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ABSTRACT

Datasets in applications often possess an intrinsic multiscale structure with mean-
ingful descriptions at different levels of coarseness. Such datasets are naturally de-
scribed as multi-resolution clusterings, i.e., not necessarily hierarchical sequences
of partitions across scales. To analyse and compare such sequences, we use tools
from topological data analysis and define the Multiscale Clustering Bifiltration
(MCbiF), a 2-parameter filtration of abstract simplicial complexes that encodes
cluster intersection patterns across scales. The MCbiF can be interpreted as a
higher-order extension of Sankey diagrams and reduces to a dendrogram for hier-
archical sequences. We show that the multiparameter persistent homology (MPH)
of the MCbiF yields a finitely presented and block decomposable module, and
its stable Hilbert functions characterise the topological autocorrelation of the se-
quence of partitions, providing topological feature maps for downstream machine
learning tasks. In particular, at dimension zero, the MPH captures the degree of
nestedness of the sequence, whereas at dimension one, it captures higher-order
inconsistencies between clusters across scales. We demonstrate in our experi-
ments that the MCbiF feature maps outperform information-based baseline fea-
tures on both regression and classification tasks on non-hierarchical sequences of
partitions. We also show an application of MCbiF to real-world data to measure
non-hierarchies in wild mice social grouping patterns across time.

1 INTRODUCTION

In many areas of application, datasets possess an intrinsic multiscale structure, whereby mean-
ingful descriptions exist at different levels of coarseness (or scales). Think, for instance, of the
multi-resolution structure in commuter mobility patterns (Alessandretti et al., 2020; Schindler et al.,
2023), communities in social networks (Beguerisse-Dı́az et al., 2017) and thematic groups of docu-
ments (Blei et al., 2003; Altuncu et al., 2019; Grootendorst, 2022); the subgroupings in single-cell
data (Hoekzema et al., 2022) or phylogenetic trees (Chan et al., 2013); and the functional substruc-
tures in proteins (Delvenne et al., 2010; Delmotte et al., 2011). In such cases, it is desirable to go
beyond a single clustering and find a multi-resolution description in terms of a not necessarily hier-
archical sequence of partitions across scales, described by a scale parameter t. One way to produce
multiscale clusterings is by exploiting a diffusion process that reveals robust partitions of increasing
coarseness, yet not necessarily hierarchical, as it explores the data geometry with an increasing time
horizon t (Coifman et al., 2005; Azran & Ghahramani, 2006; Lambiotte et al., 2014). Similarly,
multiscale descriptions also emerge from hierarchical clustering, where t corresponds to the depth
of the dendrogram (Carlsson & Mémoli, 2010; Rosvall & Bergstrom, 2011), or temporal clustering,
where t corresponds to physical time (Bovet et al., 2022; Djurdjevac Conrad et al., 2025).

A natural problem is then how to analyse and compare non-hierarchical multi-resolution sequences
of partitions that are organised by the scale t. Here we address this question from the perspective of
topological data analysis (Carlsson & Zomorodian, 2009; Carlsson et al., 2009; Botnan & Lesnick,
2023) by introducing the Multiscale Clustering Bifiltration (MCbiF), a 2-parameter filtration of
abstract simplicial complexes that encodes the patterns of cluster intersections across all scales.
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Problem definition. A partition π of a finite set X = {x1, x2, ..., xN} is a collection of mutu-
ally exclusive subsets Ci ⊆ X (called clusters) that cover X , i.e., π = {C1, . . . , Cc} such that
X =

⋃c
i=1 Ci, and Ci

⋂
Cj = ∅, ∀i ̸= j. The cardinality |π| = c is the number of clusters in

π. For notational convenience, we use πi to denote the i-th cluster Ci of π. Let ΠX denote the
space of partitions of X . We write π ≤ π′ if every cluster in π is contained in a cluster of π′. This
refinement relation constitutes a partial order and leads to the partition lattice (ΠX ,≤) with lower
bound 0̂ := {{x1}, . . . , {xN}} and upper bound 1̂ := {X} (Birkhoff, 1967).

Here, we consider a sequence of partitions defined as a piecewise-constant function θ : [t1,∞) →
ΠX , t 7→ θ(t) such that θ(t) ∈ ΠX and the scale index t has M change points t1 < t2 < ... <
tM . We write x ∼t y if x, y ∈ θ(t)i, and this defines an equivalence relation whose equivalence
classes [x]t are the clusters θ(t)i of θ(t) (Brualdi, 2010). The sequence θ is called hierarchical if
θ(s) ≤ θ(t), ∀s ≤ t. Moreover, the sequence θ is called coarsening if |θ(s)| ≥ |θ(t)|, ∀s ≤ t. 1

Conversely, θ is called fine-graining if |θ(s)| ≤ |θ(t)|, ∀s ≤ t.

Our goal is to characterise and analyse arbitrary sequences of partitions θ, including non-
hierarchical, in an integrated manner, taking account of memory effects across scales t.
Remark 1. We are not concerned with the task of computing θ from dataset X , for which several
methods exist. Rather, we take the multiscale clustering θ as a given and aim to analyse its structure.
Remark 2. This problem is distinct from consensus clustering, which aims to produce a summary
partition by combining a set of partitions obtained, e.g., from different optimisations or clustering
algorithms (Strehl & Ghosh, 2002; Vega-Pons & Ruiz-Shulcloper, 2011).

1
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Output: Multiscale Clustering Bifiltration
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Figure 1: (a) The MCbiF Ks,t is a bifiltration of abstract simplicial complexes that encodes the struc-
ture of the non-hierarchical sequence of partitions θ in an integrated manner. (b) The stable MCbiF
Hilbert functions HFk(s, t) measure the topological autocorrelation of θ, capturing nestedness at
dimension k = 0 and higher-order cluster inconsistencies at dimension k = 1. These topological
invariants can serve as feature maps describing θ for downstream machine learning tasks.

Contributions. To address this problem, we define the MCbiF, a bifiltration (Ks,t)t1≤s≤t that ag-
gregates the cluster intersection patterns from θ(s) to θ(t) for varying starting scale s and lag t− s.
Using the machinery of multiparameter persistent homology (MPH) (Carlsson & Zomorodian, 2009;
Carlsson et al., 2009; Botnan & Lesnick, 2023), we prove that the MCbiF leads to a block decom-
posable persistence module with stable Hilbert functions HFk(s, t), and we show that these serve as
measures of the topological autocorrelation of the sequence of partitions θ as induced by the scale
t. In particular, HFk(s, t) quantifies the non-hierarchy in θ in two complementary ways: at dimen-
sion k = 0 it measures the degree of nestedness of partitions, and at dimension k = 1 it quantifies

1Coarsening is equivalent to non-decreasing mean cluster size (see Remark 20 in the appendix).
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the higher-order inconsistencies of cluster assignments across scales. In contrast, baseline methods
such as ultrametrics (Carlsson & Mémoli, 2010) or information-based measures (Meilă, 2003) are
restricted to pairwise cluster comparisons, hence cannot detect higher-order cluster inconsistencies.
Furthermore, using its equivalent nerve-based construction, we show that MCbiF can be interpreted
as a higher-order extension of a Sankey diagram. In the hierarchical case, the sequence of partitions
reduces to a dendrogram, and the MCbiF can be obtained from the Vietoris-Rips filtration defined
on the corresponding ultrametric space (Carlsson & Mémoli, 2010).

The Hilbert functions of the MCbiF provide interpretable feature maps useful in downstream ma-
chine learning tasks. In our experiments, the MCbiF feature maps outperform information-based
baseline features (Meilă, 2007) on both regression and classification tasks on non-hierarchical se-
quences of partitions. We also show an application of MCbiF to real-world data to measure non-
hierarchies in wild mice social grouping patterns across time (Bovet et al., 2022).

2 RELATED WORK

Information-based comparison of clusterings. Information-based measures can be used to com-
pare a pair of partitions. Assuming a uniform distribution on X , one can derive probability distri-
butions for partitions interpreted as random variables and thus measure the information gain and
loss between two partitions using the conditional entropy (CE) or the variation of information (VI),
which is a metric on ΠX (Meilă, 2003; 2007). See Appendix C for detailed formulas. Extending
information-based measures to more than two partitions is non-trivial. In consensus clustering, the
average VI is used as a consensus index (CI) (Vinh & Epps, 2009; Vinh et al., 2010) for multiple
partitions. However, the CI is independent of the ordering in the sequence and so cannot capture
memory effects in sequences of partitions. Another limitation is that information-based measures
rely only on the joint probability between pairs of random variables, hence higher-order inconsis-
tencies between cluster assignments are not captured (see Section 5).

Dendrograms and ultrametrics. A hierarchical sequence θ with θ(t1 = 0) = 0̂ and θ(tM ) = 1̂ is
also called a dendrogram and can be represented by an acyclic rooted merge tree (Jain et al., 1999).
One can define an ultrametric Dθ from the first-merge times, which corresponds to the depth in the
dendrogram. Carlsson & Mémoli (2010) showed that there is a one-to-one correspondence between
dendrograms and ultrametrics, which can be used to efficiently compare two dendrograms via the
Gromov-Hausdorff distance between the ultrametric spaces (Mémoli et al., 2023). When θ is non-
hierarchical, however, the first-merge times no longer define the sequence uniquely because clusters
that have merged can split off again. In this case, θ cannot be represented by a tree and Dθ does not
fulfil the standard triangle inequality in general. Hence, ultrametrics cannot be used to analyse and
compare non-hierarchical sequences of partitions (see Section 5).

3 BACKGROUND

3.1 SANKEY DIAGRAMS

Non-hierarchical sequences of partitions θ are visualised by M -layered flow graphs S(θ) = (V =
V1 ⊎ ... ⊎ VM , E = E1 ⊎ ... ⊎ EM−1) called Sankey diagrams (Sankey, 1898; Zarate et al., 2018),
where each level m = 1, . . . ,M corresponds to a partition and vertices Vm represent its clusters
while the undirected edges Em between levels indicate the overlap between clusters:

Vm := {(m, i) | 1 ≤ i ≤ |θ(tm)|}, Em = {[(m, i), (m+ 1, j)] | θ(tm)i ∩ θ(tm+1)j ̸= ∅} . (1)

If θ is hierarchical, the Sankey diagram S reduces to a dendrogram. Sankey diagrams are studied in
computer graphics as they allow for the visualisation of complex relational data. The nodes in each
layer Vm are vertically ordered according to a ranking τm : Vm → {1, . . . , |Vm|}, and a crossing
between two edges [u, v], [u′, v′] ∈ Em occurs if τm(u) > τi(u

′) and τm(v) < τm(v′) or vice
versa. Ideally, a layered layout τ(S) := (τ1, . . . , τM ) for the nodes in the Sankey diagram should
minimise the crossing number (Warfield, 1977) defined as:

κ(τ(S)) :=

M−1∑
m=1

∑
[u,v],[u′,v′]∈Em

[τm(u) > τm(u′) ∧ τm(v) < τm(v′)] , (2)
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where we use the Iverson bracket notation. Minimising κ(τ(S)) is NP-complete (Garey & Johnson,
2006) and finding efficient optimisation algorithms is an active research area (Zarate et al., 2018; Li
et al., 2025). We denote the minimum crossing number of S(θ) by κ(θ) := minτ κ(τ(S)).

3.2 MULTIPARAMETER PERSISTENT HOMOLOGY

Multiparameter persistent homology (MPH) is an extension of standard persistent homology to n >
1 parameters, first introduced by Carlsson & Zomorodian (2009). We present here basic definitions,
see Carlsson & Zomorodian (2009); Carlsson et al. (2009); Botnan & Lesnick (2023) for details.

Multiparameter filtration. Let us define the parameter space (P,≤) as the product of n ≥ 1
partially ordered sets P = P1 × · · · × Pn, i.e., a ≤ b for a, b ∈ P if and only if ai ≤ bi in Pi for
i = 1, . . . , n. Let K be a simplicial complex defined for the set X , such that K ⊆ 2X and K is closed
under the operation of building subsets. The elements of σ ∈ K are called simplices, and dim(K) is
defined as the largest dimension of any simplex in K. A collection of subcomplexes (Ka)a∈Rn with
K =

⋃
a∈Rn Ka and inclusion maps {ia,b : Ka → Kb}a≤b that yield a commutative diagram is

called a multiparameter filtration (or bifiltration for n = 2). We denote by birth(σ) ⊆ P the set of
parameters, called multigrades (or bigrades for n = 2), at which simplex σ ∈ K first appears in the
filtration. For example, the sublevel filtration Ka = {σ ∈ K | f(σ) ≤ a} for a filtration function
f : K → P maps each simplex σ to a unique multigrade f(σ), i.e., |birth(σ)| = 1. A filtration is
called one-critical if it is isomorphic to a sublevel filtration, and multi-critical otherwise.

Multiparameter persistent homology. Let Hk for k ∈ {0, . . . ,dim(K)} denote the k-
dimensional homology functor with coefficients in a field (Hatcher, 2002). Then Hk applied to the
multiparameter filtration leads to a multiparameter persistence module, i.e., a collection of vector
spaces (Hk(K

a))a∈Rn , which are the homology groups whose elements are the generators of k-
dimensional non-bounding cycles, and linear maps {ıa,b := Hk(ia,b) : Hk(K

a) → Hk(K
b)}a≤b

that yield a commutative diagram called multiparameter persistent homology (MPH). For dimension
k = 0, Hk captures the number of disconnected components and for k = 1, the number of holes.
Note that we recover standard persistent homology (PH) for n = 1 (Edelsbrunner et al., 2002).

Hilbert function. While barcodes are complete invariants of 1-parameter PH (n = 1), the more
complicated algebraic structure of MPH (n ≥ 2) does not allow for such simple invariants in gen-
eral; hence various non-complete invariants of the MPH are used in practice. We focus on the
k-dimensional Hilbert function (Botnan & Lesnick, 2023) defined as

HFk : P → N0,a 7→ rank[Hk(ia,a)] = dim[Hk(K
a)], (3)

which maps each filtration index a to the k-dimensional Betti number of the corresponding complex
Ka. The Hilbert distance is then defined as the L2 norm on the space of Hilbert functions and can
be used to compare persistence modules.

4 THE MULTISCALE CLUSTERING BIFILTRATION (MCBIF)

The central object of our paper is a novel bifiltration of abstract simplicial complexes that encodes
cluster intersection patterns in the sequence of partitions θ across the scale t.
Definition 3. Let θ : [t1,∞)→ ΠX be a sequence of partitions. We define the Multiscale Clustering
Bifiltration (MCbiF)M := (Ks,t)t1≤s≤t as a bifiltration of abstract simplicial complexes

Ks,t :=
⋃

t1≤s≤r≤t

⋃
C∈θ(r)

∆C, t1 ≤ s ≤ t. (4)

Here we interpret each cluster C as a (|C| − 1)-dimensional solid simplex ∆C := 2C following
Schindler & Barahona (2025), and echoing the concept of clustering as coarse-graining (Lambiotte
et al., 2014; Rosvall & Bergstrom, 2011; 2008) and the interpretation of clusters as equivalence
classes (Brualdi, 2010). The MCbiF aggregates all clusters from partition θ(s) to θ(t) through the
union operators, and thus depends not only on the lag |t − s| but also on the starting scale s to
measure topological autocorrelation, see Fig. 1.
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Proposition 4. M is a multi-critical bifiltration uniquely defined by its values on the finite grid
P = {(s, t) ∈ [t1, . . . , tM ]×[t1, . . . , tM ] | s ≤ t}with partial order (s, t) ≤ (s′, t′) if s ≥ s′, t ≤ t′.

The proof is straightforward and can be found in Appendix A. The MCbiF leads to a triangular com-
mutative diagram where the arrows indicate inclusion maps between abstract simplicial complexes,
see Fig. 1. The sequence of partitions θ(t) is encoded by the complexes Kt,t on the diagonal of
the diagram. Moving along horizontal arrows corresponds to fixing a starting scale s and θ going
forward, capturing the coarsening of partitions. Moving along vertical arrows corresponds to fixing
an end scale t and aggregating θ going backwards, capturing the fine-graining of partitions.
Remark 5. By fixing s := t1, which corresponds to the top row in the diagram, the MCbiF recovers
the 1-parameter Multiscale Clustering Filtration (MCF) defined by Schindler & Barahona (2025).
The MCF, however, can only encode coarsening sequences of partitions. For example, a large cluster
C ∈ θ(s′) prevents MCF from detecting cluster assignment conflicts between points x, y ∈ C for
t ≥ s′, see Section 4.1. MCbiF mitigates this lack of sensitivity in MCF by varying both the starting
scale s and the lag t− s to encode the full topological information contained in θ.

4.1 MEASURING TOPOLOGICAL AUTOCORRELATION WITH MCBIF

Applying MPH (Carlsson & Zomorodian, 2009) to the bifiltration M at dimensions k ≤ dimK,
for K = KtM ,tM , leads to a triangular diagram of simplicial complexes Hk(K

s,t) called per-
sistence module (see Section 3.2). We show in Proposition 21 that the MCbiF persistence mod-
ule is pointwise finite-dimensional, finitely presentable and block-decomposable (see Botnan &
Lesnick (2023) for definitions), which are strong algebraic properties that guarantee algebraic stabil-
ity (Bjerkevik, 2021).The proof relies on the equivalent nerve-based construction of the MCbiF (see
Proposition 23), and the exactness of the persistence module from which block-decomposability
follows (Cochoy & Oudot, 2020). See Appendix A for details and full proof.

The algebraic stability of MCbiF means that we can summarise the topology of MCbiF using the
Hilbert functions HFk(s, t) (equation 3) as simple interpretable invariants, since finite presenta-
tion property implies stability of HFk(s, t) with respect to small changes in the module (Oudot &
Scoccola, 2024, Corollary 8.2.).
Remark 6. Values of HFk(s, t) further away from the diagonal (s = t) are more robust to permuta-
tions of partitions in θ, see Proposition 22 in the appendix. In particular, HFk(t1, tM ) only depends
on im(θ), the set of distinct partitions, and could be used as an overall measure of consistency in θ.

We now show how HFk(s, t) can be used to detect cluster-assignment conflicts. We focus on k =
0, 1, for which MPH is implemented in RIVET (Lesnick & Wright, 2015).

Nestedness of Partitions. Hierarchy is usually understood as a refinement of partitions captured
by the partition lattice. We can quantify the degree of nestedness through HF0(s, t) and 0-conflicts.
Definition 7. We say that x1, x2, x3, x4 ∈ X lead to a 0-conflict in θ for s ≤ t if the following
two conditions hold: a) Opposite splitting: ∃r1, r2 ∈ [s, t]: [x1]r1 = [x2]r1 , [x3]r1 ̸= [x4]r1 and
[x3]r2 = [x4]r2 , [x1]r2 ̸= [x2]r2 . b) No global transitivity: ∄r ∈ [s, t]: [x1]r = [x2]r = [x3]r =
[x4]r.
Proposition 8. (i) HF0(s, t) ≤ mins≤r≤t |θ(r)|, ∀t1 ≤ s ≤ t. (ii) The following two conditions
are equivalent for s ≤ t: C1: ∃r ∈ [s, t] such that HF0(s, t) = |θ(r)|. C2: ∃r ∈ [s, t] such that
θ(r′) ≤ θ(r), ∀s ≤ r′ ≤ t. (iii) ¬ C1 (or ¬ C2) iff there is a 0-conflict for s < t.

See Appendix A for a full proof. Note that C2 means that the subposet θ([s, t]) has an upper bound.

To obtain a single measure of nestedness in θ we define the average persistent 0-conflict as:

0 ≤ c̄0(θ) := 1− 2

|tM − t1|2

∫ tM

t1

∫ tM

s

HF0(s, t)

HF0(t, t)
ds dt ≤ 1. (5)

Higher values of c̄0(θ) indicate a lower degree of nestedness. The next corollary follows immedi-
ately from Proposition 8.
Corollary 9. (i) HF0(t, t) = |θ(t)| for all t ≥ t1. (ii) If θ is hierarchical on the interval [s, t] then
HF0(s, t) = |θ(t)|. (iii) c̄0(θ) = 0 iff θ is strictly hierarchical.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Higher-order Inconsistencies between Clusters. Another way of measuring non-hierarchy is
to track higher-order inconsistencies of cluster assignments across scales captured by the higher-
dimensional homology groups (Schindler & Barahona, 2025). We can measure this with HF1(s, t).
Proposition 10. (i) If HF1(s, t) ≥ 1 then ¬ C1. (ii) In particular, every homology generator
[z] ∈ H1(K

s,t) induces a 0-conflict for s ≤ t and we call this a 1-conflict. (iii) If θ is hierarchical
on the interval [s, t] then HF1(s, t) = 0.

(b) 1-conflict

(a) 0-conflict

(c) no conflict

Figure 2: Relationship between
conflicts and Sankey diagrams.

See Appendix A for a proof. Note that not every 0-conflict
is a 1-conflict, Example 25 in the appendix. However, two 0-
conflicts can lead to a 1-conflict, see Fig. 1.
Remark 11. 1-conflicts arise from higher-order cluster incon-
sistencies across scales. We can interpret a non-bounding cycle
[z] ∈ H1(K

s,t) as an opportunity to unify the points involved
in [z] into a single cluster. Hence, when [z] dies in the MPH at
(s, t′), t < t′, we say that θ(t′) is conflict-resolving partition,
see Schindler & Barahona (2025).

To obtain a single measure of 1-conflicts in θ, we define the
average persistent 1-conflict:

0 ≤ c̄1(θ) :=
2

|tM − t1|2

∫ tM

t1

∫ tM

s

HF1(s, t)ds dt. (6)

4.2 MCBIF AS A HIGHER-ORDER SANKEY DIAGRAM

With Vm as in equation 1, we define the disjoint union A(ℓ,m) := Vℓ ⊎ ...⊎Vm, 1 ≤ ℓ ≤ m, which
assigns an index to each cluster in θ(t) for t ∈ [tℓ, tm]. We use this to define the nerve-based MCbiF.
Definition 12. For s ∈ [tℓ, tℓ+1), ℓ = 1, ...,M−1, and t ∈ [tm, tm+1), m = ℓ, ...,M−1 or t ≥ tm
for m = M we define the nerve-based MCbiF K̃s,t := {σ ⊆ A(ℓ,m) :

⋂
(n,i)∈σ θ(tn)i ̸= ∅}.

The nerve-based MCbiF M̃ = (K̃s,t)t1≤s≤t is a 1-critical bifiltration with simplices representing
clusters and their intersections, whereas the simplices inM (equation 4) represent points in X and
their equivalence relations. Despite these different perspectives, M̃ andM lead to the same MPH
and can be considered as equivalent, see Proposition 23 in the appendix, which follows from an
extension of results by Schindler & Barahona (2025). However, their dimensionality can differ:
Proposition 13. (i) dimKs,t = maxs≤r≤t maxc∈θ(r) |C| − 1, ∀t1 ≤ s ≤ t.
(ii) dim K̃tm,tm+n = n, ∀1 ≤ m ≤M, 0 ≤ n ≤M −m.

See Appendix A for the proof. The nerve-based MCbiF is computationally advantageous when
M < maxt1≤t maxC∈θ(t) |C| − 1, making it the preferred choice in many applications.

Remark 14. We can interpret M̃ as a higher-order extension of the Sankey diagram S(θ) (equa-
tion 1) that not only records pairwise intersections between clusters in consecutive partitions of θ
but also higher-order intersections between clusters in subsequences of θ. In particular, the graph
S(θ) is a strict 1-dimensional subcomplex of K̃t1,tM because K̃tm = Vm and K̃tm,tm+1 = Em.
Moreover, we can retrieve S(θ) from the zigzag filtration:

· · · ←↩ K̃tm,tm ↪→ K̃tm,tm+1 ←↩ K̃tm+1,tm+1 ↪→ . . .

The 0- and 1-conflicts that can arise in a single layer Em of the Sankey diagram can be fully char-
acterised. A 0-conflict arises when there exist nodes u ∈ Vm and v ∈ Vm+1 that are both incident
to at least two edges in Em, and a 1-conflict arises when there is an even-cycle in Em, see Fig. 2.
Importantly, a 1-conflict in Ktm,tm+1 leads to a crossing in Em that cannot be undone. This im-
plies that the superdiagonal of HF1 provides a lower bound for the minimal crossing number κ(θ)
(equation 2).

Corollary 15.
∑M−1

m=1 HF1(tm, tm+1) ≤ κ(θ).

Note that 1-conflicts arising through multiple partitions not necessarily lead to crossings, see Fig. 1.
However, we hypothesise that the full HF0 and HF1 feature maps give insights into more compli-
cated crossings that arise in the Sankey layout due to interactions between different layers.
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5 MATHEMATICAL LINKS OF MCBIF TO OTHER METHODS

MCbiF has links and provides generalisations to the related methods introduced in Section 2.

Ultrametrics. Given θ, define the matrix of first-merge times conditional on starting scale s:

Dθ,s(xi, xj) := min{t ≥ s | ∃ C ∈ θ(t) : xi, xj ∈ C}.

For s = 0, we recover the standard matrix of first-merge times Dθ := Dθ,0. If θ is hierarchical with
θ(t1 = 0) = 0̂ and θ(tM ) = 1̂ then Dθ is an ultrametric, i.e., it fulfils the strong triangle inequality
Dθ(x, z) ≤ max (Dθ(x, y), Dθ(x, z)) ∀x, y, z ∈ X , and Proposition 8 implies that the number of
branches in the dendrogram at level t is equal to HF0(s, t) for s ≤ t. Hence, HF0(s, t) contains the
same information as the ultrametric in the hierarchical case, see also Schindler & Barahona (2025).
If θ is non-hierarchical, 0-conflicts can lead to violations of the (strong) triangle inequality.
Proposition 16. Dθ is not an ultrametric if ∃x1, x2, x3 ∈ X that lead to a 0-conflict.

See Appendix A for a proof. This proposition shows that c̄0(θ) can be interpreted as a measure of
how much the ultrametric property of Dθ is violated. Recall that, although not a metric, Dθ,s is a
dissimilarity measure that can be used to define a filtration (Chazal et al., 2014). Extending results
from Schindler & Barahona (2025), it can be shown that a 2-parameter Vietoris-Rips filtration from
Dθ,s has the same zero-dimensional MPH as MCbiF but has a trivial higher-dimensional MPH, see
Proposition 24. This suggests that the pairwise merge times Dθ,s can capture the nestedness of
partitions but not the inconsistencies that arise through higher-order interactions between clusters.

Conditional Entropy. CE is only defined for pairs of partitions (θ(s),θ(t)) and can be computed
as the expected information of the conditional probability of θ(t) given θ(s), denoted by Pt|s, see
Appendix C. For the special case of M = 2, HF0(t1, t2) follows directly from the spectral properties
of the matrix Pt2|t1P

T
t2|t1 , which can be interpreted as an undirected graph.

Proposition 17. HF0(t1, t2) = dim(kerL) for graph Laplacian L := diag(Pt2|t11)−Pt2|t1P
T
t2|t1 .

The proof follows from Proposition 23, which shows that Pt2|t1P
T
t2|t1 and K̃t1,t2 have the same

1-simplices and dim(kerL) is equal to the number of connected graph components (Chung, 1997).
Note that Pt|s only encodes the pairwise relationship between clusters, and does not capture higher-
order inconsistencies between cluster assignments. In particular, CE cannot detect 1-conflicts arising
across more than two scales, see Example 26 in appendix.

6 EXPERIMENTS

6.1 REGRESSION TASK: MINIMAL CROSSING NUMBER

In our first experiment, we predict the minimal crossing number κ(θ) (equation 2). This task is of
relevance in computer graphics and related to the NP-complete minimisation of the crossing number
in Sankey diagram layouts (Zarate et al., 2018; Li et al., 2025).
Definition 18. Let ΠM

N denote the space of coarsening sequences θ : [0,∞)→ ΠX with |X| = N

so that θ(0) = 0̂, θ(M − 1) = 1̂ and the scale t has M change points tm = m− 1, ∀1 ≤ m ≤M .

For M = 20, we define two datasets by sampling 20,000 random samples θ ∈ ΠM
N for N = 5

and N = 10, respectively. For each θ, we compute the information-based pairwise conditional
entropy matrix CE (Meilă, 2003) (see equation 10) and our MCbiF Hilbert functions (HF0 and
HF1) as feature maps. We define the minimal crossing number y = κ(θ) as our prediction target,
which we computed with the OmicsSankey algorithm (Li et al., 2025). See Appendix D.1 for
details. Predicting y is harder for N = 10 because the increased complexity of ΠN

M allows for more
complicated crossings.

We first compute the Pearson correlation, r, between y, CI (given by the average CE, see equa-
tion 11), c̄0 and c̄1. The correlation between CI and y is low (r = 0.20 for N = 5 and r = 0.06 for
N = 10), higher for c̄0, and highest for c̄1 (r = 0.47 for N = 5, 10) (see Fig. 6 in appendix). This is
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Table 1: Regression task. Test R2 score of LR, CNN and MLP models trained on different features
for N = 5 and N = 10. See Appendix D.1 for train R2 scores.

N Method Raw θ HF0 HF1 HF0 & HF1 CE

5
LR 0.001 0.147 0.486 0.539 0.392

CNN -0.006 0.155 0.504 0.544 0.492
MLP -0.002 0.150 0.491 0.541 0.409

10
LR -0.012 0.214 0.448 0.516 0.457

CNN 0.000 0.211 0.448 0.507 0.454
MLP 0.000 0.212 0.450 0.514 0.458

consistent with our theoretical results that link the crossing number with HF1, see Section 4.2. For
the regression task, we split each dataset into train (64%), validation (16%) and test (20%). For each
feature map (or their combinations), we train three different models: linear regression (LR), multi-
layer perceptron (MLP), and convolutional neural network (CNN).We use the mean-squared error
(MSE) as our loss function and the validation set for hyperparameter tuning. See Appendix D.1 for
details. We evaluate the model performances on the unseen test data using the coefficient of deter-
mination (R2) and observe that MCbiF features outperform information-based features (Table 1). In
particular, the combined HF0 and HF1 features lead to a significantly better model performance than
CE (p < 0.0001, t-test). Moreover, HF0 and HF1 yield R2 = 0.544 for N = 5 and R2 = 0.516
for N = 10 whereas CE only achieves R2 = 0.492 and R2 = 0.458, respectively. The strong per-
formance of LR demonstrates the interpretability of the MCbiF features, important for explainable
AI (XAI) (Adadi & Berrada, 2018).

6.2 CLASSIFICATION TASK: ORDER-PRESERVATION

Figure 3: Difference between
order-preserving (y = 1) and
not order-preserving (y = 0)
sequences (**** indicates p <
0.0001, Mann- U test).

In our second experiment, we classify whether a sequence θ
is order-preserving or not. This task is of relevance in utility
theory and the study of preference relations (Roberts, 2009).

Definition 19. A partition θ(tm) equipped with a total order
<m is called an ordered partition and induces a total preorder
≲m on X (Stanley, 2011), i.e., x ≲m y if [x]t <m [y]t. We
call θ order-preserving if there exist total orders (<1, . . . , <M )
such that the total preorders (≲1, . . . ,≲M ) are compatible, i.e.,
∀ℓ,m we have x ≲ℓ y iff x ≲m y, ∀x, y ∈ X .

We generate a balanced dataset of 3,700 partitions θ ∈ Π30
500

with 50% of the sequences order-preserving (y = 0) and 50%
not order-preserving (y = 1), see Appendix D.2 for details. We
choose N = 500 and M = 30 to demonstrate the scalability
of our method. For each θ we compute CE and HFk, k = 0, 1,
using the computationally advantageous nerve-based MCbiF.

Table 2: Classification task. Test
accuracy of logistic regression
trained on different features.

Raw θ HF0 HF1 CE

0.53 0.56 0.97 0.50

Whereas there is no significant difference between the two classes for CI, we observe a statistically
significant increase of c̄0 and c̄1 for order-preserving sequences (Fig. 3). For the classification task,
we split our data into train (80%) and test (60%). We train logistic regression on each feature map
separately, and evaluate the accuracy on the test split, see Appendix D.2. We observe that HF1

predicts y with high accuracy (0.95) in contrast to CE that cannot improve on a random classifier
(Table 2). Our results demonstrate the high sensitivity of MCbiF to order-preservation in θ.

6.3 APPLICATION TO REAL-WORLD TEMPORAL DATA

In our final experiment, we apply MCbiF to temporal sequences of partitions θτ computed from real-
world contact data of free-ranging house mice (Bovet et al., 2022). Each partition θτ (t) describes
mice social groupings at week t ∈ [1, . . . , 9] and the scale t corresponds here to the nine weeks
in the study period (28 February-1 May 2017), throughout which N = 281 individual mice were
present. Each sequence captures the fine-graining of social groups over the transition from winter to

8
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spring, and larger values of the temporal resolution τ > 0 lead to finer temporal community struc-
ture (Fig. 8). We use MCbiF to compare the temporal sequences θτi for nine different resolutions
τi, i = 1, . . . , 9, as provided inBovet et al. (2022). See Appendix D.3 for details.

(a) (b)

τ9τ8τ7τ5τ4τ1 τ2 τ3 τ6

Figure 4: (a) Persistent conflict in temporal sequences θτi(t) for different levels of temporal resolu-
tion τi from mice social data. Vertical red lines indicate robust τi identified by Bovet et al. (2022),
for which we display Sankey diagrams and MCbiF features. (b) The robust τi correspond to stable
temporal regimes captured by the block structure in the MCbiF Hilbert distances.

Bovet et al. (2022) identified that the temporal resolutions τ2 = 1 s, τ4 = 60 s and τ8 = 24h lead
to robust sequences of partitions. Using the Hilbert distance, i.e., the L2-norm on the zero- and
one-dimensional MCbiF Hilbert functions, we find these temporal resolutions to be representative
for three distinct temporal regimes, which are characterised by different degrees of non-hierarchy
as measured by c̄0 and c̄1 (Fig. 4). In particular, high c̄0 indicates that mice tend to split off groups
over time, and high c̄1 indicates that mice meet in overlapping subgroups but never jointly in one
nest box. Note that θτ2 has strong non-hierarchies because the large-scale mice social clusters get
disrupted in the transition to spring. In contrast, θτ8 is more hierarchical as it captures the underlying
stable social groups revealed by the higher temporal resolution. Finally, the Hilbert distances also
capture an increased time reversibility in the sequence θτ8 due to the increased stability of social
groupings over time, see Fig. 9 in the appendix.

7 CONCLUSION

We introduce the MCbiF, a novel bifiltration that encodes the cluster intersection patterns of mul-
tiscale, non-hierarchical sequences of partitions, θ. Its stable Hilbert functions quantify the topo-
logical autocorrelation of θ by measuring nestedness of partitions and higher-order cluster incon-
sistencies. Our measures of persistent conflict c̄0(θ) and c̄1(θ) are global, history-dependent and
sensitive to the ordering of the partitions in θ. The MCbiF extends the 1-parameter MCF defined
by Schindler & Barahona (2025) to a 2-parameter filtration, leading to richer algebraic invariants
that describe the full topological information in θ. We demonstrate with numerical experiments
that the MCbiF Hilbert functions provide topological feature maps for downstream machine learn-
ing tasks, which outperform information-based features on regression and classification tasks on
non-hierarchical sequences of partitions. Moreover, the grounding of MCbiF features in algebraic
topology enhances interpretability, a crucial attribute for XAI and applications to real-world data.

Limitations and future work Our analysis of the MCbiF MPH is restricted to dimensions zero
and one due to limitations of the RIVET software Lesnick & Wright (2015) used in our numerical
experiments. However, analysing topological autocorrelation for higher dimensions would allow us
to capture more complex higher-order cluster inconsistencies. We also focused on the Hilbert func-
tions of MCbiF as our topological invariants because of their computational efficiency and analytical
simplicity, which facilitates our theoretical analysis. In future work, we plan to use algebraically
richer feature maps by exploiting the block decomposition of the MCbiF persistence module, which
leads to barcodes Bjerkevik (2021), or by using multiparameter persistence landscapes (Vipond,
2020). Finally, we plan to analyse minimal cycle representatives of the MPH (Li et al., 2021) to
localise 0 and 1-conflicts in the sequence of partitions, which is of interest in many applications.
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REPRODUCIBILITY STATEMENT

Detailed proofs of all theoretical results can be found in Appendix A and extensive documenta-
tion of our experiments in Appendix D. The dataset studied in Section 6.3 is publicly available at:
https://dataverse.harvard.edu/file.xhtml?fileId=5657692. We will release
code upon publication.
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A PROOFS OF THEORETICAL RESULTS

Remark 20. It is a simple fact that θ is coarsening iff 1
|θ(s)|

∑|θ(s)|
i |θ(s)i| ≤ 1

|θ(t)|
∑|θ(t)|

j |θ(t)j |
for s ≤ t. The proof follows directly from the fact that

∑|θ(s)|
i |θ(s)i| =

∑|θ(t)|
i |θ(t)i| = N .

We provide a proof for the multi-criticality of the MCbiF filtration stated in Proposition 4.

Proof of Proposition 4. The MCbiF is indeed a bifiltration because Ks,t ⊆ Ks′,t′ if s ≥ s′ and
t ≤ t′. It is uniquely defined by its values on the finite grid [t1, . . . , tM ] × [t1, . . . , tM ] because
θ has change points t1 < · · · < tM . It is a multi-critical bifiltration because for x ∈ X we have
[x] ∈ Ks,t for all s, t ∈ [t1,∞)op× [t1,∞). In particular, x ∈ Kt1,t1 and x ∈ Kt1+δ,t1+δ for δ > 0
but (t1, t1) and (t1 + δ, t1 + δ) are incomparable in the poset [t1,∞)op × [t1,∞).

Next, we provide the proof for Proposition 21, which shows that the MCbiF persistence module
is pointwise finite-dimensional, finitely presented and block-decomposable (see Botnan & Lesnick
(2023) for definitions).

Proposition 21. For any k ≤ dimK, the MCbif persistence module Hk(K
s,t) is pointwise finite-

dimensional, finitely presented and block-decomposable.

Proof of Proposition 21. We prove the proposition for the nerve-based MCbiF, which leads to the
same persistence module. As MCbiF is pointwise finite-dimensional and defined on a finite grid,
we can use Theorem 9.6 by Cochoy & Oudot (2020) that implies block-decomposability of the
persistence module if it is exact. Hence, it suffices to show that for all t ≤ t′ ≤ t′′ ≤ t′′′ the diagram

Hk(K̃
t,t′′) Hk(K̃

t,t′′′)

Hk(K̃
t′,t′′) Hk(K̃

t′,t′′′)

induces an exact sequence:

Hk(K̃
t′,t′′)→ Hk(K̃

t,t′′)⊕Hk(K̃
t′,t′′′)→ Hk(K̃

t,t′′′) (7)

By construction of the MCbiF, K̃t,t′′′ = K̃t,t′′ ∪ K̃t′,t′′′ . Furthermore, K̃t,t′′ = K̃t,t′ ∪ K̃t′,t′′ and
K̃t′,t′′′ = K̃t′,t′′ ∪ K̃t′′,t′′′ . Without loss of generality, t = tk, t′ = tℓ, t′′ = tm, t′′′ = tn for change

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

points tk < tℓ < tm < tn of θ such that A(k, ℓ) ∩ A(m,n) = ∅. Hence, K̃t,t′ ∩ K̃t′′,t′′′ = ∅
and K̃t′,t′′ = K̃t,t′′ ∩ K̃t′,t′′′ . This means that equation 7 is a Mayer-Vietoris sequence for all
k ≥ 0, implying exactness (Hatcher, 2002) and proving the block decomposability (Cochoy &
Oudot, 2020). As the MCbiF is defined uniquely by its values on a finite grid (Proposition 4), its
persistence module decomposes into finitely many blocks and is therefore finitely presented.

It follows from the construction of MCbiF that the Hilbert functions are invariant to certain permu-
tations of partitions in θ.

Proposition 22. HFk(s, t) is invariant to permutations of the sequence between s and t.

Proof. The proof follows directly from the construction of MCbiF, see equation 4.

We now provide a proof for Proposition 8 on properties of the zero-dimensional Hilbert function of
the MCbiF.

Proof of Proposition 8. Statement (i) follows directly from Proposition 12 in Schindler & Barahona
(2025). To prove (ii), consider first that C2 is true and θ(r) is an upper bound for the partitions θ(r′),
s ≤ r′ ≤ t. Then all simplices in Ks,t are nested within Kr,r, which has |θ(r)| disconnected com-
ponents, i.e., HF0 = |θ(r)| implying C1. We prove the other direction by contradiction. Assume
that C1 is true but C2 is false. Then there exists θ(r′) for s ≤ r′ ≤ t such that either θ(r) and θ(r′)
are not comparable in the partition lattice, otherwise θ(r) < θ(r′) contradicting C1. This implies
that there are points x, y ∈ X such that x, y ∈ C ′ for a cluster C ′ ∈ θ(r′) but there exists no cluster
C ∈ θ(r) such that x, y ∈ C. This implies that Kr,r ∪ ∆C ′ ⊆ Ks,t has strictly fewer connected
components than Kr,r, i.e., HF0(s, t) < |θ(r)| contradicting C1.

To prove (iii), we first show that ¬ C2 implies that there is a 0-conflict. If ¬ C2, ∃r1, r2 ∈ [s, t]
such that θ(r1) ≰ θ(r2) and θ(r2) ≰ θ(r1), otherwise there would be a total order on θ([s, t])
with an upper bound. Hence, ∃C ∈ θ(r1) such that C is split in θ(r2) and ∃C ′ ∈ θ(r2) such that
C ′ is split in θ(r1). This means there are x1, x2 ∈ C and x3, x4 ∈ C ′ such that [x1]r1 = [x2]r1 ,
[x3]r1 ̸= [x4]r1 and [x3]r2 = [x4]r2 , [x1]r2 ̸= [x2]r2 . Without loss of generality, ∄C ′′ ∈ θ(r) for any
r ∈ [s, t] such that C∪C ′ ⊆ C ′′, otherwise θ([s, t]) would have an upper bound. Hence, ∄r ∈ [s, t]:
[x1]r = [x2]r = [x3]r = [x4]r. This shows there is a 0-conflict. To show the other direction, assume
there is a 0-conflict. Then the opposite splitting implies θ(r1) ≰ θ(r2) and θ(r2) ≰ θ(r1) and the
lack of global transitivity implies ∄r ∈ [s, t] such that θ(r1) ≤ θ(r) and θ(r2) ≤ θ(r). This shows
C2,

We can now prove Proposition 10 on 1-conflicts.

Proof of Proposition 10. (i) We show that C1 implies HF0(s, t) = 0. As C1 and C2 are equivalent,
it suffices to show the Proposition for C2. Let us assume that θ(r) is an upper bound for the partitions
θ(r′), s ≤ r′ ≤ t. Then all simplices in Ks,t are nested within Kr,r, which is a disjoint union of
solid simplices that all have trivial higher-dimensional homology. Hence, HF1(s, t) = HF1(r, r) =
0. (ii) If HF1(s, t) ≥ 1 there exists a 1-dimensional chain z = [x1, x2]+ · · ·+[xn−1, xn]+ [xn, x1]
that is non-bounding, i.e., [z] ̸= 0 in H1(K

s,t). If there was a cluster C ∈ θ(r) for some s ≤ r ≤ t
such that x1, . . . , xn ∈ C then there would be a two-dimensional chain of which z is the boundary,
contradicting [z] ̸= 0. (iii) If θ is hierarchical, then C2 is true and the statement follows from (i).

Next, we provide the proof about the equivalence between MCbiF and nerve-based MCbiF.

Proposition 23. The bifiltrationsM and M̃ lead to the same persistence module.

Proof. The proof follows from Proposition 30 in Schindler & Barahona (2025), which extends di-
rectly to the 2-parameter case.

Next, we prove Proposition 13 about the dimension of the nerve-based MCbiF.
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Proof of Proposition 13. Statement (i) follows directly from the definition in equation 4. We show
statement (ii) by induction. From the definition of the nerve-based MCbiF, it follows directly that
dimN tm,tm = 1 because the indices in A(m,m) correspond to mutually exclusive clusters. Let us
assume that dimN tm,tm+n = n, then there exist C1, . . . , Cn ∈ θ([tm, tm+n]) such that C1 ∩ · · · ∩
Cn ̸= ∅. As the clusters in partition θ(tm+n+1) cover the set X there exist a cluster C ∈ θ(tm+n+1)
such that C ∩C1 ∩ · · · ∩Cn ̸= ∅. Hence, dimN tm,tm+n ≥ n+1. If dimN tm,tm+n > n+1 there
would exist a second cluster C ′ ∈ θ(tm+n+1) with C ′ ∩ C ∩ C1 ∩ · · · ∩ Cn ̸= ∅ but C ′ ∩ C ̸= ∅
contradicts that clusters of θ(tm+n+1) are mutually exclusive. Hence, dimN tm,tm+n = n + 1,
proving statement (ii) by induction.

We continue by proving that 0-conflicts can induce violations of the strong triangle inequality as
stated in Proposition 16.

Proof of Proposition 16. If ∃x1, x2, x3 ∈ X that induce a 0-conflict for s ≤ t then ∃r1, r2 ∈ [s, t]
such that [x1]r1 = [x2]r1 and [x2]r2 = [x3]r2 . Without loss of generality, r1 < r2 and suppose there
is r3 > r2 such that [x1]r3 = [x3]r3 . Then Dθ(x1, x3) > max(Dθ(x1, x2), Dθ(x2, x3)).

Finally, we show that the zero-dimensional MPH of MCbiF corresponds to the zero-dimensional
MPH of a Vietoris-Rips bifiltration constructed from Dθ,s.
Proposition 24. Let us define the Vietoris-Rips bifiltration L = (Ls,t)t1≤s≤t based on Dθ,s as

Ls,t = {σ ⊂ X | ∀x, y ∈ σ : Dθ,s(x, y) ≤ t}. (8)

Then the zero-dimensional MPH of L and of the MCbiFM are equivalent. However, the higher-
dimensional MPH of L is always trivial.

Proof. The proof follows from a simple extension of Proposition 32 in Schindler & Barahona (2025)
to the 2-parameter case.

B TOY EXAMPLES

The first example illustrates the difference between 0- and 1-conflicts.
Example 25. Let x1, x2, x3, x4 ∈ X such that x1 ∼t x2 ∼t′ x3 ∼t′′ x4 for t1 ≤ t < t′ < t′′.
If xi ̸= xj for i, j = 1, 2, 3 then we know that the partitions θ(t) and θ(t′) are not nested, which
we can measure with HF0(t, t

′) < min(|θ(t)|, |θ(t′)|) (0-conflict). If additionally x1 = x4 we get
a cycle z = [x1, x2] + [x2, x3] + [x3, x1] in the chain complex associated to Kt,t′′ that indicates
a tight relationship between x1, x2, x3, see Fig. 1. A coarse-graining perspective on clustering
suggests that there is an opportunity to unify the three points in a single cluster. If the cycle is
non-bounding, i.e., [z] ̸= 0 in H1(K

t,t′′), we have HF1(t, t
′′) ≥ 1, which indicates that there is no

cluster that unifies the three points, i.e., ∄r, t ≤ r ≤ t′′, such that x1 ∼r x2 ∼r x3. We call this
a 1-conflict, which arises through the higher-order interactions between partitions across scales. If
instead x1 ̸= x4 then there is no 1-conflict but only a 0-conflict.

(a) 0-conflict (b) 1-conflict (c) no conflict

Figure 5: Illustration of (a) 0-conflict that violates the triangle inequality, (b) a 1-conflict and (c) no
conflict due to global transitivity.

The next example demonstrates that information-based measures cannot detect 1-conflicts in gen-
eral.
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Example 26. Let us consider a set X = {x1, x2, x3, x4} and two different sequences of partitions
θ(t) and η(t) such that:

θ(1) = η(1) = {{x1, x2}, {x3}, {x4}}
θ(2) = η(2) = {{x1}, {x2, x3}, {x4}}

θ(3) = {{x1, x3}, {x2}, {x4}} ≠ θ(3) = {{x1}, {x2}, {x3, x4}}
The two sequences θ and η are only different at t = 3. In particular, t = 3 induces a 1-conflict inθ
but η has only 0-conflicts. Note that θ corresponds to the toy example in Fig. 1 with one additional
isolated point. We get the following results:

The one-dimensional Hilbert functions can detect that only θ leads to a 1-conflict because

HF1(θ(1), θ(3)) = 1 > HF1(η(1), η(3)) = 0

.

In contrast, conditional entropy cannot distinguish between the two sequences which lead to the
same pairwise conditional entropies (see equation 10):

H(θ(2)|θ(1)) = H(θ(3)|θ(1)) = H(θ(3)|θ(2)) = 1

2
log 2

H(η(2)|η(1)) = H(η(3)|η(1)) = H(η(3)|η(2)) = 1

2
log 2

C DETAILS ON INFORMATION-BASED BASELINE METHODS

Information-based measures can be used to compare arbitrary pairs of partitions in the sequence
θ (Meilă, 2007). Assuming a uniform distribution on X , the conditional probability distribution of
θ(t) given θ(s) is given by

Pt|s[i|j] =
|θ(t)i ∩ θ(s)j |
|θ(s)j |

. (9)

Similarly, we can define the joint probability Ps,t[i, j]. The conditional entropy (CE) H(t|s) is then
given by the expected Shannon information:

H(t|s) = −
|θ(t)|∑
i=1

|θ(s)|∑
j=1

Ps,t[i, j] log(Pt|s[i|j]) (10)

It measures how much information about θ(t) we gain by knowing θ(s). If θ(s) ≤ θ(t) there is
no information gain and H(t|s) = 0. We denote the conditional entropy matrix CEs,t = H(t|s).
Furthermore, we can compute the variation of information (VI) VI(s, t) = H(s|t) + H(t|s), which
is a metric. Both CE and VI are bounded by logN .

Extending information-based measures for the analysis and comparison of more than two partitions
is non-trivial. However, the pairwise comparisons can be summarised with the consensus index
(CI) (Vinh et al., 2010) which can be computed as the average VI:

CI(θ) :=

∑M
i=1,i<j VI(ti, tj)

M(M − 1)/2
(11)

D DETAILS ON EXPERIMENTS

D.1 REGRESSION TASK

Figure 6 shows the correlation between the crossing number y and information- and MCbiF-based
summary statistics. In addition to the results described in the main text, we also observe that the
correlation between CI and c̄0 (r = −0.32 for N = 5, r = −0.48 for N = 10) is stronger than
with c̄1 (r = −0.12 for N = 5, r = −0.34 for N = 10). This can be explained by the fact that CI
and c̄0 can both be computed from pairwise interactions of clusters in contrast to c̄1, see Section 5.
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N = 5 N = 10

Figure 6: Pearson correlation (r) between crossing number y, information-based consenus indices
CE and VI and MCbiF-based conflict measures c̄0 and c̄1 for N = 5 and N = 10.

Furthermore, we observe a strong correlation between c̄0 and c̄1 (r = 0.52 for N = 5 and r = 0.43
for N = 10) because of the dependencies between 0- and 1-conflicts, see Section 4.1

Note that we can consider our information- and MCbiF-based feature maps as M ×M greyscale
images, where HF0 and HF1 are symmetric and CE is asymmetric. For our regression task, we
train a simple CNN (LeCun & Bengio, 1998) with one convolution and max-pool layer and one
fully connected layer and also a simple MLP with one or two hidden layers and dropout. For each
feature map (or their combinations) separately, we perform hyperparameter optimisation for the
number of filters (ranging from 2 to 6) and kernel size (chosen as 4, 8, 16, 32 or 64) in the CNN and
the number of nodes (chosen as 4, 8, 16, 32, 64, 128 or 256), number of layers (1 or 2) and dropout
rate (chosen as 0.00, 0.25 or 0.50) in the MLP. We use the Adam optimiser (Kingma & Ba, 2017)
with learning rate chosen as 0.01, 0.005, 0.001, 0.0005 or 0.0001 for training.

We detail the hyperparameters for the best MCbiF- and CE-based models, which we determined
through a full grid search of the hyperparameter space using the train and validation split of our
data:

• A CNN with 4 filters, kernel size 3, and learning rate 0.001 is best for HF0 & HF1 at
N = 5.

• A CNN with 8 filters, kernel size 2, and learning rate 0.005 is best for CE at N = 5 with
the following hyperparameters:

• LR is best for HF0 & HF1 at N = 10.
• An MLP with a single layer of 256 nodes, no dropout and a learning rate of 0.001 is best

for CE at N = 10 with the following hyperparameters:

In the following, we present test R2 scores on MCbiF-, information-based and mixed features.

Table 3: Test R2 scores of different models and combinations of feature maps for N = 5 and
N = 10, M = 20.

N Method Raw θ HF0 HF1 HF0 & HF1 CE CE & HF0 CE & HF1 CE & HF0 & HF1

5
LR 0.001 0.147 0.486 0.539 0.392 0.507 0.532 0.538

CNN -0.006 0.155 0.504 0.544 0.492 0.494 0.539 0.557
MLP -0.002 0.150 0.491 0.541 0.409 0.470 0.528 0.536

10
LR -0.012 0.214 0.448 0.516 0.457 0.491 0.503 0.512

CNN 0.211 0.448 0.507 0.454 0.456 0.491 0.510
MLP 0.000 0.212 0.450 0.514 0.458 0.465 0.496 0.512

We also present the train R2 scores:
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Table 4: Train R2 scores of different models and combinations of feature maps for N = 5 and
N = 10, M = 20.

N Method Raw θ HF0 HF1 HF0 & HF1 CE CE & HF0 CE & HF1 CE & HF0 & HF1

5
LR 0.005 0.163 0.493 0.550 0.409 0.516 0.539 0.557

CNN 0.000 0.170 0.509 0.562 0.515 0.549 0.586 0.568
MLP 0.006 0.160 0.499 0.547 0.439 0.527 0.565 0.570

10
LR 0.013 0.230 0.456 0.522 0.464 0.501 0.517 0.530

CNN 0.009 0.220 0.456 0.519 0.476 0.500 0.508 0.514
MLP 0.003 0.218 0.453 0.515 0.468 0.485 0.506 0.516

D.2 CLASSIFICATION TASK

Details on Synthetic Data. We generate order-preserving (y = 0) sequences θ ∈ ΠM
N through

the following scheme: Let us assume that we have a total order X = {x1, . . . , xN} given by the
point labels, i.e., xi < xj if i < j. We construct each θ(tm), m = 0, . . . ,M − 1, by cutting
X into clusters of the form C = {xi, xi+1, . . . , xi+n}. It is easy to verify that θ is indeed order-
preserving. We adapt this scheme to generate sequences θ ∈ ΠM

N that are not order-preserving
(y = 0): Again, we start by constructing each sequence θ(tm) through cutting the ordered set X as
before. Additionally, with probability p = 0.1, we swap the cluster assignments in θ(tm) for two
arbitrary points x, y ∈ X . If N and M are large enough, the so-generated sequence θ is almost
surely not order-preserving. We chose N = 500 and M = 30 to demonstrate the scalability of the
MCbiF method.

The number of clusters of all our generated sequences of partitions θ ∈ ΠM
N for both classes is

decreasing linearly, see Fig. 7 (a). Moreover, the average number of swaps for sequences with y = 1
is 2.98 for our choice of p = 0.1, see Fig. 7 (b).

(b)(a)

Figure 7: (a) Number of clusters |θ(m)| over 0 ≤ m ≤ M = 30. (b) Histogram for the number of
swaps of the sequences θ with y = 1.

D.3 APPLICATION TO TEMPORAL DATA

Data Preprocessing. The temporal sequences of partitions computed by Bovet et al. (2022)
are available at: https://dataverse.harvard.edu/file.xhtml?fileId=5657692.
We restricted the partitions to the N = 281 mice that were present throughout the full study period
to ensure well-defined sequences of partitions. Moreover, we only considered the first nine temporal
resolution values τi, i = 1, . . . , 9 because θτ10 is an outlier. Note that the sequences tend to be
fine-graining, see Fig. 8.

Time Reversibility. In the main text, we restricted our analysis to the so-called forward Flow
Stability sequences of partitions. However, by reversing time direction Bovet et al. (2022) computed
a second set of backward sequences. For each temporal resolution τi, we thus get a forward and
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Figure 8: Number of clusters over weeks t.

backward sequence denoted by θfτi and θbτi , respectively. Here we use the MCbiF to compare the
forward and backward sequences of partitions for different τi and we compute the Hilbert distance
∥ HFk(θ

f
τi)−HFk(θ

b
τi) ∥2 for k = 0, 1, see Fig. 9.

Figure 9: Hilbert distance between forward and backward Flow Stability sequences.

We observe that the Hilbert distance between forward and backward sequences is high for τ2 because
the large-scale group structure changes significantly over the study period, so that the temporal
flows at low resolution τ2 are not reversible. In contrast, the Hilbert distance between forward and
backward sequences is low for τ8 because the underlying social groups are more stable over the
study period, leading to increased time reversibility at the high temporal resolution.
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