterns across scales. The MCDbiF is a complete invariant of
(non-hierarchical) sequences of partitions and can be interpreted as a higher-order
extension of Sankey diagrams, which reduce to dendrograms for hierarchical se-
quences. We show that the multiparameter persistent homology (MPH) of the
MCDbiF yields a finitely presented and block decomposable module, and its stable
Hilbert functions characterise the topological autocorrelation of the sequence of
partitions. In particular, at dimension zero, the MPH captures violations of the re-
finement order of partitions, whereas at dimension one, the MPH captures higher-
order inconsistencies between clusters across scales. We then demonstrate through
experiments the use of MCbiF Hilbert functions as interpretable topological fea-
ture maps for downstream machine learning tasks, and show that MCbiF feature
maps outperform both baseline features and representation learning methods on
regression and classification tasks for non-hierarchical sequences of partitions.
We also showcase an application of MCbiF to real-world data of non-hierarchical
wild mice social grouping patterns across time.

1 INTRODUCTION

In many applications, datasets possess an intrinsic multiscale structure, whereby meaningful descrip-
tions exist at different resolutions or levels of coarseness. Think, for instance, of the multi-resolution
structure in commuter mobility patterns (Alessandretti et al.,[2020; |Schindler et al., [2023)), commu-
nities in social networks (Beguerisse-Diaz et al. [2017) and thematic groups of documents (Blei
et al., 2003} |Grootendorst, |2022)); the subgroupings in single-cell data (Hoekzema et al., 2022) or
phylogenetic trees (Chan et al., [2013)); and the functional substructures in proteins (Delvenne et al.|
2010; Delmotte et al.,[2011). In such cases, the natural description of the data goes beyond a single
clustering and consists of a multiscale sequence of partitions parametrised by a scale parameter t.
Traditionally, multiscale descriptions have emerged from hierarchical clustering, with ¢ as the depth
of the dendrogram (Carlsson & Mémoli, 2010; Murtagh & Contreras, |2012). However, in many real-
world applications, the data structure is multiscale yet non-hierarchical. For example in temporal
clustering, where t corresponds to physical time (Rosvall & Bergstrom, [2010; [Liechti & Bonhoef-
fer] 2020} [Bovet et al. 2022); in topic modelling and document classification, where ¢ captures the
coarseness of the topic groupings (Altuncu et al., 2019; [Fukuyama et al.,|2023}; [Liu et al., [2025)); or
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in clustering methods that exploit a diffusion on the data geometry, where ¢ is the increasing time

horizon of the diffusion (Coifman et al},[2003}; [Azran & Ghahramanil, 2006} [Lambiotte et al.,2014).

A natural problem is then how to analyse and compare non-hierarchical, multi-resolution sequences
of partitions parametrised by the scale t. Here we address this question from the perspective of
topological data analysis (Carlsson & Zomorodian), [2009; [Carlsson et al.,[2009; [Botnan & Lesnickl,
by introducing the Multiscale Clustering Bifiltration (MCbiF), a 2-parameter filtration of
abstract simplicial complexes that encodes the patterns of cluster intersections across all scales.

Problem definition. A partition 7 of set X = {x1,x2,...,xn} is a collection of mutually exclu-
sive subsets C; C X (or clusters) that cover X, i.e., # = {C1,...,C.} such that X = Ule C;
and C; (N C;j = 0, Vi # j. We denote the cardinality as || = ¢, and 7; for the i-th cluster C; of .
Let ITx denote the space of partitions of X. We write m < «’ if every cluster in 7 is contained in
a cluster of 7’. This refinement relation constitutes a partial order and leads to the partition lattice

(ITx, <) with lower bound 0 := {{z1},...,{zx}} and upper bound 1 := { X'} (Birkhoff, 1967).

Here, we consider a sequence of partitions defined as 0 : [t;,00) — IIx, t — 0(t) € Iy, ie.,
a piecewise-constant function that assigns a partition of X to each ¢. The scale ¢ has M change
points t1 < to < ... < tpr, so that 0(t) = 0(t,,) for t € [tm,tms1), m = 1,..., M — 1,
and 0(t) = O(tpr) for ¢ € [tar,00). The sequence 6 is hierarchical in [s,t] if we have a strict
sequence of refinements: either agglomerative (8(r1) < 6(r3),Vri,ra € [s,t] with r1 < r3) or
divisive (0(r1) > 6(r2), Vri,re € [s,t] with 11 < 73). We say that 6 is strictly hierarchical if
it is hierarchical in [t1,00). The sequence 6 is called coarse-graining if |0(s)| > 0(t)], Vs < tﬂ
Conversely, 0 is called fine-graining if |0(s)| < |0(t)], Vs < t.

Our goal is to characterise and analyse sequences of partitions 6, including non-hierarchical ones, in
an integrated manner, taking account of memory effects across the scale .

Remark 1. Here, we are not concerned with the task of computing the multiscale clustering (i.e.,
the sequence of partitions 0) from dataset X, for which several methods exist. Rather, we take 0 as
a given, and aim to analyse its structure.

Remark 2. This problem is distinct from consensus clustering, which aims to produce a summary
partition by combining a set of partitions obtained, e.g., from different optimisations or clustering

algorithms (Strehl & Ghosh| [2002} [Vega-Pons & Ruiz-Shulcloper, [2011).
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Figure 1: (a) The MCbiF encodes the structure of a non-hierarchical sequence of partitions 6 as
a bifiltration of abstract simplicial complexes K*! (see Example . (b) The Hilbert functions
HF(s,t) of the MCbiF are invariants that capture the topological autocorrelation of §: violations
of the refinement order at dimension k£ = 0, and higher-order cluster inconsistencies at dimension
k = 1. The HF (s, t) can be used as feature maps for downstream machine learning tasks.

!Coarse-graining is equivalent to non-decreasing mean cluster size (see Remarkin Appendix .



Published as a conference paper at ICLR 2026

Contributions. To address this problem, we define the MCbiF, a bifiltration of abstract simpli-
cial complexes, which represents the clusters and their intersection patterns in the sequence 6 for
varying starting scale s and lag ¢ — s (Fig.[I). The MCDiF is a complete invariant of ¢, and we
use the machinery of multiparameter persistent homology (MPH) (Carlsson & Zomorodian, 2009
Carlsson et al., [2009; Botnan & Lesnick, |2023) to summarise its topological structure. We prove
that the MCbiF leads to a block decomposable persistence module with stable Hilbert functions
HF(s,t), and we show that these invariants characterise the fopological autocorrelation of the se-
quence of partitions € across scales. In particular, the HF (s, t) quantify the non-hierarchy in € in
complementary ways: at dimension k = 0, it detects the lack of a maximal partition in the subposet
6([s, t]) with respect to refinement; at dimension k = 1, it quantifies higher-order inconsistencies
of cluster assignments across scales. In contrast, baseline methods such as ultrametrics (Carlsson &
Meémoli, [2010) or information-based measures (Meila, 2003) are restricted to pairwise comparisons
between elements or clusters, respectively; hence, they cannot detect higher-order cluster inconsis-
tencies. Furthermore, we provide an equivalent nerve-based construction of the MCDbiF that can be
interpreted as a higher-order extension of the Sankey diagram of the sequence of partitions. In par-
ticular, for the hierarchical case, the O-dimensional MCbiF Hilbert function can be obtained from the
number of branches in the Sankey diagram, which reduces to a dendrogram. Finally, we show that
HF (s, t) provide interpretable feature maps usable for downstream machine learning tasks. In our
experiments, the MCDbiF feature maps outperform both baseline features and representation learning
methods on regression and classification tasks for non-hierarchical sequences of partitions. We also
showcase an application of MCDbiF to real-world data of non-hierarchical wild mice social grouping
patterns across time (Bovet et al., 2022)).

2 RELATED WORK

Dendrograms and Ultrametrics. A hierarchical, coarse-graining sequence ¢ with 6(¢t; = 0) = 0

and 0(ty) = 1 is called an agglomerative dendrogram, and can be represented by an acyclic rooted
merge tree (Jain et al.| [1999; |Carlsson & Mémoli, 2010). One can define an ultrametric Dy from
the first-merge times, which follows from the depth in the dendrogram. |Carlsson & Mémoli| (2010)
showed there is a one-to-one correspondence between agglomerative dendrograms and ultrametrics
that can be used to efficiently compare dendrograms using the Gromov-Hausdorff distance between
the ultrametric spaces (Mémoli et al., 2023). When 6 is non-hierarchical, however, first-merge
times no longer define the sequence uniquely, as merged clusters can split again. Hence, 6 cannot
be represented by a tree, and Dy does not fulfil the triangle inequality in general. As a result,
ultrametrics cannot be used to analyse and compare non-hierarchical sequences of partitions (see
Section [@).

Pairwise Comparison of Partitions. Different measures to compare pairs of partitions have been
introduced in the literature. The Adjusted Rand Index (ARI) is the chance-corrected Rand Index that
compares clusterings by counting elements that are assigned to the same or different clusters (Hu-
bert & Arabie} |1985)). Information-based measures compute the information gain and loss between
two partitions using the Conditional Entropy (CE) or the Variation of Information (VI), which is a
metric on IIx (Meila, [2003}|2007) (see formulas in Appendix E]) The Maximum Overlap Distance
(MOD), which is also a metric on Il x, measures the minimal classification error when one partition
is assumed to be the correct one (Peixotol [2021). A key limitation of all these measures is that
they rely only on pairs of partitions and cannot capture higher-order cluster inconsistencies; yet ex-
tending them to more than two partitions is non-trivial. In consensus clustering, the average of the
pairwise ARI, VI or MOD between the partitions in a set is used as a consensus index (Vinh & Epps),
2009; | Vinh et al.,|2010). However, these average measures are insensitive to ordering and so cannot
capture memory effects in sequences of partitions.

3 THE MULTISCALE CLUSTERING BIFILTRATION (MCBIF)

The central object of our paper is a novel bifiltration of abstract simplicial complexes that encodes
cluster intersection patterns in the sequence of partitions 6 across the scale t. For background on
simplicial complexes and bifiltrations, see Appendix
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Definition 3 (Multiscale Clustering Bifiltration). Given a sequence 6 : [t1,00) — Ilx, we define the
Multiscale Clustering Bifiltration (MCbiF), M, as a bifiltration of abstract simplicial complexes:

R S S U 0

t1<s<r<t Cel(r)

In this construction, each cluster C corresponds to a (|C| —1)-dimensional solid simplex AC' := 2¢,
which, by definition, contains all its lower-dimensional simplices (Schindler & Barahona, [2025)).
This echoes natural concepts of data clustering viewed as information compression or lump-
ing (Rosvall & Bergstrom, 2008; [2011}; [Lambiotte et al., 2014), and of clusters as equivalence
classes (Brualdi, 2010). The MCbiF then aggregates all clusters (simplices) from partition 6(s) to
6(t) through the union operators, such that a k-simplex o = [z1,...,xk+1] € K*' consists of ele-
ments that are assigned to the same cluster (at least once) in the interval [s, ¢], i.e., x1,...,Tx41 € C
for some cluster C' € 6(r), r € [s,t]. The bifiltration depends not only on the lag [t — s| but also
on the starting scale s, and captures the topological autocorrelation in the sequence of partitions, see
Fig. I} We first show that the MCbiF is indeed a well-defined bifiltration.

Proposition 4. M is a multi-critical bifiltration uniquely defined by its values on the finite grid
P ={(s,t) € [t1,.. ., tpm]X[t1, .-, tm] | s < t} withpartial order (s,t) < (s',t') ifs > ', t < t'.

The proof is straightforward, see Appendix [B.2] The MCbiF leads to a triangular commutative
diagram where arrows indicate inclusion maps between abstract simplicial complexes (Fig. [T). The
sequence of partitions 6(¢) is encoded by the complexes K¢ on the diagonal of the diagram, hence
the MCDbiF is a complete invariant of §. Moving along horizontal arrows corresponds to fixing
a starting scale s and going forward in the sequence 6, thus capturing coarse-graining. Moving
along vertical arrows corresponds to fixing an end scale ¢ and going backwards in 6, capturing fine-
graining. By fixing s := ¢; (top row in the MCbiF diagram), we recover the 1-parameter Multiscale
Clustering Filtration (MCF) defined by |Schindler & Barahona! (2025)), see Remark

Applying MPH to the bifiltration M at dimensions k < dim K, for K = K™ eads to a tri-
angular diagram of simplicial complexes Hy (K **) called persistence module (see Appendix .
We show in Proposition [27)in Appendix [B.2]that the MCbiF persistence module is pointwise finite-
dimensional, finitely presentable and block-decomposable (see|Botnan & Lesnick! (2023) for defini-
tions). These strong algebraic properties are important because they guarantee algebraic stability of
the MCbiF (Bjerkevik, 2021). In particular, the finite presentation property implies stability of the
MCDiF Hilbert functions HF (s, t) (see Eq.[12|in Appendix with respect to small changes in
the module (Oudot & Scoccola, 2024, Corollary 8.2.). This justifies the use of HF (s, t) as simple
interpretable invariants for the topological autocorrelation captured by in the following.

3.1 MEASURING TOPOLOGICAL AUTOCORRELATION WITH MCBIF

We now show how the topological autocorrelation measured by the HF(s,t) of MCbiF can be
used to detect cluster-assignment conflicts. We focus on dimensions £ = 0, 1 in this paper, where
HF(s,t) counts the number of connected components of K*! and HF(s,t) is the number of
1-dimensional holes in K% (see Appendix . We show below that the computation of these
invariants reveals different aspects of the non-hierarchy in the sequence of partitions.

Low-order Non-Hierarchy in Sequences of Partitions An important aspect of hierarchy is the
nestedness of the clusters in the sequence. We say that 6 is nested in [s, t] when ¥ry, 7o € [s,t], we
have that V C € 6(r1),C’ € 0(rz), one of the sets C'\ C’, C' \ C or C N C’ is empty. See Korte &
Vygen| (2012, Definition 2.12). We say that @ is strictly nested when 6 is nested in [t1, 00). It follows
directly that a hierarchical sequence 6 is always nested. However, the converse is not necessarily
true, as illustrated by the nested, non-hierarchical sequence in Fig.[2b. To quantify this low-order
non-hierarchy in sequence 6, we can compute the invariant HF (s, ¢) with its associated notion of
O-conflicts defined next. Recall that each partition 6(¢) can be interpreted as an equivalence relation
~ where x ~; y if 3 C € (t) such that z,y € C (Brualdi, 2010).

Definition 5 (O-conflict and triangle O-conflict). a) We say that 0 has a 0-conflict in [s,t] if the
subposet 0([s,t]) has no maximum, i.e., fr € [s,t] such that 0(r') < 0(r), Vr' € [s,t]. b) We say
that 0 has a triangle O-conflict in [s,t] if 3 x,y,z € X such that Ir1,r9 € [8,t]: T ~py Y ~py 2
and r € [s,1]: & oo y = 2.
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Next, we show that all triangle O-conflicts are 0-conflicts. Moreover, all O-conflicts break hierarchy,
and triangle O-conflicts additionally break nestedness.

Proposition 6. (i) Every triangle O-conflict is a O-conflict, but the opposite is not true. (ii) If 0 has a
0-conflict in [s, t], then 0 is non-hierarchical in [s,t]. (iii) If 0 is either coarse- or fine-graining but
non-hierarchical in [s,t], then 0 has a 0-conflict in [s,t]. (iv) If 6 has a triangle 0-conflict in [s, ],
then 0 is non-nested in [s, t].

See Appendix [B.2.1] for the simple proof. Fig. [Zb illustrates a O-conflict that is not a triangle O-
conflict, and Fig. [2c shows a triangle O-conflict. The following proposition develops a sharp upper
bound for HFj that can be used to capture O-conflicts.

Proposition 7. (i) HFo(s,t) < min,gioq[0(r)], V[s,f] C [t1,00). (ii)) HFo(s,t) <
min,¢(s4 |0(r)| iff 0 has a O-conflict in [s,t]. (iii) HFo(s,t) = [0(r)| for v € [s,t] iff O(r) is
the maximum of the subposet 0(]s, t]).

See Appendix for the proof. Proposition [7]shows that HFy measures low-order non-hierarchy
in 0 by capturing 0-conflicts. To quantify this, we introduce a global normalised measure for 6.

Definition 8 (Average O-conflict). Let T :=tps + % The average O-conflict is defined as:

2 r T HF(s,t)
OSEG:zl—i/ : ’ dsdt < 1. (2)
o(®) T —t1]? t, Js Mpglsy] HFo(r,7)

Higher values of ¢,(6) indicate a high level of O-conflicts and increased low-order non-hierarchy, as
shown by the next corollary.

Corollary 9. (i) If 0 is hierarchical in [s, t], then HF (s, t) = min(|0(s)|,|0(t)]). As a special case,
this implies HFo(t,t) = |0(t)], Yt > t1. (ii) ¢o(0) > 0 iff 0 has a 0-conflict. (iii) Let 0 be either
coarse- or fine-graining. Then, ¢o(0) = 0 iff 6 is strictly hierarchical.

See Appendix for the proof. Furthermore, we can detect triangle O-conflicts by analysing the
graph-theoretic properties of the MCbiF 1-skeleton K7 ' Proposition [30|in Appendix shows
that a clustering coefficient C(K; ’t) < 1 indicates the presence of a triangle O-conflict.

Higher-order Inconsistencies between Clusters in Sequences of Partitions Measuring 0-
conflicts in 6 is only one way of capturing non-hierarchy. An additional phenomenon that can arise
in non-hierarchical sequences is higher-order inconsistencies of cluster assignments across scales.
These are already captured by the 1-dimensional homology groups (Schindler & Barahonal [2025])
and the associated notion of 1-conflict, which we define next. Recall the definition of 1-cycles
Z1(K**) and non-bounding cycles Hy (K*?), see Eq in Appendix

Definition 10 (1-conflict). We say that 6 has a I-conflict in [s,t] if 3 21, ..., 2, € X such that the
I-cycle z = [w1,22] + -+ + [Tp_1, 2] + [Xn, 1] € Z1(K*") is non-bounding; in other words,
[z] € Hi(K*") with [z] # 0.

The number of distinct 1-conflicts in [s, ¢] (up to equivalence of the homology classes) is given by
HF(s,t). We first show that 1-conflicts also lead to triangle 0-conflicts and thus break hierarchy
and nestedness of 6.

Proposition 11. (i) HF(s,t) > 1 iff 0 has a 1-conflict in [s,t]. (ii) If 6 has a 1-conflict in [s, 1],
then it also has a triangle O-conflict. (iii) If 0 is hierarchical in [s, t], then HF(s,t) = 0.

See Appendix [B.2.1] for a proof. Proposition [IT] shows that a 1-conflict is a special kind of trian-
gle O-conflict arising from higher-order cluster inconsistencies across scales. This is illustrated in
Fig.|l|and Examples in Appendix |C| which present sequences of partitions where different
1-conflicts emerge across scales. Note that Proposition [TT] (iii) shows that the MCbiF has a trivial
1-dimensional MPH if 6 is strictly hierarchical.

Remark 12. The presence of a 1-conflict in [s,t] signals the fact that assigning all the elements
involved in the conflict to a shared cluster would increase the consistency of the sequence 6. Hence,
when a 1-conflict gets resolved (e.g., the corresponding homology generator dies in the MPH at
(s,t'), t < t'), then O(t') is called a conflict-resolving partition (Schindler & Barahonal [2025)).
This is illustrated in Example where a I-conflict gets resolved by 6(4) = 1, and Example@
where three different 1-conflicts get resolved one by one by partitions 6(7), 6(8) and 6(9).
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To quantify the presence of 1-conflicts in 8, we introduce an unnormalised global measure.
Definition 13 (Average 1-conflict). Let T' be as in Definition[8} The average I1-conflict is defined as:

) 9 T T
0<¢(0):= T—iF ), HF (s, t)ds dt. 3)

S

Corollary 14. ¢ () > 0iff 0 has a I-conflict. In particular, if 6 is strictly nested, then c¢1(0) = 0.

Figure[d]in Appendix [A]summarises all of our theoretical results and their relationships.

3.2 MCBIF AS A HIGHER-ORDER SANKEY DIAGRAM

Consider the definition of the Sankey diagram of the sequence of partitions provided in Section[E1]
and its associated representation as an M -layered graph with vertices V/,, at each layer representing
the clusters of 0(t,,), see Eq.@ Let us define the disjoint union A(¢, m) := V,W..wV,,,, 1 < £ < m,
which assigns an index to each cluster in 6(t) for ¢ € [ts, t,,]. Furthermore, recall that 6(¢); denotes
the i-th cluster C; of 6(t). The nerve-based MCbiF can then be defined as follows.

Definition 15 (Nerve-based MCbiF). Let s € [ty, tor1), £ =1,....,M—1,andt € [t typi1), m =
£ ... M —1ort > t,, form = M. We define the nerve-based MCDiF as

M = (K*Y),<oct, where K*':={oc C A({,m): ﬂ O(tn); # 0}. 4)
(n,i)€c
The nerve-based MCbiF M is a 1-critical bifiltration with simplices representing clusters and their
intersections, in contrast to the original MCbiF M (Eq.[I) in which simplices represent elements
in X and their equivalence relations. Despite these different perspectives, Proposition 34]in Ap-
pendix shows that M and M lead to the same MPH and can be considered as equivalent.
However, the dimensionality of M and M can differ, as shown in the following proposition.
(a) No conflict
Proposition 16. (i) dim K*" = max,<,<; maxceg(r |C| — )
LVt < s <t (i) dim Ktmotmen =, V1 < m < M,O < @--@ {z1,22})

{z1, 22,

n<M-m it vl-;@l {23, 24| T3, 24}
See proof in Appendix B:22] The nerve-based MCbiF is (57 0-conic
therefore computationally advantageous when the number of
scales M is smaller than the size of the largest cluster, M < {z3,24}
maxceg([t,,00)) |C|- The nerve-based M can be 1nterpreted as l{zl}
a higher-order extension of the Sankey dlagram S(6) (Eq. EI) {22}
Yet, unlike S(¢), which only records pairwise mtersectlons
between clusters in consecutive partitions of 6, M also ac-
counts for higher-order intersections between clusters in sub- {21, 22}
sequences of 6.
{=s, 24}
Proposition 17. The Sankey diagram graph S(0) is a strict
I-dimensional subcomplex of K = Ktvtv, Jp particular,
V,y = Ktmtm gnd B, = Ktmtm+1 Ym = 1,..., M — 1.
Hence, we can retrieve S(0) from the zigzag filtration [{z1, 4}
g r r ‘ o, T
o Ktmtn oy tmotmir o Jlmintos oy (5) sl

which is a subfiltration of the nerve-based MCbiF. Figure 2: Characterisation of con-

flicts in a single-layer Sankey dia-

See proof in Appendix [B.2.2] For details on zigzag persis- gram, following Proposition[T8}

tence, see(Carlsson & de Silva/(2010) and Appendix[E.4] Next,
we characterise the 0- and 1-conflicts that can arise in a single layer E,,, of the Sankey diagram.

Proposition 18. (i) There is a 0-conflict in [ty tm+1] iff Ju € Vi and v € Vi1 with deg(u) > 2
and deg(v) > 2, where deg denotes the node degree in the bipartite graph (V,, & V11, Ep)
associated with the Sankey diagram S(0). (ii) There is a triangle O-conflict in [t , tm+1] iff there is
a path of length at least 3 in Ey,. (iii) There is 1-conflict in [ty,, tmy1] iff there is a cycle in E,,.
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See Appendix for a proof and Fig. 2] for an illustration. Importantly, a cycle in E,, leads to a
crossing in F,, that cannot be undone ( Fig. ). Hence, Proposition(iii) implies that the sum of
the elements of the superdiagonal of HF; provides a lower bound for the minimal crossing number
of the Sankey diagram, %y defined in Eq.[I0}

Corollary 19. "M HF, (£, tim11) < Fo.

Remark 20. Note that 1-conflicts that arise across multiple partitions in the sequence (i.e., across
multiple layers of the Sankey diagram) do not necessarily lead to crossings. See Fig.|l|for a Sankey
diagram with no crossing despite the presence of a 1-conflict. However, we hypothesise that the
full HFy and HF' feature maps capture more complicated crossings that arise in the Sankey layout
across many layers. This insight is exploited in our computational tasks below.

4 MATHEMATICAL LINKS OF MCBIF TO OTHER METHODS

Ultrametrics. Given a sequence A with 6(t; = 0) = 0 and 6(t5;) = 1, let us define the matrix of
first-merge times conditioned on the starting scale s:

Dy s(x;,z;) :=min{t >s|3C € 0(t) : 2;,z; € C}. (6)

When s = 0, this recovers the standard matrix of first-merge times Dy := Dy ¢ in Section If 6
is hierarchical, i.e., an agglomerative dendrogram, then Dy is an ultrametric, as it fulfils the strong
triangle inequality: Dy(x,z) < max (Dy(z,y), Dg(z, 2)) Va,y,z € X. From Corollary [0 we have
that the number of branches in the agglomerative dendrogram at level ¢, which is given by |6(t)|, is
equal to HF (s, t) for any s < ¢. Hence, HF(s, t) contains the same information as the ultrametric
in the hierarchical case, see |Schindler & Barahonal (2025)) and Proposition@ If, on the other hand,
6 is non-hierarchical, triangle O-conflicts can lead to violations of the (strong) triangle inequality.

Proposition 21. The triplet x,y,z € X leads to a triangle O-conflict in [s,t] iff x,y, z violate the
strong triangle inequality for Dy s, i.e., Dy s(x,z) > max(Dg s(x,y), Do.s(y, ).

See Appendix for a proof and Fig. for an illustration. Proposition shows that ¢y (6)
measures how much the ultrametric property of Dy is violated. Recall that Dy , is a dissimilarity
measure that can be used to define a filtration (Chazal et al., 2014). We show in Proposition [35[in
Appendix B.3|that the 0-dimensional MPH of MCbiF corresponds to the O-dimensional MPH of the
Merge-Rips bifiltration constructed from Dy ,. In the hierarchical case, the Merge-Rips bifiltration
has trivial 1-dimensional MPH, as Dy fulfils the strong triangle inequality, and is thus equivalent to
the MCDbiF, whose 1-dimensional MPH is also trivial in the hierarchical case, see Proposition @

Conditional Entropy. The conditional entropy (CE) is only defined for pairs of partitions as the
expected information of the conditional probability of 6(t) given 6(s), denoted P, (see Eq. [15|in
Appendix . For the case M = 2 (i.e., only two partitions in the sequence 6), HF(¢1,t2) follows

directly from the spectral properties of the matrix P, ¢, Ptf‘tl interpreted as an undirected graph.

Proposition 22. HF(t1,t2) = dim(ker L) for graph Laplacian L = diag(P,,;, 1) — Pt2|t1Pt€|t1'

See Appendix for a proof. Note that P, only encodes the pairwise relationship between clus-
ters, and does not capture higher-order cluster inconsistencies. In particular, CE cannot detect 1-
conflicts arising across more than two scales, as seen in Example [39|in Appendix

5 EXPERIMENTS

5.1 REGRESSION TASK: MINIMAL CROSSING NUMBER OF SANKEY LAYOUT

Our first experiment considers a task of relevance in computer graphics and data visualisation: min-
imising the crossing number of Sankey diagram layouts (Zarate et al.| 2018 |Li et al., |2025). This
minimisation is NP-complete. Here we use our MCbiF feature maps to predict the minimal crossing
number Ry (Eq. |l 1) of the Sankey diagram S(6) of a given sequence of partitions 6 (see Section.

We build synthetic datasets by sampling randomly from I}/, the space of coarse-graining sequences
of partitions of N elements with M change points, see Definition 0] in Appendix Setting
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M = 20, we generate two datasets of 20,000 random sequences 6 € H%[ for N =5and N = 10.
For each 6, we compute five feature maps: CE, ARI, MOD (see Section , and our MCDbiF Hilbert
functions (HFy and HF;). To benchmark against representation learning, we also consider the (non-
unique) raw label encoding of 6 given by the N x M matrix whose m-th column contains the labels
of the clusters in 6(t,,) assigned to the elements in X, and the Sankey graphs S(0) (Eq.[9). Our
prediction target is y = Ry (Eq. [[I), the minimal crossing number of the layout of the Sankey
diagram, as computed with the OmicsSankey algorithm (Li et al} 2025). See Section E] for
details. We expect that predicting y becomes harder for NV = 10 because the increased complexity
of IT%) allows for more complicated crossings in the Sankey diagram.

As a preliminary assessment, we compute the Pearson correlation, , between the crossing number
y and summary statistics of the five feature maps under investigation: the consensus indices VI,
ARI and MOD, and the MCbiF average measures ¢y and ¢;. The correlation between the consensus
indices and y is low, higher for ¢y, and highest for ¢; (r = 0.47 for N = 5,10) (see Fig. @]
in Appendix [D.I). This is consistent with our theoretical results in Section which show the
relation between the crossing number and HF; (see Corollary [T9).

Table 1: Regression task. Test R? score of LR, CNN, MLP and GCN models trained on different
feature sets for N = 5 and N = 10. See Appendixfor confidence intervals and train R? scores.

Raw label Sankey
N | Method | encoding graph HF, HF; HF, & HF, CE ARI MOD

LR 0.078 - 10147 0486 0.539 0392 0.166 0.413
5 | oNN 0.267 - 10155 0504  0.544 0492 0422 0.354
MLP 0.104 - 10150 0491 0.541 0409 0214 0.351

GCN - 0416 | - - - - - -
LR 0.038 - 10214 0448 0.516 0457 0246 0.345
10 | CNN 0.072 - 0211 0448 0.507 0454 0294 0312
MLP 0.036 - 0212 0450 0.514 0458 0256 0.246

GCN - 0229 | - - - - - -

For the regression task of predicting kg, we split each dataset into training (64%), validation (16%)
and test (20%). For each feature map (or their combinations), we train three models: linear re-
gression (LR), multilayer perceptron (MLP), and convolutional neural network (CNN). We use the
mean-squared error (MSE) as our loss function and employ the validation set for hyperparameter
tuning. See Appendix for details. We then evaluate model performance on the unseen test
data using the coefficient of determination (R?). As representation learning from the raw data, we
also train models (LR, CNN, MLP) on the raw label encodings, and a graph convolutional network
(GCN) on the Sankey graph S(9) (Eq. E]) Tableshows that models trained on MCbiF feature maps
outperform all representation learning models; even the GCN trained on Sankey graphs (R? = 0.416
for N = 5; R? = 0.229 for N = 10) has significantly lower performance (p < 0.0001, Wilcoxon
test on residuals) than a simple LR model based on HF, (R? = 0.486 for N = 5; R? = 0.185
for N = 10). This reflects the fact that the MCbiF is a higher-order extension of S(6) that better
captures the global properties of 6 (see Proposition [T7)).

The MCDbiF feature maps also outperform the baseline feature maps CE, ARI and MOD; the com-
bined HFy and HF; features (R? = 0.544 for N = 5; R? = 0.516 for N = 10) have significantly
better performance (p < 0.0001, Wilcoxon test) than the best baseline features CE (R? = 0.492
for N = 5; R? = 0.458 for N = 10). Variability analysis (bootstrapped 95% confidence intervals)
shows that models trained on the combined HF and HF'; features outperform the other models (see
Table [3]in Appendix [D.T). Note that the strong performance of simple LR models underscores the
interpretability of the MCDbiF features, important for explainable Al (Adadi & Berradal 2018)).

5.2 CLASSIFICATION TASK: NON-ORDER-PRESERVING SEQUENCES OF PARTITIONS

In our second task, we classify whether a sequence of partitions is order-preserving, i.e., whether 6
is compatible with a total ordering on the set X, see Definition #1]in Appendix [D.2] This task is
relevant in socio-economics (preference relations in utility theory in social sciences (Roberts}, 2009))
and computer science (weak ordering and partition refinement algorithms (Habib et al., [1999)).



Published as a conference paper at ICLR 2026

We carry out this classification task on synthetic data for which we have a ground truth. From the
space of coarse-graining sequences of partitions H%I introduced in Definition @ we generate a
balanced dataset of 3,700 partitions 6 € II3),, half of which are order-preserving (y = 0) and the
other half are non-order-preserving (y = 1). The loss of order-preservation is induced by introducing
random swaps in the cluster assignments within layers. See Appendix[D.2]for details. For each of the
generated 6 we compute CE, ARI, MOD, HF, and HF; using the computationally advantageous
nerve-based MCbiF. We choose N = 500 and M = 30 to demonstrate the scalability of our method.

Whereas we find no significant Fiifference Table 2: Classification task. Test accuracy of logis-
between the baseline consensus indices of tjc regression trained on different features. See Ap-

order-preserving (y = 0) and non-order- pendix [D.2for confidence intervals.
preserving (y = 1) sequences, we ob-

serve a significant increase of ¢y and ¢; for ~ Raw label
order-preserving sequences (Fig. [[2]in Ap- encoding | HFy HF; CE ARI MOD
endix ). For the classification task, we
Eplit outa into training (80%) and test 0.53 | 056 097 050 049 046
(20%). For each feature map, we train a logistic regression on the training split and evaluate the
accuracy on the test split, see Appendix We find that HF; predicts the label y = {0, 1} en-
coding the (lack of) order-preservation with high accuracy (0.97). In contrast, CE, ARI, MOD
and the raw label encoding of # do not improve on a random classifier (Table [2). Our performance
variability analysis (bootstrapped 95% confidence intervals) confirms that the model trained on HF
consistently outperforms all models (Table[5]in Appendix[D.2). This demonstrates the high sensitiv-
ity of MCDbiF to order-preservation in #, due to non-order-preserving sequences inducing 1-conflicts
that are captured by HF;.
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Figure 3: (a) Analysing non-hierarchical sequences of temporal partitions 6., compiled from social
interactions of a mice population over 9 weeks. Each 6., is a sequence of social groupings 6, (t)
observed over week ¢. Different sequences of partitions are computed as a function of the parameter
7;. Sankey diagrams and MCbiF feature maps are shown for 6., at 7; (i = 2, 4, 8), identified as robust
in Bovet et al.| (2022). These three sequences exhibit different types of non-hierarchy, as shown by
our topological feature maps and measures of average 0-conflict (¢y) and average 1-conflict (¢1).
(b) The robust 0., (i = 2,4,8) found in [Bovet et al.| (2022) correspond to distinct topological
characteristics of the sequences of partitions, as captured by the block structure in the distance
between MCDbiF Hilbert functions. The Hilbert distances also capture increased time reversibility in
0., and 6., due to the larger stability of social groupings over time (see Fig.[14]in Appendix @)

5.3 APPLICATION TO REAL-WORLD TEMPORAL DATA

In our final experiment, we apply MCDbiF to temporal sequences of partitions computed from real-
world contact data of free-ranging house mice. This data captures the changes in the social network
structure of the rodents over time (Bovet et al., 2022)). Each partition 6, (t) describes mice social
groupings for N = 281 individual mice at week ¢ € [1,...,9] for the nine weeks in the period 28
February—1 May 2017, so that the sequence 6, captures the fine-graining of social groups from win-
ter to spring. A partition sequence is computed at temporal resolution 7 > 0, where the parameter 7
modulates how fine the temporal community structure is (Fig. [I3). SeeBovet et al.| (2022) and Ap-
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pendix for details. We then compare temporal partition sequences ¢, for different resolutions
Ti»© = 1,...,9, as given in Bovet et al.[(2022). For each 6,,, we obtain HF; and HF'; using the
nerve-based MCbiF, which induces a 50-fold reduction in computation time due to a much lower
number of simplices (260 simplices for the nerve-based MCbiF vs. 116,700 for the original MCDbiF).

Bovet et al.| (2022) identified that the temporal resolutions 72 = 1s, 74 = 60s and 73 = 24h
lead to robust sequences of partitions. Using the Hilbert distance (i.e., the Lo-norm on the 0- and
1-dimensional MCDbiF Hilbert functions), we find these temporal resolutions to be representative
of three distinct temporal regimes characterised by different degrees of non-hierarchy, as measured
by ¢y and ¢ (Fig.[3). In particular, high ¢, indicates that mice tend to split off groups over time,
and high ¢; indicates that mice meet in overlapping subgroups but never jointly in one nest box.
Note that 6, has a strong non-hierarchical structure because the large-scale mice social clusters
get disrupted in the transition to spring. In contrast, 0., is more hierarchical as it captures the
underlying stable social groups revealed by the higher temporal resolution. Yet, 6, has the strongest
hierarchy as indicated by a lower ¢, and an absence of 1-conflicts (¢; = 0) and thus corresponds to
a sweet spot in hierarchical organisation between low and high temporal resolutions. These findings
also underpin the optimised Sankey diagrams in Figure 3. While the Sankey diagram for 6., can
be drawn without any crossings, the optimal Sankey diagram for 6, has a crossing from week 1
to week 2, which resembles the ‘hourglass’ 1-conflict (Fig. [2d). This is predicted by our MCbiF
features: HF;(1,2) = 1 for ., implying one crossing between the first and second layer of the
Sankey diagram that cannot be undone, as per Corollary

6 CONCLUSION

We have introduced the MCbiF, a novel bifiltration that encodes the cluster intersection patterns in
multiscale, non-hierarchical sequences of partitions. Its stable Hilbert functions HFj, quantify the
topological autocorrelation of the partition sequence # and measure non-hierarchy in two comple-
mentary ways: at dimension k& = 0 it captures the absence of a maximum with respect to the re-
finement order (0-conflicts), whereas at dimension k£ = 1 it captures the emergence of higher-order
cluster inconsistencies (1-conflicts). This is summarised by the measures of average 0-conflict ¢y (6)
and average 1-conflict ¢; (#), which are global, history-dependent and sensitive to the ordering of the
partitions in . The MCbiF extends the 1-parameter MCF defined by |Schindler & Barahona (2025)
to a 2-parameter filtration, leading to richer algebraic invariants that describe the full topological
information in 6. It is important to remark that the MCbiF is independent of the chosen clustering
algorithm and can be applied to any (non-hierarchical) sequence of partitions . We demonstrate
with numerical experiments that the MCbiF Hilbert functions provide topological feature maps for
downstream machine learning tasks, which are shown to outperform both baseline features and
representation learning on the raw data for regression and classification tasks on non-hierarchical
sequences of partitions. Moreover, the grounding of MCDbiF features in algebraic topology enhances
interpretability, a crucial attribute for explainable Al and applications to real-world data.

Limitations and future work Our analysis of the MCbiF MPH is restricted to dimensions 0 and
1 for simplicity. However, the analysis of topological autocorrelation for higher dimensions would
allow us to capture more complex higher-order cluster inconsistencies and could be the object of
future research. Furthermore, we focused here on Hilbert functions as our topological invariants
because of their computational efficiency and analytical simplicity, which facilitates our theoretical
analysis. In future work, we plan to use richer feature maps by exploiting the block decomposition
of the MCDbiF persistence module, which leads to barcodes (Bjerkevik, 2021)), or by using multipa-
rameter persistence landscapes (Vipond, 2020). Another future direction is to use MCbiF to evaluate
the consistency of assignments in consensus clustering (Strehl & Ghoshl |[2002; |Vega-Pons & Ruiz-
Shulcloper, 2011). It can be shown that the values of the Hilbert function HF (s, t) further away
from the diagonal (s = t) are more robust to permuting the order of partitions in 6 (see Proposi-
tion[36[in Appendix . In particular, HF, (¢1, t57) only depends on the set of distinct partitions in
0([t1, 00)) and is independent of any permutation in their order. Hence, in future work, HF (t1, tar)
could be used as an overall measure of consistency in 6 in the vein of consensus clustering. Finally,
minimal cycle representatives of the MPH (L1 et al.,|2021) can be used to localise 1-conflicts in 6,
which is of interest to compute conflict-resolving partitions in consensus clustering, or to identify
inconsistent assignments in temporal clustering (Liechti & Bonhoeffer, [2020).
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REPRODUCIBILITY STATEMENT

Detailed proofs of all theoretical results can be found in Appendix [BJand extensive documentation of
our experiments in Appendix[D] An implementation of our method and code to reproduce our numer-
ical experiments is available at: https://github.com/barahona-research-group/
MCbiF. The dataset studied in Section [5.3|is publicly available at: https://dataverse.
harvard.edu/file.xhtml?fileId=5657692.
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APPENDICES

A  SUMMARY OF KEY THEORETICAL RESULTS

In Figure[d] we provide a summary of our theoretical results and their relationships.

. Proposition 11 Remark 28
Higher-order N ’ N ) N
inconsistencies in [s, ¢] »  Non-nested in [s, t] » Non-hierarchical in [s, ¢]
A A A
— Proposition 6, Proposition 6,
Definition 10 Remark 29 Remark 29
Y
Proposition 11 Proposition 6
1-conflict in [s, ¢] > Triangle 0-conflict in [s, ¢ > 0-conflict in [s, ]
A A A
Definition 10 Proposition 21 Proposition 30 Proposition 7
Y Y Y
1-dim. Hilbert function Strong triangle inequality Clustering Coefficient 0-dim. Hilbert function
HF(s,t) > 1 of Dy, violated C(K <1 HF(s,t) < min,c[, 4 [0(7)|
A A
Corollary 14 Corollary 9
Y Y
Average 1-conflict Average 0-conflict
01(0) >0 00(6) >0

Figure 4: Summary of key theoretical results and their relationships. Double-headed arrows repre-
sent equivalences (iff), whereas single-headed arrows represent implications (if).

B PROOFS OF THEORETICAL RESULTS AND ADDITIONAL DETAILS

B.1 PROOFS AND DETAILS FOR SECTIONII]

We first state a simple fact about coarse-graining sequences of partitions.

Remark 23. Let 6(t); denote the i-th cluster C; of 0(t). It is a simple fact that 0 is coarse-graining iff
the mean cluster size is non-decreasing, i.e., \9(13)| ELQ(S)‘ [0(s)i] < ﬁ lee(t)l 0(t);] for s < t.
The proof follows directly from the fact that ZLG(S)‘ |0(s)i| = Zlo(t)l |6(t):] = N.

B.2 PROOFS AND DETAILS FOR SECTION[3]

We provide a proof for the multi-criticality of the MCbiF filtration stated in Proposition 4]

Proof of Proposition, The MCbiF is indeed a bifiltration because K** C K* if s > s’ and
t <t'. See Fig. for the triangular diagram of the MCbiF filtration, where arrows indicate inclusion
maps. The MCbiF is uniquely defined by its values on the finite grid [¢1,...,¢tar] X [t1,. .., E0]
because 6 has change points t; < --- < tyy. It is a multi-critical bifiltration because for x € X we
have [z] € K*! forall s,t € [t1,00)°P X [t;,00). In particular, z € K*'! and z € K'1+%11+9 for
d > 0but (t1,¢1) and (t; + 6, t1 + 0) are incomparable in the poset [t1,00)°P X [t1, 00). O

Remark 24. By fixing s := t1 (i.e., the top row in the commutative MCbiF diagram), we recover
the 1-parameter Multiscale Clustering Filtration (MCF) defined by |Schindler & Barahonal(2025)).
MCF was designed to quantify non-hierarchies in coarse-graining sequences of partitions and thus
cannot capture fine-graining. For example, a large cluster C' € 6(s") prevents MCF from detecting
cluster assignment conflicts between elements x,y € C fort > s, see Section In particular, the
MCYF is not a complete invariant of 6. In contrast, MCbiF is a complete invariant of 0 and encodes
the full topological autocorrelation contained in 6 by varying both the starting scale s and the lag
t—s.

Next, we provide formal definitions for algebraic properties of persistence modules, see [Botnan &
Lesnick! (2023)) for details.
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) T )
Kbt Kt,t’ oy KUt

7 7
Kt oy g7 <y
7

1" 1
Kt s .

"

Figure 5: Triangular commutative diagram of the MCbiF for t; < ¢ < ¢’ < t”. The arrows indicate
inclusion maps between simplicial complexes.

Definition 25. For partially ordered sets Py, P>, we call an interval I C Py X Py a block if it can
be written as one of the following types:

1. Birth quadrant: I = S1 x Sy for downsets S C Py and So C Ps.
2. Death quadrant: I = Sy X Sy for upsets S1 C Py and S5 C Ps.
3. Vertical band: I = S1 X Ps for an interval S1 C P;.

4. Horizontal band: I = Py x Sy for an interval Sy C Ps.

Definition 26. Ler Vect denote the category of k-vector spaces for a fixed field k. For a partially
ordered set P, a P-indexed persistence module is a functor F' : P — Vect. We say that:

a) Fis called pointwise finite-dimensional if dim(Fy,) < oo forall a € P.

b) F is called finitely presented if there exists a morphism of free modules ¢, : F1 — F} such that
coker(¢1) = F and Fy and F are finitely generated.

c) F is called block-decomposable if it decomposes into blocks F @ . B(r) kB where B(F)isa
multiset of blocks (see Definition [23)) that depends on F.

We can now provide the proof for Proposition which shows that the MCbiF persistence mod-
ule (see Fig. [6) is pointwise finite-dimensional, finitely presented and block-decomposable. The
proof relies on the equivalent nerve-based construction of the MCbiF (see Proposition 34), and the
exactness of the persistence module from which block-decomposability follows (Cochoy & Oudot,
2020).

Proposition 27. For any k < dim K, the MCbiF persistence module Hy(K**) is pointwise finite-
dimensional, finitely presented and block-decomposable.

Proof of Proposition[27] The MCbiF module is pointwise finite-dimensional because the homology
groups of finite simplicial complexes are finite. As the MCbiF is defined uniquely by its values on a
finite grid (Propositionf)), its persistence module consists of finitely many vector spaces and finitely
many linear maps between them, hence it is finitely presented.

To prove block-decomposability, we use the nerve-based MCbiF (f( ), <s<¢,» which leads to the
same persistence module, see Proposition As the module is uniquely defined by its values on a
finite grid, we can use Theorem 9.6 by (Cochoy & Oudot] (2020) that implies block-decomposability
if the persistence module is exact. Hence, it suffices to show that for all t; < ¢ < ¢’ <t <t the
diagram

Hy (K" — Hy (K5

T T

Hy (K — Hy(K'

)

"

)

induces an exact sequence:

1"

Hy(K'Y") = Hy(KYY) @ Hy(KE ") = Hy (K5 (7
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By construction of the MCDbiF, K6t = gt U KU1 Furthermore, K6 = K6t U K5t and
K" = KUK As 0 is a piecewise-constant function with change points t; < - -- < £y,
we can assume without loss of generality, t = ¢, t' = ty, t” = t,,, t"" = t, for change points
ty < ty < tm < t, of 6 such that A(k,€) N A(m,n) = 0. Hence, K" n K*"*" = () and
K" = Kt n K" This means that Eq. equation [7|is a Mayer-Vietoris sequence for all

k > 0, implying exactness (Hatcher, [2002, p. 149) and proving the block decomposability (Cochoy
& Oudot, 2020, Theorem 9.6). O

Hyp(Kbt) — Hp(Kb') — Hu(K5") — ...
T T

Hy(KY ) — H(K') — ..
T

Hpy(K""y — ..

Figure 6: Multiparameter persistence module of the MCbiF for t; < ¢t < t' < ¢”. The arrows
indicate linear maps between vector spaces.

B.2.1 PROOFS AND DETAILS FOR SECTION[3.1]

Remark 28. It follows directly from the definitions that a hierarchical sequence 0 is always nested.
However, nestedness does not necessarily imply hierarchy, as illustrated by the example in Fig. [2p.

We continue with the proof of Proposition [6] that relates O-conflicts to hierarchy and triangle 0-
conflicts to nestedness.

Proof of Proposition[f] (i) If 6 has a O-conflict then 31,72 € [s,t] such that 6(r1) £ 6(r2) and
6(r1) # 6(r2), otherwise 6([s, t]) would have a maximum. Hence, 6 is not hierarchical in [s, t].

(iii) Let us first assume that 6 is coarse-graining, i.e., |0(t)| < |8(r)| for all r € [s, t]. We show that
no O-conflict in [s, t] implies that 6 is hierarchical in [s,t]. Let 1,72 € [s,t] with r; < 7o, then
the subposet 0([r1, 72]) has a maximum because of the absence of a O-conflict, and the maximum is
given by 6(r) due to coarse-graining. Hence, 6(r1) < 6(r2). As r1, o were chosen arbitrarily, this
implies that 6 is hierarchical in [s, t]. The argument is analogous for the case that 0 is fine-graining.

(iv) Let z,y, 2 € X be in a triangle O-conflict. In particular,  ~,, y ~,, z with x # y, x # z and
y # z. Hence, there are C' € 0(r1) and C’ € 0(r3) such that z,y € C and y,z € C’, as well as
z ¢ Cand z ¢ C'. This implies {x} € C'\ C’, {z} € C'\ C and {y} € C N C’, showing that C
and C” are non-nested. Hence, 6 is non-nested in [s, ¢].

(i) Moreover, r € [s,t] such that x ~,.~,. y. In particular, fr € [s,¢] such that 3C"" € (r) with
C C C"and C C C". Hence, fr € [s,t] such that §(r1) < 0(r) and 0(ry) < 6(r), implying that
the subposet (s, t]) has no maximum. This shows that every triangle O-conflict is also a O-conflict,
proving statement (i). Note that the opposite is not true, as illustrated by the example in Fig.[2b. [

Remark 29. Non-nestedness and non-hierarchy do not imply the presence of a O-conflict. To see
this, consider the simple counter-example given by 0(0) = {{z,y},{z}}, (1) = 1, (2) =
{{z},{y, 2}}, which is non-nested but the partition 0(1) is the maximum of the subposet 6(|0, 1, 2]).
This illustrates the need for the additional assumption of coarse- or fine-graining of 0 in Proposi-
tion [6|(iii) for the condition of no 0-conflict to imply hierarchy.

We now provide a proof for Proposition [7 on properties of the 0-dimensional Hilbert function of the
MCbiF.

Proof of Proposition[7} (i) HF (s, t) is equal to the number of connected components of K**. Let
r’ € [s,t] such that ¢ = [0(r')| = min,¢[s4 |0(r)]. We can represent 0(r) = {C1,...,C.} and
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by construction AC' € K**! for all C' € (r). Hence, if two elements z,y € X are in the same
cluster C' € 6(r) then [z,y] € K*! and the O-simplices [z], [y] € K** are in the same connected
component. As 6(r) has ¢ mutually disjoint clusters, this means that there cannot be more than ¢
disconnected components in K% and HFy(s,t) < ¢ = |6(r')|. As 1’ € [s, t] was chosen arbitrarily,
this implies HF (s, ¢) < min,¢s,4 [0()].

We prove statement (ii) by the contrapositive and show that the following two conditions are equiv-
alent:

Cl1: HFq(s,t) = min,¢[s 4 |0(7)].
C2: Ir € [s,t] such that 8(r") < O(r), Vr' € [s,1].

Note that C2 is equivalent to there is no 0-conflict in [s, t]. “<=" consider first that C2 is true and
6(r) is an upper bound for the partitions 6(r’'), r’ € [s, ¢]. This implies that Vr’" € [s, t] we have that
VC' € 0(r') there 3C' € 6(r) such that C' € C. By construction of the MCbiF (Eq. this implies
Vo' € K% there 30 € K™" such that ¢’ C o. This means K%' C K™" and thus K5 = K™". As
K™ has |0(r)| disconnected components this implies HF (s, t) = |6(r)|, showing C1.

“==" To prove the other direction, assume that C1 is true. Then there exists » € [s, ] such that
c:=HF(s,t) = |0(r)| with |6(r)| = minge[s 4 [0(¢)]. In particular, the disconnected components
of K*! are given by the clusters of 6(r) denoted by C1, ..., C.. Letr’ € [s,t] and C’ € §(r). Then
Ji € [1,...,¢| such that C" C C; € 6(r) because otherwise the solid simplex AC” would connect
two solid simplices in {ACY, ..., AC.}, contradicting that they are disconnected in K *t. Hence,
the clusters of 6(r’) are all subsets of cluster of 6(r), implying 6(r') < 6(r). As 1’ € [s,t] was
chosen arbitrary this shows C2.

We finally prove statement (iii). “==" Note that HF((s,t) = [|0(r)| implies |0(r)] =
min, ¢4 |0(7")] according to (i). Then (ii) shows that C2 is true for r, i.e., f(r) is the maximum
of the subposet (s, t]). “<=" The other direction follows directly from the proof of (ii).

O

We next prove Corollary 9] about some properties of the average 0-conflict, which follows immedi-
ately from Proposition [7]

Proof of Corollary[9) We begin with the proof of statement (i). If 6 is hierarchical in [s, ] then
0 is either coarse- or fine-graining. Assume first that @ is coarse-graining, then 6(s’) < 6(t) for
all s € [s,t] and together with hierarchy, this implies that 6(¢) is an upper bound of the sub-
poset 6([s,t]). Hence, Proposition 7| (iii) shows that HF((s,t) = |6(¢)|. Moreover, HF((s,t) =
min(|6(s)],|0(t)]) because coarse-graining implies |#(s)| > |0(t)|. A similar argument also shows
HF((s,t) = |0(s)| = min(|0(s)]|, |0(t)|) if 0 is fine-graining.

We continue with proving (ii). ¢y (6) > 0 is equivalent to 3s,t € [t1, ] such that HFy(s,t) <
min,¢,,4 |0(r)], according to Definition (8| This is again equivalent to 3s,¢ € [t1, 5] such that 6
has a 0-conflict in [s, ¢], according to Proposition [7] (ii).

We finally prove statement (iii). “==" ¢ (#) means that 6 has no O-conflict in [t1, 00). As 6 is also
coarse- or finge-graining, Proposition [6] (iii) then shows that 6 is strictly hierarchical. “«<="If ¢
is strictly hierarchical, then it has no 0-conflicts according to Proposition E] (i1) and statement (ii)
implies that ¢y(6) = 0.

O

We can further detect triangle O-conflicts by analysing the graph-theoretic properties of the MCbiF
1-skeleton Kj " Recall that the clustering coefficient C of a graph is defined as the ratio of the
number of triangles to the number of paths of length 2 in the graph (Luce & Perry, 1949; Newman,
2018).

Proposition 30. C(K7; ’t) < 1 iff there is a triple x,y,z € X that leads to a triangle 0-conflict
for [s,t], and which is not a cycle, i.e., additionally to property b) in Definition E] we also have
Prs € [s,t]: @ ~py 2.
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Proof of Proposition[30] Assume that C(K7 ") < 1. Then there exist z,y, 2 € X that form a path
of length 2 but no triangle, see|Newman|(2018]) for details on the clustering coefficient. Without loss
of generality, [z, y], [y, 2] € K" but [z, 2] ¢ K'*. This implies 3ry, 7y € [s,t]: & ~p, Y ~p, 2
and Jr € [s,t]:  ~, 2. Hence, x, ¥, z lead to a triangle O-conflict. O

Let us consider the graph generated as the disjoint union of all clusters from partitions in [s,t] as
cliques. This graph is equivalent to the MCbiF 1-skeleton K7 . Proposition [30| shows that the
clustering coefficient of this graph can be used to detect triangle O-conflicts that are not cycles.
To be able to detect triangle O-conflicts that correspond to non-bounding cycles, we turn to the
1-dimensional homology.

We next prove Proposition [IT)on 1-conflicts.

Proof of Proposition[[1] Statement (i) follows directly from the definition of 1-conflicts that
HF(s,t) = dim[H(K**)] > 1iff 6 has a 1-conflict.

We next prove statement (ii): If HF; (s, ) > 1 there exists a 1-cycle z = [z1, xo] +- -+ [Tn—1, Tn]+
[, 21] that is non-bounding, i.e., h := [z] # 0 in H(K*"), see Appendix@for details. Case
1: Assume #r € [s,t]: 1 ~, To ~, 3, then it follows immediately that z;, 2,23 lead to a
triangle O-conflict. Case 2: Assume 3r € [s,t]: &1 ~, o ~, x3. As [2] # 0 there exists a 1-cycle
Z =21, %)+ + H[Tp1, T + [im,:i% € Z1(K*") such that Z is homologous to 2, i.e.,
Z = z+ Oqw for w € Cy(K**?), and such that #r € [s,t]: &1 ~, T2 ~, Z3. In particular, T, To, T3
lead to a triangle O-conflict.

We finally prove statement (iii): If € is hierarchical, then it has no O-conflicts according to Corol-
lary@ Hence, 6 also has no triangle O-conflict in [s, t] and so (i) implies that HF (s,t) = 0. O

Remark 31. Proposition|l I| states that every I-conflict is a triangle 0-conflict. However, not every
(triangle) O-conflict is a 1-conflict, see Example[37] Note also that several triangle O-conflicts in the
sequence 0 can lead to a 1-conflict, when the triangle O-conflicts are linked together in such a way
as to form a non-bounding cycle, see Example[37] We can test for these systematically using HF ;.

Remark 32. While 0-conflicts (¢o(8) > 0) can be defined in relation to the refinement order that
gives rise to the partition lattice, the partition lattice cannot be used to detect higher-order cluster
inconsistencies (1-conflicts), which can be captured and quantified instead by HF 1 and the average
measure ¢, ().

B.2.2 PROOFS AND DETAILS FOR SECTION[3.2]

To prove the equivalence between the MPH of the MCDbiF and nerve-based MPH, we can use a
Persistent Nerve Lemma for abstract simplicial complexes by [Schindler & Barahona| (2025).

Lemma 33 (Schindler & Barahonal (2025), Lemma 32). Let K C K’ be two finite abstract simpli-
cial complexes and {Ky }oca and {K,}oca be subcomplexes that cover K and K' respectively,
based on the same finite parameter set such that K, C K/, for all o € A. Let K denote the nerve
N ({|Kal}aca) and K' the nerve N ({| K',|}ae ). If the intersections ﬂ?:o | K, | and ﬂf:o |K,,
are either empty or contractible for all k € N and for all oy, ..., ay € A, then there exist homotopy
equivalences K — |K| and K' — |K'| that commute with the canonical inclusions |K| — | K|
and K — K'.

See Schindler & Barahonal (2025, Lemma 32) for a proof.

Next, we provide the proof about the equivalence between MCDbiF and nerve-based MCbiF.
Proposition 34. The bifiltrations M and M lead to the same persistence module.

Proof. We use Lemma [33| to show the equivalence between MCbiF and nerve-based MCbiF. For
s > s and t < ', we denote K := K%' and K := K*!, and further denote K’ := K*t
and K’ := K*-'. As 0 is a piecewise-constant function with change points t; < --- < ty;, we
can assume without loss of generality that ' = tg, s = ty, t = t,,, t' = t, for change points
ty < t¢ < tm < t, of §. For the multi-index set A := A(k,n), define the cover {K,}aca by
K, =AC, ifa e A(f,m) C A and K, = () otherwise and the cover { K, }oca by K/, = AC,
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for all & € A. Then we have K, C K, for all & € A and we recover the MCbiF K = |J . 4 Ka
and the nerve-based MCbiF K = N ({K” }ae) and similarly we recover K’ and K’. For any
k € N and ap, ..., € A, the intersections ﬂf:o |K;,,| are intersections of solid simplices and
thus either empty or contractible. For a detailed proof of this fact, see the proof of Proposition 30
in |Schindler & Barahonal (2025). Lemma |33| now yields homotopy equivalences K — || and
K' — |K'| that commute with the canonical inclusions |K| < |K’| and K < K’. This shows the
equivalence between the MPH of the MCbiF and the MPH of the nerve-based MCbiF. O

Next, we prove Proposition |16|about the dimension of the nerve-based MCbiF.

Proof of Proposition[I6] Statement (i) follows directly from the definition in Eq. equation [} We
show statement (ii) by induction. Base case: From the definition of the nerve-based MCbiF,
it follows directly that dim Ntm*m = ( because the indices in A(m,m) correspond to mutu-
ally exclusive clusters. Induction step: Let us assume that dim N¢mtm+n = p then there ex-
ist Co,...,Cn € O([tm,tman]) such that Co N --- N C,, # @. As the clusters in partition
O(tminy1) cover the set X there exist a cluster C' € 0(¢,,4n41) suchthat CNCoN---NC, # 0.
Hence, dim Ntmtm+7 > pn 4+ 1. If dim Nt=*=*" > n 4+ 1 there would exist a second cluster
C" € O(tmant1) WithC'NCNCyN---NCy, # O but C' N C # P contradicts that clusters
of O(tmint1) are mutually exclusive. Hence, dim Ntm!=*" = n 4 1 proving statement (ii) by
induction. O

We provide a proof for the connection between Sankey diagrams and the nerve-based MCbiF.

Proof of Proposition[I7] The Sankey diagram graph S(0) = (V = Vi W...WVy, E = E1 W ... ¥
Ej_1) is a strict 1-dimensional subcomplex of K = K'!M because K'mtm = V,, C K and
Ktmitm+1 — E, C K. This also shows that the zigzag filtration equation |[5| contains exactly the
same vertices (0-simplices) and edges (1-simplices) as S(6).

We next prove Proposition[T8]that characterises conflicts that can arise in a single layer of the Sankey
diagram.

Proof of Proposition[I8) (i) Suppose that 6 has a O-conflict in [t,,, t;n+1]. Then 0(t,,) % 0(tmi1)
and 0(t,,) # 0(tm+1). This means that there exists C' € 6(r1) such that 3C’,C" € 6(r2) with
CNC"#0,CNC" #0and C' N C" = 0, otherwise O(r1) < O(r2). Hence, 0(r1) £ 0(rs) is
equivalent to Ju € V,,, (the node corresponding to cluster C) with degree deg(u) > 2in E,,. An
analogous argument shows that 6(r1) # 6(r2) is equivalent to Jv € V,,, 41 with deg(v) > 2. This
proves the statement.

(i) Let z,y,z € X form a triangle O-conflict for the interval [t,,, t, 1], i.e., &~y Yy~ 2
but x <, , y =, 2. In particular, the elements x,y, 2z are mutually distinct. This means there
exist C1,Cs € O(ty,) and C,CY € O(ty41) such that z,y € C1, z € Ca, y,2z € C] and x € C).
This is equivalent to C1 NCy = 0, C1NCH =0and C1 NCT # 0, CLNCy # 0, ConN Ch # 0.
Let u,u’ € V;,, correspond to C; and Cs, respectively, and v, v’ € V,,, 41 correspond to C and C%,
respectively. Then the above is equivalent to [u/,v], [v,u], [u,v'] € E,,, which is again equivalent
to the existence of a path in E), that has length at least 3.

(iii) The statement follows from the fact that every cycle in E,, is even because the graph (V;,, &
Vin+1, B ) is bipartite and the fact that every cycle in E,,, = K tmstm+1 j5 non-bounding because
dim Ktmtm+r =1, O]

B.3 PROOFS AND DETAILS FOR SECTION]

We continue by proving that O-conflicts can induce violations of the strong triangle inequality as
stated in Proposition 21}

Proof of Proposition21] Let x,y,z € X lead to a triangle O-conflict for the interval [s, ], i.e.,
Iry,1m9 € [8,t]: @ ~p, Y ~p, zand Ir e [s,t]: © », y o, z. This means Dy s(z,y) < r1
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and Dy 5(y,z) < ra. Let us define r3 := Dy s(z,) < tpr. We know that r3 # ry and 73 # 79
as otherwise & ~,, y ~, z for r3 € [s,t], contradicting the lack of transitivity. Hence, with-
out loss of generality, 71 < 73 < r3. Then the above is equivalent to Dy s(z,) = 3 > 11 >
min(Dy s(x,y), Do,s(y, z)), which is a violation of the strong triangle inequality.

Next, we state Proposition [35| that establishes the connection between the MPH of the MCbiF and
that of the Merge-Rips bifiltration constructed from the matrix of first-merge times, Dy .

Proposition 35. Let us define the Merge-Rips bifiltration L based on Dy 5 as
L= (L"), <s<t where L>'={0cCX | Va,y€o: Dys(x,y) <t} 8)

Then the 0-dimensional MPH of the Merge-Rips bifiltration, L, and of the MCbiF, M, are equiv-
alent, but the 1-dimensional MPH of L and M are generally not equivalent. Furthermore, if 0 is
strictly hierarchical, then L has a trivial 1-dimensional MPH.

Proof of Proposition[33] First note that £ = (L%");, <5<, is indeed a well-defined bifiltration be-

cause L%t C Lot if s > s’ and ¢t < t'. In particular, £ is also defined uniquely on the finite grid
P ={(s,t) € [t1,...,tpm] X [t1, ..., tar] | s < ¢} with partial order (s,t) < (s',t')if s > s/, t < .

The proof of the proposition then follows from a simple extension of Proposition 36 in |Schindler,
& Barahonal (2025)) to the 2-parameter case. To see that the O-dimensional MPH of £ and M are
equivalent, note that both bifiltrations have the same 1-skeleton. Moreover, the 1-dimensional MPH
is generally not equivalent because L is a Rips-based bifiltration and thus 2-determined, whereas M
is not 2-determined.

If 6 is strictly hierarchical, then Dy , fulfils the strong-triangle inequality, and thus the Rips-based
bifiltration leads to a trivial 1-dimensional homology, see (Schindler & Barahonal [2025| Corollary
37). Hence, the 1-dimensional MPH of L is trivial. O

Finally, we provide a brief proof for Proposition [22]linking the 0-dimensional Hilbert function of a
pair of partitions and the graph Laplacian built from the conditional entropy matrix between both
partitions.

Proof of Proposition[22] Using Proposition [I7} we prove the statement with the equivalent nerve-
based MCbiF. Note that the graph G := P, Pt€| ¢, has the same vertices and edges as the simplicial

complex K2 which is 1-dimensional and thus also a graph according to Proposition This
shows that HF (¢, 22) is given by the number of connected components in G. Furthermore, observe

that Ptf ™ 1 = 1, and that the resulting matrix L is the Laplacian of the undirected graph G. Hence,
dim(ker L) is equal to the number of connected graph components (Chung) [1997), proving the
statement. O

B.4 PROOFS AND DETAILS FOR SECTION [6]
It follows from the construction of MCDbiF that the Hilbert functions are invariant to certain swaps
of partitions in 6.

Proposition 36. HF (s, t) is invariant to swaps of partitions in sequence 0 between s and t, for
tl S S S t.

Proof. Let us denote the change points of 8 by t; < to < --- < tp;. Without loss of generality, s =
tym and t = ty,4.p, for m +n < M. Let us now consider a permutation 7 : [1,..., M] — [1,..., M]
such that 7(¢) = i for 1 < ¢ < mand m +n < ¢ < M and define the permuted sequence of
partitions 0 as 0. (t,,) = 0(t,(m)). Despite the permutation we still get the same MCbiF for ¢ and
0. for parameters s < t because

U U ac=1 U ac

s<r<t Ceo(r) s<r<t C€0,(r)

This implies that HF (s, t) is the same for 6 and 6. O
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C ADDITIONAL EXAMPLES

Our first example corresponds to the sequence of partitions analysed in Fig[T]

Example 37 (3-element example). Let X = {x1,x2,x3} and we define (0) = 0, (1) =
1,22}, {z3}}, 0(2) = {{x1},{z2,23}}, 03) = {{z1,23},{x2}} and 0(4) = 1 so that 6
is coarse-graining with M = 5 change points. This example corresponds to Fig.|[Ila, and the 0- and
1-dimensional Hilbert functions are provided in Fig.[Ip.

Note that HF(1,2) < |0(2)] and HF((2,3) < |0(3)| indicates the presence of two triangle 0-
conflicts, which are not 1-conflicts because HF1 (1,2) = HF1(2,3) = 0. See Fig.[7a for an illustra-
tion. As shown in Proposition[Z1} the triangle O-conflicts violate the strong triangle inequality of the
matrix of first merge times Dy (Eq|§|) e.g., Do(x1,23) = 3 > max(Dg(x1,z2), Do(x2,23)) = 2.

In addition, HF1(1,3) = 1 indicates the presence of a 1-conflict that arises from the higher-order
inconsistencies of cluster assignments across partitions (1), 6(2) and 6(3). See Fig. [7p for an
illustration. In particular, the equivalence relations x1 ~1 T, To ~2 x3 and T3 ~3 x1 induce a 1-
cycle z = [x1, x3) + [x2, 3] + [13, 21] € Z1(K13) and due to the lack of transitivity on the interval
[1, 3], the I-cycle z is also non-bounding, yielding a 1-conflict. The I-conflict then gets resolved at
t = 4 because 0(4) = 1 restores transitivity on the interval [1,4]. See Fig. EF for an illustration.

(a) connected 0-conflict (b) 1-conflict (c) no conflict

Figure 7: (a) Illustration of a triangle O-conflict that violates the strong triangle inequality of the
matrix of first merge times Dy , (Eq |§|), (b) a 1-conflict and (c) three elements that are in no conflict
due to global transitivity. If we choose 11 = 1,12 = 2,73 = 3 and r = 4, the conflicts depicted here
correspond to the conflicts in Example|3'_7l

HFo(s, t HF4(s, t
o o8ty 11(5 )

60) 6(1) 6(2) 6(3) 6(4) 6(5) 6(6) 6(7) 6(8) 6(9)

Figure 8: Hilbert functions and optimised Sankey diagram for the sequence of partitions ¢ defined
in Example 38]

Example 38 (4-element example). We now consider the more complex case of a 4-element set

X = {x1, 29, 23,24} Let us start with (0) = 0 and append in sequence the 6 distinct partitions
that contain two singletons and one cluster of size 2, i.e., 0(1) = {{x1,22}, {x3}, {z4}}, 6(2) =

{{z1} {mo, ws}, {a}}, 03) = {{z1}, {wa}, {ws, za}}, 0(4) = {{w1, 23}, {22}, {wa}}, 6(5) =
{1, 24}, {z2}, {23} } and 6(6) = {{z1}, {x2, x4}, {x3}}. Finally, we append consecutively three
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partitions, each of which contains a cluster of size 3, i.e., 0(7) = {{z1, 22,23}, {za}}, 0(8) =
{1}, {x2, 3,24} } and 0(9) = {{z1, 23,24}, {2x2}}. 0 is a coarse-graining, non-hierarchical
sequence with M = 10 change points. See Fig.|8|for a Sankey diagram of 0.

To analyse the topological autocorrelation of 0, we compute the MCbiF Hilbert functions HF,
for dimensions k = 0,1 (see Fig.|S). We observe that HFy(s,s + 3) = 1 < min,¢[s 5437 |0(7)]
for all 0 < s < 8, which implies that the hierarchy of 0 is broken after no-less than three steps
in the sequence when starting at scale s. Moreover, we can detect that 6 is non-nested and has
higher-order cluster inconsistencies because 1-conflicts emerge at scalest = 4,5, 6, as indicated by
non-zero values in HF'1. The I-conflicts get resolved one-by-one through the partitions that contain
clusters of size 3, and at t = 9, when the third such partition appears in 0, all 1-conflicts are
resolved.

Finally, we show an example that demonstrates how conditional entropy does not detect 1-conflicts
in general.

Example 39 (CE cannot detect 1-conflicts). Let X = {x1,xo,x3, x4} for which we consider two
different sequences of partitions 0(t) and n(t) such that 6(1) = n(1) = {{z1, 22}, {x3}, {z4}},
02) = n(2) = {{z} {z2, 25} {wa}} bur 63) = {{zr, 23}, {wa} {zs}} # 003) =
{{z1}, {z2}, {x3,24}}. See Fig. @]for a Sankey diagram representation of the two sequences of
partitions. Note that 0 and n only differ at scale t = 3. However, this difference is crucial because
a 1-conflict emerges in 0 at scale t = 3, whereas 1 has only triangle 0-conflicts and no 1-conflict.
Note that 0 corresponds to the toy example in Fig.[I|with one additional isolated element.

(a) Sequence 6 (1-conflict) (b) Sequence 7 (no 1-conflict)
{z1,22} {dh} {z1, 23} {z1, 22} {a} {z1}
{22}
{25} {z2, 23} (22) (25} {z2, 23} N
{z4} {24} {z4} {z4} {24} {3, 24}
6(1) 0(2) 6(3) (1) n(2) n(3)

Figure 9: Sankey diagrams for sequences ¢ and 7 defined in Example Note that a 1-conflict
emerges in 6 at scale ¢ = 3, but n has no 1-conflict.

In accordance with our theoretical results developed in Section 3.1} we can use the 1-dimensional
Hilbert function HF1 to detect the 1-conflict in 0 and distinguish the two sequences. In particular,
HF,(0(1),0(3)) = 1 bur HF1(n(i),n(43)) = 0 for all i,5 € [1,2,3], i < j. In contrast, the
conditional entropy H (see Eq.[I6) cannot distinguish between the two sequences as they yield the
same pairwise conditional entropies. In particular, H(6(7)|0(j)) = H(n(i)|n(j)) = 3 log 2 for i #
4. This demonstrates that the conditional entropy cannot detect higher-order cluster inconsistencies
in sequences of partitions.

D DETAILS ON EXPERIMENTS

D.1 REGRESSION TASK

We first provide a rigorous definition of the space of coarse-graining sequences of partitions.

Definition 40 (Space of coarse-graining sequences of partitions). The space of coarse-graining se-
quences of partitions, denoted 113!, is defined as the set of coarse-graining sequences 0 : [0, 00) —
IIx with |X| = N and M change points t,, = 0,..., M — 1, such that |0(s)| > [0(t)|, Vs < t,
which start with the finest partition 0(t; = 0) = 0 and end with the full set 0(tp; = M — 1) = 1.

For our experiments we sample randomly from the spaces I12° and I13). Note that |II}/| is given by
the exponentially growing Bell numbers By with Byg = 115,975 > B; = 52|Stanley|(2011).

Figure shows the correlation between the minimal crossing number y = %(6) (Eq. and
summary statistics of the five feature maps under investigation: the consensus indices VI, ARI and
MOD, and the MCbiF topological average measures ¢y and ¢;. In addition to the results already
described in the main text, we also observe that the correlation between VI and ¢y (r = —0.32 for
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N =5,r = —0.48 for N = 10) is stronger than with ¢; (r = —0.12 for N = 5, r = —0.34 for
N = 10). This can be explained by the fact that VI and ¢y can both be computed from pairwise
interactions of clusters in contrast to ¢;, see SectionEl Furthermore, we observe a strong correlation
between ¢y and ¢; (r = 0.52 for N = 5 and r = 0.43 for N = 10) because of the dependencies
between 0- and 1-conflicts, see Section3.1]
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Figure 10: Pearson correlation () between crossing number y, consensus indices VI, ARI and
MOD, and MCbiF-based conflict measures ¢y and ¢; for N = 5 and N = 10.

Note that we can consider our five feature maps as M x M greyscale images, where HFy, HF,
ARI and MOD are symmetric and CE is asymmetric. The raw label encoding of @ is also similarly
interpreted as an N x M greyscale image. For our regression task, we train a simple CNN
with one convolution and max-pool layer and one fully connected layer and also a
simple MLP on the flattened images with one or two hidden layers and dropout
vastava et al.l [2014). For each feature map (or their combinations) separately, we perform hyperpa-
rameter optimisation for the number of filters (ranging from 2 to 6) and kernel size (chosen as 4, 8,
16, 32 or 64) in the CNN and the number of nodes (chosen as 4, 8, 16, 32, 64, 128 or 256), number
of layers (1 or 2) and dropout rate (chosen as 0.00, 0.25 or 0.50) in the MLP. We use the Adam
optimiser (Kingma & Bal, [2017) with batch size 32 and learning rate chosen as 0.01, 0.005, 0.001,
0.0005 or 0.0001 for training. We train both MLP and CNN over 150 epochs with early-stopping
and a patience of 10 epochs.

As an additional baseline model, we train a graph convolutional network (GCN)
with a regression head on the weighted adjacency matrices of the Sankey diagram graph
S(0) (Eq. EI), where the edges are weighted according to the number of elements in the overlap of
two clusters. We choose three-dimensional node features consisting of a constant, the normalised
weighted degree and the layer number of the node in the Sankey diagram. We perform hyperparam-
eter optimisation for the number of hidden dimensions (16, 32, 64, 128), number of layers (1, 2 or
3) and dropout rate (0, 0.2 or 0.5). We use again Adam optimiser with batch size 32, learning rate
chosen as 0.01, 0.005, 0.001, 0.0005 or 0.0001 and weight decay chosen as 0.0 or 0.0001, as well
as the ReduceLROnPlateau learning rate scheduler% and train the GCN for 150 epochs with
early-stopping and a patience of 10 epochs, consistent with the other models.

We perform a full grid search of the hyperparameter space for MLP and CNN trained on the differ-
ent feature maps (or their combinations). We perform 145 trials of hyperparameter search with the
Tree-Structured Parzen Estimator (TPE) for the GCN, as a full grid search was
prohibited by increased computational complexity. We used the train split of our data for training
and the validation split for evaluation and hyperparameter selection. Below, we detail the hyperpa-
rameters for the best models trained on the different features, which were chosen according to the
performance on the validation split. We first report details for N = 5:

* Optimal model for raw label encoding at N = 5: CNN with 16 filters, kernel size 4 and
learning rate 0.001.

* Optimal model for Sankey graph S(6) at N = 5: GCN with three hidden layers of dimen-
sion 128 each, no dropout, no weight decay and learning rate 0.01.

2https ://docs.pytorch.org/docs/stable/generated/torch.optim.1lr_
scheduler.ReducelLROnPlateau.html
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Table 4: Train R? scores of LR, CNN, MLP and GCN models trained on different features for
N =5and N = 10.

Raw label Sankey
N | Method || encoding  graph | HFy, HF; HF,&HF; CE ARI MOD

LR 0.096 - 10163 0493 0550 0409 0.194 0419
5| CNN 0.321 - 10170 0509  0.562 0515 0464 0.460
MLP 0.254 - 10160 0499 0547 0439 0366 0.396
GCN - 0397 | - - - - - -
LR 0.061 - 10230 0456 0522 0464 0255 0.370
10 | CNN 0.112 - 10220 0456 0519 0476 0376 0368
MLP 0.114 - 10218 0453 0515 0468 0.368 0.282
GCN - 0234 | - - - - - -

* Optimal model for HFy & HF; at N = 5: CNN with 4 filters, kernel size 3, and learning
rate 0.001.

* Optimal model for CE at N = 5: CNN with 8 filters, kernel size 2, and learning rate 0.005.

¢ Optimal model for ARI at N = 5: CNN with 8 filters, kernel size 2, and learning rate
0.005.

* Optimal model for MOD at N = 5: LR.
We next report the details for N = 10:

* Optimal model for raw label encoding at N = 10: CNN with 8 filters, kernel size 3 and
learning rate 0.01.

* Optimal model for Sankey graph S(#) at N = 10: GCN with three hidden layers of di-
mension 128 each, dropout rate 0.25, no weight decay and learning rate 0.005.

* Optimal model for HFy & HF; at N = 10: LR.

» Optimal model for CE at N = 10: MLP with a single layer of 256 nodes, no dropout and
a learning rate of 0.001.

¢ Optimal model for ARI at N = 10: CNN with 64 filters, kernel size 2, and learning rate
0.005.

* Optimal model for MOD at N = 10: LR.

We present the train R? scores for the optimised LR, CNN, MLP and GCN models trained on the
different features in Table The test R? scores are presented in Table [1]in the main text. We
also report 95% confidence intervals for the test R? score in Table [3| which were computed using
bootstrapping with 5,000 iterations on the test data.

D.2 CLASSIFICATION TASK

We first provide the definition for order-preserving sequences of partitions.

Definition 41 (Order-preserving sequence of partitions). When a partition 6(t,,) is equipped with
a total order <., on the clusters it is called an ordered partition{’| Such a partition induces a total
preorder <., on X (Stanley| 2011), i.e., if [x]t <m [y]: then x <, y. We call the 0 order-preserving
if there exist total orders (<1, ..., <ar) such that the total preorders (<1, ..., Sy) are compatible
across the sequence, i.e., Y, m we have v <, y iff t Sp, y, Va,y € X.

According to this definition, a sequence @ is non-order-preserving if there is no total order on X that
is consistent with all the total preorders induced by the partitions 6(¢).

3The ranking 7o, : Vin — {1,...,|Vin|} of the vertices V;, in the Sankey diagram S(6) is one example of
a total order <,,, on the clusters, see Section@
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Figure 11: Classification task: Histogram of the number of swaps in non-order-preserving sequences

0 (class y = 1). See text for the scheme to introduce random swaps in the cluster assignments as a
means to break order-preservation.

Details on Synthetic Data. We generate order-preserving (y = 0) sequences 6 € II3/ through

the following scheme: Let us assume that we have a total order X = {x1,...,zx} given by the
element labels, ie., z; < x; if ¢ < j. We construct each 6(¢,,), m = 0,..., M — 1, by cutting
X into clusters of the form C = {x;, Z;41,...,Titn}. Itis easy to verify that 6 is indeed order-

preserving. We adapt this scheme to generate sequences 6 & HAN4 that are non-order-preserving
(y = 0): Again, we start by constructing each sequence 6(¢,,) through cutting the ordered set X as
before. Additionally, with probability p = 0.1, we swap the cluster assignments in 6(¢,,) for two
arbitrary elements x,y € X. If N and M are large enough, the so-generated sequence 6 is almost
surely non-order-preserving. We chose NV = 500 and M = 30 to demonstrate the scalability of the
MCDbiF method.

The number of clusters of all our generated sequences of partitions € T4/ for both classes is
decreasing linearly. Moreover, the average number of swaps for sequences with y = 1 is 2.98 for
our choice of p = 0.1, see Fig.[T1]

Results. We find no significant difference between the baseline consensus indices VI, ARI and
MOD of order-preserving (y = 0) and non-order-preserving (y = 1) sequences. In contrast, we
observe a statistically significant increase of ¢, and ¢; for order-preserving sequences (Fig.[T2).

8 e i I s ns
<] 0.94 1
00d © 0.384° o
0.811 6.00 o.27~8 a ¢
]
0.27 1 0.37 1 0.931
0-271 B 0.36 = JI
507 0.93
0.80 2.001 0-27l
0.26 0.35
o 0.921g 8
0.8018 o 0.00 — - 0.261; 0 :

Figure 12: Difference between the baseline consensus indices VI, ARI and MOD and the MCbiF
topological average measures ¢y and ¢; of order-preserving (y = 0) and non-order-preserving
(y = 1) sequences of partitions (**** indicates p < 0.0001, Mann-Whitney U test).

We measured the performance variability in the classification task with bootstrapped 95% confidence
intervals, see Table [5] which were computed using bootstrapping with 5,000 iterations on the test
data.
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Table 5: Classification task. Test accuracy with bootstrapped 95% confidence intervals of logistic
regression trained on different features.

Raw label
encoding HF, HF, CE ARI MOD

0.53(0.50-0.57) | 0.56(0.53-0.60)  0.97 (0.96-0.98)  0.50 (0.47-0.54)  0.49 (0.45-0.53)  0.46 (0.43-0.50)

D.3 APPLICATION TO REAL-WORLD TEMPORAL DATA

Data Preprocessing. The temporal sequences of partitions computed by |Bovet et al.| (2022)
are available at: https://dataverse.harvard.edu/file.xhtml?fileId=5657692.
We restricted the partitions to the N = 281 mice that were present throughout the full study period
to ensure well-defined sequences of partitions, and considered the first nine temporal resolution val-
ues 7;, ¢ = 1,...,9, since 0,,, is an outlier. Note that the sequences tend to be fine-graining, see

Fig.[13]

30 Temporal resolution
—— 177;=0.15s

257 T,=1s
—e— T3=8s

207 —o— T,=60s

—— T5=1h
151 —— T5=5h
ﬁ'— : ,=8h
107 —e Tg=24h
T9=7d

[6:(t)]

0 1 2 3 4 5 6 7 8
Scale t [in weeks]

Figure 13: Number of clusters over weeks ¢ for different temporal resolutions 7, where larger values
of 7 produce a higher number of clusters because of the increased temporal resolution.

10 —— || HFo(6]) —HFo(62) |l 2
- | HF1(6]) — HF1(62) | 2
o 81 :
] H
C H
© H
7 6 :
S
- ..
24 T
21 :\\\ /
0 : \\---- (] ——— e TEL L 0—-0-----(I
1071 100 10! 102 103 104 10° 106
T4 T, T3 T, T [in s] Ts TsT; Tg To

Figure 14: Hilbert distance between forward and backward sequences 67 and 6° for different tem-
poral resolutions 7.

Time Reversibility. In the main text, we restricted our analysis to the so-called forward Flow
Stability sequences of partitions. However, by reversing time direction, Bovet et al.[(2022)) computed
a second set of backward sequences. For each temporal resolution 7;, we thus get a forward and
backward sequence denoted by Gfi and Qﬁi, respectively. Here we use the MCDbiF to compare the
forward and backward sequences of partitions for different 7;, and we compute the Hilbert distance
| HF(64,) — HF,(6%) ||z for k = 0,1, see Fig.[14]

We observe that the Hilbert distance between forward and backward sequences is high for 75 because
the large-scale group structure changes significantly over the study period, so that the temporal
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flows at low resolution 75 are not reversible. In contrast, the Hilbert distance between forward and
backward sequences is lower for 7g because the underlying social groups are more stable over the
study period, leading to increased time reversibility at the high temporal resolution. However, 74
leads to the lowest Hilbert distance between forward and backward sequences, showing that the
temporal resolution not only leads to the most hierarchical forward sequence but also to temporal
flows that are most time reversible.

E BACKGROUND

E.1 SANKEY DIAGRAMS

Non-hierarchical sequences of partitions ¢ are visualised by M -layered flow graphs S(0) = (V =
ViW..wVy, F=FE W..4d Ey_1) called Sankey diagrams (Sankey} 1898 Zarate et al., 2018},
where each level m = 1,..., M corresponds to a partition and vertices V,,, represent its clusters
while the directed edges E),, between levels indicate the overlap between clusters:

Vin i=A{(m, i) | 1 < i <|0(tm)}; Em = {[(m, 1), (m +1,7)] [ 0(tm)i 0V 0(tmi1); # 0}, (9)

where [u,v] € E,, denotes a directed edge from u € V,, to v € V,,41. If 6 is hierarchical, the
Sankey diagram S(6) is a directed tree—a merge-tree if 6 is coarse-graining, or a split-tree if 6 is
fine-graining. The graph S(0) is also called an alluvial diagram (Rosvall & Bergstrom), 2010).

Sankey diagrams are studied in computer graphics as they allow for the visualisation of complex
relational data. In this context, a Sankey diagram is represented as a layout on the plane, whereby
the nodes in each layer V,,, are vertically ordered according to a ranking 7, : Vi, — {1,...,|Vin|},
and the layout of the Sankey diagram is then defined by the collection of such rankings, 7 :=
(71, ...,7a). For visualisation purposes, the layered layout should ideally minimise the number of
crossings between consecutive layers, where a crossing between two edges [u, v], [u’,v'] € E,, oc-
curs if 7, (w) > T (u') and 7y 11 (v) < Ty41 (V") or vice versa, and the crossing number (Warfield,
1977) is given by:

M-—1
Ko (T) 1= Z Z L () > T (0 ) AT 1 (0) <Tmg1 (0) 5 (10)

m=1 [u,v],[u’ v ]€EE,,

where 1 denotes the indicator function. The crossing number x4 (7) of the layout of the Sankey
diagram S(6) can be minimised by permuting the rankings in the layers, 7,,, and we denote the
minimum crossing number for the layout as:

R = min kg(7). (11)

This problem is known to be NP-complete (Garey & Johnson 2006)) and finding efficient optimisa-
tion algorithms is an active research area (Zarate et al., 2018; L1 et al.,[2025)).

E.2 MULTIPARAMETER PERSISTENT HOMOLOGY

Multiparameter persistent homology (MPH) is an extension of standard persistent homology to n >
1 parameters, first introduced by |Carlsson & Zomorodian| (2009). We present here basic definitions,
see |Carlsson & Zomorodian|(2009); Carlsson et al.| (2009); Botnan & Lesnick| (2023) for details.

Simplicial Complex. K be a simplicial complex defined for the set X, such that K C 2% and
7€ KforV 71 Co € K. The elements of ¢ € K are called simplices and a k-dimensional simplex
(or k-simplex) can be represented as o = [x1, ..., T+1] Where z1, ..., 241 € X and we have fixed
an arbitrary order on X. Note that k¥ = 0 corresponds to vertices, k = 1 to edges, and k = 2 to
triangles. We define the k-skeleton K, of K as the union of its n-simplices for n < k. We also
define dim(K) as the largest dimension of any simplex in K.

Multiparameter Filtration. Let us define the parameter space (P, <) as the product of n > 1
partially ordered sets P = P; X --- X P,,i.e,,a < bfora,b € P if and only if a; < b; in P;

fori = 1,...,n. A collection of subcomplexes (K%)gqern With K = (J,cp» K* and inclusion
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maps {iqp : K — K%} 4<p that yield a commutative diagram is called a multiparameter filtration
(or bifiltration for n = 2). We denote by birth(c) C P the set of parameters, called multigrades
(or bigrades for n = 2), at which simplex o € K first appears in the filtration. For example, the
sublevel filtration K* = {o € K | f(o) < a} for a filtration function f : K — P maps each
simplex o to a unique multigrade f (o), i.e., |birth(c)| = 1. A filtration is called one-critical if it is
isomorphic to a sublevel filtration, and multi-critical otherwise.

Multiparameter Persistent Homology. Let Hj for £k € {0,...,dim(K)} denote the k-
dimensional homology functor with coefficients in a field (Hatcher, [2002), see Appendix @] for
details. Then Hy, applied to the multiparameter filtration leads to a multiparameter persistence mod-
ule, i.e., a collection of vector spaces (Hy(K®))qcrn, which are the homology groups whose ele-
ments are the generators of k-dimensional non-bounding cycles, and linear maps {4 b := Hy(iqp) :
Hy(K®*) — Hy(K®)}a<p that yield a commutative diagram called multiparameter persistent ho-
mology (MPH). For dimension k = 0, H}, captures the number of disconnected components and for
k = 1, the number of holes. Note that, for n = 1, we recover standard persistent homology (PH)
(Edelsbrunner et al.,|2002).

Hilbert Function. While barcodes are complete invariants of 1-parameter PH (n = 1), the more
complicated algebraic structure of MPH (n > 2) does not allow for such simple invariants in gen-
eral; hence, various non-complete invariants of the MPH are used in practice. We focus on the
k-dimensional Hilbert function (Harrington et al.l 2019; Botnan & Lesnick}[2023)) defined as

HF) : P — Ny, a — rank[Hy(iq,q)] = dim[H (K?)], (12)
which maps each filtration index a to the k-dimensional Betti number of the corresponding complex

K?. We call the k-dimensional MPH trivial if HF, = 0. The Hilbert distance is then defined as the
L5 norm on the space of Hilbert functions and can be used to compare MPH modules.

E.3 THE HOMOLOGY FUNCTOR

We provide additional background on simplicial homology and its functoriality, following |[Hatcher
(2002).

Simplicial Homology. Let K be a simplicial complex defined on the finite set X. For a fixed field
k (the RIVET software uses the finite filed k = Z2 (Wright & Zheng},2020)) and for all dimensions
k €{0,1,...,dim(K)} we define the k-vector space C}, (K') whose elements z are given by a formal

sum
2= Y a,0 (13)

oeK
dim(o)=k

with coefficients a, € k, called a k-chain. Note that the k-dimensional simplices o =
[0, 21, ...,xz;] € K form a basis of Cj(K). For a fixed total order on X, the boundary opera-
tor is the linear map 0), : C, — Cj—1 defined through an alternating sum operation on the basis
vectors o = [z, X1, ..., Tx] given by
k
8k(0') = Z(—l)i[zo, L1y eeny ,fz', ceey :Ek-],
i=0

where ©; means that vertex xz; is deleted from the simplex . The boundary operator fulfils the
property im Oi4+1 C ker ;. Hence, it connects the vector spaces Cy, k € {0,1,...,dim(K)},
through linear maps

O o Op— 0 o 1é)
L O S Ol — 5 B0 S Oy 0,

leading to a sequence of vector spaces called chain complex. The elements in Z}, := ker 0, are called
k-cycles and the elements in By := im Oy are called k-boundaries. Finally, the k-th homology
group Hj, is defined as the quotient of vector spaces

Hy, = Zy/ By, (14)
whose elements are equivalence classes [z] of k-cycles z € Zj. Each equivalence class [z] # 0
corresponds to a generator of non-bounding cycles, i.e., k-cycles that are not the k-boundaries of

k + 1-dimensional simplices. This captures connected components at dimension k = 0, holes at
k =1 and voids at k = 2.
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Functoriality of H;. For fixed k, Hj can be considered as a functor Hy : Top — Vect, where
Top denotes the category of topological spaces whose morphisms are continuous maps and Vect
the category of vector spaces whose morphisms are linear maps. In particular, each topological
space K is sent to a vector space Hy(K) and a continuous map g : K — K’ is sent to a linear map
Hi(g) : H,(K) — Hjy(K’) such that compositions of morphisms are preserved, i.e., Hx(g o f) =
Hy(g) o Hi(f) for two continuous maps f and g.

E.4 7ZIGZAG PERSISTENCE

We provide background on zigzag persistence, which was first introduced by |Carlsson & de Silva
(2010). For additional details, see Dey & Wang|(2022)).

Zigzag Filtration. Let K™ be a simplicial complex defined on the set X form = 1,..., M. If
either K™ C K™*! or K™*! C K™, forallm = 1,..., M, we call the following diagram a
zigzag filtration:

K' K2 oo KM71 g KM
where K™ <« K™7! is either a forward inclusion K™ < K™*t! or a backward inclusion
K™ ¢ K™%+l While forward inclusion corresponds to simplex addition, backward inclusion
can be interpreted as simplex deletion.

Zigzag Persistence. Applying the homology functor Hy, to the zigzag filtration leads to a so called
zigzag persistence module given by:

Hy(K'Y) & Hy(K?) < - & Hy (KM & Hy(KM),

where Hy,(K™) <> Hp(K™*1) is either a forward or backward linear map. Using quiver theory, it
can be shown that a zigzag persistence module has a unique interval decomposition that provides a
barcode as a simple invariant.

F DETAILS ON INFORMATION-BASED BASELINE METHODS

Information-based measures can be used to compare arbitrary pairs of partitions in the sequence
0 (Meildl 2007). Assuming a uniform distribution on X, the conditional probability distribution of
0(t) ={C1,...,Cn} given 0(s) = {Cy,...,C/ }is:
Pyl = %0 as
tlslUI] = A
| [eA

and the joint probability P; ;[7, j] is defined similarly. The conditional entropy (CE) H(¢|s) is then
given by the expected Shannon information:

[0(t)] 16(s)]
H(tls) = — Y > Puli, jllog(Pyslil]) (16)

i=1 j=1

It measures how much information about (¢) we gain by knowing 6(s). If 8(s) < 6(t) there is no
information gain and H(¢|s) = 0. To summarise the pairwise conditional entropies in the sequence
0, we define the M x M conditional entropy matrix CE by:

CEZ'J‘ = H(tz‘t]), (17)

fori,j € {1,..., M}. Furthermore, we can compute the variation of information (VI) VI(s,t) =
H(s|t) + H(t|s), which is a metric. Both CE and VI are bounded by log N.

Extending information-based measures for the analysis and comparison of more than two parti-
tions is non-trivial. However, the pairwise comparisons can be summarised with the consensus
index (Vinh et al.;|2010) which can be computed as the average VI:

(a1 Zij\il,i<j VI(tiatj)
VI(0) := MM —1)2

(18)
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