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Abstract

Deep learning has become an essential part of computer vision, with deep neural networks
(DNNs) excelling in predictive performance. However, they often fall short in other critical
quality dimensions, such as robustness, calibration, or fairness. While existing studies have
focused on a subset of these quality dimensions, none have explored a more general form of
“well-behavedness” of DNNs. With this work, we address this gap by simultaneously study-
ing nine different quality dimensions for image classification. Through a large-scale study,
we provide a bird’s-eye view by analyzing 326 backbone models and how different training
paradigms and model architectures affect these quality dimensions. We reveal various new
insights such that (i) vision-language models exhibit high class balance on ImageNet-1k
classification and strong robustness against domain changes; (7) training models initialized
with weights obtained through self-supervised learning is an effective strategy to improve
most considered quality dimensions; and (%ii) the training dataset size is a major driver for
most of the quality dimensions. We conclude our study by introducing the QUBA score
(Quality Understanding Beyond Accuracy), a novel metric that ranks models across multi-
ple dimensions of quality, enabling tailored recommendations based on specific user needsE]

1 Introduction

Today’s computer vision research is heavily shaped by advances in the field of deep learning. While deep
neural networks (DNNs) excel at predictive performance, often measured via the accuracy, it has been shown
that they are flawed across various other quality dimensions, such as robustness (Goodfellow et al., |2015;
Hendrycks & Dietterich, 2019)), calibration (Guo et al., 2017)), and fairness (Du et al. [2021). To address
these challenges, the scientific community started various parallel streams of research focusing on individual

1Project page: https://visinf.github.io/beyond-accuracy; *equal contribution; Twork done while at Technical University
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Figure 1: Visualization of two of our main results. We compare nine different quality dimensions for popular
backbone models trained with standard supervised learning M (SL) against the corresponding backbones
trained after initialization with weights obtained through self-supervised learning M (left) and when utilized
in a vision-language (ViL) model ' (right). Axis units indicate the distance (in standard deviations) to the
mean (0 line) of each quality dimension; see Eq. and its explanation for details. Please refer to Tab.
(e) and (j) for raw values and Sec. [3| for an interpretation of the results.

aspects of DNN quality, developing mostly orthogonally. We argue that this orthogonal development is
somewhat surprising, as the overarching goal for most applications should be the implementation of more
well-behaved networks that excel in many quality dimensions (Liu et al. |2023)). While some works study
the relationship between a subset of quality dimensions, e.g., how accuracy and calibration relate (Guo
et all [2017; Minderer et al.| |2021), or how adversarial training (Goodfellow et al., [2015) improves calibra-
tion (Grabinski et al., 2022), we are not aware of any work that studies a broad range of quality dimensions
simultaneously. Consequently, it is largely unknown how model improvements in one direction affect other
quality dimensions. Here, we close this gap by studying how 326 backbone models perform along nine
different quality dimensions for ImageNet-1k (Russakovsky et al., [2015) image classification. By doing so,
we analyze how different training paradigms and model architectures can be used to improve these quality
dimensions, uncover unknown connections between quality dimensions, and give recommendations on what
models to use based on specific user needs. We expect our findings to be highly relevant for advancing the
development of classification models that not only excel in accuracy but also across a wide range of DNN
quality dimensions.

Our contributions can be summarized as: (1) We introduce a novel benchmark to measure a broad range of
quality dimensions simultaneously, which is compatible with any DNN/backbone that performs ImageNet-
1k (Russakovsky et al., [2015)) classification. (2) In a large-scale study, we evaluate how 326 backbone models
from prior work perform along nine considered quality dimensions. (3) We use this to analyze how different
training paradigms and architectural changes can be utilized to improve the different quality dimensions.
Among other things, we find that self-supervised pre-training followed by fine-tuning improves most quality
dimensions and that vision-language models achieve high fairness (here measured as the class balance) on
ImageNet-1k classification while being fairly robust against domain changes (see Fig. . (4) Building on
trends in related work that examine relationships between individual quality dimensions (e.g., |Guo et al.,
2017; Miller et al., [2021; Minderer et al. 2021), we analyze the relationships among all considered quality
dimensions. (5) We conclude our study by introducing a novel QUBA score (Quality Understanding Beyond
Accuracy) that ranks models across multiple dimensions of quality. We use this score to recommend top-
performing models tailored to diverse user needs.

2 Evaluating quality beyond accuracy

We go beyond accuracy by exploring the general “well-behavedness” of DNNs. While this term is inherently
ill-defined and task-dependent, we use it informally as the performance across the nine quality dimensions
chosen in this study. Specifically, we consider (1) accuracy; three robustness metrics: (2) adversarial robust-
ness, (3) corruption robustness, and (4) out-of-domain robustness; (5) calibration error; (6) fairness measured
via class balance; two dimensions concerned with shortcut-learning: (7) object focus and (8) shape bias; and
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Table 1: Owerview of our considered DNN quality dimensions for image classification. Arrows indicate if
higher (1) or lower (]) is better. If a quality dimension is computed over multiple datasets or metrics, we
use the geometric mean.

Quality Dimension Description (visual illustrations are provided in AppendixEI)

Accuracy (1) Fraction of correctly classified (clean) images

Adversarial Robustness (1) Fraction of correctly classified images after an FGSM or PGD attack (normalized by clean accuracy)
C-Robustness (1) Fraction of correctly classified images after corrupting images (normalized by clean accuracy)

OOD Robustness (1) Fraction of correctly classified images from different domains (normalized by clean accuracy)
Calibration Error ({) Misalignment of the output confidence and the true probability of a correct classification

Class Balance (1) Standard deviation of the accuracies and average confidences across all individual classes

Object Focus (1) Fraction of decisions that are based on foreground and not on background

Shape Bias (1) Fraction of decisions that are based on shape and not on texture

Parameters ({) Number of parameters

(9) computational cost measured via the number of parameters. These dimensions encompass a wide range
of DNN qualities/properties and attracted considerable attention in related work, which is why we regard
them as particularly important. We evaluate these quality dimensions simultaneously by merging corre-
sponding evaluation protocols into a single, comprehensive benchmark. To enable a large-scale study with
a feasible computational load, we only select protocols that require ImageNet-1k (Russakovsky et al.l [2015)
classification without model fine-tuning. While there are other important dimensions, such as explainability
and out-of-distribution detection capabilities, they are challenging to evaluate as they are coupled to specific
explanation/out-of-distribution detection methods that might vary across backbones (Hesse et al., 2023b)
— thus, we excluded them. Also, we note that all evaluation protocols are merely proxies for the targeted
dimension; they do not necessarily reflect true performance in that dimension, nor do they capture the full
complexity of the underlying behavior. Consequently, different evaluation protocols may lead to different
conclusions, which is worth keeping in mind when interpreting our findings.

We now outline related work, the considered quality dimensions, and how we measure them in this work;
see Tab. [I] for a summary and Appendix [A] for more details.

Accuracy. The success of DNNs is largely driven by their superior accuracy, first showcased in 2012 by
AlexNet (Krizhevsky et all [2012) on ImageNet-1k (Russakovsky et all,[2015). This marked the beginning of
the “deep learning era,” leading to increasingly powerful models (Dosovitskiy et al., [2021} [He et al., 2016}
let al., 2022b; [Simonyan & Zisserman, [2015)). To measure a model’s accuracy, we report the top-1 accuracy
on the ImageNet-1k evaluation split.

Adversarial robustness. DNNs are vulnerable to adversarial attacks, i.e., small perturbations in the
input space (Szegedy et al., 2014). This vulnerability can be reduced by training with adversarial exam-
ples (Goodfellow et all [2015; Madry et al., [2018) or by defensive distillation (Papernot et all |2016]). To
assess adversarial robustness, we measure the geometric mean®| of the accuracies after applying two popular
attacks, FGSM (Goodfellow et al. [2015) and PGD (Madry et al., 2018). To reduce the dependence on the
clean accuracy of the model, we report adversarial robustness relative to the clean ImageNet-1k accuracy. In
Appendix we compare our adversarial robustness measure to AutoAttack (Croce et all [2021), yielding
very similar conclusions.

Corruption robustness. DNNs are susceptible to common image corruptions such as JPEG com-
pression and contrast changes (Hendrycks & Dietterich| [2019), which can be reduced with special kinds
of data augmentations (Hendrycks et al., 2020) or self-supervised learning (Hendrycks et al.) 2019). To
assess a model’s robustness to common corruptions (C-robustness), we measure the mean accuracy on
ImageNet-C (Hendrycks & Dietterich| 2019), i.e., the ImageNet evaluation split with different corruption
types of increasing strength. To normalize C-robustness and to be consistent with our other robustness met-
rics, we again report the top-1 accuracy on the corrupted data relative to the clean ImageNet-1k accuracy.

OOD robustness. Out-of-domain (OOD) robustness is concerned with the generalizability of a model to
OOD data (e.g., |Geirhos et al. 2019 [Hendrycks et al.| 2021; [Wang et al., [2019). Contrary to adversarial

2The geometric mean ensures that metrics of different scales contribute equally without one overshadowing the others.
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and corruption robustness, datasets to assess the OOD robustness exhibit stronger visual domain shifts and
contain new data samples. We assess OOD robustness by reporting the geometric mean of the relative
accuracy on five established OOD datasets: ImageNet-R (Hendrycks et al.,2021)), ImageNet-Sketch
2019), as well as Stylized-ImageNet, Edge, and Silhouette from Geirhos et al (2019).

Calibration error. Calibration measures how well a model’s output confidence reflects the probability of
a correct prediction. |Guo et al| (2017) found DNNs to be poorly calibrated, spurring the developments of
approaches like deep ensembles (Lakshminarayanan et al., 2017) and label smoothing (Miiller et al., 2019).
We report the geometric mean of the expected calibration error (ECE) (Guo et all,[2017; |[Nixon et all, 2019)
and the adaptive calibration error (ACE) (Nixon et al.| [2019).

Class balance. A well-behaved model should behave fairly. Fairness can, e.g., be improved by the class-
wise weighting of the cross-entropy loss (Benz et al.} [2020). As fairness has multiple facets
and there is no standardized fairness metric, we rely on a simplified notion of “class balance”: no class
should be particularly favored or disadvantaged (Benz et al. 2020; Kuzucu et all [2024). More specifically,
we evaluate the class balance of a model in two ways: (1) the standard deviation of ImageNet-1k class
accuracies, similar to|Croce et al|(2021)), and (2) the standard deviation of average class confidences, similar
to [Kuzucu et al.| (2024). To align with other metrics, we subtract these values from 1, so higher scores
indicate greater class balance, and we aggregate both measures using the geometric mean. While aiming
to approximate fairness, we note that ImageNet-1k itself exhibits dataset biases, and thus our conclusions
about fairness may not fully reflect real-world concerns.

Object focus. ImageNet-trained DNNs rely on background features to the extent that they can be fooled
by changing the background (Xiao et al., [2021} Zhu et al., 2017). This can be avoided by training on images
where the background signals are decorrelated from the class labels (Xiao et all,[2021)). Similar toXiao et al|
, we measure object focus by assessing accuracy drops when replacing backgrounds with those from
other classes.

Shape bias. ImageNet-trained CNNs exhibit a texture bias rather than a shape bias (Geirhos et al., [2019).
Since this can hurt generalizability and robustness, models with increased shape bias are preferred and have
been developed (Nam et al., 2021} |Shi et al., [2020]). The shape bias is measured using images with a conflict
between the shape and texture cues — e.g., an image of a cat (shape) with the skin of an elephant (texture).
These images are fed into the model to determine whether it predicts based on texture (texture bias) or
shape (shape bias) (Geirhos et al. [2019).

Unlike the other quality dimensions, a higher shape bias is not inherently better, as some applications
may benefit from a stronger focus on texture. Nonetheless, we include shape bias as a dimension and, for
consistency with related work and since it is more in line with human vision (Geirhos et al., |2019; [Wang|
, assume that higher values are preferable. This assumption does not affect the core of our
analysis. Further, in Sec. [p, we introduce the QUBA score, where the shape bias weight can be adjusted or
even inverted to reflect specific preferences.

o
Parameters. Deep neural networks (DNNs) should be memory-efficient f e &
and fast to reduce resource consumption and operate sustainably. Since be@ Q\/O s@@
actual memory and runtime performance depend heavily on specific imple- Parameters (@) 1
mentations and hardware, we follow established practice and use the num-

ber of model parameters as a hardware- and implementation-independent Fors @ @ 0
proxy for computational cost (Kaplan et al., [2020; Tay et al., 2022)). To Memery @) @ @ 1

validate its suitability as a proxy, we visualize the Spearman’s rank cor- '
relation for 326 models (see Appendix between the number of pa- Flgure 2: Rank c?rrelatzon ma-
rameters, required memory, and theoretical FLOPs in Fig. [2] All three triz_for the considered metrics
measures are strongly correlated (correlation coefficients > 0.85), confirm- 9" computational cost for our
ing that the number of parameters is a reliable proxy. Thus, for practical full model 200 of 326 models.
purposes and ease of comparison in future studies (memory consumption All entries have a p-value below
is implementation dependent, and the computation for the theoretical 9'057 indicating statistical signif-
number of FLOPs needs to be adjusted for novel model components), we 1C21CC.



Published in Transactions on Machine Learning Research (01/2026)

Adv. Rob. C-Rob. OOD Rob. Cal. Error
T T T T 2 T T 004 T \ T
0.6 N 0.8 |- . o 1+ : na -
- o il A &
04l | - gl 0.75 - F - ¢ ,
; K 04 : | ) sl A | 002f ! |
& ¥ 05 ' — =
021 i & : -
N 025 . e
oL R oL = \ i | | | B o ) i il
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9
Class Balance Obj. Focus Shape Bias Parameters in Mil.
T N T T T T 08 T T T T T ™
- pass . & A A 750 |- :
0.9 4 & 0.9 ; t‘t; e | 06 o A i
041 o g | 500 ; N
081 | 0.8 | - A *i ’ &
) 02 : S | 20 . S
=g 01| i ol ="
0.7 | | | | | | | | 0 | | | | | [ [ |
0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9

Figure 3: Different quality dimensions (y axis) vs. accuracy (v axzis). To reduce clutter in the plots, we
only plot representative models instead of our full model zoo; please refer to the project page for interac-
tive plots with all models. To emphasize the effect of different training strategies and model architectures,
we group models visually: the training dataset size is marked by symbols within each marker (no sym-
bol for ImageNet-1k, dot (-) for ImageNet-21k, star (x) for large-scale datasets); different training strate-
gies by shapes (standard supervised training as squares m, adversarial training as circles @, self-supervised
(pre-)training as triangles A, semi-supervised training as diamonds ¢, A[1,2,3] training as pentagons @); and
different architectures by color (blue M for CNNs, orange M for Transformers, green B for B-cos models, and
yellow © for vision-language (ViL) models).

adopt the number of parameters as our primary metric. However, we note that parameter count alone can-
not fully capture the efficiency of a model and should be interpreted with caution (Dehghani et al.l |2022)).
Various studies are concerned with reducing the number of parameters or the computational cost of DNNs
while keeping the accuracy as high as possible (Hesse et al. 2023a; [Li et al. 2022b; [Tan & Le| 2019; [2021)).

3 What makes a model more well-behaved?

Equipped with the above quality metrics, we now study how different design choices affect DNN quality.
This not only sheds light on quality beyond accuracy of the current state of the art for image classification,
but also facilitates the development of more well-behaved DNNs in the future. In Tab. [2] we compare the
average of each quality dimension for different setups. Since not all backbones can be considered in each
configuration (e.g., not all have adversarially trained variants), we ensure fair comparisons by selecting the
subset of models that is consistently available for all configurations of the respective setup (with no or minor
modifications; see Appendix . In Fig. |3, we plot the different quality dimensions for selected models
against accuracy, distinguishing between model groups.

Experimental setup. We use 326 publicly available models in our large-scale study. See Appendix
for an overview, including numerical results and implementation details for each quality dimension.

3.1 Different training strategies

Training dataset size. We compare models trained on ImageNet-1k (Russakovsky et al., [2015]) to those
trained on the larger ImageNet-21k (Deng et al., 2009) dataset in Fig. 3| (no symbol vs. dot (-)) and Tab.
(a) and (b). Training on a larger dataset improves nearly all quality dimensions for CNNs and Transformers,
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particularly accuracy, C-robustness, and calibration — likely by promoting more general and less overfitted
features. Interestingly, with a larger training dataset, the adversarial robustness of Transformers decreases.

Conclusion: Training on a larger dataset improves most of the considered quality dimensions.

Adversarial training. We compare adversarially trained models against the corresponding standard
supervised models in Fig. [3] (circles ® vs. squares =) and Tab. [2| (c). Adversarial training (AT) improves
shape bias (Engstrom et al.,[2019; |Geirhos et al., [2021; 'Wang et al., 2020), OOD robustness (Engstrom et al.,
2019), and, expectedly, adversarial robustness. Accuracy and class balance significantly worsen with AT.
The latter is in line with results of [Benz et al.| (2020); Xu et al.| (2021al). Interestingly, we observe a trend of
increasing calibration error with AT, which extends findings in (Grabinski et al.| |2022)) that found evidence
that adversarially trained ResNets (He et all 2016) exhibit improved calibration errors.

Conclusion: AT improves adversarial/OOD robustness and shape bias. It impairs accuracy and class
balance.

Self-supervised training. Self-supervised learning eliminates the need for dataset annotations and thus
allows for training on significantly larger datasets. We compare models initialized with weights obtained
through self-supervised learning to standard supervised models in Fig. [3| (triangles A vs. squares m) and
Tab. [2] (d) and (e). We consider self-supervised models in two standard transfer settings: (7) models where
only the final classification layer is trained (linear probing, LP) and (i) models that are fully fine-tuned
on ImageNet-1k (E2E). We analyze how each approach affects the different quality dimensions. LP models
(Tab. 2 (d)) generally underperform compared to supervised models, except in OOD robustness, calibration,
and shape bias — likely due to the larger gap between training and testing distributions. The reduced object
focus is notable, as|Caron et al.[(2021)) found that self-supervised Transformers produce attention maps that
closely align with objects. This suggests that attention maps may not serve as reliable explanations, a finding
consistent with (Hesse et al. [2023b} |2024). The slight parameter difference stems from DINOv2 (Oquab
et al.| |2024)) using a 14 x 14 patch size instead of the original 16 x 16.

On the other hand, fine-tuning (E2E) self-supervised models (Tab. [2| (¢)) improves most quality dimensions
(except calibration) — probably due to larger pre-training datasets typically used for self-supervised learning
and a smaller domain gap than LP. The improvement in class balance is particularly surprising, as we
expected the larger training datasets used for self-supervised training to have much stronger class imbalances
than the evenly distributed ImageNet dataset. We hypothesize that the class balance is nonetheless improved
because the self-supervised models are pre-trained without any class information, resulting in features less
tailored to specific classes. As a result, these features yield a more balanced distribution of class accuracies
and class confidences.

Conclusion: Self-supervised models with linear probing perform worse than supervised models in
most quality dimensions. Fine-tuning self-supervised models in an end-to-end fashion improves most
quality dimensions.

Semi-supervised training. We also measure how semi-supervised training (Xie et al., 2020; |Yalniz et al.,
2019), 7.e., training on a combination of labeled and unlabeled data, compares to supervised training in Fig.
(diamonds ¢ vs. squares i) and Tab. [2[ (f). Among the dimensions with statistically significant changes, semi-
supervised training has similar effects as self-supervised training with E2E fine-tuning, probably also due
to the combination of a large-scale training dataset and relatively close training and testing domains. Only
C-robustness is negatively affected statistically significantly.

Conclusion: Semi-supervised training improves accuracy, adversarial robustness, class balance, and
shape bias. Only C-robustness is clearly impaired.

A[1,2,3] training. |[Wightman et al. (2021) introduce several training strategies, termed A1, A2, and A3,
which incorporate best practices for training DNNs — e.g., multi-label classification objectives, data aug-
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Table 2: Average quality dimensions for models with different configurations. We evaluate various setups,
focusing on different training strategies (a—g) and different architectural choices (h—j). In each configuration,
we report the average score for each quality dimension across the models associated with that configuration.
As different models are available for different setups, each setup considers a distinct selection of models
being compared. As a result, both the models and their total number (indicated by the number beside each
setup) vary across setups to maintain a fair basis for comparison. The number of asterisks represents the
statistical significance of differences in the average scores of a quality dimension across configurations within
each setup: *** for p < 0.05, ** for p < 0.1, and * for p < 0.2, based on t-test results.

. Adv. 00D Cal. Class Obj. Shape Params.
Setup  Configuration Ace.T Rob.!  C-Rob.t  gop.T Error ¥ Balance|  Focus | Bias | in Mil. ¥
(a) 14 CNNs (IN-1k) 0.82 0.14 0.67 0.60 0.0048 0.80 0.93 0.29 69
CNNs (IN-21k) 0.84% 0.15 0.71 0.60 0.0026*** 0.80 0.95 0.33* 69
(b) 16 Transformers (IN-1k) 0.81 0.21 0.69 0.61 0.0046 0.79 0.94 0.39 85
Transformers (IN-21k) 0.84%** 0.17* 0.75%* 0.69** 0.0027*** 0.80** 0.95 0.42 85
(¢) 11 Supervised models 0.82 0.12 0.66 0.60 0.0056 0.80 0.94 0.29 86
Adversarially trained models 0.74%** 0.52%** 0.62 0.63 0.0068* 0.78%* 0.93 0.72%** 86
(d) 13 Supervised models 0.81 0.20 0.66 0.58 0.0047 0.81 0.93 0.34 89
Self-supervised models (LP) 0.75* 0.10%** 0.61 0.59 0.0029** 0.78%* 0.88%* 0.40* 91
(e) 25 Supervised models 0.81 0.16 0.67 0.58 0.0034 0.79 0.93 0.38 94
Self-supervised models (E2E) 0.84%**  0.24*** 0.73 0.73%** 0.0045 0.81%** 0.95%** 0.39% 95
(f) 13 Supervised models 0.80 0.13 0.58 0.59 0.0048 0.78 0.92 0.24 28
Semi-supervised models 0.82%* 0.20%** 0.45% 0.59 0.0059 0.80%* 0.93 0.29%** 28
(g) 19 Supervised models 0.79 0.12 0.50 0.52 0.0044 0.78 0.92 0.25 39
A1 supervised models (600 epochs) 0.80 0.47*** 0.06*** 0.31%** 0.0030* 0.75%** 0.92 0.27** 39
A2 supervised models (300 epochs) 0.80 0.41%** 0.06%** 0.30%** 0.0026*** 0.75%** 0.93%** 0.25 39
A3 supervised models (100 epochs) 0.78 0.32%** 0.04%** 0.27%** 0.0048 0.76%** 0.91 0.17%** 39
(h) 46 CNNs 0.81 0.11 0.62 0.54 0.0048 0.79 0.92 0.29 40
Transformers 0.81 0.20 0.69*** 0.62***  0.0046 0.80* 0.93***  0.32 40
(i) 12 Standard models 0.77 0.07 0.58 0.56 0.0033 0.77 0.93 0.27 37
B-cos models 0.75% 0.02%** 0.26%** 0.46*** 0.0115%** 0.75% 0.90%** 0.27 36
(j) 24 Standard models 0.81 0.18 0.62 0.56 0.0044 0.79 0.93 0.35 152
Vision-language models 0.74%** 0.10* 0.60 1.00*** 0.0337%** 0.90*** 0.93 0.56*** 275 **

mentation techniques, and the use of advanced optimizers. Most importantly, the three strategies vary in
their training duration: A1l is trained for 600, A2 for 300, and A3 for 100 epochs. We compare the train-
ing strategies to standard supervised models in Fig. [3| (pentagons @ wvs. squares m) and Tab. [2] (g). While
some training strategies of the standard supervised models might overlap with the A[1,2,3] training, the long
training of A1 is not utilized in any of the standard models. The accuracy is slightly increasing for the setups
with increased training times (A[1,2]; statistically insignificant). Interestingly, adversarial robustness signif-
icantly improves with the A[1,2,3] training, while C-robustness and OOD robustness decrease. We believe
the improved training enhances adversarial robustness by expanding the distance between decision bound-
aries and data points, but reduces generalizability by encouraging “overfitting” to the training distribution.
Calibration error decreases for the setups with increased training times (A[1,2]), which extends findings of
[Minderer et al.| (2021)) that showed that calibration error increases with longer training when measured only
on BiT models (Kolesnikov et all 2020]). Class balance is reduced for all the setups; object focus remains
fairly stable, and the shape bias increases with longer training, confirming results of [Hermann et al.| (2020)).

Conclusion: Adversarial robustness, calibration, and shape bias improve with longer training times.
C/OOD-robustness and class balance are impeded.

3.2 Different model designs

Now that we have covered various training strategies and their effect on different quality dimensions, we
analyze the effect of specific architectural choices.

Is the time of CNNs over? We compare models based on convolutions (CNNs) and attention (Trans-
formers) in Fig. [3| (blue M vs. orange M) and Tab. [2| (h). Since Vision Transformers (Dosovitskiy et al.
were introduced only in 2020, we exclude CNNs proposed before 2020 and compare only newer CNN
architectures with Transformers for a fairer evaluation. To further improve the fairness of our comparison,
we make sure that we have an equal number of CNNs and Transformers from different setups (e.g., adver-
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sarial training) and only compare them when they have a similar number of parameters (within a 1-million
difference). Despite our efforts to ensure a balanced comparison, this setup gives us less control over certain
variables than our other experiments. Therefore, these results should be interpreted with caution. Remark-
ably, CNNs and Transformers perform equally in accuracy. However, Transformers outperform CNNs in all
the other quality dimensions. Our results on robustness nicely complement those of Bai et al.| (2021), who
compared the robustness of CNNs and Transformers but considered only ResNet50 (He et al., 2016) and
DeiT-S/16 (Touvron et all |[2021a).

Conclusion: Transformers consistently outperform CNNs across almost all quality dimensions.

B-cos transform. Initially introduced to improve interpretability, the B-cos transform (Bohle et al.,
2022) can substitute the linear transformations in a DNN. It encourages the weights to align with the input
and potentially affects the model beyond the improved interpretability. We thus analyze B-cos models in
Fig. 3| (green M) and compare them to the corresponding standard models in Tab. |2 (i). Besides shape bias
and the number of parameters, all considered quality dimensions drop significantly when using the B-cos
transform. A potential reason for this is the inductive bias of weight-input alignment, limiting the model’s
expressiveness.

Conclusion: The B-cos transform negatively affects most of the considered quality dimensions.

Vision-language (ViL) models. With ViL models becoming increasingly relevant, we study their perfor-
mance across the considered quality dimensions in Fig. [3[ (yellow =) and compare them to their corresponding
backbones trained in a supervised fashion in Tab. [2] (j). Please note that Tu et al.| (2023]) conducted a sim-
ilar study, however, focusing exclusively on CLIP models (Radford et al., |2021) and covering a slightly
different set of quality dimensions. Since Vili models perform zero-shot classification by mapping the 1000
ImageNet-1k class labels into their feature space and then predicting the class label closest to the feature
embedding of the given image, their accuracy is notably lower than that of the supervised models. Also,
they contain significantly more parameters due to the additional language encoder. They exhibit decreased
adversarial robustness and C-robustness while strongly improving OOD robustness (Radford et al.l |2021)).
At first glance, one might attribute the improved OOD robustness to the models being trained on signifi-
cantly larger datasets that include domains similar to those in the OOD datasets (Liu et all [2023). While
this is certainly a factor (Mayilvahanan et al.| [2025), a closer look reveals that Vil models still outperform
other models trained on similarly large datasets (see Appendix , suggesting that they offer advantages
beyond just dataset size. While|Minderer et al.| (2021)) found that CLIP is fairly well calibrated when trained
on WebImageText (WIT) (Radford et all 2021)), |Tu et al.| (2023) found that CLIP calibration can decrease
when trained on other datasets. We extend their finding by observing that other Vil models also exhibit
significantly worse calibration than standard models. Class balance and shape bias improve by a large margin
— the former probably for similar reasons as for self-supervised models.

Conclusion: Vil models excel in OOD robustness, class balance, and shape bias. However, they fall
behind in accuracy (zero-shot), calibration, and parameters.

4 Relationships between quality dimensions

Comparison to related work. While most previous work is concerned with improving quality dimen-
sions, there are also studies examining their relationships. However, not all relationships have been explored,
and prior studies used fewer and older models, which can lead to contradictory findings (see Appendix [C.3]).
To address this gap, we investigate the relationship between numerous quality dimensions for our extensive
model zoo, plotting the Spearman’s rank correlation matrix for all nine considered quality dimensions across
326 models in Fig. [4] — please refer to Appendix for correlation matrices of specific model subgroups.
Our analysis confirms that accuracy is positively correlated with OOD robustness (Miller et al.| 2021)), ob-
ject focus (Xiao et all [2021), shape bias (Hermann et all [2020), and with the number of parameters (Liu
et al., [2025). The number of parameters positively correlates with OOD robustness (Liu et al.l [2025) and
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Figure 4: Rank correlation matriz for the considered quality dimensions among our full model zoo. All
non-crossed-out entries have a p-value below 0.05, indicating statistical significance. Crossed-out entries
correspond to p-values above 0.05 and are therefore not statistically significant.

adversarial robustness (Madry et al.l 2018} [Nakkiran| [2019)). Increasing the shape bias improves adversarial
robustness (Geirhos et al., [2021; [Jo & Bengiol [2017), accuracy (Geirhos et all) 2019), and OOD robust-
ness (Geirhos et all, 2019)). Accuracy and calibration error exhibit a negative correlation, aligning with
Minderer et al.| (2021]), who found a negative correlation in more recent Transformer models, and contradict-
ing |Guo et al.| (2017)), who observed a positive correlation between these metrics in older backbone models.
Unlike hypothesized by |Tsipras et al.| (2019) and confirming [Yang et al. (2020), accuracy and adversarial
robustness are positively correlated. Contrary to |[Liu et al.| (2025) and [Jo & Bengio| (2017)), adversarial
robustness is not statistically significantly correlated with C-robustness and OOD robustness. While
[binski et al.| (2022) found that adversarial training improves calibration, we find no statistically significant
correlation between adversarial robustness and calibration.

Conclusion: We provide a bigger picture of related work using our extensive model zoo to validate
known quality relationships, resolve conflicting findings, and extend recent findings regarding a link
between adversarial and OOD robustness / C-robustness / calibration.

Discovering new relationships. While we cannot discuss all findings in Fig. 4] some insights — to our
knowledge — have not been reported for backbone models in image classification. For example, accuracy and
class balance are strongly correlated, meaning higher-accuracy models have less discrepancy between the best
and worst-performing classes. Further, object focus is strongly correlated with all quality dimensions but the
calibration error, rendering models with improved object focus an interesting research direction. This may
be because models with greater object focus capture fewer surface-level statistical regularities and instead
develop higher-level conceptual understanding (Jo & Bengio, [2017)). Interestingly, calibration error is only
statistically significantly correlated with OOD robustness, class balance, and shape bias, highlighting the
need for dedicated calibration research. Lastly, most considered quality dimensions (excluding the number
of parameters and calibration) improve together, indicating that developing models that excel in a wide
range of quality dimensions is feasible. This observation aligns with , who argue that many
desirable properties of trustworthy machine learning are underpinned by shared foundations, suggesting that
improvements in one aspect may benefit others.

Conclusion: Accuracy and class balance are strongly correlated, object focus is strongly correlated
with most quality dimensions, calibration error is not correlated with most quality dimensions, and
there are only a few trade-offs between the considered dimensions.
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Table 3: QUBA score and quality dimensions for the five top-performing models. The configuration lists the
architecture, training dataset, and training paradigm. T indicates models trained with knowledge distillation.

. QUBA Adv. [eYe) s} Cal. Class Obj. Shape Params.
Model Configuration Score T Acc.t l{ob.‘T C-Rob.T Rob‘T Error‘L Balance’T FocusT Bias T in Mil.
CNN, JFT-300M
EfficientNet-B6 (Hinton et al.l |2015); . i
(Kio ot aTl p020) (Son ot al113017) 0.94 0.86 0.25 0.77 0.83 0.0048 0.82 0.95 0.35 43
+ IN1k, semi-SLT
Hiera-B Transformer, IN1k, - = . . . -
(Ryali et al) [p033)  self.SL (E2E) 0.95 0.85 0.23 0.76 0.76 0.0130 0.93 0.94 0.34 51
ConvNeXtV2-B CNN, IN21k,
(Woo ot al] [2033) self-ST, (E2E) 0.96 0.87 0.28 0.79 0.82 0.0023 0.81 0.96 0.40 88
Hiera-B-Plus Transformer, IN1k,
(Ryali ot al) [033)  self.SL (E2E) 1.03 0.85 0.24 0.78 0.74 0.0130 0.93 0.95 0.43 69
EVA02:B/14 Transformer, IN21k, 1.08 0.88 0.21 0.81 0.86 0.0039 0.83 0.97 0.34 87

(Fang et al}[2024b)  self-SL (E2E)

5 Which backbone to use?

We conclude our analysis by ranking models to provide recommendations on the best model choices. Ranking
models across multiple quality dimensions is a non-trivial task with no one-size-fits-all solution, as user
priorities vary depending on specific needs. Nonetheless, we aim to identify models that perform well across
a wide range of dimensions and, thus, require an effective way to summarize the different quality scores with
flexible weightings to reflect different user needs.

Probably the most straightforward way to summarize our results would be to take the average of all quality
dimensions. However, given that these dimensions have vastly different ranges and scales, this approach
would not treat all dimensions fairly. Another alternative would be to compute the mean rank: for each
quality dimension, the models are ranked, and then the geometric mean of these individual ranks is calculated.
However, using ranks has two key limitations. First, ranks are uniformly distributed, whereas the raw scores
are not, meaning that the difference in mean rank between two models would not accurately capture the
actual difference in their model quality. Second, if future studies introduce new models, the set of models
will change, altering most of the rankings. As a result, mean ranks would no longer be consistent across
different papers.

QUBA score. To address these issues, we leverage an intriguing property of our large model zoo: its
size makes it representative of a broad range of models, enabling us to estimate a meaningful mean pu; and
standard deviation o; for each quality dimension i (we exclude the bottom and top 10% models to reduce
outlier sensitivity). We then express each model’s quality scores s°%¢! in terms of how many standard
deviations they deviate from the mean. The final QUBA score (Quality Understanding Beyond Accuracy)
for a model is the weighted arithmetic mean of these scores:

model __

9
1 S i
UBA, g = | =— w; —————. 1
Q del (Z?:lwi> E . (1)

i=1 ¢

By default, we use a balanced weighting where the three robustness dimensions are weighted at w; = 1/3 to
prevent them from overshadowing the results and, similarly, assign w; = 1/2 to object focus and shape bias,
as both are related to shortcut learning. All other weights are set to 1 (different weightings are analyzed
below). Since calibration errors and the number of parameters should be as small as possible, they are
multiplied by —1 before computing the mean, so that higher values indicate better performance. Intuitively,
the QUBA score reflects how many standard deviations a model deviates from the “average model” across
the considered dimensions.

Our approach solves both limitations of the mean rank: the distances now have a consistent and meaningful
interpretation, and the score can be calculated independently of the considered model set (since the mean
and standard deviation for each quality dimension are assumed to be fixed).

To validate that our model zoo is large enough to produce reliable estimates of the mean and standard
deviation for each quality dimension — and to assess the robustness of the QUBA score — we randomly
sample 100 models from our full model zoo and compute the QUBA mean and standard deviation. This

10
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Table 4: QUBA score and quality dimensions for particularly popular models that did not make it in the top
five. The configuration lists the architecture, the training dataset, and the training paradigm.

QUBA Adv. ooD Cal. Class Obj. , Shape, Params.

Model Configuration Scoref  Ace.t g T C-RobT gob.T Error' Balance! Focus Bias | in Mil. ¥
/Rankl

CLIP-L/14 Vil,, WIT400m

(Radford et al}[2021), -0.65/243 0.76 0.32 0.76 1.04 0.0110 0.89 0.94 0.60 427
(Radford et al.} |2021) —

self-ST.
ResNet50
(e et 1] [FoT0) CNN, IN1k, SL -0.31/214  0.76 0.03 0.51 0.50 0.0021 0.75 0.93 0.22 25
ViT-b/16 Transformer, o ) . N
(Dosctiiony o aT] FozT) 1Nk, SL 0.20/124  0.81 0.18 0.66 0.56 0.0034 0.79 0.93 0.40 86
ViT-b/16-MAE Transformer,
(o ot a1} [2039) IN1h, Salf.SL (B2E) 0.36/84 0.84 0.25 0.71 0.58 0.0049 0.80 0.95 0.36 86

) Transformer, LVD142m

DINOv2-B-reg (Oquab et al.| [2024), 0.74/25 0.85 0.12 0.79 0.79 0.0011 0.80 0.94 0.49 90
(Darcet et al.|[2024) ) A

self-SL (LP)
SwinV2-b/12t016 Transformer,
fin ot al] p0333) INo1% SL. 0.90/8 0.86 0.26 0.81 0.81 0.0040 0.82 0.96 0.41 87

process is repeated five times. For each of the five resulting QUBA variants, we rank all 326 models and
compute the rank correlation between the resulting rankings. The average rank correlation is very high
(0.97), indicating that the QUBA rankings are stable and not overly dependent on the specific subset of
models used.

The best models. We report results for the top five QUBA score models in Tab. 3] Of our 326 models,
EVA02-B/14 (IN21k) (Fang et al., [2023)) achieves the best QUBA score. Compared to the other top-
performing models, it achieves the highest accuracy, C-robustness, OOD robustness, and object focus. It lags
behind in adversarial robustness, calibration, class balance, shape bias, and the number of parameters. The
second-best model, Hiera-B-Plus (Ryali et al., |2023)), ranks lower in accuracy and calibration but performs
well in the other dimensions, excelling in class balance and shape bias. In third place, the convolutional model
ConvNeXtV2-B (IN21k) (Woo et al.| 2023) leads in adversarial robustness and calibration while achieving
good results in all other dimensions but the parameter count. The last two models, Hiera-B (Ryali et al.|
2023) and EfficientNet-B6 (Xie et al., |2020)) have a particularly low parameter count. Remarkably, all five
models have been trained semi- or self-supervised, making these promising training paradigms for developing
well-behaved models. Our analysis highlights that even the five top-performing models vary strongly among
the quality dimensions, highlighting the need to consider a wide range of quality dimensions simultaneously
in the design process of new models.

Conclusion: The models with the highest QUBA scores excel across various quality dimensions, with
each model showcasing distinct strengths.

A closer look at popular models. There are many popular models that did not make it into the
top five above. We here go over some of the most popular models and briefly discuss their performance
according to the considered quality dimensions (see Tab. . SwinV2-b/12t016 (Liu et al.l [2022a)) is the best
supervised model, particularly excelling in accuracy and object focus, while having quite a large number of
parameters. DINOv2-B-reg (LP) (Darcet et al., 2024) exhibits a very good calibration and achieves good
results in most other metrics. ViT-b/16-MAE (E2E) (He et al., [2022)) is in no dimension particularly good
or bad. Although ViT-b/16 (Dosovitskiy et al., 2021)) and ResNet50 (He et al., |2016|) are still two of the
most popular backbones, they perform quite poorly, with QUBA ranks of 124 and 214, respectively. The
ResNet50 has a comparably low number of parameters. CLIP-L/14 (Radford et al.l 2021)) suffers particularly
in the calibration error and the number of parameters. On the other hand, it exhibits a high shape bias.
Based on these findings, we suggest that the vision community should reconsider its selection of canonical
backbone models.

Conclusion: Widely used models such as ResNet50 and ViT underperform in several of the evaluated
quality dimensions. This suggests that the vision community should critically reconsider its choice of
canonical backbone models.
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Figure 5: Top five QUBA score models under different weightings. We report the top five models when
weighing specific (groups of) quality dimensions twice as strongly. See Fig. [3| for color and marker details.

Different weightings. As outlined above, different practitioners could have different requirements on
their models, depending on the task at hand. To reflect this in our analysis, in Fig. [5] we plot the five
top-performing models when weighting one (group) of the considered quality dimensions twice as much as
the other dimensions when computing the weighted mean for the QUBA score. EVA02-B/14 (IN21k) (Fang
et al., 2023) leads in five setups, highlighting its versatility and quality beyond accuracy. The top five models
remain fairly consistent when emphasizing accuracy, robustness, calibration, and shortcut learning, though
their ranking within the top five varies slightly. Interestingly, the Hiera (Ryali et al.,|2023)) model family, self-
supervised models only trained on ImageNet-1k, dominates strongly when focusing on class balance. Besides
for class balance, the training dataset and architecture are quite heterogeneous for most of the setups. For
the training paradigm, semi- and self-supervised learning dominate.

Conclusion: When focusing on specific quality dimensions, the top five models remain fairly stable.
For class balance, the Hiera model family is dominating.

Limitations. Naturally, our work comes with limitations. First, while we focus on image classification,
which certainly is a relevant field, some downstream tasks rely on the evaluated backbone models for other
purposes, and there is no guarantee that our findings will directly translate. Second, similar to the previous
point, our analysis is limited to models trained on ImageNet-1k, and we cannot guarantee that the results
generalize to other datasets. However, extending our analysis to another dataset is challenging: assuming an
average training time of only 10 hours per model, retraining all 326 models on another dataset would require
3260 hours (~ 136 days) of compute, which is infeasible with our compute resources. Further, ImageNet-1k
remains highly relevant, with numerous impactful papers focusing primarily on it and its variations. Third,
we acknowledge that there are numerous different protocols to assess different dimensions of DNN quality.
While we cannot include all protocols, we aimed for a (i) representative selection of (ii) established and
(#ii) easy-to-use (requiring no fine-tuning) protocols. However, our benchmark can easily be adapted or
even extended with other protocols and quality dimensions. Fourth, to provide a comprehensive bird’s-eye
view, we prioritize breadth over depth here. While we briefly discuss various findings and why they might
occur, this means we cannot provide detailed analyses for specific observations — indeed, studying theoretical
connections for just two quality dimensions is often the scope of a full paper (e.g., [Minderer et al., |2021}
Tsipras et al.}[2019; Xiao et al.,|2021]). We rather consider this paper as groundwork, paving the way for future
research to conduct more fine-grained, in-depth investigations. Fifth, our chosen evaluation protocols capture
only certain aspects of the evaluated dimensions, and different protocols might yield different conclusions.
That said, our benchmark design and its simple applicability allow us to conduct one of the largest studies
to date. We thus argue that our design choices are justified and that our analysis makes numerous valuable
contributions.
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6 Conclusion

In this work, we provide a bird’s-eye view of nine quality dimensions for ImageNet-1k image classification
across 326 vision backbones by conducting one of the largest studies to date. This broad perspective allows
us to examine how various training strategies and model architectures impact these dimensions, finding that
larger training datasets and self-supervised pre-training followed by end-to-end fine-tuning enhance almost all
measured quality dimensions. Additionally, we explore the relationships between these quality dimensions,
providing novel insights such that object focus is strongly correlated with most of the considered dimensions.
Our analysis is rounded off by ranking models based on our proposed QUBA score, which is possible due
to our large model zoo. We highlight that no single model is universally superior and instead provide
recommendations on which models excel for specific requirements. To conclude, we encourage researchers
to consider a broad range of quality dimensions together, rather than focusing on individual ones, to foster
the development of more well-behaved image classification models. Our work facilitates this by offering an
easy-to-use benchmark, along with a comprehensive analysis of how design choices influence these quality
dimensions, their interrelationships, and how models can be ranked across multiple quality dimensions.
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“Toy Poodle” Adv. attack

Figure 6: Illustration of an adversarial attack.

A Details on the considered quality dimensions

In the following, we provide more details on the considered quality dimensions and the corresponding evalu-
ation protocols. We let f be the model of interest and use the ImageNet-1k evaluation split with N images
{z, | n €1...N} belonging to one of C classes {¢, €1...C |n € 1l... N} for most protocols.

Accuracy. To measure the predictive performance of the considered models, we let [-] denote the Iverson
bracket (Knuth) [1992)) and report the ImageNet-1k top-1 accuracy

N
A_;anl[f(a:n)—cn]. (2)

Adversarial robustness. To assess the adversarial robustness of a model, we use the two popular attacks,
FGSM (Goodfellow et al., [2015) and PGD (Madry et al.,[2018). In the Fast Gradient Sign Method (FGSM),
adversarial examples are generated by computing the sign of the gradient of the cross-entropy loss £ with
respect to the original input, scaling it with a small factor ¢, and adding the result to the original image (see
Fig. [6). Formally, we obtain the FGSM accuracy (FGSM-A) via

1 N
FGSM-A = S [fEn) = cnl, (3)

n=1
with &, = z + € - sign(V,L). Projected Gradient Descent (PGD) extends FGSM by applying it repeatedly,
yielding

1 N
PGD-A = — 3 [f(@)) = e, (4)

n=1

with Q%SH) = a%,(f) +e€- Sign(Vi(i)E) and 20 = 2. We use ¢ = 8/255 and I = 10 @ To reduce the
dependence on the clean accurarcy of the model, we report adversarial robustness relative to the accuracy A
from Eq. . We combine the results from the two attacks using their geometric mean (GM), resulting in
the final adversarial robustness

(5)

FGSM-A PGD-A
AR =GM .
R G (FEER FER )

Corruption robustness. To assess a model’s robustness to common corruptions (CR) like JPEG com-
pression or contrast changes (see Fig. m), we measure the accuracy on ImageNet-C (Hendrycks & Dietterich
, i.e., the ImageNet evaluation split with different corruption types of increasing strength. We here fol-
low Hendrycks & Dietterich| (2019) and use the standard mean instead of the geometric mean to summarize
the results for different corruption types and strengths. To normalize the C-robustness and to be consistent
with our other robustness metrics, we deviate from [Hendrycks & Dietterich| (2019) and again report the
top-1 accuracy on the corrupted data (Aceyr) relative to the clean ImageNet-1k accuracy (A), yielding

ACorr
CR = =S, (6)

OOD robustness. To measure the out-of-domain robustness of a model, we report the geometric mean
of the relative accuracy (normalized by A) on five out-of-domain datasets. Specifically, we use ImageNet-
R (Hendrycks et all, [2021]), ImageNet-Sketch (Wang et all 2019)), as well as Stylized-ImageNet, Edge, and
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Figure 8: Ezample images from the considered OOD datasets (Geirhos et al., |2019; |Hendrycks et all, 2021;
|Wang et al., |2019).

Silhouette from |Geirhos et al.| (2019). For ImageNet-Sketch and Stylized-ImageNet, we use the versions also
used in |Geirhos et al,| (2021)). Please refer to Fig. [8| for example images of the different datasets.

Calibration error. Calibration means that the output confidence of a model faithfully reflects the prob-
ability of the prediction being correct. We use two established metrics for measuring the calibration error
(CE). The expected calibration error (ECE) (Guo et al., [2017; Nixon et al., [2019)) divides the predictions
into B bins b based on the output confidence of the model and compares how well the confidences conf(b) of
the predictions in that bin are aligned with the accuracy A, of the predictions in that bin:

B

ECE=Y % | Ay —conf(b)] (7)
b=1

with np denoting the number of predictions in bin b. Since a common criticism of the ECE is the use of
a fixed bin range, we additionally report the adaptive calibration error (ACE) (Nixon et all [2019) that
measures the discrepancy between A, . and conf(r,c), i.e., the accuracy and confidence of images in the
adaptive calibration range r for class label c:

C R
1
AE:—E E A, . —conf(r,c)|.
C CRCZIT:1| .« —conf(r, ¢)| (8)

As in|Guo et al.| (2017)); Nixon et al.[(2019)), we use 15 bins for both protocols and again report the geometric
mean (GM) of both errors, i.e.,

CE = GM(ECE, ACE). (9)

Class balance. We consider a model fair if none of the classes is classified less well than the others
2020). We evaluate the class balance of accuracies (Fac.) of a model similar to |Croce et al.| (2021)

and subtract the standard deviation of ImageNet-1k class accuracies from 1 (this ensures that higher scores
indicate a higher class balance; the standard deviation cannot exceed 1):

C
1
FACC =1- § (Ac - A)2 ) (10)
c=1

Ql
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Figure 9: Visual illustration of the class accuracies of a fair model vs. an unfair one, both with equal average
accuracy.
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Figure 10: Ezample images from |Xia0 et al.| ([2021[) to estimate the object focus.

with A, denoting the accuracy for images of class c¢. Intuitively, a high value indicates that the accuracies
of each class are similar, and thus, the model behaves fairly, as illustrated in Fig. [9] Similar to
(2024)), we also consider a model fair if the average confidence (target softmax outputs) for each class
is balanced. We compute the class balance of confidences (Fcont) of a model by subtracting the standard
deviation of ImageNet-1k average class confidences from 1:

C
1
Feons = 1 — o ;(Confc — Conf)?2, (11)

with Conf, denoting the average confidence for images of class ¢ and Conf denoting the average confidence
for all images. The final class balance score (F) is the geometric mean (GM) of Fae. and Feont, €.,

F = GM(F ace, Fcont)- (12)

Object focus. To compute the object focus (OF), we first compute the background focus BF =
Anpixep-same — Anixep-rano (Xiao et all) [2021). MIXED-RAND is a dataset where image backgrounds are
substituted with backgrounds from random classes and, therefore, contain no class information (see Fig. .
MIXED-SAME is a dataset where image backgrounds are substituted with backgrounds from the same class
to account for editing artifacts in MIXED-SAME. Intuitively, we measure the drop in accuracy when changing
the image background with the background from another class to assess if the model focuses on background
signals. Next, we compute the inverse of the background focus to obtain the object focus OF =1 — BF.

Shape bias. |Geirhos et al.| (2019) showed that ImageNet-trained CNNs exhibit a strong texture bias,
meaning that decisions are formed on the basis of texture information rather than shape information. As
a stronger shape bias is said to be advantageous for robustness and more in line with how humans form
decisions, we follow [Geirhos et al| (2019) and report the shape bias (SB) as follows:

25:1 [f(fn) = cShap8>]
Zz=1 ([f(j'm) = cgrslhape)] + [f(j'm) _ cglexture)]>

with Z,, being synthetically generated images with a texture-shape cue conflict, i.e., where the shape is from

one class ¢ and the texture is from another class /""", e.g., as in Fig.

SB =

(13)

Parameters. As memory efficiency and inference time depend highly on the implementation and hardware
used, impeding future comparisons, we report the number of parameters as a proxy.
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Figure 11: Example images fr0m|Geirhos et al.| JQOIW to estimate the shape bias.
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Figure 12: Preview of our interactive plot. It can be found in the supplement under interactive_plot.html
or on our project page.

B Interactive scatter plot

In Fig. [3] of the main paper, we only plot a representative subset of models to reduce clutter. In the
supplement, we additionally include an interactive plot, called interactive_plot.html, that can be opened
with standard browsers. It includes all 326 models and allows the filtering of the models based on the training
dataset, training paradigm, and architecture. Also, different quality dimensions can be chosen for the x and
y-axis to visualize different relationships. Hovering the cursor over a marker reveals a tooltip displaying the
model’s name and scores for the considered quality dimensions, offering detailed performance insights at a
glance. A preview of the interactive plot is included in Fig.

C Additional experiments

C.1 Relationships in model subgroups

During our analysis, we noticed that the rank correlation matrices for certain subgroups of the models can
change compared to the correlation matrix of all models shown in Fig. [] of the main paper. This has two
important implications: First, it is crucial to look at as many models as possible to make general statements,
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Figure 13: Rank correlation matrices for model subgroups. We investigate the rank correlations of different
quality dimensions for all CNNs (top left), all CNNs trained on ImageNet-1k (top middle), all CNNs trained
on ImageNet-21k (top right), all Transformers (bottom left), all Transformers trained on ImageNet-1k (bottom
middle), and all Transformers trained on ImageNet-21k (bottom right). Crossed-out entries indicate a p-value
above 0.05, and thus, are not statistically significant.

which shows that our confirmation of (or contradiction to) existing results with a large model zoo is a
valuable contribution. Second, general statements should be taken cautiously, as they do not necessarily
apply to all model groups. We thus continue our analysis by studying the correlation matrices for different
model subgroups. In Fig.[I3] we plot the correlation matrices for all CNNs and Transformers, respectively.
Overall, both matrices are similar to the matrix for all models (Fig. [4] of the main paper). However, for
CNNs, C-robustness and OOD robustness are negatively correlated with adversarial robustness, while the
opposite holds for Transformers. We observe that the calibration error is positively correlated with accuracy
for CNNs and negatively for Transformers (however, both correlations are not statistically significant). This
also aligns with another large-scale study that found that the calibration error is decreasing with more
accuracy for recent state-of-the-art Transformers (Minderer et al., 2021). Notably, accuracy and shape bias
are strongly correlated for CNN-based models, while they exhibit only a weak correlation for Transformer
models. Moreover, for Transformers, an increased number of parameters is quite strongly correlated with
desirable properties of all other quality dimensions, which is less pronounced for CNNs.

Given that a larger fraction of the newer Transformer models were trained on ImageNet-21k, whereas most
CNNs were trained on ImageNet-1k, some of the correlations could also be due to the training dataset
size. To account for this, in Fig. we further plot the correlation matrices for CNNs and Transformers
trained exclusively on ImageNet-1k and ImageNet-21k, respectively. Interestingly, the negative correlation
between adversarial robustness and C-robustness/OOD robustness for CNNs is only apparent when trained
on ImageNet-1k but not when trained on ImageNet-21k. Calibration error and OOD robustness have a strong
negative correlation for ImageNet-21k CNNs while having almost no correlation for ImageNet-1k CNNs
(however, not statistically significant). Generally, the correlations for CNNs are much more pronounced for
the models trained on the larger dataset. For Transformers, the statistically significant correlations are quite
similar for models trained on ImageNet-1k and ImageNet-21k.
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Table 5: Top 15 models with the highest OOD accuracy. Vision-language (ViL) models are clearly dominating
the list.

Model Configuration Acc. T
SigLIP2-1/16 (Tschannen et al| ViL, WebLI (Chen et al.l[2023), self-SL (E2E) 0.87
MetaCLIP-L/14 (X |g{zﬂ| ViL, MetaCLIP- u ot al.l[2024)), self-SL 0.85
MobileCLIP-B (L 'm ViL, DataCompDR-1B (Vasu ot al.|[2024)), self-SL 0.85
CLIP-L/14-CommPool X 7 N F al] [2024a) ViL, DFN2B (Fang et al. a)), self-SL (E2E) 0.84
SigLIP-1/16 23 ViL, WebLI en et al. self-SL 0.83
CLIP-L/14-DataComp X adre ot al. m ViL, DataCompXL (Gadre ot al}[2023), self-SL (E2E) 0.83
MobileCLIP-B (Vasu et al., ViL, DataCompDR-1B (Vasu et al. 24), self-SL 0.83
SigLIP2-b/16 (Tschanne ViL, WebLlI (Chen et a 11262 self- E2E) 0.82
CLIP-ConvNeXt-L (Schu ViL, Laion2B (Schuhmann et al.l |2022), self-SL 0.81
CLIP-L/14-Laion2B_(Sct . ViL, Laion2B gbchuhnl inn et al. , self-SL (E2E) 0.80
SigLIP-b/16 (Zhai et al.] ViL, WebLI (Chen et al. 3) se = 0.80
CLIP-ConvNeXt-L-320px (Schuhmann et all [2022} [Wortsman et al| [2022)  ViL, Laion2B (Schubmann et all [2022), self-SL 0.80
CLIP-B/16-DataCompXL adre ot al. g{ozﬂ; ViL, DataCompXL (Gadre ot al.} [2023| - ), self-SL (E2E) 0.79
ViT-1/14-DINOv2-reg-LP 112024 Transformer, LVD142m <m| ), self-SL (E2E) 0.79
MetaCLIP-B/16 (Xu et al. ViL, MetaCLIP-400M (Xu ot al} [3024)), seli-SL 0.78

C.2 00D robustness for models trained on large-scale datasets

In Sec. [3| of the main paper, in the paragraph about vision-language (ViL) models, we state that vision-
language models outperform other models trained on similarly large datasets when it comes to out-of-domain
robustness. In Tab. [}] we support this statement with numerical results. To this end, we report the “raw”
OOD accuracy, i.e., the OOD accuracy without normalizing by the clean accuracy, for the 15 models with
the highest OOD accuracy. The best Vil model achieves an OOD accuracy of 0.87 while the best self-
supervised model (pre-)trained on a large-scale dataset only achieves an OOD accuracy of 0.79. Further,
vision-language models clearly dominate in the list (14 out of 15). These results suggest that the increased
robustness of Vil models is not only due to the increased dataset size but also due to other factors that are
likely linked to the language part of the models.

C.3 Reproducing conflicting results

We report several results that extend findings from related work using smaller model pools. To verify these
results, we reproduce their experiments with similar model pools in Tab.[6] When using comparable models,
we successfully replicate most of their findings, indicating that the discrepancies arise from the limited model
pools in related work. This underscores the importance of our large model zoo.

C.4 Comparison between our adversarial robustness protocol and AutoAttack

In the main paper, we employ a combination of FGSM and PGD adversarial attacks to assess adversarial
robustness. However, within the community, alternative evaluation standards have emerged, such as AutoAt-
tack — a widely adopted adversarial benchmark introduced in RobustBench (Croce et al [2021)). It consists
of an ensemble of four parameter-free attacks: two PGD variants using cross-entropy and difference-of-logits
ratio losses, a targeted FAB attack (Croce & Hein| [2020), and a black-box Square attack

et al} [2020).

We opted for a more straightforward setup, as we found the success rate of AutoAttack to be excessively
high for our purposes — nearly all non-adversarially robust models are reduced below 0.1 accuracy, effectively
collapsing. Moreover, prior work has criticized AutoAttack for producing perturbations that significantly
alter the input images, making adversarial examples easily detectable, and for exhibiting sensitivity to image
resolution (Lorenz et all, [2021)).

Nevertheless, given that AutoAttack remains an important benchmark in adversarial robustness research, we
include a comparison between the results obtained using AutoAttack and those produced by our proposed
evaluation protocol in this section. First, we evaluate how different training paradigms and architectures
(¢f. Sec. [3)) affect adversarial robustness under both our protocol and AutoAttack, as shown in Tab. I For
nearly all conﬁguratlons the overall conclusions remain consistent. Only in setups (e) and (f) do we observe
improvements in adversarial robustness when using our protocol, while robustness under AutoAttack remains
unchanged (though these differences are not statistically significant). Next, we compare the correlation
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Table 6: Comparison of our results that contradict/extend findings from related work. In the main paper,
we highlight a few findings that diverge from results in related work. To verify these discrepancies, we
reproduce their findings using a similar model pool. In doing so, we find that most of their conclusions hold
when considering similar models.

Finding from Used models in related work Reproduction with simi- Our finding Used
related work on lar models models
their respective
models
Adversarial Train- ResNet18, ResNet50 He et al,l 2016), WRN-50-2 Average ECE Adversarial training im- See Tab. E
ing improves cali- (Zagoruyko & Komodakis, 2016 Standard Models: 0.2722 pairs calibration when (c)
bration error ( vs. Robust Models: 0.0876 considering a broad and
[binski et al} [20 ResNet18, ResNet50, WRN-50-2 from [Salman et al.| (2020) =~ Conclusion: We can repro-  diverse set of models

NOTE: conducted additional ex-  duce their finding when us-

periments with non-ImageNet models ing a similar model pool
Longer train- Five self-trained versions of BiT-L-R50x1 and BiT-L- Average ECE Longer training im- See Tab. [9
ing worsens R101x3 Standard models: 0.0396 proves calibration error (g)
ECE (Minderer| NOTE: Since the used or similar checkpoints are not pub- A[l] models: 0.0845 when  considering a
2021) licly available, we use the A[1,2] A[2] models: 0.1025 broad and diverse set

versions of ResNetl8, ResNet34, ResNet50, ResNetl01 Conclusion: We can repro- of models

and ResNetl152, which are at least somewhat similar to duce their finding when us-

BiT (Kolesnikov et al} [2020), for reproduction ing a similar model pool
Accuracy is pos-  DenseNet161 [2017), ResNet152 Accuracy & ECE We found that accuracy  Entire
itively correlated [2016) ResNet152 (He et al} [2016): is negatively correlated model zoo
with calibration ~ NOTE:[Guo et al|(2017) conducted additional experiments ~ 0.7832 & 0.05 with calibration error

error (Guo ot _al}
2017)

with non-ImageNet models

DenseNet161 (Huang et al.l
2017): 0.7711 & 0.06
Conclusion: We can not re-
produce their finding when
using a similar model pool

(p < 0.05) when con-
sidering a broad and di-
verse set of models

Adversarial ro-
bustness is posi-
tively  correlated
with C-robustness
and OOD robust-
ness for a given
architecture  (Liu]

VGG13 (Simonyan & Zisserman) [2015), VGG16 (Sid]
monyan & Zisserman| [2015), VGG19 (Simonyan & Zis-
serman) 12015), XciT-S (Ali et al.l 12021), XciT-M (Alj
et all [2021), XciT-L (Al et al| [2021), ResNet50 (He
et al.l [2016), ResNet101 (He et al.| [2016), ResNet152 (He
et al.l |2016), Wide-ResNet50 (Salman et al.}
DenseNet121 (Huang et al., |2017), DenseNet161 (
let all [2017), DenseNet201 (Huang et all
ConvNeXT-S (Liu et al.l [2022b), ConvNeXT-S (21k)
(Tiu et all [2022B), ConvNeXT-B (Liu et al)} [2022b),
ConvNeXT-B (21k) (Liu et al.l 2022b)), ConvNeXT-L (Liul
2022b)), ConvNeXT-L (21 2022Db), ViT-
5/16 (Dosovitskiy et all [2021), ViT-s/16 (21k) (Dosovit-]
[skiy et all[2021), ViT-b/16 (Dosovitskiy ot al}[2021)), ViT-
b/16 (21k) (Dosovitskiy et al.[[2021)), ViT-b/16 (MAE)
2022), ViT-1/16 (Dosovitskiy et al)}[2021), ViT-1/16
21k) (Dosovitskiy et al., [2021), ViT-1 (MAE) (He et al.
[2022), I_d—eSwin—S Liu et al} [2021), Swin-b (Liu et al. ,
i k) (Liu et al.[]2021)), ResNet50 (Mocov3) (Chen|
et al [2021b), T2T-14 (Yuan et al}[2021), T2T-19 (Yuan|
. » T2T-24 (Yuan et al} |2021), Swin-L (Liul

between  ad-
robustness and
c-robustness: 0.6547 (p =
0.0). Correlation between
adversarial robustness and
OOD robustness: 0.6942
(p=0.0)
Conclusion: We can re-
produce their finding when
using a similar model pool

Correlation
versarial

We found no significant
correlations between
adversarial robust-
ness and c-robustness
(p=0.84) or OOD ro-
bustness (p=0.15) when
considering a broad and
diverse set of models

Entire
model zoo

matrices among our full model zoo (c¢f. Sec. @) with the two different adversarial robustness protocols in
Fig.[[4 Again, all the statistically significant conclusions remain the same. Lastly, we compare how model
rankings change (¢f. Sec. [5) under the two different evaluation protocols for adversarial robustness. While
the rank correlation between the two adversarial robustness metrics remains fairly high (0.64), the overall
ordering of models changes substantially. This shift occurs because, under AutoAttack, nearly the entire
model zoo collapses — reducing the mean/standard deviation of adversarial robustness from 0.2/0.11 to
0.04/0.03. Consequently, the adversarially trained models that still achieve relatively high accuracies of
around 0.6-0.7 deviate by many more standard deviations from the mean. As a result, the adversarial
robustness score dominates the overall ranking, with only adversarially robust models appearing among

the top five (see Table [§).

Although this effect could easily be mitigated by reweighting our proposed

QUBA score, as discussed in Sec. [5] we consider this finding an indication that AutoAttack is not the most
suitable evaluation protocol for adversarial robustness within our benchmark. Nevertheless, aside from the
unweighted rankings — which must be weighted according to user requirements in any case — almost none of
the conclusions in our work would differ under AutoAttack.

D Experimental details

The code provided in the supplemental material gives detailed instructions on how to use our proposed
benchmark and how to reproduce our main results. To include new models, one only needs to add the
respective model file and weights.

27



Published in Transactions on Machine Learning Research (01/2026)

¢ I3
S & ‘f«j)f’ffg @ésfw &E ‘b“\’qs«ﬁﬁg
S ESr L8 LI Fo L8
LT TFFITS Q LT ITFTITS Q
Accuracy . Accuracy . !
Adv. Rob. @ . AutoAttack | () .
CRob. @ < @ CRob. @ © @ 0.5
OODRob. © @ @ OODRob. © © @ @
Cal. Error . Cali. Error . 0
Class Balance | @ C X ) . Fairness @ C X ) .
Obj. Focus @ © @ @ [ ) . Obj. Focus @ © @ © () . 05
Shape Bias o0 o0 . Shape Bias o0 o0 .
Parameters ) o000 Parameters C N ) 0000

Figure 14: Rank correlation matrixz for the considered quality dimensions among our full model zoo, comparing
our adversarial robustness protocol to AutoAttack. We investigate differences of the rank correlations among
all our models with our adversarial robustness metric (left) and AutoAttack (right). Crossed-out entries
indicate a p-value above 0.05, and thus, are not statistically significant. All the statistically significant
conclusions remain unchanged.

Table 7: Average adversarial robustness and AutoAttack for models with different configurations. We evaluate
various setups, focusing on different training strategies (a—g) and different architectural choices (h—j). In
each configuration, we report the average score for both metrics across the models associated with that
configuration. As different models are available for different setups, each setup considers a distinct selection of
models being compared. As a result, both the models and their total number (indicated by the number beside
each setup) vary across setups to maintain a fair basis for comparison. The number of asterisks represents
the statistical significance of differences in the average scores of a quality dimension across configurations
within each setup: *** for p < 0.05, ** for p < 0.1, and * for p < 0.2, based on t-test results.

. Adv. Auto-
Setup Configuration Rob. T AttackT
(a) 14 CNNs (IN-1k) 0.14 0.03
CNNs (IN-21k) 0.15 0.04
(b) 16 Transformers (IN-1k) 0.21 0.09
Transformers (IN-21k) 0.17* 0.05%*
(c) 11 Supervised models 0.12 0.04
Adversarially trained models 0.52%** 0.68%**
(d) 13 Supervised models 0.20 0.08
Self-supervised models (LP) 0.10%** 0.06
(e) 25 Supervised models 0.16 0.07
Self-supervised models (E2E) 0.24%** 0.07
(f) 13 Supervised models 0.13 0.04
Semi-supervised models 0.20%** 0.04
(g) 19 Supervised models 0.12 0.03
A1l supervised models (600 epochs) 0.47*** 0.05***
A2 supervised models (300 epochs) 0.417%** 0.05***
A3 supervised models (100 epochs) 0.32%** 0.05%**
(h) 46 CNNs 0.11 0.11
Transformers 0.20 0.20
(i) 12 Standard models 0.07 0.03
B-cos models 0.02%** 0.00***
(j) 24 Standard models 0.18 0.09
Vision-language models 0.10* 0.01%***

To ensure comprehensive comparisons in future work, we publish the code and results of our model zoo
(https://visinf.github.io/beyond-accuracy). This will allow practitioners to evaluate and compare
the considered quality dimensions easily for their model. In the next subsections, we will describe additional
experimental details.
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Table 8: QUBA score and quality dimensions for the top five performing models using AutoAttack as metric
for adversarial robustness. The configuration lists the architecture, training dataset, and training paradigm.
t indicates models trained with knowledge distillation.

. QUBA Adv. feYe)s} Cal. Class Obj. Shape, Params.
Model Configuration Score T AceT  Rgop. T C-Robt b T  Error' Balance! Focus|  Bias | in Mil. ¥
LS Transf ,, IN1k, AT 1.27 0.73 0.66 0.63 0.72 0.0081 0.78 0.94 0.72 22
(Singh et al., |2023)) ransiormer, 5 . . . . . . . . .
Swin-B Transfor IN1k, AT 1.39 0.77 0.74 0.65 0.74 0.0083 0.79 0.94 0.73 87
(Lil] ot al., 2025) ransformer, y . . . . . . . . .
VILB Transf IN1k, AT 1.44 0.77 0.71 0.69 0.50 0.0072 0.79 0.95 0.77 87
S]ngh ot al. <2023) ranstormer, y . . . . . . . . .
ConviNeXt-B CNN, IN1k, AT 1.45 0.77 0.73 0.64 0.62 0.0075 0.79 0.95 0.73 88
Liu ot al| (2025)
ConNeXt-B CNN, IN1k, AT 1.45 0.76 0.72 0.64 0.80  0.0069 0.78 0.95 0.74 88

Singh et al.| (2023)

D.1 Comparisons

In Tab. [2] of the main paper, we compare the average of each quality dimension for different setups. We
report the models that have been used for each comparison in Tab. [0
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Table 9: Models used for each comparison in Tab. @ of the main paper. In some setups, the same model
appears multiple times within a configuration because the corresponding configuration contains multiple
models that need to be compared to that single model (e.g., there might be two different Vil models using
the same backbone). This duplication ensures that the final average accounts for these cases correctly.

Setup # of Models Configuration Models

(a) 14 CNNs (IN-1k) MobileNetV3-1 (Howard et al.
EﬂicientNet v2-S l

2023), ConvyNeXtV2-L 1
0x1 (Kolesnikov ct_al|
ResNethlxl

T
(Tan & Le| 2021, EfﬁmentNet v2-L (Tan & Le| 202 ), ConvNeXt-T (Liu et al. |2022b),
CO 2022b), ConvNeXt-B (Liu et al} [2022b), ConvNeXt-L (Liu et al]
2022b)), ConvNeXtVQ N Woo et al.l |2023), ConvNeXtVQ T (Woo et al.l |2 , ConvNeXtV2-
B Woo et al.} |2 ), ConvNeXtVZ L Woo et al.
(b) 16 Transformers (IN-1k) DeiT3-s (Touvron et al.[2

2022), TinyViT-11M/16 (Wu et al
et al.| |2021a)), ViT-b/16 Dosovitskly et al.
1/16 (Dosovitskiy et al.

et al! 2021), ViT-b/16
Transformers (IN-21k) -5 (Touvron et al.

DeiT3-1 (Touvron et al.|
2022), TinyViT- 11M/16
[2022), ViT-b/16 (S
2022), ViT-1/16
2024b), EVA02-S/14 (Fang et al.

CNNs (IN-21k)

(c) 11 Supervised models

1 [2016), Swin-b (Liu ot al|
, ConvNeXt-T (Liu|

ConvNeXt-

i et ol vlwa
WRRK-50- 1 ResNet50

Adversarially trained models

(d) 13 Supervised models MViTv2-b (Li et al.l [2022a), ViT-b/16 (Dosovitskiy et al.} [2021)), ResNet50 (

ViT- b/16 Dosovltsk]y et al. 1), ViT-1/16 (Dosovitskiy et al.}|2021
2021, DeiT-s (Touvron et al.l |2021a)), DeiT-s (Touvron et al.

{[2035). Hiera s (Ryall ct al[[2025), ViT.1/16

DeiT-e (Towveon ot aT) D071

12023), b A 2), ResNet50-DINO (Caron et al.l
, ViT-b/16-DINO Caron ot aT) 2021b ViT-1/14-DINOv2-LP (Oquab et al[2024), ViT-
b/14- DINOV2 LP (Oquab et al.} [2024), ViT-s/14-DINOv2-LP (Oquab et al. 2024 , ViT-s/16-
DINO (Caron et al.,|2021), Hiera-T (Ryali et al.| ), Hiera-S (Ryali et al.}|2023), ViT-1/14-
DINOv2-reg-LP (Darcet ot al.l  ViT-b/14-DINOv2-reg-LP (Darcet ot al.||2024), ViT-s/14-
DINOv2-reg-LP (Darcet et al.

(e) 25 Supervised models MViTv2-b (Li et al.l ViT-b/16 (Dosovitskiy et al.} [2021), ResNet50
ViT-b/16 (Dosovits et a 2021), ConvNeXt-T (Liu et al.} |2022b)), ConvNeXt-B (|

2022b), ConvNeXt-L (Liu et al. 20225 COnVNeCODVNeXt B

let al.[[20221), 2022b V1T b/16 Stelner et al 2022, ViT-b/16

©/16 (Steiner et al]
2021)), DeiT-, - 1
skiy e b

Self-supervised models (LP)

Self-supervised models (E2E)

ConvNeXtV2 T Woo et al.

' 5073). ComNeXtVEL . 053, ComyREXEVET
ConvNeXtVQ B 1 ‘Woo et al.l[2023), ConvNeXtV2- L l ‘Woo et al.}[2023), i
BeiTV2-b (Peng et al., 2022 EVA02-S/14 (Fang et al.] |2024b)),

2024b), EVA02-T/14 3 2024b, ViT- 1/14 DINOV2 FT Oquab et al.

4), CLIP-B/16-OpenAI-FT-Vision-Encoder (Cherti et al.|

-Encoder (Cherti ot _al. , CLIP-B/32-OpenAI-FT-
CLIP-B/32-Laion2B-FT-Vision-Encoder (Cherti et al.|

(f) 13 Supervised models EfficientNet-B0O (Tan & Le| |2019) , EfficientNet-B1 (Tan & Le| 019, EfficientNet-B2 (
Le Le)

2019), cientNet-B3 (Tan & Le, [2019)), cientNet-B4 (Tan & Le, [2019), cientNet-
Effi N B T Effi N B4 (Tan & Le] Effi N
2019, EfﬁclentNet B6 1 2019), EfﬁclentNet B7 Tan & Le

2017), ResNeXt50-32x4d Xie ot al ] [2017)
Semi-supervised models EfficientNet-B1 (Xic et a .ﬂmp EfficientNet-B2

, EfficientNet-B6 (Xie et al.l [2020), Eﬂ'icientNet—B7 (Xie et al.l
ResNeot50 (Yalniz et aL 2019), ResNeXt50-32x4d (Yalniz ct al)} [2019), ResNet18 (Yalniz ot all
), ResNeXt101-32x8d QYalniz et al,l 2 ), ResNeXt50-32x4d QYalniz et alAl 2019
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(8) 19 Supervised models EfficientNet-v2-M (Tan & Le [2021), EfficientNet-

S (Tan & Lel 2021), SeNetl54 (Hul

et50 (He et al|
ientNet-Bl (Tan & Le|

A1l supervised models i Wightman et al. )
SeNet154 (Wightman et al) |2021), RegNet-y-4gf (Wightman et al} |2021), RegNet-y-
8gf (Wightman et al.l |2021), RegNet-y-16gf (Wightman et al.| [2021), RegNet-y-32gf (
man et al.| [2021), ResNet101 (Wightman et al. |2021), ResNet18 (Wightman et alll

EfficientNet-BO (Wightman et al.} 1), EfficientNet-B1 (Wightman et all 2021), EfficientNet-
B2 (Wightman et al., |2021), EfficientNet-B3 ( , EfficientNet-B4 (Wight-

[man et al] [2021)
, EfficientNet-v2-S Wightman et alAl

A2 supervised models tfhicientNet-v2- Wightman et al.
SeNet154 (Wightman et al. [2021), RegNet-y-4gf (Wightman et al) [2021)),
8gf (Wightman et al., |2021), RegNet-y-16gf (Wightman et al.| [2021), RegNet-y-32gf (
*;-:‘ 2031), ResNot101 (Wightman ct al) ). RosNet1s (Wightman ot al] 5
ResNet152 (Wightman et al., |2021), ResNet34 (Wightman et al.|

e 2021), ResNet50 (Wightman et all [2021), ResNeXt50-32x4d (Wightman et al.| [2021),

EfficientNet-BO (Wightman et al. ), EfficientNet-B1 (Wightman et al.,|2021)), EfficientNet-

B2 (Wightman et al.[[2021)), EfficientNet-B3 (Wightman et al.| ), EfficientNet-B4

)

Wightman et al. , EfficientNet-v2-S (Wightman et al.L
SeNet154 (Wightman ot all [2021), RegNet-y-4gf (Wightman et al| [2021), RegNet-y-
8gf (Wightman ot al [2021), RegNet-y-16gf (Wightman ot al[ [2021), RegNet-y-32gf (Wight-|

2021), ResNetl01l (Wightman et al., |2021), ResNetl8 (Wightman et al.l [2021),
2021)), ResNet50d (Wightman)
. ResNeXt50-32x4d (Wigh 12021),
.,12021)), EfficientNet-B1 ( , EfficientNet-
), EfficientNet-B3 (Wightman et al.|

A3 supervised models

Wightman et al.
)

(h) 16 CNNs RegNet-y-400mf (Radosavovic et al}
y-1-6gf (Radosavovic ot al.[[2020), RegNet-y-3-2gf (Radosavovic ot al|[2020), RegNot-y-8gf
[ [2020), RegNet-y-16gf (Radosavovic ot al] [2020), EfficientNet-v2-S (Tan &

1), EfficientNet-v2-L (Tan & Le} |2021), ConvNeXt-T (Liu et al., 12022b), ConvNeXt-
2022b), ConvNeXt-B (Liu et al.l |2022b)), RegNet-y-4gf (Radosavovic et al.|

12020), ConvNeXt-B (Liu et al.} ), RegNet-y-800mf (Radosavovic et al.}|2020), ConvNeXt-
(Lia et all
2020), RegNet-y-800mf ( 2020

(
2022b), ConvNeXt-S (Liu et al.| [2022D)
T (Tiu et al.} [2022b), ConvNeXt-S (Liu et al.

» [2020]
), ConvNeXt-T (Liu ot all
2022b)), ConvNeXt-T

2022b), ConvNeXt-S (Liu et al.}|2022b
v2-S (Tan & Le| [2021)), EfficientNet-v2-S (Tan & Le,
EfficientNet-v2-S (Tan & Le} [2021)), EfficientNet-v2-S (Tan & Lel

Transformers
(Heo et al., |12021), CoaT-t-lite (Xu et al.
(Touvron et al. [2022), DeiT3-m (Touvron
( SwinV2-s/8 (Liu et al.} |2022a)), SwinV2-b/8 (Liu|
B ), SwinV2-t/16 (Liu et al,l SwinV2-s/16 (Liu et al,l ), SwinV2-
2022a)), TinyViT-5M/16 ( ), TinyViT-11M/16 ( 2022),
TinyViT-21M /16 2), ViT-s/16 DaViT-t g B
2022), DaViT-s (Ding et al.| ), DaViT-b (Ding et al.| [2022), InceptionNext-t
12024), InceptionNext-s (Yu et al.| |2024), FastViT-sal2 (Vasu et al.| ), FastViT-sa24 (V:
let_al.} ), SwinV2-b/12tol16 (Liu et al.l [2022a), Ti
21M/16 (Wu ot all , ViT-1/16 (Steiner ot all
Swin-b (Liu et al. 2025), Hicra-T (Ryali ot al.| [2023)
(i) 12 Standard models ResNet18 (He et all |2016), ResNet34, ResNetSO
ResNet152 (He et al.l [2016)), ResNet101 (He et al.l |2016), DenseNet121 (Huang et al.} [2017]
DenseNet161 (Huang et al. [2017), DenseNet169 (Huang et al.l [2017), DenseNet201 (
2017), ViT-b/16 (Dosovitskiy et al} , ConvNeXt-T (Liu et al.l
[2023D)
B-cos models ResNet18 (Bohle et al.|
ResNet101
2
(6D} 24 Standard models ResNet50 (He et al.| [2016), ResNet101 —b 16 (
ViT-b/32 (Dosovitskiy et al.}[2021)), FastViT-sal2 (Vasu et al.}[2023), FastViT-sa24 (

2021), ConvNeXt-L (
1/16 (Dosovitskiy et al.}|2021), ConvNeXt-B q

2023), FastViT-sa36 (Vasu et al.i 2023)), ViT-b/16 (Dosovitskiy et al.
2

), ViT-1/16 (Dosovitskiy ct all [2021
CLIP-ResNet101 (Radford et al |

Vision-language models

B/16 2021), MobileCLIP-S0 (Vasu et al]
[2024), . MobileCLIP-S2 MobileCLIP-
B (Vasu et all [2 (Vasu_et_al| (Zhai et al]
, MetaCLIP-B/16 (Xu et al.} , MetaCLIP-L . ), CLIP-ConvNeXt-B-
320px (Schuhmann et al.f[2022f [Wortsman et al. , CLIP-ConvNeXt-L-320px (Schuhmann|
ot all} Wortsman _et_al. h CLIP-ConvNeXt-L (Schuhmann et al.} [2022} [Wortsman
et al.

, CLIP-B/16-DataCompXL (Gadre et al} [2028]), CLIP-B/16-Laion2B (Schuhmann|
et all} [2022)] CLIP-B/16-CommonPool-XL-DFN2B (Fang et al.|[2024a)),
CLIP-L/14-OpenAl (Radford et al. CLIP-L/14-DataCompXL *d CLIP-
L/14-Laion2B (Schuhmann et al.| [Wortsman_et_al. [2022), CLIP-L/14-CommPool XL-

D B (Fang et al.[[2024a), SigLIP2-b/16 (Tschannen et al.l[2025), SigLIP2-1/16 (Tschannen]
2025)
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Table 10: Correlation matriz with corresponding p-values (in parentheses) for all models (numerical results
for Fig.|4| in the main paper).

Adv. OOD Cal. Class Obj. Shape
Ace. Rop.  CROb- Rib  Error Balance Focus Bias | orameters
1.00
Acc (.00)
.44 1.00
Adv. Rob. (00) (.00
.62 .01 1.00
C-Rob. (00)  (.84)  (.00)
.35 —0.08 .80 1.00
OOD Rob. (00)  (.15)  (.00)  (.00)
—0.12 .07 .08 .25 1.00
Cal. Err. (.03)  (23)  (.16)  (.00)  (.00)
Class Bal .53 .08 .73 .76 .49 1.00
ass Balance (.00)  (.14) (.00)  (.00)  (.00) (.00)
obi. F 72 .45 .64 a7 .09 .57 1.00
J. roc. (.00)  (.00) (.00)  (.00) (.11) (.00) (.00)
Shape Bi .26 a7 .61 .62 .24 .54 .52 1.00
ape Bias (.00)  (.00) (.00)  (.00) (.00) (.00) (.00)  (.00)
Parameters .31 18 .44 .43 11 .47 .48 .53 1.00
arameters (.00)  (.00) (.00)  (.00) (.05) (.00) (.00)  (.00) (.00)

D.2 Training self-supervised models

To increase the number of models we can use to compare self-supervised and supervised models, we trained
additional models for the end-to-end fine-tuning setup (E2E) and the linear probing setup (LP). For the
E2E setup, we fine-tune the official pre-trained DINO (Caron et al.| |2021) checkpoints for ResNet50 (He
et al., |2016|) and ViT-b/16 (Dosovitskiy et al., |2021)). For both models, we follow the training procedure of
He et al|(2022), as also done in |Goldblum et al.| (2023)). Specifically, we train the ResNet50 for 100 epochs
with an AdamW (Loshchilov & Hutter} [2017) optimizer using a batch size of 128, a weight decay of 0.05,
and a learning rate of 0.001 with a cosine scheduler. We use 5 warm-up epochs with a learning rate of
0.0001. For the ViT-b/16, we follow the same procedure but with a learning rate of 0.008. Furthermore,
we also fine-tuned the official pre-trained DINOv2 (Oquab et al., |2024) checkpoints for ViT-s/14, ViT-b/14,
and ViT-1/14 as well as their respective version with register tokens (Darcet et al., 2024). For training all
DINOv2 models, we follow [Touvron et al. (2022) as done in |(Oquab et al. (2024). To be more precise, we
trained each model for 50 epochs with a batch size of 128 for the small variant and a batch size of 64 for the
base and large variants. We used an AdamW ([Loshchilov & Hutter, 2017) optimizer, a weight decay of 0.02,
and a learning rate of 0.0003. Additionally, we use 5 warm-up epochs with a learning rate of 1076, We also
use the ThreeAugment augmentation method that was introduced in (Touvron et all [2022)) together with
color jitter and CutMix (Yun et al., |2019).

For the LP setup, we train four additional models, ViT-b/16 (with Masked Autoencoder (He et al., [2022)
pre-training) and Hiera-tiny/small/base (Ryali et all [2023). We only train the classification head of each
model and follow the training of He et al|(2022), consistent with Ryali et al|(2023). We train a linear layer
for 90 epochs with a LARS (You et al., [2017) optimizer using a learning rate of 0.2 and a batch size of 512.

E Numerical results

E.1 Correlation matrix in the main paper

As our visualization of the correlation matrix in Fig. [ of the main paper summarizes much information and
partly relies on color vision, we additionally report the numerical results in Tab. [I0]

E.2 Mean and standard deviation of each quality dimension

For our proposed QUBA score described in Sec. [b| of the main paper, we compute a representative mean and
standard deviation for each quality dimension. In Tab. [T} we report these values.
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Table 11: Mean and standard deviation for each quality dimension as described in Sec. @ of the main paper.

Quality Dimension Mean Standard Deviation
Accuracy 0.80 0.03
Adversarial Robustness 0.19 0.11
C-Robustness 0.53 0.23

OOD Robustness 0.57 0.15
Calibration Error 0.0045 0.0027

Class Balance 0.78 0.02

Object Focus 0.93 0.02

Shape Bias 0.31 0.08
Parameters in Mil. 55 43

E.3 Model zoo

We use 326 models in our large-scale study. For a comprehensive overview of all models, their configuration
(architecture, training dataset, and training paradigm), their QUBA score, and their scores for each quality
dimension, please refer to Tab. where models are listed in the order of increasing QUBA score. Each model
is implemented in PyTorch (Paszke et al.| |2019); we use most models as they are, and do not change them
in any way (except for training some of the self-supervised models to perform ImageNet-1k classification, cf.
Appendix . The selected models were chosen based on several criteria. We only considered models that
are publicly accessible and free to use for academic research. We aimed to include the most popular models
and models achieving high ImageNet-1k accuracies. We additionally included some particularly interesting
models with designs that differ substantially from the more widely established models.
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Table 12: Overview of our model zoo and the corresponding numerical results. The configuration of each
model lists the architecture, the training dataset, and the training paradigm. “SL” refers to supervised
learning and “AT” to adversarial training. “LP” and “E2E” indicate if a self-supervised model has been
adjusted for ImageNet-1k classification by only training a linear layer (linear probing, LP) or by fine-tuning
the full network on the ImageNet-1k dataset (E2E). Models are sorted according to their QUBA score in
increasing order.

. QUBA Adv. OOoD Cal. Class Obj. Shape Params.
Model Configuration Score I AceT  Rop. T C-RobT g’ Error' Balance! Focus'  Bias | in Mil. ¥
SigLIP2-1/16 -3.45 0.82 0.32 0.80 1.06 0.0389 0.91 0.98 0.69 882
(Tschannen et _all
)
-3.01 0.46 0.00 0.15 0.25 0.0052 0.74 0.81 0.04 16
IN 1k (Fussakovaky |
2015) , SL
-2.82 0.80 0.23 0.72 1.04 0.0384 0.90 0.97 0.63 652
-2.51 0.58 0.01 0.22 0.28 0.0042 0.72 0.79 0.03 16
IN1k(Russakovsky |
2015) , SL
ViL, -2.43 0.75 0.01 0.71 1.07 0.0370 0.89 0.95 0.54 428
Laion2B(Schuhmann]
2022), self-SL
(
CLIP-L14- ViL, DataCom- -2.10 0.79 0.07 0.78 1.05 0.0380 0.90 0.96 0.61 428
DataCompXL pXL(Tadre ot al]
(Gadre et al.}, 2 , self-SL (E2E
2023)
AlexNet CNN, -2.09 0.57 0.04 0.34 0.57 0.0017 0.73 0.80 0.26 61
Krizhevsky et al.} IN1k(Russakovsky |
2012 et al}|2015) , SL
CLIP-b/32 (Ra ViL, -2.06 0.63 0.05 0.64 1.12 0.0318 0.88 0.86 0.58 151
2021) WIT400M (Radford
2021), self-SL
CLIP-ConvNeXt-L ViL, -2.06 0.76 0.08 0.74 1.06 0.0370 0.90 0.94 0.57 352
Schuhmann et al.} Laion2B(Schuhmann|
2022), self-SL
ViL, -2.05 0.77 0.08 0.74 1.04 0.0371 0.89 0.95 0.55 352
Laion2B (Schuhmann]
2022), self-SL
MetaCLIP- -2.03 0.79 0.09 0.80 1.07 0.0382 0.90 0.97 0.68 428
CLIP-L14- -2.00 0.81 0.13 0.77 1.04 0.0386 0.91 0.96 0.59 428
CommPool XL-
SigLIP2-b/16 -1.99 0.78 0.12 0.67 1.04 0.0380 0.90 0.96 0.55 375
(Tschannen ot al]
2025)
SqueezeNet 1 -1.97 0.58 0.01 0.32 0.48 0.0013 0.74 0.77 0.21 1
dola et al.l |2016) IN1k(Russakovsky
2015) , SL
CLIP-ResNet101 ViL, -1.97 0.62 0.26 0.04 0.53 0.0257 0.88 0.91 0.28 120
(Radford et al.} WIT400M (Radford
2021) e 2021), self-SL
BagNet33 ( CNN, -1.87 0.65 0.01 0.28 0.31 0.0041 0.72 0.85 0.05 18
IN1k(Russakovsky
2015) , SL
Transformer, -1.87 0.55 0.04 0.53 0.55 0.0053 0.76 0.79 0.47 35
IN1k(Russakovsky |
et al.,|2015) , self-SL
p)
Transformer, -1.85 0.57 0.03 0.47 0.56 0.0044 0.76 0.78 0.39 28
IN1k(Russakovsky |
6t al,[20185) , self-SL
LP
Bcos, -1.81 0.69 0.00 0.11 0.42 0.0190 0.79 0.88 0.22 12
IN1k(Russakovsky
2015) , SL
ViL, -1.78 0.71 0.05 0.64 1.05 0.0356 0.89 0.92 0.49 179
Laion2B (Schubmans]
2022), self-SL
CLIP-B16- ViL, -1.76 0.70 0.02 0.62 1.08 0.0357 0.89 0.92 0.51 150
Laion2B Laion2B(Schuhmann|
1 ; 2022), self-SL
1 E2E)
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. QUBA Adv. [ele) 5] Cal. Class Obj. Shape Params.
Model Configuration Score T Ace.t R.ob.T C-Rob.1 Rob.T En‘orl' BalanceT FocusT Bias T in Mil. +
ResNet50-DINO CNN, -1.76 0.75 0.17 0.03 0.17 0.0084 0.80 0.69 0.20 26
Caron et al.l IN1k(Russakovsky |
2021 et al., |2015) , self-SL
LP
ShuffieNet-v2-05 CNN, -1.62 0.61 0.01 0.36 0.48 0.0028 0.72 0.85 0.27 1
(Ma et al.| IN1k(Russakovsky
2015) , SL
(Simonyan CNN, -1.60 0.69 0.02 0.38 0.46 0.0014 0.74 0.86 0.11 133
IN1k
2015) , SL
ViL, -1.56 0.76 0.10 0.63 1.06 0.0373 0.90 0.95 0.49 203
ResNet18 -1.55 0.68 0.17 0.04 0.31 0.0057 0.75 0.83 0.14 12
fman ot al} IN1k(Russakovaky |
2015) , A3
Beos, -1.55 0.76 0.09 0.14 0.40 0.0207 0.77 0.91 0.34 60
IN1k(Russakovsky
2015) , SL
ViL, MetaCLIP- -1.54 0.72 0.03 0.68 1.09 0.0365 0.89 0.92 0.64 150
400M(Xu et al]
2024), self-SL
VGG13 1 CNN, -1.54 0.70 0.02 0.37 0.44 0.0015 0.74 0.86 0.11 133
& Zisserman||2015) IN1k(Russakovsky
et al.| [2015) , SL
MobileCLIP-S ViL, DataCompDR- -1.53 0.68 0.00 0.15 0.88 0.0325 0.89 0.88 0.65 54
Vasu et aLL 1B (Vasu et al.
2024), self-SL
Beos, -1.51 0.76 0.01 0.14 0.41 0.0208 0.77 0.92 0.25 26
IN1k(Russakovsky
2015) , SL
CLIP-B16- ViL, DataCom- -1.49 0.73 0.03 0.66 1.07 0.0367 0.90 0.93 0.55 150
DataCompXL pXL(Gadre et al|
(Gadre et all [2023), self-SL (E2E)
2023)
VGG16 (Simonyan CNN, -1.49 0.72 0.02 0.40 0.43 0.0017 0.75 0.86 0.11 138
[& Zisserman[[2015)  IN1k(Russakovsky |
et al.| [2015) , SL
VGG11-bn CNN, -1.48 0.70 0.02 0.42 0.50 0.0017 0.74 0.87 0.11 133
monyan & Zisse IN1k(Russakovsky
iman) [2015) 2015) , SL
CLIP-b/16 ViL, -1.48 0.68 0.03 0.64 1.11 0.0288 0.88 0.92 0.48 150
WIT400M (Radford
e 2021), self-SL
ResNet34 Bohle! Bcos, -1.46 0.72 0.01 0.15 0.46 0.0121 0.74 0.88 0.30 22
) IN1k(Russakovsky
2015) , SL
MobileCLIP-S1 ViL, DataCompDR- -1.41 0.73 0.00 0.19 0.68 0.0344 0.89 0.92 0.65 85
Vasu et al. 1B (Vasu et al.
2024)), self-SL
VGG19 1 CNN, -1.41 0.72 0.03 0.41 0.44 0.0017 0.75 0.87 0.12 144
& Zisserman)||2015) IN1k(Russakovsky
et al}|2015) , SL
ViT-b/16-MAE Transformer, -1.41 0.67 0.04 0.43 0.44 0.0073 0.79 0.85 0.29 87
(oot al} [2023) IN1k(Russakovsky |
2015) , self-SL
LP
Net-075 CNN, -1.37 0.71 0.06 0.47 0.53 0.0185 0.81 0.88 0.21 3
IN1k(Russakovsky
2015) , SL
VGG13-bn CNN, -1.36 0.72 0.02 0.40 0.48 0.0017 0.75 0.88 0.12 133
monyan & Zisser- IN1k(Russakovsky
2015) 2015) , SL
MobileCLIP-S2 ViL, DataCompDR- -1.36 0.74 0.01 0.18 0.74 0.0351 0.89 0.92 0.69 99
Vasu et all 1B(Vasu et al.
2024)), self-SL
CLIP-B16- -1.36 0.76 0.04 0.66 1.03 0.0374 0.90 0.94 0.54 150
CommonPool-
XL-DFN2B
MobileCLIP-B ViL, DataCompDR- -1.25 0.77 0.01 0.66 1.08 0.0372 0.90 0.94 0.64 150
Vasu et alAl, 1B(Vasu et al.l
2024), self-SL
MnasNet-05 CNN, -1.23 0.68 0.02 0.40 0.48 0.0041 0.75 0.84 0.23 2
IN1k(Russakovsky
2015) , SL
VGG16-bn Si- CNN, -1.23 0.73 0.02 0.45 0.48 0.0020 0.75 0.89 0.11 138
monyan & Zisser- IN1k(Russakovsky
2015) 2015) , SL
Hiera-B Transformer, -1.21 0.65 0.06 0.58 0.66 0.0030 0.75 0.85 0.35 52

IN1k(Russakovsky |
et al,|2015) , self-SL
(LP)
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N QUBA Adv. OOoD Cal. Class Obj. Shape Params.
Model Configuration Score T Ace.t R.ob.T C-Rob.1 Rob.T En‘orl' BalanceT FocusT Bias T in Mil. +
DenseNet121 Bcos, -1.17 0.74 0.01 0.17 0.44 0.0099 0.74 0.90 0.23 8
(Bohle et al.} IN1k(Russakovsky |
2022) et al.} 2015) , SL
MobileCLIP-B ViL, DataCompDR- -1.16 0.77 0.01 0.79 1.10 0.0375 0.90 0.95 0.62 150
LT) (Vasu et al.l 1B(Vasu et al.|
2024) 2024)), self-SL
EfficientNet-BO CNN, -1.14 0.73 0.17 0.02 0.24 0.0054 0.75 0.86 0.16 5
Wightman et al.l IN1k(Russakovsky |
2021 et al.} 2015) , A3
VGG19-bn CNN, -1.13 0.74 0.02 0.48 0.50 0.0021 0.75 0.89 0.15 144
monyan & Zisser- IN1k(Russakovsky
iman| [2015) 2015) , SL
ShuffleNet-v2-15 CNN, -1.10 0.73 0.04 0.51 0.57 0.0143 0.78 0.89 0.21 4
(Ma et al] IN1k(Fussakoviky |
2015) , SL
Bcos, -1.10 0.77 0.02 0.52 0.52 0.0117 0.76 0.88 0.20 28
IN1k(Russakovsky
2015) , SL
ResNet34 CNN, -1.08 0.73 0.27 0.04 0.29 0.0051 0.75 0.86 0.18 22
[man et al} IN1k(Russakoveky |
2015) , A3
EfficientNet-B1 CNN, -1.07 0.74 0.11 0.02 0.22 0.0048 0.75 0.88 0.14 8
(Wightman et al} INlk(Russakovsky |
2021 et al.l 2015) , A3
DenseNet169 Bcos, -1.06 0.75 0.02 0.17 0.43 0.0088 0.74 0.91 0.25 14
(Bohle et all IN1k(Russakovsky |
2022) I 5.
ConvNeXt-T -1.06 0.79 0.03 0.57 0.54 0.0161 0.77 0.94 0.23 88
(Béhle ot al} INlk(Russakovsky |
2022 et al.l 2015) , SL
ResNet18 CNN, -1.05 0.71 0.27 0.05 0.32 0.0052 0.74 0.87 0.24 12
IN 1 (Russakovsky |
2015) , Al
MobileNetV3-s CNN, -1.04 0.68 0.03 0.49 0.56 0.0017 0.74 0.84 0.32 2
(Howard et _al} IN1k(Russakovsky |
2019 et al.l 2015) , SL
ShuffleNet-v CNN, -1.02 0.69 0.01 0.41 0.49 0.0031 0.73 0.88 0.23 2
(Ma et al| IN1k(Russakovsky
2015) , SL
EfficientNet-B3 CNN, -0.99 0.78 0.22 0.02 0.21 0.0137 0.79 0.89 0.15 12
(Wightman ot al} INlk(Russakovsky |
2021 et al.} 12015) , A3
ResNet18 -0.98 0.71 0.26 0.05 0.33 0.0022 0.73 0.89 0.20 12
man et al. Russakovsky
2015) , A2
VIT-1/16 (Dosovit- Transformer, -0.93 0.80 0.24 0.54 0.50 0.0032 0.78 0.92 0.35 304
skiy ot al} [2021) IN1k(Russakovsky
2015) , SL
-0.93 0.77 0.13 0.53 0.51 0.0187 0.81 0.91 0.19 6
Russakovsky
2015) , SL
DenseNet161 Bcos, -0.88 0.77 0.02 0.18 0.43 0.0069 0.73 0.92 0.29 29
(Bohle et al.} IN1k(Russakovsky |
2022) et al.l 2015) , SL
ResNet18 CNN, -0.85 0.70 0.03 0.47 0.56 0.0018 0.74 0.88 0.24 12
IN1k(Russakovsky
2015) , SL
VIT-1/32 (Dosovit- Transformer, -0.82 0.77 0.21 0.58 0.65 0.0030 0.77 0.92 0.57 306
skiy et al* 2021 IN1k(Russakovsky
2015) , SL
ViT-b/16 Bohle Bcos, -0.78 0.74 0.01 0.66 0.55 0.0042 0.74 0.89 0.44 87
) IN1k(Russakovsky
2015) , SL
MobileNetV2 l CNN, -0.77 0.72 0.02 0.44 0.50 0.0018 0.75 0.88 0.18 4
0 IN 1k (Fussakoviky |
2015) , SL
ResNet50 (Salman CNN, -0.75 0.64 0.36 0.50 0.41 0.0037 0.74 0.88 0.64 26
2020 IN1k(Russakovsky
2015) , AT
EfficientNet-B2 CNN, -0.75 0.77 0.16 0.02 0.20 0.0040 0.75 0.91 0.15 9
Wightman et al.l IN1k(Russakovsky |
2021 et al.} 2015) , A3
ResNet50-DINO CNN, -0.74 0.78 0.45 0.07 0.32 0.0201 0.84 0.92 0.23 26
(Caron et al} INlk(Russakovsky |
2021 et al.,|2015) , self-SL
B2E)
ResNet18 -0.73 0.73 0.11 0.06 0.35 0.0060 0.77 0.90 0.27 12
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CNN, -0.72 0.76 0.05 0.55 0.57 0.0133 0.78 0.92 0.24 7

IN 1k (Russakoviky |
2015) , SL

ResNet50 CNN, -0.71 0.78 0.34 0.05 0.31 0.0063 0.75 0.91 0.14 26
N1k (Fussakovaky ]
2015) , A3
ResNeXt50-32x4d CNN, -0.70 0.79 0.50 0.04 0.23 0.0075 0.75 0.90 0.13 25
Wightman et al.l IN1k(Russakovsky |
2021 et al.} 2015) , A3
CLIP-ResNet50 ViL, -0.70 0.60 0.29 0.45 1.00 0.0109 0.94 0.86 0.20 102
Radford et al. WIT400M (Radford
2021 e 2021), self-SL
DenseNet201 Bcos, -0.69 0.75 0.00 0.18 0.49 0.0039 0.74 0.91 0.27 20
(Bohle et all INlk(Russakovsky |
12022) et al.}[2015) , SL

JSteiner Transformer, -0.67 0.82 0.09 0.75 0.63 0.0022 0.77 0.92 0.47 307
IN21k(Deng et al.
)s

EfficientNet-BO CNN, -0.66 0.77 0.18 0.02 0.23 0.0026 0.74 0.90 0.18 5
(Wightman et al.l IN1k(Russakovsky |
2021 et al,l 5

CNN, -0.66 0.73 0.02 0.45 0.51 0.0022 0.75 0.88 0.22 4
IN1k(Russakovsky |
2015) . SL

Bcos, -0.65 0.77 0.00 0.17 0.49 0.0042 0.73 0.93 0.28 44
IN1k(Russakovsky

et al{ [2015) . SL

GoogLeNet CNN, -0.65 0.70 0.08 0.50 0.54 0.0032 0.75 0.91 0.25 7
(Szegedy et _al]l  IN1k(Russakovsky |

[2015) [ct al}]2018) , ST

CLIP-L14-OpenAl  ViL, -0.65 0.76 0.32 0.76 1.04 0.0110 0.89 0.94 0.60 428

Radford et all} WIT400M (Radford
e

2021 2021), self-SL

MobileNetV3-1 CNN, -0.65 0.74 0.03 0.52 0.58 0.0026 0.75 0.87 0.26 6
(Howard et _al} IN1k(Russakovsky

[2019) [et all2015) , SL
ResNet152 1 CNN, -0.65 0.81 0.40 0.06 0.30 0.0078 0.76 0.92 0.19 60

IN1k(Russakovsky |
2015) , A3

RegNet-y-400mf CNN, -0.63 0.74 0.02 0.48 0.54 0.0018 0.75 0.86 0.22 4
(Radosavovic IN1k(Russakovsky
2020) 2015) , SL

ResNet34 (W CNN, -0.61 0.76 0.47 0.06 0.36 0.0051 0.74 0.90 0.29 22

N1k (Russakovaky |
2015) , Al
ResNet101 l CNN, -0.59 0.80 0.39 0.06 0.29 0.0067 0.75 0.93 0.17 44
IN1k
2015) , A3
ResNet34 1 -0.58 0.76 0.38 0.05 0.37 0.0026 0.73 0.91 0.23 22

fman ot arj [

ResNet34

CNN,

IN1k
2015) , A2
CNN, -0.55 0.73 0.03 0.52 0.55 0.0020 0.75 0.90 0.26 22

IN 1k (Russakoviky |
2015) , SL

EfficientNet-B0 CNN, -0.53 0.77 0.21 0.02 0.24 0.0027 0.74 0.91 0.26 5
(Wightman et al} INlk(Russakovsky |
[2021) [et al}[2015) , AT

DeiT-t | Transformer, -0.52 0.72 0.13 0.61 0.55 0.0053 0.77 0.90 0.24 6
2021a) IN1k(Russakovsky

et al,} 2015) , SL
CNN, -0.52 0.79 0.28 0.05 0.34 0.0124 0.79 0.95 0.21 26

IN1k(Russakovsky
2015) , SL

ResNet50d

ResNet50d CNN, -0.49 0.79 0.27 0.04 0.24 0.0030 0.75 0.93 0.14 26
Wightman et al.} IN1k(Russakovsky |

2021 et al.l 2015) , A3

WRN-50-2 CNN, -0.46 0.68 0.38 0.52 0.47 0.0027 0.74 0.91 0.67 69
Salman et _al} INlk(Russakovsky |

2020, et al.l 2015) , AT

RegNet-y-32gf CNN, -0.44 0.81 0.05 0.60 0.54 0.0026 0.77 0.92 0.27 145
(Radosavovic IN1k(Russakovsky

et al.[]2020) 2015) , SL

ResNet50 CNN, -0.43 0.80 0.55 0.05 0.32 0.0034 0.73 0.89 0.21 26

IN1k(Russakovsky

2015) , Al
PiT-t (Heo et aLl Transformer, -0.42 0.73 0.13 0.60 0.59 0.0051 0.77 0.90 0.30 5
) IN1k(Russakovsky

et al{ [2015) . SL

CNN, -0.42 0.81 0.36 0.09 0.35 0.0091 0.80 0.93 0.31 115
IN1k(Russakovsky |
2015) . SL

SeNet154
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ResNeXt50-32x4d CNN, -0.41 0.80 0.20 0.05 0.24 0.0088 0.78 0.93 0.24 25
Yalniz et al} YFCC100M(Thomee|
2019 -+
WRN-101-2 -0.40 0.79 0.05 0.57 0.54 0.0023 0.76 0.94 0.28 127
(Zagoruyko &| IN1k(Russakovsky |
Komodakisl 2016 et al.l 2015) , SL
RegNet-y-4gf CNN, -0.39 0.79 0.41 0.03 0.27 0.0050 0.75 0.94 0.16 21
(Wightman et al.| IN1k(Russakovsky
2021) 2015) , A3
SeNet154 CNN, -0.38 0.82 0.50 0.06 0.26 0.0025 0.76 0.94 0.18 115
IN 1k {Russakovsky ]
2015) , A3
RegNet-y-32gf CNN, -0.38 0.82 0.52 0.07 0.30 0.0022 0.76 0.94 0.18 145
(Wightman et al., IN1k(Russakovsky
2021) 2015) , A3
ViT-t/16 (Steiner Transformer, -0.37 0.75 0.01 0.56 0.54 0.0007 0.76 0.87 0.27 6
et al
ConViT-t (d’Ascoli Transformer, -0.37 0.73 0.15 0.62 0.58 0.0051 0.77 0.91 0.27 6
2021 IN1k(Russakovsky
2015) , SL
EfficientNet-B1 CNN, -0.36 0.79 0.19 0.03 0.26 0.0021 0.74 0.92 0.23 8
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , A2
RegNet-y-800mf CNN, -0.35 0.76 0.03 0.52 0.52 0.0017 0.76 0.89 0.23 6
(Radosavovic IN1k(Russakovsky
et al.| [2020) 2015) , SL
CNN, -0.34 0.79 0.16 0.07 0.33 0.0022 0.77 0.90 0.22 26
YFCC100M (Thomee |
T
SL
RegNet-y-4gf CNN, -0.33 0.79 0.17 0.02 0.28 0.0015 0.76 0.90 0.25 21
[dosavovic et all IN1k(Russakovsky |
0 et al.l 2015) , SL
DenseNet121 CNN, -0.33 0.74 0.06 0.54 0.51 0.0017 0.75 0.92 0.22 8
(Huang et al.} IN1k(Russakovsky
2017) 2015) , SL
CNN, -0.31 0.76 0.03 0.51 0.50 0.0021 0.75 0.93 0.22 26
IN1k(Russakoviky ]
2015) , SL
EfficientNet-v2-S CNN, -0.30 0.81 0.20 0.05 0.31 0.0022 0.76 0.91 0.17 24
(Wightman et al., IN1k(Russakovsky
2021) 2015) , A3
RegNet-y-16gf CNN, -0.29 0.81 0.47 0.04 0.27 0.0024 0.76 0.94 0.17 84
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , A3
EfficientNet-B1 CNN, -0.29 0.79 0.27 0.03 0.30 0.0022 0.74 0.92 0.27 8
(Wightman et al. IN1k(Russakovsky
2021) 2015) , Al
EfficientNet-B2 CNN, -0.29 0.80 0.25 0.03 0.25 0.0033 0.74 0.93 0.24 9
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , A2
ResNeXt101- CNN, -0.29 0.83 0.35 0.69 0.61 0.0196 0.85 0.95 0.24 84
(Xie et al.| IN1k(Russakovsky
2015) , SL
WRN-50-2 CNN, -0.29 0.78 0.05 0.54 0.47 0.0023 0.76 0.94 0.23 69
(Zagoruyko &| IN1k(Russakovsky |
Komodakisb et al,} 2015) , SL
ResNet50 CNN, -0.29 0.80 0.49 0.06 0.31 0.0027 0.74 0.92 0.19 26
man et al. IN1k(Russakovsky
2015) , A2
SeNet154 CNN, -0.28 0.82 0.46 0.07 0.29 0.0032 0.76 0.94 0.30 115
IN1k
3015) , A2
BiTM-ResNet50x3 CN -0.28 0.84 0.04 0.63 0.69 0.0016 0.79 0.93 0.21 217
(Kolesnikov et al.|
2020)
RegNet-y-32gf CNN, -0.27 0.82 0.51 0.09 0.31 0.0029 0.76 0.94 0.31 145
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , A2
MobileNetV3-1 -0.25 0.78 0.00 0.56 0.54 0.0020 0.76 0.88 0.27 6
(Howard et al.
2019)
ResNet101 CNN, -0.24 0.77 0.04 0.57 0.52 0.0023 0.76 0.92 0.29 44

IN1k (Russakoveky |
2015) , SL
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ResNet50d CNN, -0.24 0.81 0.40 0.05 0.27 0.0028 0.74 0.93 0.21 26
Wightman et al.} IN1k(Russakovsky |
2021 et al.} 2015) , Al
SeNet154 CNN, -0.24 0.82 0.69 0.08 0.32 0.0035 0.75 0.93 0.30 115
IN1k(Russakovsky

2015) , Al
DenseNet169 CNN, -0.23 0.76 0.07 0.57 0.56 0.0025 0.75 0.93 0.26 14
Huang et al. IN1k(Russakovsky |
2017 et al.} 2015) , SL
TinyViT-5M/16 Transformer, -0.21 0.79 0.15 0.64 0.58 0.0110 0.80 0.93 0.24 5
(Wu et al] [2022) IN1k(Russakovsky

2015) , SL
RegNet-y-16gf CNN, -0.21 0.80 0.03 0.59 0.57 0.0026 0.77 0.92 0.27 84
(Radosavovic IN1k(Russakovsky
et al.[ [2020) 3015) , SL
ResNeXt50-32x4d CNN, IG1B(Yalniz -0.21 0.82 0.25 0.06 0.27 0.0094 0.79 0.93 0.28 25
(Yalniz et all} ¥
2019) Russakovsky

semi-

SL
ViT-b/16-DINO Transformer, -0.21 0.78 0.13 0.66 0.40 0.0012 0.77 0.91 0.36 87
(Caron et al.} IN1k(Russakovsky
2021)) 2015) , self-SL

(LP)
ResNeXt50-32x4d CNN, -0.21 0.78 0.04 0.54 0.53 0.0026 0.76 0.93 0.22 25
(Xie ot al] IN1k(Russakoviky ]

2015) , SL
RegNet-y-32gf CNN, -0.21 0.82 0.68 0.10 0.34 0.0029 0.76 0.94 0.28 145
Wightman et al. IN1k(Russakovsky |
2021 et al.l 2015) , Al
ResNeXt101-32x8d CNN, -0.21 0.79 0.07 0.59 0.55 0.0029 0.76 0.94 0.29 89
(Xie ot al] IN1k(Russakoviky ]

2015) , SL
ResNet50d CNN, -0.20 0.80 0.46 0.05 0.26 0.0027 0.74 0.94 0.20 26
(Wightman et al} IN1k(Russakovsky |
2021 et al.l 2015) , A2
ResNeXt50-32x4d CNN, -0.20 0.81 0.59 0.05 0.31 0.0034 0.73 0.92 0.30 25
Wightman et al.} IN1k(Russakovsky |
2021 et al.} 2015) , Al
ResNeXt101-32x8d CNN, IGlB -0.19 0.84 0.33 0.06 0.30 0.0121 0.81 0.95 0.42 89
(Yalniz et al.}
2019)

SL
RegNet-y-8gf CNN, -0.18 0.81 0.46 0.04 0.27 0.0030 0.75 0.94 0.19 39
(Wightman et al.l IN1k(R |
2021 et al.l
EfficientNet-v2-M CNN, -0.17 0.80 0.46 0.15 0.36 0.0036 0.76 0.92 0.29 53
(Wightman ot al} INlk(Russakovsky |
2021 et al.l 2015) , Al
ResNet101 (Wigh CNN, -0.17 0.81 0.61 0.07 0.35 0.0028 0.74 0.92 0.27 44
IN1k(Russakovsky

2015) , Al
ResNet152 1 CNN, -0.17 0.82 0.53 0.08 0.33 0.0029 0.75 0.93 0.23 60
5021)  INlk(Russakovsky ]

2015) , A2
VIT-b/32 Doso- Transformer, -0.16 0.76 0.16 0.58 0.58 0.0038 0.77 0.91 0.62 88
vitski et al.} IN1k(Russakovsky
2021) 2015) , SL
EfficientNet-B2 CNN, -0.16 0.80 0.29 0.04 0.28 0.0021 0.74 0.93 0.26 9
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , Al
ResNet101 1 CNN, -0.15 0.81 0.49 0.07 0.32 0.0026 0.75 0.93 0.25 44
2 IN1k(Russakovsky

2015) , A2
ViT-s/16-DINO Transformer, -0.15 0.77 0.09 0.60 0.40 0.0012 0.76 0.91 0.29 23
Caron et al.} IN1k(Russakovsky |
2021 et al., |2015) , self-SL

LP
EfficientNet-BO CNN, -0.14 0.78 0.07 0.77 0.60 0.0034 0.77 0.89 0.25 5
(Tan & Le} IN1k(Russakovsky

2015) , SL
BiTM- CNN, IN21k( -0.14 0.85 0.04 0.67 0.72 0.0016 0.80 0.95 0.28 236
ResNet152x2
(Kolesnikov et al.}
2020)
ResNeXt50-32x4d CNN, -0.13 0.80 0.56 0.05 0.27 0.0026 0.74 0.94 0.20 25
(Wightman et al} INlk(Russakovsky |
2021 et al.l 2015) , A2
RegNet-y-1-6gf CNN, -0.12 0.78 0.03 0.54 0.54 0.0018 0.76 0.91 0.27 11

(Radosavovic

et al.} 12020)

IN1k(Russakovsky

et alf [2015) . SL
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RegNet-y-8gf CNN, -0.12 0.80 0.03 0.57 0.53 0.0023 0.77 0.91 0.24 39
dosavovic et _all IN1k(Russakovsky |

12020) et al.|[2015) , SL

ResNet152 CNN, -0.11 0.78 0.06 0.57 0.55 0.0023 0.76 0.94 0.29 60

IN1k(Russakovsky |

2015) , SL

EfficientNet-B4 CNN, -0.11 0.81 0.30 0.05 0.27 0.0024 0.76 0.93 0.22 19
Wightman et al.l IN1k(Russakovsky |

et al,} 2015) , A3

CNN, -0.10 0.84 0.12 0.72 0.67 0.0064 0.81 0.95 0.31 198
IN1k(Russakovsky

et al.l 2015) , SL

CNN, -0.09 0.77 0.08 0.59 0.57 0.0025 0.76 0.94 0.28 29
Huang et al.l IN1k(Russakovsky |
2017 et al.} 2015) , SL

CNN, -0.09 0.79 0.14 0.63 0.58 0.0049 0.78 0.90 0.24 8

IN1k(Russakovsky
2015) , SL

-0.08 0.79 0.11 0.57 0.66 0.0037 0.78 0.89 0.24 5
T
IN1k(Russakovsky
, semi-
SL
Xception Cholletl CNN, -0.08 0.79 0.05 0.57 0.52 0.0031 0.77 0.93 0.22 23
IN1k(Russakovsky
2015) , SL
EfficientNet-v2-S CNN, -0.08 0.81 0.38 0.07 0.33 0.0029 0.75 0.93 0.27 24
Wightman et al.l IN1k(Russakovsky |
2021 et al.l 2015) , Al
RegNet-y-3-2gf CNN, -0.08 0.79 0.03 0.55 0.52 0.0019 0.77 0.91 0.27 19
(Radosavovic IN1k(Russakovsky
2020) 2015) , SL
RegNet-y-16gf CNN, -0.06 0.82 0.64 0.06 0.28 0.0028 0.75 0.95 0.28 84

(Wightman et al} IN1lk(Russakovsky |

2021 et al.‘ 2015) , Al
ResNet152 CNN, -0.06 0.82 0.63 0.07 0.34 0.0028 0.74 0.94 0.31 60
IN1k(Russakovsky |
2015) , A1
EfficientNet-v2-M CNN, -0.06 0.82 0.26 0.08 0.36 0.0022 0.76 0.94 0.23 53
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , A3
ConvNeXt-L CNN, -0.05 0.77 0.59 0.66 0.49 0.0069 0.79 0.95 0.74 198
(Singh et al.l IN1k(Russakovsky
2023) 2015) , AT
EfficientNet-B3 CNN, -0.05 0.81 0.27 0.04 0.28 0.0022 0.75 0.95 0.24 12
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , A2
EfficientNet-v2-M CNN, -0.04 0.81 0.39 0.10 0.36 0.0032 0.76 0.93 0.32 53
(Wightman et al.| IN1k(Russakovsky |
2021 et al.l ) , A2
CoaT-t-lite Transformer, -0.04 0.78 0.12 0.60 0.56 0.0053 0.79 0.93 0.25 6
, |2021b, IN1k(Russakovsky
et al.| [2015) , SL
XCiT-124-16 Transformer, -0.04 0.83 0.22 0.74 0.72 0.0037 0.80 0.93 0.34 189

IN1k(Russakovsky
2015) , SL

CrossViT-91(Chen Transformer, -0.01 0.77 0.15 0.64 0.56 0.0041 0.78 0.93 0.26 9
| [2021a) IN1k(Russakovsky |
et al|[2015) , SL
DenseNet201 CNN, -0.00 0.77 0.08 0.57 0.59 0.0019 0.76 0.95 0.27 20
(Huang et al.} IN1k(Russakovsky
2017) 2015) , SL
ViT-s/16 (Steiner Transformer, 0.01 0.79 0.07 0.67 0.56 0.0018 0.76 0.91 0.30 22

) IN 1k (Russakovsky

et al} [2015) , SL

RegNet-y-16gf CNN, 0.01 0.82 0.58 0.06 0.30 0.0025 0.76 0.95 0.30 84
(Wightman et al., IN1k(Russakovsky

2021) 2015) , A2

InceptionV3 CNN, 0.02 0.77 0.16 0.56 0.55 0.0017 0.76 0.94 0.30 27
Szegedy et all IN1k(Russakovsky |

2016 et al.l 2015) , SL

RegNet-y-4gf CNN, 0.02 0.81 0.55 0.04 0.28 0.0021 0.75 0.94 0.24 21
(Wightman et al. IN1k(Russakovsky

2021) 2015) , A2

RegNet-y-8gf CNN, 0.04 0.82 0.58 0.05 0.29 0.0024 0.75 0.94 0.26 39
Wightman et al.} IN1k(Russakovsky |

2021 et al,} 2015) , A2

EfficientNet-B3 CNN, 0.04 0.81 0.33 0.05 0.33 0.0023 0.75 0.94 0.28 12
Wightman et al.l IN1k(Russakovsky |

2021 et al.l 2015) , Al
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EfficientNet-B2 CNN, 0.04 0.81 0.14 0.60 0.63 0.0041 0.79 0.90 0.21 9
(Tan & Lg IN1k(Russakoviky ]

et al} [2015) , SL

1 (Touvron| Transformer, 0.05 0.85 0.32 0.82 0.76 0.0031 0.81 0.96 0.50 304
2022) IN1k(Russakovsky

ot al} [2015) , SL

DeiT3

EfficientNet-v2-S CNN, 0.05 0.82 0.32 0.06 0.34 0.0026 0.76 0.94 0.28 24
Wightman et al.l IN1k(Russakovsky |
2021 et al.} 2015) , A2

BiTM-ResNet50x1 0.06 0.80 0.01 0.55 0.65 0.0012 0.78 0.91 0.19 26
(Kolesnikov et al.|
2020)
0.07 0.81 0.20 0.08 0.44 0.0022 0.77 0.93 0.29 26
T
, semi-
SL
EfficientNet-B4 CNN, 0.07 0.83 0.24 0.56 0.76 0.0132 0.83 0.93 0.21 19
N1k (Russakoviky ]
2015) , SL
EfficientNet-B4 CNN, 0.08 0.82 0.34 0.06 0.30 0.0023 0.76 0.93 0.28 19
(Wightman et al., IN1k(Russakovsky
2021) 2015) , A2
Swin-L (Liu et alAI, Transformer, 0.08 0.79 0.60 0.67 0.70 0.0074 0.79 0.94 0.73 196
IN1k(Russakovsky
2015) , AT
RegNet-y-4gf CNN, 0.08 0.81 0.56 0.04 0.28 0.0022 0.75 0.94 0.28 21
(Wightman et al., IN1k(Russakovsky
2021) 2015) , Al
RegNet-y-8gf CNN, 0.08 0.82 0.62 0.06 0.30 0.0023 0.75 0.94 0.25 39
Wightman et al.} IN1k(Russakovsky |
2021 et al.l 2015) , Al
LeViT-128 (Gr Transformer, 0.09 0.78 0.17 0.64 0.59 0.0017 0.76 0.92 0.26 9
2021) IN1k(Russakovsky
2015) , SL
EfficientNet-B4 CNN, 0.10 0.82 0.38 0.09 0.34 0.0028 0.76 0.95 0.24 19
Wightman et al.} IN1k(Russakovsky |
2021 et al.} 2015) , Al
ConvNeXt-T CNN, 0.10 0.73 0.51 0.60 0.61 0.0078 0.78 0.92 0.72 29
(Singh et al.l IN1k(Russakovsky |
2023)) et al.l 2015) , AT
ConvNeXt-T CNN, 0.10 0.83 0.09 0.65 0.60 0.0077 0.81 0.92 0.25 29
2022b)| IN1k(Russakovsky
et al,} 2015) , SL
SwinV2-t/8 Transformer, 0.11 0.82 0.04 0.66 0.53 0.0044 0.80 0.92 0.18 28
2022a) IN1k(Russakovsky
et al.l 2015) , SL
PiT-xs (Heo et alAl Transformer, 0.11 0.78 0.18 0.66 0.58 0.0046 0.78 0.92 0.31 11
)

IN1k(Russakovsky

et al} [2015) , 5L

CNN, 0.11 0.78 0.59 0.65 0.86 0.0073 0.79 0.95 0.73 198
IN1k(Russakovsky |
2015) , AT

InceptionV4 CNN, 0.13 0.80 0.08 0.61 0.54 0.0014 0.77 0.94 0.24 43
(Szegedy et al. IN1k(Russakovsky
2017) 2015) , SL
CoaT-mi-lite Transformer, 0.14 0.79 0.15 0.63 0.57 0.0051 0.79 0.93 0.27 11
2021Db) IN1k(Russakovsky
et al.l 2015) , SL
Liu et al. Transformer, 0.14 0.81 0.05 0.66 0.59 0.0037 0.79 0.92 0.22 28

IN1k(Russakovsky

et al{ [2015) . SL

FastViT-sal2 Transformer, 0.15 0.81 0.14 0.63 0.57 0.0065 0.80 0.94 0.21 12
Vasu et al.L IN1k(Russakovsky

et al.| [2015) , SL

Transformer, 0.17 0.82 0.21 0.69 0.63 0.0096 0.81 0.94 0.26 11
IN1k(Russakovsky |

2015) , SL

Transformer, 0.17 0.85 0.41 0.77 0.71 0.0053 0.81 0.95 0.35 212
IN1k(Russakovsky

2015) , SL

CNN, 0.18 0.84 0.12 0.70 0.66 0.0089 0.82 0.95 0.30 89
IN1k(Russakovsky

et al.l 5) , SL

CNN, 0.19 0.83 0.19 0.68 0.55 0.0029 0.79 0.94 0.24 89
IN1k(Fussakoviky |

2015) , SL

Transformer, 0.19 0.84 0.04 0.70 0.60 0.0033 0.81 0.93 0.20 88
IN1k(Russakovsky

2015) , SL

TinyViT-11M
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VIT-b/16 Doso- Transformer, 0.20 0.81 0.18 0.66 0.56 0.0034 0.79 0.93 0.40 87
vitski, et al.l IN1k(Russakovsky |
2021) et al.} 2015) , SL
Inception- CNN, 0.20 0.80 0.15 0.63 0.56 0.0022 0.78 0.95 0.26 56
ResNetv2 (Szegedy] IN1k(Russakovsky
2017) 2015) , SL
CNN, 0.20 0.84 0.11 0.68 0.65 0.0083 0.81 0.94 0.25 50
IN1k(Russakovsky
et al,} 2015) , SL
Transformer, 0.23 0.84 0.15 0.71 0.60 0.0030 0.80 0.93 0.23 88
IN1k(Russakovsky
2015) , SL
Transformer, 0.23 0.81 0.10 0.65 0.58 0.0031 0.79 0.93 0.21 6
IN21k(Deng et _al]
9), self-SL (E2E
ConvNeXt-S CNN, 0.23 0.74 0.52 0.61 0.76 0.0081 0.78 0.94 0.72 50
Singh et al.} IN1k(Russakovsky |
2023 et al.l 2015) , AT
EfficientNet- CNN, 0.23 0.84 0.22 0.67 0.57 0.0061 0.81 0.92 0.26 66
(Tan & Ldl IN1k(Russakoveky |
2015) , SL
ViT-L/14- Transformer, 0.24 0.87 0.32 0.84 0.86 0.0050 0.82 0.97 0.51 310
DINOvV2-FT LVvD142m(Oquab |
(Oquab et al} 2024), self-SL
2024) E2E)
ViT-s/16 Singh Transformer, 0.26 0.73 0.49 0.63 0.72 0.0081 0.78 0.94 0.72 23
IN1k(Russakovsky
2015) , AT
SwinV2-s/8 Transformer, 0.26 0.84 0.04 0.71 0.59 0.0036 0.80 0.93 0.20 50
2022a) IN1k(Russakovsky
et al.| [2015) , SL
EfficientNet-v2-L CNN, 0.26 0.85 0.17 0.74 0.64 0.0052 0.82 0.94 0.27 118
(Tan & Lel IN1k(Russakovsky
2015) , SL
ViT-1/16 Steiner, Transformer, 0.26 0.86 0.24 0.84 0.77 0.0011 0.81 0.96 0.54 304
2022 IN21k(Deng et al.l
2009), SL
LeViT-256 (Gr Transformer, 0.26 0.82 0.18 0.66 0.58 0.0022 0.77 0.93 0.23 19
2021)) IN1k(Russakovsky
2015) , SL
EfficientFormer-11 Transformer, 0.26 0.81 0.14 0.63 0.57 0.0014 0.77 0.94 0.21 12
Li et al.l 2022b. IN1k(Russakovsky
et al,b 2015) , SL
EfficientNet-B6 CNN, 0.27 0.84 0.21 0.59 0.55 0.0065 0.82 0.92 0.23 43
(Tan & Le| IN1k(Russakovsky
2015) , SL
ViT-b/32 (Steiner Transformer, 0.27 0.81 0.09 0.75 0.47 0.0011 0.78 0.93 0.53 88
) IN21k(Deng et al.
i B
EfficientNet-v2-S CNN, 0.27 0.83 0.09 0.66 0.32 0.0027 0.80 0.92 0.24 22
2 IN1k(Russakovsky
2015) , SL
ViT-1-14-DINOv2 Transformer, 0.27 0.86 0.19 0.86 0.87 0.0010 0.81 0.94 0.60 310
(Oquab ot al]l LVD142m(Oquab ]
2024) 2024)), self-SL
LP
Liu et al.l Transformer, 0.27 0.83 0.08 0.70 0.57 0.0025 0.80 0.93 0.20 50
IN1k(Russakovsky
2015) , SL
TinyViT-5M/16 Transformer, 0.28 0.81 0.09 0.67 0.66 0.0041 0.79 0.92 0.33 5
IN21k(Deng et al.|
2009), SL
Transformer, 0.28 0.77 0.59 0.65 0.74 0.0083 0.79 0.94 0.73 88
IN1k(Russakovsky
2015) , AT
FastViT-sa24 Transformer, 0.30 0.83 0.24 0.69 0.62 0.0089 0.82 0.94 0.26 22
Vasu et aLL IN1k(Russakovsky
et al,l 5
Transformer, 0.30 0.83 0.21 0.74 0.68 0.0038 0.80 0.93 0.33 84
IN1k(Russakovsky
2015) , SL
0.31 0.83 0.06 0.68 0.13 0.0040 0.80 0.93 0.34 22
(Tan & Lo
EfficientFormer-17 Transformer, 0.31 0.83 0.22 0.70 0.68 0.0023 0.78 0.94 0.23 82
Li et al.l 2022b. IN1k(Russakovsky
et al.| [2015) , SL
EfficientNet-B3 CNN, 0.31 0.82 0.22 0.53 0.70 0.0065 0.80 0.93 0.27 12

(Tan & Lo

IN1k(Russakoveky |
2015) , SL
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EfficientNet-B1 0.31 0.81 0.15 0.62 0.72 0.0043 0.79 0.92 0.25 8
(Xie ct al
EfficientNet- s 0.31 0.83 0.19 0.55 0.59 0.0054 0.81 0.92 0.25 30
(Tan & L IN1k(Russakoveky |
2015) , SL
EfficientNet- 0.33 0.86 0.17 0.73 0.13 0.0046 0.81 0.96 0.38 118
0.33 0.82 0.02 0.61 0.71 0.0011 0.79 0.94 0.23 44
(Kolesnikov et al.}
2020)
DeiT-s l Transformer, 0.34 0.80 0.22 0.71 0.59 0.0043 0.79 0.94 0.34 22
2021a)) IN1k(Russakovsky
et al}|2015) , SL
ViT-L/14- Transformer, 0.34 0.87 0.21 0.88 0.88 0.0010 0.81 0.94 0.62 310
DINOv2-reg-LP LVD142m(Oquab |
(Darcet et al] 3024), self-SL
2024) LP
DeiT3-1 (Touvron Transformer, 0.34 0.87 0.35 0.80 0.87 0.0024 0.82 0.96 0.51 304
2022) IN21k(Deng et al.
)
LeViT-384 Transformer, 0.34 0.83 0.19 0.67 0.63 0.0023 0.78 0.94 0.24 39
IN1k(Russakovsky |
2015) , SL
CNN, 0.34 0.77 0.57 0.64 0.62 0.0075 0.79 0.95 0.73 89
IN1k(Russakovsky
2015) , AT
Transformer, 0.35 0.82 0.21 0.68 0.64 0.0082 0.81 0.94 0.31 28
IN1k(Russakovsky |
2015) , SL
CNN, 0.35 0.82 0.18 0.65 0.65 0.0069 0.80 0.94 0.29 16
IN1k(Russakovsky
et al.,|2015) , self-SL
E2E)
CNN, 0.36 0.76 0.57 0.64 0.80 0.0069 0.78 0.95 0.74 89
IN1k(Russakovsky
2015) , AT
Transformer, 0.36 0.85 0.44 0.80 0.82 0.0035 0.81 0.96 0.34 218
IN 1k (Russakovsky
et al.| [2015) , SL
CLIP-B32- ViL, 0.36 0.82 0.17 0.70 0.80 0.0020 0.79 0.92 0.40 88
OpenAI-FT- WIT400M (Radford
Vision-Encoder 2021), self-SL
(Cherti et al.} (E2E)
2023))
ViT-b/16-MAE Transformer, 0.36 0.84 0.25 0.71 0.58 0.0049 0.80 0.95 0.36 87
(oot al} [2022)  IN1k(Russakovsky |
2015) , self-SL
(E2E)
Singh Transformer, 0.36 0.77 0.55 0.69 0.50 0.0072 0.79 0.95 0.77 87
IN1k(Russakovsky
2015) , AT
CaiT-xxs24 l Transformer, 0.36 0.81 0.16 0.70 0.57 0.0022 0.78 0.94 0.23 12
vron et al.l 2021b) IN1k(Russakovsky
et al.l 5) , SL
iT-b ‘Touvron, Transformer, 0.37 0.82 0.23 0.75 0.62 0.0038 0.80 0.95 0.39 87
[2021a) IN1k(Russakovsky |
et al.| [2015) , SL
s (Heo et al,l Transformer, 0.39 0.81 0.23 0.70 0.61 0.0042 0.79 0.93 0.34 24
IN1k(Russakovsky
2015) , SL
InceptionNe: Transformer, 0.40 0.84 0.28 0.74 0.72 0.0081 0.82 0.94 0.35 87
(Y ot al] IN1k(Russakoveky |
2015) , SL
b (Heo et al. Transformer, 0.40 0.82 0.28 0.74 0.62 0.0037 0.80 0.94 0.33 74
IN1k(Russakovsky
2015) , SL
EfficientNet-B2 CNN, JFT- 0.40 0.82 0.17 0.64 0.72 0.0044 0.80 0.93 0.24 9
(Xic ct al
T
INTk(Russakovsky |
, semi-
SL
SwinV2-t/16 Transformer, 0.40 0.83 0.18 0.70 0.62 0.0043 0.80 0.94 0.25 28
2022a) IN1k(Russakovsky
et al.| [2015) , SL
EfficientFormer-13 Transformer, 0.41 0.83 0.20 0.69 0.65 0.0020 0.78 0.94 0.24 31
Li et al.l 2022b IN1k(Russakovsky
et al.l ) , SL
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T
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+

Shape
Bias

4

Params.L
in Mil.

ViT-S/14-
DINOv2-reg-LP
(Darcet et al}

2024)
FastViT-sa36

(Vasu et al}

DeiT3-s (Touvron|

Transformer,
IN1k(Russakoviky |
2015) , SL

Transformer,

LVD142m(Oquab___|
B 024), self-SL

i

Transformer,
IN1k(Russakovsky |
2015) , SL

Transformer,

2022

EfficientNet-

(Tan & Lo

EfficientNet-v2-M
(Tan & Le [2021)

N4 (Steiner

IN1k(Russakovsky
2015) , SL
CNN,
IN1k(Russakovsky |
2015) , SL

Transformer,

IN21k(Deng et al.l

Transformer,

IN1k(Russakovsky |

ConViT-s (d’Ascoli

et al.| [2015) , SL
Transformer,

IN1k(Russakoveky |
2015) , SL

Transformer,

LVD142m(Oquab |

2024), self-SL

E2E)

Transformer,

LVD142m(Oquab |
2024)), self-SL

€
(LP)

Transformer,

IN1k(Russakovsky

et al} [2015) , SL

Transformer,

IN1k(Russakovsky |

Laion2B-FT-
Vision-Encoder
Cherti et al.}

[2023)

s-lite

2021Db)

et al.[|2015) , self-SL

(E2E)
Transformer,

LVD142m (O et ]
2024)), self-SL

e
(E2E)

CNN,

E2E)

IN21k

Transformer,
IN1k(Russakovsky |
2015) , SL

ViL,

WIT400M (Radford
2021)), self-SL
E2E)

Transformer,

IN1k(Russakovsky

MViTv2-t

2022a)

et al.l 2015) , SL

Transformer,

IN1k(Russakovsky

ViT-L/14-
DINOv2-reg-LP
(Darcet et al}

[2024)

DaViT-t

MaxViT-b

CrossViT-

et al,} 2015) , SL

Transformer,
LVD142m(Oquab___|
2024), self-SL

Transformer,
IN1k(Russakovsky |
2015) , SL

Transformer,
IN1k(Russakovsky
2015) , SL

Transformer,

181(Chen et al.l

IN1k(Russakovsky |

2021a)

SwinV2-b/16
, 120224,

et al,l ) , SL

Transformer,
IN1k(Russakovsky

ConvNeXt-T

[et al}[2015) , SL
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ConvNeXtV2-L CNN, 0.57 0.86 0.35 0.79 0.78 0.0028 0.81 0.97 0.42 198
Woo et aLl IN1k(Russakovsky
et al., |2015) , self-SL
E2E
Transformer, 0.59 0.84 0.26 0.74 0.66 0.0037 0.81 0.93 0.28 31
IN1k(Russakovsky
2015) , SL
CrossViT- Transformer, 0.59 0.82 0.25 0.73 0.62 0.0037 0.80 0.94 0.36 28
157(Chen et al., IN1k(Russakovsky
3021a) 2015) , SL
ViT-b-14-DINOv2 Transformer, 0.59 0.85 0.10 0.77 0.56 0.0011 0.80 0.94 0.45 90
(Oquab et all LVD142m(Oquab |
2024)) 2024)), self-SL
LP
SwinV2-1/12to16 Transformer, 0.59 0.87 0.29 0.82 0.80 0.0038 0.82 0.97 0.42 197
(Ciu ot al] IN211(Deng ot _al
, SL
ConvNeXtV2-T CNN, 0.60 0.83 0.20 0.69 0.65 0.0026 0.80 0.94 0.32 29
‘Woo et alAl IN1k(Russakovsky
ot al|[2015) , self-SL
E2E
EfficientNet-B3 CNN, JFT- 0.61 0.84 0.18 0.67 0.77 0.0043 0.81 0.93 0.27 12
(Xie ot al
Transformer, 0.61 0.84 0.26 0.75 0.62 0.0033 0.80 0.94 0.30 50
IN1k(Russakovsky
2015) , SL
CNN, IN21k( 0.62 0.87 0.22 0.81 0.83 0.0016 0.81 0.97 0.40 198
e ), SL,
Touvron| Transformer, 0.63 0.83 0.28 0.67 0.70 0.0033 0.80 0.92 0.35 22
IN21k(Deng et al.l
2009), SL
Transformer, 0.64 0.85 0.30 0.75 0.68 0.0020 0.80 0.94 0.35 88
IN1k (Russakoviky |
2015) , SL
Transformer, 0.64 0.84 0.27 0.79 0.70 0.0036 0.80 0.95 0.43 87
IN1k(Russakovsky
2015) , SL
Transformer, 0.64 0.86 0.32 0.81 0.78 0.0127 0.93 0.95 0.42 214
IN1k(Russakovaky ]
2015) , self-SL
E2E
CoaT-me-lite Transformer, 0.64 0.84 0.22 0.75 0.66 0.0037 0.81 0.95 0.31 45
2021b IN1k(Russakovsky
et al}|2015) , SL
EfficientNet-B4 CNN, JEFT- 0.65 0.85 0.20 0.72 0.77 0.0050 0.81 0.92 0.28 19
T
IN1k(Russakovsky
, semi-
SL
TinyViT-11M/16 Transformer, 0.65 0.83 0.11 0.70 0.73 0.0039 0.80 0.95 0.33 11
(Wu_ct al] IN21Kk(Dong et _al]
, SL
CLIP-B16- 0.66 0.85 0.17 0.72 0.82 0.0024 0.81 0.94 0.34 87
OpenAI-FT- OM (Radford
Vision-Encoder 2021), self-SL
(Cherti et al.}
2023))
ViT-b/16 (Steiner| Transformer, 0.67 0.85 0.10 0.79 0.39 0.0009 0.80 0.96 0.47 87
) IN21k(Deng et al.l
2009), SL
ConvNeXtV2-L 0.68 0.87 0.32 0.80 0.81 0.0023 0.81 0.97 0.45 198
(Woo ot al} [2033)
(E2E)
CaiT-xs24 l Transformer, 0.68 0.84 0.26 0.75 0.65 0.0022 0.80 0.95 0.22 27
vron et al.l 2021b) IN1k(Russakovsky
et al,l 5
DeiT3-m (Touvron Transformer, 0.69 0.85 0.24 0.69 0.71 0.0032 0.81 0.93 0.36 39
2022 IN21k(Deng et al.
MViTv2-s Transformer, 0.70 0.84 0.34 0.75 0.75 0.0048 0.80 0.96 0.29 35
2022a/ IN1k(Russakovsky
et al.l ) , SL
DeiT3-m (Touvron Transformer, 0.71 0.83 0.27 0.76 0.66 0.0040 0.80 0.95 0.42 39
2022 IN1k(Russakovsky

et al} [2015) , SL
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CLIP-B16- ViL, 0.73 0.85 0.14 0.74 0.87 0.0027 0.81 0.95 0.38 87
Laion2B-FT- WIT400M (Radford |
Vision-Encoder let_al.l [2021), self SL
Chasel®n o
2023)
ViT-B/14- Transformer, 0.74 0.85 0.12 0.79 0.79 0.0011 0.80 0.94 0.49 90
DINOv2-reg-LP LVD142m(Oquab |
(Darcet et all 2024)), self-SL
2024) LP
ConvNeXtV2-T 0.75 0.84 0.16 0.72 0.73 0.0026 0.80 0.95 0.35 29
(Woo et al
Transformer, 0.76 0.84 0.24 0.75 0.70 0.0022 0.80 0.95 0.35 50
IN1k(Russakoviky |
2015) , SL
Transformer, 0.76 0.84 0.34 0.76 0.73 0.0035 0.81 0.95 0.33 52
IN1k(Russakovsky
2015) , SL
ConvNeXtV2-B CNN, 0.76 0.85 0.28 0.77 0.70 0.0033 0.81 0.96 0.42 89
(Woo et all} IN 1k (Russakovsky
et al., |2015) , self-SL
E2E
EfficientNet-B5 0.82 0.86 0.20 0.76 0.80 0.0049 0.82 0.94 0.31 30
(Xie ot al
Transformer, 0.82 0.85 0.30 0.77 0.64 0.0022 0.80 0.95 0.29 47
IN1k(Russakovsky
2015) , SL
BeiTV2-b Transformer, 0.82 0.86 0.33 0.79 0.55 0.0035 0.81 0.96 0.45 86
IN1k(Russakovaky ]
2015) , self-SL
E2E
Transformer, 0.82 0.83 0.19 0.70 0.66 0.0114 0.92 0.93 0.27 28
IN1k(Russakovsky
let al.l|2015) , self-SL
(B2E)
Transformer, 0.83 0.86 0.26 0.73 0.76 0.0027 0.81 0.95 0.40 87
IN21k(Deng et al.l
2009), SL
ConvNeXt-S 0.83 0.85 0.20 0.76 0.76 0.0022 0.80 0.96 0.31 50
2022b)
BeiT-b (Bao et al., Transformer, 0.84 0.85 0.07 0.79 0.80 0.0036 0.81 0.96 0.53 86
IN21k(Deng et al.l
9), self-SL (E2E)
ViT-B/14- Transformer, 0.84 0.86 0.26 0.81 0.82 0.0048 0.81 0.97 0.41 90
DINOv2-reg-LP LVD142m(Oquab |
(Darcet et all 2024)), self-SL
2024) E2E)
ViT-B/14- Transformer, 0.85 0.85 0.22 0.79 0.79 0.0050 0.81 0.97 0.49 90
DINOv2-FT LVD142m(Oquab
(Oquab___et _all [et al] [2024)), self-SL
2024)
ConvNeXt-B 0.85 0.86 0.20 0.78 0.82 0.0019 0.81 0.96 0.33 89
EVA02-s Transformer, 0.88 0.86 0.17 0.74 0.77 0.0030 0.81 0.95 0.28 22
IN21k(Deng et al]
2009), self-SL (E2E)
TinyViT-21M/16 Transformer, 0.90 0.85 0.13 0.75 0.80 0.0034 0.81 0.95 0.37 21
(Wu ot al} [2 IN21k(Deng ot _al]
2009), SL
SwinV2-b/12tol6 Transformer, 0.90 0.86 0.26 0.81 0.81 0.0040 0.82 0.96 0.41 88
(Ciu ot al] IN211(Deng ot _al
9), SL
Hiera-S Transformer, 0.93 0.84 0.19 0.74 0.70 0.0118 0.93 0.93 0.32 35
IN1k(Russakovaky ]
2015) , self-SL
E2E
EfficientNet-B7 0.93 0.87 0.29 0.77 0.86 0.0064 0.83 0.95 0.44 66
(Kie ot al
EfficientNet- 0.94 0.86 0.25 0.77 0.83 0.0048 0.82 0.95 0.35 43
(Kie ot al
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Transformer, 0.95 0.85 0.23 0.76 0.76 0.0130 0.93 0.94 0.34 52

IN1k(Russakoviky ]

et al}|2015) , self-SL

E2E
ConvNeXtV2-B 0.96 0.87 0.28 0.79 0.82 0.0023 0.81 0.96 0.40 89
Hiera-B-Plus Transformer, 1.03 0.85 0.24 0.78 0.74 0.0130 0.93 0.95 0.43 70
(Ryali ot al] IN1k(Russakovsky ]

[2015) , self-5L

(E2E)

Transformer, 1.08 0.88 0.21 0.81 0.86 0.0039 0.83 0.97 0.34 87

IN21k(Deng
2

al.
9), self-SL (E2E)
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