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ABSTRACT

Datasets in applications often possess an intrinsic multiscale structure with mean-
ingful descriptions at different levels of coarseness. Such datasets are naturally de-
scribed as multi-resolution clusterings, i.e., not necessarily hierarchical sequences
of partitions across scales. To analyse and compare such sequences, we use tools
from topological data analysis and define the Multiscale Clustering Bifiltration
(MCbiF), a 2-parameter filtration of abstract simplicial complexes that encodes
cluster intersection patterns across scales. The MCDbiF can be interpreted as a
higher-order extension of Sankey diagrams and reduces to a dendrogram for hier-
archical sequences. We show that the multiparameter persistent homology (MPH)
of the MCDbiF yields a finitely presented and block decomposable module, and
its stable Hilbert functions characterise the topological autocorrelation of the se-
quence of partitions, providing topological feature maps for downstream machine
learning tasks. In particular, at dimension zero, the MPH captures the degree of
nestedness of the sequence, whereas at dimension one, it captures higher-order
inconsistencies between clusters across scales. We demonstrate in our experi-
ments that the MCbiF feature maps outperform information-based baseline fea-
tures on both regression and classification tasks on non-hierarchical sequences of
partitions. We also show an application of MCbiF to real-world data to measure
non-hierarchies in wild mice social grouping patterns across time.

1 INTRODUCTION

In many areas of application, datasets possess an intrinsic multiscale structure, whereby mean-
ingful descriptions exist at different levels of coarseness (or scales). Think, for instance, of the
multi-resolution structure in commuter mobility patterns (Alessandretti et al.,|2020; Schindler et al.}
2023)), communities in social networks (Beguerisse-Diaz et al.,[2017) and thematic groups of docu-
ments (Blei et al.| 2003 |Altuncu et al., 2019; |Grootendorst, |2022); the subgroupings in single-cell
data (Hoekzema et al., 2022) or phylogenetic trees (Chan et al.,|2013)); and the functional substruc-
tures in proteins (Delvenne et al.| 2010; Delmotte et al., 2011)). In such cases, it is desirable to go
beyond a single clustering and find a multi-resolution description in terms of a not necessarily hier-
archical sequence of partitions across scales, described by a scale parameter . One way to produce
multiscale clusterings is by exploiting a diffusion process that reveals robust partitions of increasing
coarseness, yet not necessarily hierarchical, as it explores the data geometry with an increasing time
horizon ¢ (Coifman et al.l 2005; |Azran & Ghahramani, [2006; [Lambiotte et al.l 2014). Similarly,
multiscale descriptions also emerge from hierarchical clustering, where ¢ corresponds to the depth
of the dendrogram (Carlsson & Mémoli, |2010; Rosvall & Bergstrom,|2011), or temporal clustering,
where ¢ corresponds to physical time (Bovet et al., 2022} Djurdjevac Conrad et al., 2025)).

A natural problem is then how to analyse and compare non-hierarchical multi-resolution sequences
of partitions that are organised by the scale t. Here we address this question from the perspective of
topological data analysis (Carlsson & Zomorodian, [2009; (Carlsson et al., 2009; Botnan & Lesnick,
2023) by introducing the Multiscale Clustering Bifiltration (MCDbiF), a 2-parameter filtration of
abstract simplicial complexes that encodes the patterns of cluster intersections across all scales.
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Problem definition. A partition 7 of a finite set X = {z1,x9,...,zx} is a collection of mutu-
ally exclusive subsets C; C X (called clusters) that cover X, i.e., 7 = {Cy,...,C.} such that
X = U;_, Ci,and C;(C; = 0, Vi # j. The cardinality |7| = c is the number of clusters in
7. For notational convenience, we use m; to denote the i-th cluster C; of . Let IIx denote the
space of partitions of X. We write m < " if every cluster in 7 is contained in a cluster of 7. This
refinement relation constitutes a partial order and leads to the partition lattice (I x, <) with lower

bound 0 := {{z1},..., {zx}} and upper bound 1 := { X} (Birkhoff, 1967).

Here, we consider a sequence of partitions defined as a piecewise-constant function 6 : [t1,00) —
IIx, t — 6(t) such that 6(¢) € IIx and the scale index t has M change points t1 < to < ... <
trr. We write  ~y y if 2,y € 6(t);, and this defines an equivalence relation whose equivalence
classes [z]; are the clusters 6(t); of 6(t) 2010). The sequence 6 is called hierarchical if
0(s) < 0(t), Vs < t. Moreover, the sequence 6 is called coarsening if |0(s)| > |0(¢)|, Vs < t. El
Conversely, 0 is called fine-graining if |0(s)| < |0(t)], Vs < t.

Our goal is to characterise and analyse arbitrary sequences of partitions €, including non-
hierarchical, in an integrated manner, taking account of memory effects across scales .

Remark 1. We are not concerned with the task of computing 0 from dataset X, for which several
methods exist. Rather, we take the multiscale clustering 0 as a given and aim to analyse its structure.

Remark 2. This problem is distinct from consensus clustering, which aims to produce a summary
partition by combining a set of partitions obtained, e.g., from different optimisations or clustering
algorithms (Strehl & Ghosh} [2002} [Vega-Pons & Ruiz-Shulcloper, [2011).
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Figure 1: (a) The MCbiF K *! is a bifiltration of abstract simplicial complexes that encodes the struc-
ture of the non-hierarchical sequence of partitions 6 in an integrated manner. (b) The stable MCbiF
Hilbert functions HF(s,t) measure the topological autocorrelation of 6, capturing nestedness at
dimension & = 0 and higher-order cluster inconsistencies at dimension £ = 1. These topological
invariants can serve as feature maps describing € for downstream machine learning tasks.

Contributions. To address this problem, we define the MCbiF, a bifiltration (K *");, <5<, that ag-
gregates the cluster intersection patterns from 6(s) to 6(t) for varying starting scale s and lag t — s.
Using the machinery of multiparameter persistent homology (MPH) (Carlsson & Zomorodianl 2009}
Carlsson et al.} 2009} Botnan & Lesnick} 2023), we prove that the MCDbiF leads to a block decom-
posable persistence module with stable Hilbert functions HF (s, t), and we show that these serve as
measures of the fopological autocorrelation of the sequence of partitions 6 as induced by the scale
t. In particular, HF (s, t) quantifies the non-hierarchy in  in two complementary ways: at dimen-
sion k = 0 it measures the degree of nestedness of partitions, and at dimension k£ = 1 it quantifies

!Coarsening is equivalent to non-decreasing mean cluster size (see Remarkin the appendix).
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the higher-order inconsistencies of cluster assignments across scales. In contrast, baseline methods
such as ultrametrics (Carlsson & Mémoli, 2010) or information-based measures (Meilal 2003) are
restricted to pairwise cluster comparisons, hence cannot detect higher-order cluster inconsistencies.
Furthermore, using its equivalent nerve-based construction, we show that MCbiF can be interpreted
as a higher-order extension of a Sankey diagram. In the hierarchical case, the sequence of partitions
reduces to a dendrogram, and the MCDbiF can be obtained from the Vietoris-Rips filtration defined
on the corresponding ultrametric space (Carlsson & Mémoli, [2010).

The Hilbert functions of the MCbiF provide interpretable feature maps useful in downstream ma-
chine learning tasks. In our experiments, the MCDbiF feature maps outperform information-based
baseline features (Meild, 2007 on both regression and classification tasks on non-hierarchical se-
quences of partitions. We also show an application of MCbiF to real-world data to measure non-
hierarchies in wild mice social grouping patterns across time (Bovet et al.,[2022)).

2 RELATED WORK

Information-based comparison of clusterings. Information-based measures can be used to com-
pare a pair of partitions. Assuming a uniform distribution on X, one can derive probability distri-
butions for partitions interpreted as random variables and thus measure the information gain and
loss between two partitions using the conditional entropy (CE) or the variation of information (VI),
which is a metric on ITx (Meila, 2003} 2007). See Appendix [g for detailed formulas. Extending
information-based measures to more than two partitions is non-trivial. In consensus clustering, the
average VI is used as a consensus index (CI) (Vinh & Epps, |2009; |Vinh et al., [2010) for multiple
partitions. However, the CI is independent of the ordering in the sequence and so cannot capture
memory effects in sequences of partitions. Another limitation is that information-based measures
rely only on the joint probability between pairs of random variables, hence higher-order inconsis-
tencies between cluster assignments are not captured (see Section [3).

Dendrograms and ultrametrics. A hierarchical sequence 6 with 0(t; = 0) = 0 and 0(t5;) = 1 is
also called a dendrogram and can be represented by an acyclic rooted merge tree (Jain et al.,{1999).
One can define an ultrametric Dy from the first-merge times, which corresponds to the depth in the
dendrogram. |Carlsson & Mémoli| (2010) showed that there is a one-to-one correspondence between
dendrograms and ultrametrics, which can be used to efficiently compare two dendrograms via the
Gromov-Hausdorff distance between the ultrametric spaces (Mémoli et al.,|2023). When 6 is non-
hierarchical, however, the first-merge times no longer define the sequence uniquely because clusters
that have merged can split off again. In this case, § cannot be represented by a tree and Dy does not
fulfil the standard triangle inequality in general. Hence, ultrametrics cannot be used to analyse and
compare non-hierarchical sequences of partitions (see Section [3).

3 BACKGROUND

3.1 SANKEY DIAGRAMS

Non-hierarchical sequences of partitions ¢ are visualised by M -layered flow graphs S(0) = (V =
ViW..wVy, F=FW..d Ey_1) called Sankey diagrams (Sankey} 1898 Zarate et al., [2018)),
where each level m = 1,..., M corresponds to a partition and vertices V,,, represent its clusters
while the undirected edges E,,, between levels indicate the overlap between clusters:

Vin = {(m, i) | 1 <i <|0(tm) [}, Em = {[(m, 1), (m+1,5)] | 0(tm)i N O(Emir); # 0. (D)
If 6 is hierarchical, the Sankey diagram S reduces to a dendrogram. Sankey diagrams are studied in
computer graphics as they allow for the visualisation of complex relational data. The nodes in each
layer V,,, are vertically ordered according to a ranking 7,,, : V,,, — {1,...,|Vix|}, and a crossing
between two edges [u,v], [u/,v'] € E,, occurs if 7, (u) > 7;(v') and 75, (v) < 7o, (V') o vice
versa. Ideally, a layered layout 7(S) := (71, ..., 7as) for the nodes in the Sankey diagram should
minimise the crossing number (Warfield, [1977) defined as:

M-1

K(T(8)) =Y > [T (1) > T (U)) A T (v) < T (0] 2)

m=1 [u,v],[w ,v']|€Em
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where we use the Iverson bracket notation. Minimising x(7(.S)) is NP-complete (Garey & Johnson,
2006)) and finding efficient optimisation algorithms is an active research area (Zarate et al., [2018}; |L1
et al.,|2025). We denote the minimum crossing number of S(6) by k() := min, x(7(5)).

3.2 MULTIPARAMETER PERSISTENT HOMOLOGY

Multiparameter persistent homology (MPH) is an extension of standard persistent homology to n >
1 parameters, first introduced by |Carlsson & Zomorodian| (2009). We present here basic definitions,
see |Carlsson & Zomorodian|(2009)); Carlsson et al.| (2009); Botnan & Lesnick| (2023)) for details.

Multiparameter filtration. Let us define the parameter space (P, <) as the product of n > 1
partially ordered sets P = P; X --- X P,,i.e.,,a < bfora,b € P if and only if a; < b; in P; for
i=1,...,n. Let K be a simplicial complex defined for the set X, such that ' C 2% and K is closed
under the operation of building subsets. The elements of o € K are called simplices, and dim(K) is
defined as the largest dimension of any simplex in K. A collection of subcomplexes (K%)gecr» With
K = Ugeprn K¢ and inclusion maps {iqp : K¢ — Kb}agb that yield a commutative diagram is
called a multiparameter filtration (or bifiltration for n = 2). We denote by birth(c) C P the set of
parameters, called multigrades (or bigrades for n = 2), at which simplex o € K first appears in the
filtration. For example, the sublevel filtration K* = {oc € K | f(0) < a} for a filtration function
f : K — P maps each simplex o to a unique multigrade f (o), i.e., |birth(¢)| = 1. A filtration is
called one-critical if it is isomorphic to a sublevel filtration, and multi-critical otherwise.

Multiparameter persistent homology. Let Hj for k¥ € {0,...,dim(K)} denote the k-
dimensional homology functor with coefficients in a field (Hatcher, 2002). Then Hj, applied to the
multiparameter filtration leads to a multiparameter persistence module, i.e., a collection of vector
spaces (Hy(K®))qern, which are the homology groups whose elements are the generators of k-
dimensional non-bounding cycles, and linear maps {iq.p := Hy(iap) : Hp(K?) = Hp(K®)}a<b
that yield a commutative diagram called multiparameter persistent homology (MPH). For dimension
k = 0, Hy captures the number of disconnected components and for £ = 1, the number of holes.
Note that we recover standard persistent homology (PH) for n = 1 (Edelsbrunner et al., [2002)).

Hilbert function. While barcodes are complete invariants of 1-parameter PH (n = 1), the more
complicated algebraic structure of MPH (n > 2) does not allow for such simple invariants in gen-
eral; hence various non-complete invariants of the MPH are used in practice. We focus on the
k-dimensional Hilbert function (Botnan & Lesnickl[2023) defined as

HF} : P — Ny, a — rank[Hy(iq,q)] = dim[Hy(K®)], 3)

which maps each filtration index a to the k-dimensional Betti number of the corresponding complex
K?. The Hilbert distance is then defined as the Ly norm on the space of Hilbert functions and can
be used to compare persistence modules.

4 THE MULTISCALE CLUSTERING BIFILTRATION (MCBIF)

The central object of our paper is a novel bifiltration of abstract simplicial complexes that encodes
cluster intersection patterns in the sequence of partitions § across the scale ¢.

Definition 3. Ler 6 : [t1,00) — Il x be a sequence of partitions. We define the Multiscale Clustering
Bifiltration (MCbiF) M := (K*"');, <s<t as a bifiltration of abstract simplicial complexes

K= U ac, tn<s<t )

t1<s<r<t Cef(r)

Here we interpret each cluster C as a (|C| — 1)-dimensional solid simplex AC' := 2¢ following
Schindler & Barahona| (2025), and echoing the concept of clustering as coarse-graining (Lambiotte
et al., 2014; Rosvall & Bergstrom, 2011; 2008) and the interpretation of clusters as equivalence
classes (Brualdi, 2010). The MCDbiF aggregates all clusters from partition 0(s) to 6(¢) through the
union operators, and thus depends not only on the lag |t — s| but also on the starting scale s to
measure topological autocorrelation, see Fig.
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Proposition 4. M is a multi-critical bifiltration uniquely defined by its values on the finite grid
P ={(s,t) € [t1,.. ., tpm]X[t1, .-, tm] | s < t} withpartial order (s,t) < (s',t') ifs > ', t < t'.

The proof is straightforward and can be found in Appendix[A] The MCDbiF leads to a triangular com-
mutative diagram where the arrows indicate inclusion maps between abstract simplicial complexes,
see Fig. Il The sequence of partitions 6(¢) is encoded by the complexes K%! on the diagonal of
the diagram. Moving along horizontal arrows corresponds to fixing a starting scale s and 6 going
forward, capturing the coarsening of partitions. Moving along vertical arrows corresponds to fixing
an end scale ¢ and aggregating 6 going backwards, capturing the fine-graining of partitions.

Remark 5. By fixing s := t1, which corresponds to the top row in the diagram, the MCbiF recovers
the 1-parameter Multiscale Clustering Filtration (MCF) defined by |Schindler & Barahonal(2025)).
The MCF, however, can only encode coarsening sequences of partitions. For example, a large cluster
C € 0(s') prevents MCF from detecting cluster assignment conflicts between points x,y € C for
t > s, see Section MCDbiF mitigates this lack of sensitivity in MCF by varying both the starting
scale s and the lag t — s to encode the full topological information contained in 6.

4.1 MEASURING TOPOLOGICAL AUTOCORRELATION WITH MCBIF

Applying MPH (Carlsson & Zomorodian, [2009) to the bifiltration M at dimensions k£ < dim K,
for K = K™ Jeads to a triangular diagram of simplicial complexes Hy(K*") called per-
sistence module (see Section [3.2). We show in Proposition [21] that the MCbiF persistence mod-
ule is pointwise finite-dimensional, finitely presentable and block-decomposable (see Botnan &
Lesnick|(2023)) for definitions), which are strong algebraic properties that guarantee algebraic stabil-
ity (Bjerkevik, [2021).The proof relies on the equivalent nerve-based construction of the MCbiF (see
Proposition [23), and the exactness of the persistence module from which block-decomposability
follows (Cochoy & Oudot, [2020). See Appendix [A]for details and full proof.

The algebraic stability of MCbiF means that we can summarise the topology of MCbiF using the
Hilbert functions HF (s, t) (equation [3) as simple interpretable invariants, since finite presenta-
tion property implies stability of HF (s, t) with respect to small changes in the module (Oudot &
Scoccola, [2024, Corollary 8.2.).

Remark 6. Values of HF (s, t) further away from the diagonal (s = t) are more robust to permuta-
tions of partitions in 0, see Proposition|22|in the appendix. In particular, HF . (t1,t5s) only depends
onim(0), the set of distinct partitions, and could be used as an overall measure of consistency in 6.

We now show how HF(s,t) can be used to detect cluster-assignment conflicts. We focus on k& =
0, 1, for which MPH is implemented in RIVET (Lesnick & Wright, 2015)).

Nestedness of Partitions. Hierarchy is usually understood as a refinement of partitions captured
by the partition lattice. We can quantify the degree of nestedness through HF (s, ¢) and 0-conflicts.

Definition 7. We say that x1,x2,x3,24 € X lead to a O-conflict in 0 for s < t if the following
two conditions hold: a) Opposite splitting: Jry,12 € [s,1]: %xl]m = [x2]r, [®3]r, # [x4]r, and
[$3]T2 = [x4]r2’ [‘rl]rz 7& [IQ]rz' b) No global transitivity: € [Svt]: [xl]r = [$2]T = [1‘3],« =
T4y

Proposition 8. (i) HF(s,t) < ming<,<;[0(r)], < s < t. (ii) The following two conditions
are equivalent for s < t: C1: Ir € [s,t] such that HF(s,t) = |0(r)|. C2: Ir € [s,t] such that
O(r') < 6(r), Vs < r' < t. (iii) = CI (or = C2) iff there is a O-conflict for s < t.

See Appendix [A|for a full proof. Note that C2 means that the subposet §([s, ¢]) has an upper bound.
To obtain a single measure of nestedness in 6 we define the average persistent O-conflict as:

M HF (s, t)
<) :=1-— d dt <1.
0< CO( ) ‘tM — t1|2 / / HFO t, t - )

Higher values of ¢, (6) indicate a lower degree of nestedness. The next corollary follows immedi-
ately from Proposition 8]

Corollary 9. (i) HFo(t,t) = |0(t)| for all t > t;. (ii) If 0 is hierarchical on the interval [s,t] then
HF((s,t) = |0(t)]. (iii) co(0) = 0 iff 8 is strictly hierarchical.
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Higher-order Inconsistencies between Clusters. Another way of measuring non-hierarchy is
to track higher-order inconsistencies of cluster assignments across scales captured by the higher-
dimensional homology groups (Schindler & Barahona, 2025). We can measure this with HF (s, t).

Proposition 10. (i) If HF(s,t) > 1 then — CI1. (ii) In particular, every homology generator

[2] € Hi(K*?) induces a O-conflict for s < t and we call this a 1-conflict. (iii) If  is hierarchical
on the interval [s, t] then HF (s, t) = 0.

(a) 0- confllct Vi1

See Appendix [A] for a proof. Note that not every O-conflict {xg} | {z:,,m}
is a 1-conflict, Example [23]in the appendix. However, two 0- {14} | | (1)
conflicts can lead to a 1-conflict, see Fig. [I] {xm} oa)
Remark 11. [-conflicts arise from higher-order cluster incon- W

sistencies across scales. We can interpret a non-bounding cycle (b) 1-conflict
[2] € H{(K**') as an opportunity to unify the points involved tm {z1,22}  {z1,24}
in [z] into a single cluster. Hence, when [z] dies in the MPH at W Z,, i | |

(s,t'), t < t/, we say that 0(t') is conflict-resolving partition,
see \Schindler & Barahonal(2025)).

|
o {zs, 24} {12, z3}

(c) no conflict

To obtain a single measure of 1-conflicts in 6, we define the (on, 22}
average persistent 1-conflict:
. {931,1‘2,933,304}
M tn
tn=\ T3

B 2
0<e(0) = m/t / HE, (s, £)ds dt.  (6)

{%,934}

Figure 2: Relationship between
4.2 MCBIF As A HIGHER-ORDER SANKEY DIAGRAM conflicts and Sankey diagrams.

With V,,, as in equation we define the disjoint union A(¢,m) := VoW ...wV,,, 1 < ¢ < m, which
assigns an index to each cluster in () for t € [ty, t,,]. We use this to define the nerve-based MCDbiF.
Definition 12. Fors € [tg,tp11), £ =1,...,M—1,andt € [ty,tmy1), m=4L,... M—T1ort > t,,
for m = M we define the nerve-based MChiF K*' := {o C A({,m) : Nin,iyeo Otn)i # 0}

The nerve-based MCbiF M = (f( 1), <s<¢ is a 1-critical bifiltration with simplices representing
clusters and their intersections, whereas the simplices in M (equation ) represent points in X and
their equivalence relations. Despite these different perspectives, M and M lead to the same MPH
and can be considered as equivalent, see Proposition 23] in the appendix, which follows from an
extension of results by Schindler & Barahona! (2025). However, their dimensionality can differ:
Proposition 13. (i) dim K*' = max,<,<; max.co) [C| — 1, Vi1 < s < L.

(i) dim Ktmotmen = V1 <m < M,0<n <M —m.

See Appendix [A] for the proof. The nerve-based MCbiF is computationally advantageous when
M < maxy, <; maxceq(r) |C| — 1, making it the preferred choice in many applications.

Remark 14. We can interpret M as a higher-order extension of the Sankey diagram S(0) (equa-
tion 1)) that not only records pairwise intersections between clusters in consecutive partitions of 0
but also higher-order intersections between clusters in subsequences of 0. In particular, the graph
S(0) is a strict 1-dimensional subcomplex of K'*™ because K'™ = V,,, and K'm'm+1 = E,,.
Moreover, we can retrieve S(0) from the zigzag filtration:

c o f(tm,tm N Ktm7tm+l > f{tm+1,tm+1 o .

The 0- and 1-conflicts that can arise in a single layer E,, of the Sankey diagram can be fully char-
acterised. A O-conflict arises when there exist nodes v € V,,, and v € V,,,+ that are both incident
to at least two edges in E,,, and a 1-conflict arises when there is an even-cycle in E,,,, see Fig.[2]
Importantly, a 1-conflict in K*m-tm+1 Jeads to a crossing in E,, that cannot be undone. This im-
plies that the superdiagonal of HF; provides a lower bound for the minimal crossing number x(6)
(equation [2).

Corollary 15. an\f;ll HF (tim, tmr1) < k(0).

Note that 1-conflicts arising through multiple partitions not necessarily lead to crossings, see Fig. [T}

However, we hypothesise that the full HFy and HF; feature maps give insights into more compli-
cated crossings that arise in the Sankey layout due to interactions between different layers.
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S5 MATHEMATICAL LINKS OF MCBIF TO OTHER METHODS
MCDiF has links and provides generalisations to the related methods introduced in Section [2]

Ultrametrics. Given 6, define the matrix of first-merge times conditional on starting scale s:
Dy s(z;,2;) :=min{t > s |3 C € 6(t) : 2;,2; € C}.

For s = 0, we recover the standard matrix of first-merge times Dy := Dy ¢. If 6 is hierarchical with
f(t; = 0) = 0 and 6(ty;) = 1 then Dy is an ultrametric, i.e., it fulfils the strong triangle inequality
Dy(z, z) < max (Dg(z,y), Do(z,2)) Va,y,z € X, and Proposition 8] implies that the number of
branches in the dendrogram at level ¢ is equal to HF (s, t) for s < ¢. Hence, HF (s, t) contains the
same information as the ultrametric in the hierarchical case, see also|Schindler & Barahonal (2025}).
If 6 is non-hierarchical, O-conflicts can lead to violations of the (strong) triangle inequality.

Proposition 16. Dy is not an ultrametric if x1, xs, x3 € X that lead to a 0-conflict.

See Appendix |Al for a proof. This proposition shows that ¢y(#) can be interpreted as a measure of
how much the ultrametric property of Dy is violated. Recall that, although not a metric, Dy s is a
dissimilarity measure that can be used to define a filtration (Chazal et al., 2014). Extending results
from[Schindler & Barahona (2025), it can be shown that a 2-parameter Vietoris-Rips filtration from
Dy, has the same zero-dimensional MPH as MCDbiF but has a trivial higher-dimensional MPH, see
Proposition This suggests that the pairwise merge times Dy ; can capture the nestedness of
partitions but not the inconsistencies that arise through higher-order interactions between clusters.

Conditional Entropy. CE is only defined for pairs of partitions (6(s),0(t)) and can be computed
as the expected information of the conditional probability of 6(t) given 6(s), denoted by Py, see
Appendix For the special case of M = 2, HF( (1, t2) follows directly from the spectral properties
of the matrix P, ¢, Pt€| +,» Which can be interpreted as an undirected graph.

Proposition 17. HF(t1,t2) = dim(ker L) for graph Laplacian L := diag(P,, ¢, 1) — Py, 1, Pr

tgltl'

The proof follows from Proposition , which shows that PtQ‘thg‘tl and K** have the same

1-simplices and dim(ker L) is equal to the number of connected graph components (Chung, [1997).
Note that P, only encodes the pairwise relationship between clusters, and does not capture higher-
order inconsistencies between cluster assignments. In particular, CE cannot detect 1-conflicts arising
across more than two scales, see Example [26]in appendix.

6 EXPERIMENTS

6.1 REGRESSION TASK: MINIMAL CROSSING NUMBER

In our first experiment, we predict the minimal crossing number x(6) (equation . This task is of
relevance in computer graphics and related to the NP-complete minimisation of the crossing number
in Sankey diagram layouts (Zarate et al., 2018 L1 et al., 2025)).

Definition 18. Let 11 denote the space of coarsening sequences 0 : [0,00) — Ilx with | X| = N
so that 0(0) = 0, §(M — 1) = 1 and the scale t has M change points t,, =m — 1, V1 < m < M.

For M = 20, we define two datasets by sampling 20,000 random samples 6 € H%I for N =5
and N = 10, respectively. For each 6, we compute the information-based pairwise conditional
entropy matrix CE (Meild, 2003) (see equation [I0) and our MCbiF Hilbert functions (HF, and
HF) as feature maps. We define the minimal crossing number y = k() as our prediction target,
which we computed with the OmicsSankey algorithm (Li et al.l 2025). See Appendix [D.1] for
details. Predicting y is harder for N = 10 because the increased complexity of ITY; allows for more
complicated crossings.

We first compute the Pearson correlation, r, between y, CI (given by the average CE, see equa-
tion[1 1)), ¢y and ¢;. The correlation between CI and y is low (r = 0.20 for V = 5 and r = 0.06 for
N = 10), higher for ¢y, and highest for ¢; (r = 0.47 for N = 5, 10) (see Fig. @in appendix). This is
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Table 1: Regression task. Test R? score of LR, CNN and MLP models trained on different features
for N =5and N = 10. See Appendixfor train R? scores.

N | Method | Raw¢ HF, HF, HF,&HF, CE
LR | 0.001 0.147 0486 0.539 0.392
5 [CNN [-0.006 0.155 0504  0.544 0.492
MLP | -0.002 0.150 0.491 0.541 0.409
LR | -0012 0214 0.448 0.516 0.457
10 [ CNN [ 0.000 0211 0448 0.507 0.454
MLP | 0.000 0212 0450 0.514 0.458

consistent with our theoretical results that link the crossing number with HF;, see Section For
the regression task, we split each dataset into train (64%), validation (16%) and test (20%). For each
feature map (or their combinations), we train three different models: linear regression (LR), multi-
layer perceptron (MLP), and convolutional neural network (CNN).We use the mean-squared error
(MSE) as our loss function and the validation set for hyperparameter tuning. See Appendix for
details. We evaluate the model performances on the unseen test data using the coefficient of deter-
mination (R?) and observe that MCbiF features outperform information-based features (Table . In
particular, the combined HF g and HF'; features lead to a significantly better model performance than
CE (p < 0.0001, t-test). Moreover, HF and HF; yield R? = 0.544 for N = 5 and R? = 0.516
for N = 10 whereas CE only achieves R? = 0.492 and R? = 0.458, respectively. The strong per-
formance of LR demonstrates the interpretability of the MCbiF features, important for explainable
AI (XAI) (Adadi & Berradal 2018)).
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6.2 CLASSIFICATION TASK: ORDER-PRESERVATION 028
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o
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In our second experiment, we classify whether a sequence 6 o081

is order-preserving or not. This task is of relevance in utility 2oz l

theory and the study of preference relations (Roberts| [2009). EZ 0.80

Definition 19. A partition 0(t,,) equipped with a total order 0261° 8 o080 0.00 = 1]

<m 18 called an ordered partition and induces a total preorder . .

< on X (Stanley, 2011), i, © <p y if [2]s <m [y];. We Figure 3: leference between

call 0 order-preserving if there exist total orders (<1, ..., <y order-preserving (y = 1) and
not order-preserving (y = 0)

such that the total preorders (<1, ..., Spr) are compatible, ie.,

skekoksk g 1
Ve, m we have T <o y iff £ <o y, VT, 4 € X. sequences ( indicates p <

0.0001, Mann- U test).

We generate a balanced dataset of 3,700 partitions 6 € TI39,
with 50% of the sequences order-preserving (y = 0) and 50%
not order-preserving (y = 1), see Appendix [D.2]for details. We
choose N = 500 and M = 30 to demonstrate the scalability

Table 2: Classification task. Test
accuracy of logistic regression
trained on different features.

Raw 0 HFO HF1 CE

of our method. For each # we compute CE and HF, £k = 0,1,
using the computationally advantageous nerve-based MCbiF.

053 056 097 0.50

Whereas there is no significant difference between the two classes for CI, we observe a statistically
significant increase of ¢y and ¢; for order-preserving sequences (Fig. [3). For the classification task,
we split our data into train (80%) and test (60%). We train logistic regression on each feature map
separately, and evaluate the accuracy on the test split, see Appendix [D.2] We observe that HF;
predicts y with high accuracy (0.95) in contrast to CE that cannot improve on a random classifier
(Table[2)). Our results demonstrate the high sensitivity of MCbiF to order-preservation in 6.

6.3 APPLICATION TO REAL-WORLD TEMPORAL DATA

In our final experiment, we apply MCDbiF to temporal sequences of partitions .- computed from real-
world contact data of free-ranging house mice (Bovet et al., 2022). Each partition 6, (¢) describes
mice social groupings at week ¢t € [1,...,9] and the scale ¢ corresponds here to the nine weeks
in the study period (28 February-1 May 2017), throughout which N = 281 individual mice were
present. Each sequence captures the fine-graining of social groups over the transition from winter to
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spring, and larger values of the temporal resolution 7 > 0 lead to finer temporal community struc-
ture (Fig. @) We use MCbiF to compare the temporal sequences 6., for nine different resolutions

7,4 =1,...,9, as provided inBovet et al| (2022). See Appendix [D.3]for details.

(@) o o g o o g b).
.

1HFo(8:) = HFo(6r) 12

1HFA(8:) ~ HF\(0,) 12

Persistent conflict

10! 10° 10! 102 103 104 10° 100
T T2 T3 Ts  tlins] Ts Tz T Ty

Figure 4: (a) Persistent conflict in temporal sequences 6., (¢) for different levels of temporal resolu-
tion 7; from mice social data. Vertical red lines indicate robust 7; identified by [Bovet et al.| (2022]
for which we display Sankey diagrams and MCDbiF features. (b) The robust 7; correspond to stab
temporal regimes captured by the block structure in the MCbiF Hilbert distances.

o

Bovet et al.[(2022) identified that the temporal resolutions 75 = 1s, 74 = 60s and 73 = 24 h lead
to robust sequences of partitions. Using the Hilbert distance, i.e., the Lo-norm on the zero- and
one-dimensional MCDbiF Hilbert functions, we find these temporal resolutions to be representative
for three distinct temporal regimes, which are characterised by different degrees of non-hierarchy
as measured by ¢, and ¢; (Fig.[). In particular, high &, indicates that mice tend to split off groups
over time, and high ¢; indicates that mice meet in overlapping subgroups but never jointly in one
nest box. Note that 6., has strong non-hierarchies because the large-scale mice social clusters get
disrupted in the transition to spring. In contrast, 6, is more hierarchical as it captures the underlying
stable social groups revealed by the higher temporal resolution. Finally, the Hilbert distances also
capture an increased time reversibility in the sequence 6., due to the increased stability of social
groupings over time, see Fig.[9]in the appendix.

7 CONCLUSION

We introduce the MCDbiF, a novel bifiltration that encodes the cluster intersection patterns of mul-
tiscale, non-hierarchical sequences of partitions, 6. Its stable Hilbert functions quantify the topo-
logical autocorrelation of # by measuring nestedness of partitions and higher-order cluster incon-
sistencies. Our measures of persistent conflict ¢y(6) and & (#) are global, history-dependent and
sensitive to the ordering of the partitions in §. The MCbiF extends the 1-parameter MCF defined
by [Schindler & Barahonal (2025)) to a 2-parameter filtration, leading to richer algebraic invariants
that describe the full topological information in #. We demonstrate with numerical experiments
that the MCDbiF Hilbert functions provide topological feature maps for downstream machine learn-
ing tasks, which outperform information-based features on regression and classification tasks on
non-hierarchical sequences of partitions. Moreover, the grounding of MCDbiF features in algebraic
topology enhances interpretability, a crucial attribute for XAl and applications to real-world data.

Limitations and future work Our analysis of the MCbiF MPH is restricted to dimensions zero
and one due to limitations of the RIVET software Lesnick & Wright| (2015)) used in our numerical
experiments. However, analysing topological autocorrelation for higher dimensions would allow us
to capture more complex higher-order cluster inconsistencies. We also focused on the Hilbert func-
tions of MCDbiF as our topological invariants because of their computational efficiency and analytical
simplicity, which facilitates our theoretical analysis. In future work, we plan to use algebraically
richer feature maps by exploiting the block decomposition of the MCbiF persistence module, which

leads to barcodes (2021)), or by using multiparameter persistence landscapes (Vipond,

[2020). Finally, we plan to analyse minimal cycle representatives of the MPH [2021) to
localise 0 and 1-conflicts in the sequence of partitions, which is of interest in many applications.
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REPRODUCIBILITY STATEMENT

Detailed proofs of all theoretical results can be found in Appendix [A] and extensive documenta-
tion of our experiments in Appendix [D] The dataset studied in Section [6.3]is publicly available at:
https://dataverse.harvard.edu/file.xhtml?fileId=5657692. We will release
code upon publication.
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A  PROOFS OF THEORETICAL RESULTS

Remark 20. It is a simple fact that 0 is coarsening iff ‘9(15” ZLG(S)‘ [0(s)i] < ﬁ Z‘j‘g(t)‘ CIGH

Sor s < t. The proof follows directly from the fact that ZLH(S)‘ |6(s)s| = Zlg(t” 10(¢);| = N.

We provide a proof for the multi-criticality of the MCbiF filtration stated in Proposition

Proof of Propositiond} The MCbiF is indeed a bifiltration because K** C K if s > s’ and
t < t'. It is uniquely defined by its values on the finite grid [t1,...,tp] X [t1,. .., tar] because
0 has change points t; < --- < tps. It is a multi-critical bifiltration because for x € X we have
[z] € K*tforall s,t € [t;,00)°P x [t;, 00). In particular, v € K't**t and x € K*1+90+9 for § > 0
but (¢1,¢1) and (t1 + 0, %1 + 0) are incomparable in the poset [t1,00)°P X [t1, 00). O

Next, we provide the proof for Proposition 2T} which shows that the MCbiF persistence module
is pointwise finite-dimensional, finitely presented and block-decomposable (see |Botnan & Lesnick:
(2023) for definitions).

Proposition 21. For any k < dim K, the MCbif persistence module Hy(K**) is pointwise finite-
dimensional, finitely presented and block-decomposable.

Proof of Proposition 21} We prove the proposition for the nerve-based MCbiF, which leads to the
same persistence module. As MCDbiF is pointwise finite-dimensional and defined on a finite grid,
we can use Theorem 9.6 by |Cochoy & Oudot| (2020) that implies block-decomposability of the
persistence module if it is exact. Hence, it suffices to show that for all ¢ < ¢’ < " < ¢” the diagram

)

11

Hk(kt’t”) — Hk(kt’t
T T
Hy (K" ") — Hu (Kt

"

)

induces an exact sequence:

Hy (K" — Ho(K™") @ Hy(K*") — Hy(K*") (7)
By construction of the MCbiF, Ktt" = Kt U K" Furthermore, K" = Kt U K" and
K" = KU K1 Without loss of generality, ¢ = ¢y, ¢/ = tg, ¢ = t,, t” = t,, for change

13
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1"

points ¢, < ty < tm < t of 0 such that A(k,¢) N A(m,n) = 0. Hence, K n K" = ()
and K" = K" n K" This means that equation [7| is a Mayer-Vietoris sequence for all
k > 0, implying exactness (Hatcher, [2002) and proving the block decomposability (Cochoy &
Oudot, [2020). As the MCDbiF is defined uniquely by its values on a finite grid (Proposition {)), its
persistence module decomposes into finitely many blocks and is therefore finitely presented. O

It follows from the construction of MCDbiF that the Hilbert functions are invariant to certain permu-
tations of partitions in 6.

Proposition 22. HF (s, t) is invariant to permutations of the sequence between s and t.
Proof. The proof follows directly from the construction of MCbiF, see equation O

We now provide a proof for Proposition [§]on properties of the zero-dimensional Hilbert function of
the MCbiF.

Proof of Proposition[8] Statement (i) follows directly from Proposition 12 in|Schindler & Barahona
(2025). To prove (ii), consider first that C2 is true and 6(r) is an upper bound for the partitions 6(r”),
s < r’ < t. Then all simplices in K** are nested within K™", which has |0(r)| disconnected com-
ponents, i.e., HFy = |0(r)| implying C1. We prove the other direction by contradiction. Assume
that C1 is true but C2 is false. Then there exists 8(r’) for s < v’ < t such that either 6(r) and 6(r’)
are not comparable in the partition lattice, otherwise 6(r) < 6(r') contradicting C1. This implies
that there are points 2,y € X such that z,y € C” for a cluster C’ € 6(r’) but there exists no cluster
C € 0(r) such that z,y € C. This implies that K™ U AC" C K*? has strictly fewer connected
components than K™", i.e., HFy(s,t) < |6(r)| contradicting C1.

To prove (i), we first show that — C2 implies that there is a O-conflict. If - C2, Jry,72 € [s,1]
such that 6(r1) £ 6(r2) and 0(r2) £ 6(r1), otherwise there would be a total order on ¢([s, ¢])
with an upper bound. Hence, 3C' € 6(r1) such that C is split in 0(rz) and 3C’ € 0(rz) such that
C’ is split in #(ry). This means there are 1,25 € C and 3,24 € C’ such that [21],, = [22],,
[z3]r, # [4]r, and [23]r, = [Ta]ry» [T1]ry 7 [T2]r,. Without loss of generality, BC” € Gér) for any
r € [s,t] such that CUC’ C C”, otherwise 6([s, t]) would have an upper bound. Hence, #r € [s, t]:
[z1]r = [22]r = [23]r = [24];- This shows there is a 0-conflict. To show the other direction, assume
there is a O-conflict. Then the opposite splitting implies 6(r1) £ 6(r2) and 6(r2) % 6(r1) and the
lack of global transitivity implies #r € [s,¢] such that §(r;) < 6(r) and §(r3) < 6(r). This shows
C2,

We can now prove Proposition[I0[on 1-conflicts.

Proof of Proposition[I0} (i) We show that C1 implies HF (s, ¢) = 0. As C1 and C2 are equivalent,
it suffices to show the Proposition for C2. Let us assume that §(r) is an upper bound for the partitions
6(r"), s < r’ < t. Then all simplices in K#*t are nested within K™", which is a disjoint union of
solid simplices that all have trivial higher-dimensional homology. Hence, HF; (s,t) = HF{(r,7) =
0. (ii) If HF; (s, t) > 1 there exists a 1-dimensional chain z = [z1, Z2] + - - -+ [Tn—1, Tn] + [Tn, Z1]
that is non-bounding, i.e., [z] # 0 in Hq(K*?). If there was a cluster C' € 0(r) for some s < r <t
such that z1, ..., x, € C then there would be a two-dimensional chain of which z is the boundary,
contradicting [z] # 0. (iii) If 4 is hierarchical, then C2 is true and the statement follows from (i). [J

Next, we provide the proof about the equivalence between MCDbiF and nerve-based MCbiF.

Proposition 23. The bifiltrations M and M lead to the same persistence module.

Proof. The proof follows from Proposition 30 in |Schindler & Barahona| (2025)), which extends di-
rectly to the 2-parameter case. O

Next, we prove Proposition |13|about the dimension of the nerve-based MCbiF.
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Proof of Proposition[I3] Statement (i) follows directly from the definition in equation 4 We show
statement (ii) by induction. From the definition of the nerve-based MCbiF, it follows directly that
dim Ntmtm = 1 because the indices in A(m, m) correspond to mutually exclusive clusters. Let us
assume that dim Nt tm™7 = n_then there exist C1, ..., Cy € O([tm, tman)) such that C; N -+ N
C,, # (. As the clusters in partition (£, +,,+1) cover the set X there exist a cluster C' € 0(tm4n+1)
suchthat CNCyN---NC, # 0. Hence, dim Ntm:tm™ > n 4 1, If dim Ném-tm+m > 5 4 1 there
would exist a second cluster C' € (ty1pnt1) WithC'NCNCLN---NC, ZO@but C'NC #£ 0
contradicts that clusters of 6(%,,+,+1) are mutually exclusive. Hence, dim Ntmtm+n = p 4 1,
proving statement (ii) by induction. O

We continue by proving that O-conflicts can induce violations of the strong triangle inequality as
stated in Proposition [16]

Proof of Proposition[I6] If Jx1, 29,23 € X that induce a O-conflict for s < ¢ then 3,72 € [s,]
such that [z1],, = [z2], and [z2],, = [23],,. Without loss of generality, r; < r5 and suppose there
is r3 > ro such that [z1],, = [23]rs. Then Dyg(x1,x3) > max(Dg(x1, z2), Do(z2,x3)).

O

Finally, we show that the zero-dimensional MPH of MCDbiF corresponds to the zero-dimensional
MPH of a Vietoris-Rips bifiltration constructed from Dy .

Proposition 24. Let us define the Vietoris-Rips bifiltration L = (L**');, <s<¢ based on Dy s as
L'={ocCX | Vo,y€o: Dys(z,y) <t} 8)

Then the zero-dimensional MPH of L and of the MCbiF M are equivalent. However, the higher-
dimensional MPH of L is always trivial.

Proof. The proof follows from a simple extension of Proposition 32 in|Schindler & Barahona (2025)
to the 2-parameter case. O

B Toy EXAMPLES

The first example illustrates the difference between 0- and 1-conflicts.

Example 25. Let x1,x2, 73,74 € X such that w1 ~; Ty ~y x3 ~pr x4 forty <t <t/ < t.
Ifx; # x; fori,j = 1,2,3 then we know that the partitions 0(t) and 6(t') are not nested, which
we can measure with HE(¢,t") < min(|0(¢)|,10(t")|) (0-conflict). If additionally x1 = x4 we get
a cycle z = [x1, 2] + [xo, T3] + &3, 21] in the chain complex associated to K" that indicates
a tight relationship between x1,x2,x3, see Fig. A coarse-graining perspective on clustering
suggests that there is an opportunity to unify the three points in a single cluster. If the cycle is
non-bounding, i.e., [z] # 0 in Hi(K'"), we have HF1(t,t") > 1, which indicates that there is no
cluster that unifies the three points, i.e., fir, t < r < t”, such that x1 ~, w9 ~, x3. We call this
a I-conflict, which arises through the higher-order interactions between partitions across scales. If
instead x1 # x4 then there is no 1-conflict but only a 0-conflict.

(a) O-conflict (b) 1-conflict (c) no conflict

00 919 G
I

Figure 5: Tllustration of (a) O-conflict that violates the triangle inequality, (b) a 1-conflict and (c) no
conflict due to global transitivity.

The next example demonstrates that information-based measures cannot detect 1-conflicts in gen-
eral.
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Example 26. Let us consider a set X = {x1,x9,x3,24} and two different sequences of partitions

0(t) and n(t) such that:
et " 0(1) = n(1) = {{z1, x2}, {ws}, {xa}}
0(2) = n(2) = {{z1}, {z2, 23}, {za}}
0(3) = {{z1, x5}, {wa}, {ma}} # 0(3) = {{z1 }, {w2}, {ws, 24 }}

The two sequences 0 and n are only different at t = 3. In particular, t = 3 induces a 1-conflict inf
but ) has only O-conflicts. Note that 0 corresponds to the toy example in Fig.|l|with one additional
isolated point. We get the following results:

The one-dimensional Hilbert functions can detect that only 0 leads to a 1-conflict because

HF(6(1),6(3)) = 1 > HF1(n(1),7(3)) =0

In contrast, conditional entropy cannot distinguish between the two sequences which lead to the
same pairwise conditional entropies (see equation [Y_U])

H(6(2)[6(1)) = H(0(3)[6(1)) = H(0(3)|6(2)) = %102;2

H(n(2)[n(1)) = H(n(3)n(1)) = Hn(3)[n(2)) = %bg?

C DETAILS ON INFORMATION-BASED BASELINE METHODS

Information-based measures can be used to compare arbitrary pairs of partitions in the sequence

0 (Meila, 2007). Assuming a uniform distribution on X, the conditional probability distribution of

0(t) given 0(s) is given by

[0()i 0 6(s);]
16(s);1

Similarly, we can define the joint probability P, ,[i, j]. The conditional entropy (CE) H(¢|s) is then

given by the expected Shannon information:

Pyslils] = €))

16(2)] 16(s)]
H(tls) = — Y > Puuli, j]log(Pyslil]) (10)
i=1 j=1

It measures how much information about 6(t) we gain by knowing 0(s). If 8(s) < 6(¢) there is
no information gain and H(¢|s) = 0. We denote the conditional entropy matrix CE, , = H(%|s).
Furthermore, we can compute the variation of information (VI) VI(s,t) = H(s|t) + H(¢|s), which
is a metric. Both CE and VI are bounded by log V.

Extending information-based measures for the analysis and comparison of more than two partitions
is non-trivial. However, the pairwise comparisons can be summarised with the consensus index
(CD (Vinh et al.||2010) which can be computed as the average VI:

St 1iey VIt )
MM —1)/2

CI(9) := (11

D DETAILS ON EXPERIMENTS

D.1 REGRESSION TASK

Figure [6] shows the correlation between the crossing number y and information- and MCbiF-based
summary statistics. In addition to the results described in the main text, we also observe that the
correlation between CI and ¢y (r = —0.32 for N = 5, r = —0.48 for N = 10) is stronger than
with ¢; (r = —0.12 for N = 5, r = —0.34 for N = 10). This can be explained by the fact that CI
and ¢, can both be computed from pairwise interactions of clusters in contrast to ¢1, see Section 5]
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Figure 6: Pearson correlation (1) between crossing number y, information-based consenus indices
CE and VI and MCbiF-based conflict measures ¢y and ¢; for N = 5 and N = 10.

Furthermore, we observe a strong correlation between ¢y and ¢; (r = 0.52 for N = 5 and r = 0.43
for N = 10) because of the dependencies between 0- and 1-conflicts, see Section 41|

Note that we can consider our information- and MCbiF-based feature maps as M x M greyscale
images, where HFy and HF; are symmetric and CE is asymmetric. For our regression task, we
train a simple CNN (LeCun & Bengio} [1998) with one convolution and max-pool layer and one
fully connected layer and also a simple MLP with one or two hidden layers and dropout. For each
feature map (or their combinations) separately, we perform hyperparameter optimisation for the
number of filters (ranging from 2 to 6) and kernel size (chosen as 4, 8, 16, 32 or 64) in the CNN and
the number of nodes (chosen as 4, 8, 16, 32, 64, 128 or 256), number of layers (1 or 2) and dropout
rate (chosen as 0.00, 0.25 or 0.50) in the MLP. We use the Adam optimiser (Kingma & Bal, 2017)
with learning rate chosen as 0.01, 0.005, 0.001, 0.0005 or 0.0001 for training.

We detail the hyperparameters for the best MCbiF- and CE-based models, which we determined
through a full grid search of the hyperparameter space using the train and validation split of our
data:

* A CNN with 4 filters, kernel size 3, and learning rate 0.001 is best for HFy & HF; at
N =5.

* A CNN with 8 filters, kernel size 2, and learning rate 0.005 is best for CE at N = 5 with
the following hyperparameters:

e LR is best for HFy & HF; at N = 10.
* An MLP with a single layer of 256 nodes, no dropout and a learning rate of 0.001 is best
for CE at N = 10 with the following hyperparameters:

In the following, we present test R? scores on MCbiF-, information-based and mixed features.

Table 3: Test R? scores of different models and combinations of feature maps for N = 5 and
N =10, M = 20.

N | Method || Raw# HF, HF; HF,&HF; CE || CE&HF, CE&HF; CE&HF,& HF;
LR | 0001 0.147 0.486 0.539 0392 0.507 0.532 0.538
5 [ CNN_|| 0006 0155 0504 0544 0492 0.494 0539 0557
MLP | -0.002 0.150 0.491 0541 0.409 0.470 0528 0536
LR || 0012 0214 0.448 0.516 0.457 0.491 0.503 0512
10 [ CNN 0211 0.448 0507 0454 0.456 0491 0510
MLP | 0.000 0212 0450 0514 0.458 0.465 0.496 0512

We also present the train R? scores:

17




Under review as a conference paper at ICLR 2026

Table 4: Train R? scores of different models and combinations of feature maps for N = 5 and

N =10, M = 20.

N | Method | Raw¢ HF, HF, HFo&HF: CE || CE&HF, CE&HF, CE & HF;& HF,
LR || 0005 0.163 0493 0550 0409 || 0.516 0.539 0.557
5 [CNN [ 0000 0.170 0509 __ 0.562 0515 || 0.549 0.586 0.568
MLP || 0.006 0.160 0499 0547 0439 | 0527 0.565 0.570
LR || 0013 0230 0456 0522 0464 |  0.501 0.517 0.530
10 [ CNN_|[ 0009 0220 0456 0519 0476 | 0.500 0.508 0.514
MLP || 0.003 0218 0453 0515 0468 || 0485 0.506 0516

D.2 CLASSIFICATION TASK

Details on Synthetic Data. We generate order-preserving (y = 0) sequences § € 1% through

the following scheme: Let us assume that we have a total order X = {x1,...,zx} given by the
point labels, ie., x; < x; if ¢ < j. We construct each 6(¢,,), m = 0,...,M — 1, by cutting
X into clusters of the form C = {x;, 2;41,...,Titn}. Itis easy to verify that 6 is indeed order-

preserving. We adapt this scheme to generate sequences 6 € H% that are not order-preserving
(y = 0): Again, we start by constructing each sequence 6(¢,,) through cutting the ordered set X as
before. Additionally, with probability p = 0.1, we swap the cluster assignments in 6(¢,,) for two
arbitrary points z,y € X. If N and M are large enough, the so-generated sequence 6 is almost
surely not order-preserving. We chose N = 500 and M = 30 to demonstrate the scalability of the
MCDbiF method.

The number of clusters of all our generated sequences of partitions § € TIX! for both classes is
decreasing linearly, see Fig.[7](a). Moreover, the average number of swaps for sequences with y = 1
is 2.98 for our choice of p = 0.1, see Fig.(b).

(a) 500 (b) 500
400 400 -
_ 300 §300
£ g
s g
200 2200
100 1001
0 0
0 10 20 30 2 4 6 8
m Total number of swaps in 6

Figure 7: (a) Number of clusters |#(m)| over 0 < m < M = 30. (b) Histogram for the number of
swaps of the sequences 6 with y = 1.

D.3 APPLICATION TO TEMPORAL DATA

Data Preprocessing. The temporal sequences of partitions computed by Bovet et al.| (2022)
are available at: https://dataverse.harvard.edu/file.xhtml?fileId=5657692.
We restricted the partitions to the N = 281 mice that were present throughout the full study period
to ensure well-defined sequences of partitions. Moreover, we only considered the first nine temporal
resolution values 7, ¢ = 1,...,9 because 6, is an outlier. Note that the sequences tend to be
fine-graining, see Fig.[§]

Time Reversibility. In the main text, we restricted our analysis to the so-called forward Flow
Stability sequences of partitions. However, by reversing time direction|Bovet et al.|(2022) computed
a second set of backward sequences. For each temporal resolution 7;, we thus get a forward and
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Figure 8: Number of clusters over weeks ¢.

backward sequence denoted by Gfi and Hﬁi, respectively. Here we use the MCbiF to compare the
forward and backward sequences of partitions for different 7; and we compute the Hilbert distance
| HE(64,) — HF(6%) || for k = 0,1, see Fig.[9

Hilbert distance

—e— || HFo(6]) — HFo(67) I 2
| HF1(67) — HF1(62) || 2

=y=s

Figure 9: Hilbert distance between forward and backward Flow Stability sequences.

We observe that the Hilbert distance between forward and backward sequences is high for 75 because
the large-scale group structure changes significantly over the study period, so that the temporal
flows at low resolution 75 are not reversible. In contrast, the Hilbert distance between forward and
backward sequences is low for 73 because the underlying social groups are more stable over the
study period, leading to increased time reversibility at the high temporal resolution.
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