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ABSTRACT

Generating a street-level 3D scene from a single satellite image is a crucial yet
challenging task. Current methods present a stark trade-off: geometry-colorization
models achieve high geometric fidelity but are typically building-focused and lack
semantic diversity. In contrast, proxy-based models use feed-forward image-to-3D
frameworks to generate holistic scenes by jointly learning geometry and texture,
a process that yields rich content but coarse and unstable geometry. We attribute
these geometric failures to the extreme viewpoint gap and sparse, inconsistent
supervision inherent in satellite-to-street data. We introduce Sat3DGen to address
these fundamental challenges, which embodies a geometry-first methodology. This
methodology enhances the feed-forward paradigm by integrating novel geometric
constraints with a perspective-view training strategy, explicitly countering the pri-
mary sources of geometric error. This geometry-centric strategy yields a dramatic
leap in both 3D accuracy and photorealism. For validation, we first constructed a
new benchmark by pairing the VIGOR-OOD test set with high-resolution DSM
data. On this benchmark, our method improves geometric RMSE from 6.76m
to 5.20m. Crucially, this geometric leap also boosts photorealism, reducing the
Fréchet Inception Distance (FID) from ∼40 to 19 against the leading method,
Sat2Density++, despite using no extra tailored image-quality modules. We demon-
strate the versatility of our high-quality 3D assets through diverse downstream
applications, including semantic-map-to-3D synthesis, multi-camera video genera-
tion, large-scale meshing, and unsupervised single-image Digital Surface Model
(DSM) estimation.

1 INTRODUCTION

Street-level 3D scenes are useful for mapping, robotics, simulation, and media creation (Workman
et al., 2017; Toker et al., 2021; Xie et al., 2024; Zhou et al., 2020; Shi et al., 2022). Ground-level
capture is costly and uneven across regions (Anguelov et al., 2010), whereas satellite imagery offers
wide coverage, low cost, and frequent updates (Campbell & Wynne, 2011). These characteristics
motivate generating street-level 3D from overhead satellite images for large-scale, long-term applica-
tions. Our goal is to generate a 3D scene that faithfully preserves the semantics and appearance of an
input satellite image and that can be rendered for street-view images and videos.

Existing methods for generating 3D from a single satellite image fall into two categories: 3D geometry
colorization (Hua et al., 2025; Li et al., 2024) and 3D proxy for image rendering (Qian et al., 2023;
2025). 3D geometry colorization follows a two-stage pipeline to predict and then texture 3D building
geometry. While producing clean building models, these methods fail to capture non-building
elements (e.g., zebra crossings, trees), resulting in outputs weakly consistent with the input satellite
image (Fig. 1 (a,b)).1 Extending them beyond buildings would require fine-grained geometry labels
for many classes, which are scarce. 3D proxy for image rendering uses tailored feed-forward image-
to-3D frameworks (Hong et al., 2024; Xiang et al., 2024; Yu et al., 2021; Zhang et al., 2025) to learn
a coarse, differentiable 3D proxy via joint optimization under 2D supervision. These methods are
semantically faithful but yield poor geometry: boundaries are degraded, roofs are unrealistic, and
floating artifacts are common (Fig. 1 (c)).

1As of the submission deadline, the official implementations of Sat2Scene and Sat2City had not been fully
released. We therefore report the 3D results shown in their papers and project pages.
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Image Satellite More than Supervision Synthetic Geometry
Renderable Faithful Buildings Signal or Real Quality

Sat2City ✗ ✗ ✗ 3D Synthetic ✓
Sat2Scene ✓ ✗ ✗ Imgae Real ✓

Sat2Density++ ✓ ✓ ✓ Imgae Real ✗
Ours ✓ ✓ ✓ Imgae Real ✓

(b) Sat2City(a) Sat2Scene (c) Sat2Density++ (d) OursInput  satellite 

High-quality Renderable3D generation from satellite image support multiple applications…
Satellite to DSM Large Area Mesh Gen.Semantic Map to 3D

Comparison of single satellite input  to 3D scene methods

Surround-view multi-camera
and panorama video gen.

Figure 1: Comparison of 3D scene generation methods (top: attribute table; bottom: visual results).
Given an input satellite image, (a) Sat2Scene and (b) Sat2City generate only shells of buildings
and roads and miss non-building semantics; (c) Sat2Density++ and (d) Ours are faithful to satellite
semantics and appearance, but Sat2Density++ is heavily distorted, whereas our Sat3DGen yields a
more structured, higher-quality 3D representation.

Our goal requires preserving the rich semantics of the input satellite image, making the proxy-based
paradigm more suitable than geometry colorization. Encouragingly, recent object-level feed-forward
image-to-3D works (e.g., InstantMesh (Xu et al., 2024), LRM (Hong et al., 2024)) have demonstrated
that high-quality 3D can be learned from 2D supervision alone. This suggests that the poor geometry
of existing scene-level proxy methods is not a fundamental flaw of the paradigm. Instead, we
hypothesize it stems from insufficient geometric constraints to handle the unique challenges of
outdoor scenes. Specifically, the supervision from only one satellite patch and a few ground-level
panoramas is extremely sparse. This sparsity, coupled with the extreme viewpoint gap, leaves
rooftop geometry underconstrained and induces artifacts like holes and floaters on vertical facades.
Additionally, a footprint mismatch between the satellite and street views often destabilizes the
geometry at scene boundaries.

To solve these specific problems, we propose Sat3DGen, which embodies a holistic, geometry-first
methodology. Our strategy is not to invent a new feedforward image-to-3D architecture from scratch,
but to elevate a general framework by demonstrating how to effectively solve its core geometric
failures. To enforce plausible vertical structures and suppress floating artifacts, we introduce a
Gravity-based Density Variation Loss. To address boundary errors stemming from the footprint
mismatch, a Spatial Token regularizes peripheral layouts. To resolve rooftop ambiguity, a Monocular
Relative-Depth Prior constrains satellite-view depth. Furthermore, to mitigate the issue of sparse
supervision, we employ Perspective View Training, jointly training on panoramas and their projected
views to increase effective viewpoint coverage and photometric consistency.

In evaluation, this emphasis on geometry translates directly to substantial quantitative and perceptual
gains. We first validate our geometric improvements against the leading method, Sat2Density++, on
a new benchmark we constructed by pairing the VIGOR-OOD test set with 1-meter resolution DSM
data. Sat3DGen achieves a geometric RMSE of 5.20m, a significant reduction from Sat2Density++’s
6.76m. Crucially, this leap in 3D accuracy directly fuels a dramatic improvement in photorealism.
Even though it includes no components tailored to image quality, our framework reduces the Fréchet
Inception Distance (FID) on the VIGOR-OOD unseen-city split from Sat2Density++’s ∼40 to 19.
The resulting assets support diverse downstream applications such as semantic-map-to-3D synthesis,
surround-view video from satellite imagery, large-area mesh generation, and single-image Digital
Surface Model (DSM) generation without ground-truth depth supervision.
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2 RELATED WORKS

Feed-Forward Image to 3D Works has gained popularity for producing high-quality 3D assets.
Recently, large reconstruction models (Hong et al., 2024; Tang et al., 2024; Xu et al., 2024; Xiang
et al., 2024) have focused on generating object-level 3D assets, leveraging larger datasets, more
refined annotations, and more substantial models to improve the quality of the generated assets,
achieving impressive results. However, existing works primarily focus on object-level generation,
presenting additional challenges when applying these models in outdoor scenes. In our work, we
focus on generating high-quality, comprehensive street-level 3D from a single input satellite image,
thereby naturally enhancing the quality of generated videos and supporting various applications.

Single Satellite to Street-view Synthesis. Early studies generate individual street-view images from
a single satellite patch (Regmi & Borji, 2018; 2019; Toker et al., 2021; Shi et al., 2022; Lu et al.,
2020; Tang et al., 2019), but they do not produce usable 3D or multi-view consistency. Later works
synthesize street-view videos by learning a colored 3D asset from the satellite input (Li et al., 2021;
2024; Qian et al., 2025). Geometry-colorization methods (Li et al., 2021; 2024) often rely on height
maps and vertical-facade assumptions, yielding building-centric scenes and missing non-building
semantics such as roads, crosswalks, and trees. Our work builds on the proxy-based line and focuses
on improving 3D quality under the same single-satellite input setting.

3 METHOD

As shown in Fig. 2, given a single overhead satellite image Isat and an optional global illumination
feature input fill used solely to control illumination when rendering street views, our model can
synthesize a renderable 3D scene that (i) preserves the semantics and appearance of Isat, (ii) supports
high-fidelity satellite, perspective street-view, and panoramic rendering under controllable lighting,
and (iii) can be exported as a mesh with Marching Cubes.
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Figure 2: Diagram of the proposed Sat3DGen framework.

We adopt a feed-forward image-to-3D framework instantiated with a tri-plane NeRF (Chan et al.,
2022) as a baseline. A frozen DINO-v3 encoder (Siméoni et al., 2025) maps Isat to a compact token
grid, which is optionally padded with learnable spatial capacity at the periphery and then decoded
into a high-resolution tri-plane feature field. A lightweight MLP predicts density and color features
from tri-plane features for volumetric rendering. Besides, we follow the illumination-adaptive design
in Qian et al. (2025) to mitigate the sky/illumination mismatch issue.

Beyond this backbone, we introduce three novel geometry-oriented components that substantially
enhance performance and depart from prior work (Qian et al., 2025): a gravity-based density variation
loss to favor gravity-aligned structures, a monocular relative-depth prior in satellite view to resolve
rooftop ambiguity, and panoramic-to-perspective supervision to densify viewpoints. The remainder
of this section details the backbone; the losses and supervision strategy are presented in Section 3.4.
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3.1 SATELLITE TO 3D GENERATION

Given a satellite image, our pipeline constructs a radiance field by encoding it into a 2D token
grid with a frozen backbone, padding with spatial tokens to expand the effective scene extent, and
decoding the tokens into tri-plane features.

Satellite Encoder and Tokenization. Following exsiting object-level feedforward image to 3D
works, we use frozen pretrained VIT model as image encoder (Xu et al., 2024; Xiang et al., 2024). In
practise, a frozen DINO-v3 ViT encoder (Siméoni et al., 2025) Esat processes Isat into a 2D token
grid:

Ftoken = Esat(Isat) ∈ RHt×Wt×C , (1)
with Ht = Wt = 16 and C = 1024 in all experiments. This token grid is the minimal scene-level
latent that will be lifted into a 3D feature field.

Spatial Tokens. Street-view supervision often observes buildings and roads extending beyond the
satellite crop, which induces boundary artifacts if the 3D field is constrained to the crop footprint. We
therefore pad Ftoken with a border of N zero-valued spatial tokens on each side:

Ftoken pad = PADN (Ftoken) ∈ R(Ht+2N)×(Wt+2N)×C , N = 2. (2)

With Ht = Wt = 16, padding yields Ftoken pad ∈ R20×20×1024. Suppose the original scene cube
spans L meters per side (e.g., L = 50m). In that case, padding enlarges the effective cube to
L ·

(
1 + 2N

Ht

)
(e.g., 62.5m), providing degrees of freedom to accommodate peripheral content while

stabilizing interior geometry.

Tokens → Tri-Plane Features. A lightweight VAE-style decoder (Esser et al., 2021) D upsamples
tokens into a high-resolution tri-plane feature map with an upsampling factor s = 16:

Ftri = D(Ftoken pad) ∈ Rrestri×restri×96, (3)
where restri = 320 when padding is used and 256 otherwise. Channels are reshaped into three
orthogonal planes (XY,XZ, Y Z).

Tri-Plane Sampling. A 3D query point x ∈ R3 within the normalized scene cube is orthographically
projected onto each plane and bilinearly sampled to obtain features ϕXY (x), ϕXZ(x), ϕY Z(x). The
three plane features are aggregated by elementwise summation to form the fused feature:

h(x) = ϕXY (x) + ϕXZ(x) + ϕY Z(x). (4)
Then, a shallow MLP predicts density and color:

σ(x), c(x,w) = MLP
(
h(x), w

)
, (5)

where σ(x) denotes the volume density, c(x,w) is the radiance color conditioned on an illumination
code w, and h(x) is the fused tri-plane feature at location x; the MLP uses a shared trunk with two
output heads for density and color.

3.2 ILLUMINATION-ADAPTIVE RENDERING AND SKY GENERATION

Global Illumination Code. Following Sat2Density++, we extract a global illumination feature fill
from a real street-view image Iill in a statistical way (Qian et al., 2025), and then project to a style
code will with a light mlp:

will = Eill(Iill). (6)

During training, fill is extracted from the groundtruth street-view panorama image to mitigate
sky/illumination mismatch, and at test time, it enables lighting-controllable rendering.

Sky Region Generation with Spherical Feature Maps. To natively support perspective view
rendering, the sky module must provide consistent appearances for arbitrary viewpoints. We achieve
this by modeling the sky as a feature map on the sphere. A lightweight 2D convolutional decoder
produces this sky feature map from will:

Fsky = Gsky(will) ∈ R512×512×c, (7)
where c matches the renderer’s feature channels. For any given ray with normalized direction d ∈ S2,
we convert its Cartesian coordinates to spherical angles (θ, ϕ) and bilinearly sample Fsky to obtain the
sky color feature csky(d). This design elegantly provides consistent sky features for both panoramic
and perspective-view rendering.
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3.3 VOLUMETRIC RENDERING AND OUTPUTS

Ray Marching and Compositing. For a camera ray r(t) = o+ td, t ∈ [tn, tf ], we sample points

{xk} with step δk and compute transmittance Tk = exp
(
−
∑

j<k σ(xj) δj

)
. The rendered color is

C(r) =
∑
k

Tk

(
1− e−σ(xk)δk

)
c(xk, will) + Tout csky(d), (8)

where Tout is the remaining transmittance upon exiting the volume. The same renderer supports
perspective and spherical cameras; the latter yields full panoramas.

Renderable Views and Mesh Export. Our model can render (i) satellite views, (ii) perspective
street-view images at arbitrary camera poses, and (iii) panoramic street views. For asset export, we
evaluate σ on a dense grid and run marching cubes with a fixed isovalue τ to obtain a watertight
mesh. The sky branch is excluded from meshing.

3.4 LOSS FUNCTIONS.

Gravity-based Density Variation Loss. Outdoor scenes reconstructed from sparse views often
exhibit geometric artifacts like floating debris and hollow grounds. To mitigate these issues, we
introduce a regularizer based on a simple design principle: volumetric density should generally be
non-increasing with altitude. The design of this regularizer is motivated by the physical effect of
gravity. To translate this concept into the NeRF framework, we leverage the volume density σ. In
NeRF, σ measures light obstruction, making it a natural proxy for physical matter, given that outdoor
scenes are predominantly composed of opaque surfaces like terrain, rocks, and tree trunks. Following
the intuition that gravity causes matter to accumulate at lower elevations, we establish our principle:
σ should generally be non-increasing with altitude. This is consistent with real-world observations;
for instance, solid ground and tree trunks are typically found at lower altitudes, while higher altitudes
often contain sparser structures like leafy canopies or simply open air. Grounding our regularizer in
this physical intuition helps the model learn more plausible geometry.

Specifically, we sample a 3D point x ∈ R3 and a corresponding point x′ = x+ δz at a slightly higher
altitude, where δz is a small displacement vector purely in the upward (anti-gravity) direction. We
then penalize cases where the density at the higher point x′ is significantly greater than the density at
the lower point x. This is enforced by minimizing the following loss:

Lgrav = Ex,δz [ReLU(σ(x+ δz)− σ(x)− ϵ)] , (9)

where the slack variable ϵ (set to 1 in our experiments) provides a soft constraint, allowing for
legitimate hollow or overhanging structures such as tree canopies, arched roofs, and bridges. This loss
effectively suppresses floating artifacts and fills baseless cavities while preserving realistic sparsity
under overhangs.

Satellite-View Depth Regularization. Each scene provides one bird’s-eye satellite image and
only a few street-view observations; rooftops lack multi-view photometric supervision and tend to
be irregular. We therefore impose a relative depth prior in the satellite view using pseudo labels
from Depth Anything v2 (Yang et al., 2024). Let D∗ be the pseudo relative depth for the satellite
camera and D̂ the rendered depth from our field. We adopt a scale-and-shift invariant MiDaS-style
loss (Ranftl et al., 2022):

Ldepth =
1

N

∑
p

∣∣s D̂(p) + t−D∗(p)
∣∣ + λ∇

1

N

∑
p

∥∥∇(s D̂(p) + t
)
−∇D∗(p)

∥∥
1
, (10)

where (s, t) are optimal scale and shift estimated per image by least squares, N is the number of
valid pixels, and ∇ denotes spatial gradients. This encourages consistent depth ordering and smooth
rooftops without requiring metric depth.

Photometric Reconstruction and Adversarial Loss. We supervise three rendered view types:
satellite views, panoramic street views, and perspective crops projected from panoramas. Let Îi
be a rendered image and Igt

i the corresponding ground truth. The photometric objective combines
per-pixel reconstruction with perceptual similarity, and we add an adversarial term to mitigate blur

5
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from pure regression in complex outdoor scenes:

LRGB =
∑
i

∥∥∥Îi − Igt
i

∥∥∥2
2
+ λlpips

∑
i

LLPIPS

(
Îi, I

gt
i

)
+ λGAN

∑
i

LGAN(Îi), (11)

where LLPIPS is the perceptual loss and LGAN follows the StyleGAN2 hinge objective (Karras et al.,
2020) for realism. In practice, the index i ranges over satellite, panorama, and perspective supervision
views rendered during training.

Sky Losses: Opacity BCE and Masked Sky L1. To disentangle the sky from the 3D scene and
improve sky quality, we use two complementary losses on panoramic street views.

Let Msky ∈ {0, 1}H×W be the pseudo binary sky mask of a panorama (1 for sky), which is generated
by the off-the-shelf model (Zhang et al., 2022), and let Tout ∈ [0, 1]H×W be the residual transmittance
per pixel from volumetric rendering (interpreted as the fraction attributed to the sky background after
alpha compositing). We apply a binary cross-entropy:

Lsky-op = LBCE(Tout, Msky). (12)

Denote the rendered panorama Îpano and the ground-truth panorama Igt
pano. We enforce color fidelity

on sky pixels only:

Lsky-L1 =
1∑
Msky

∑
p

Msky(p)
∥∥Îpano(p)− Igt

pano(p)
∥∥
1
. (13)

Overall Objective. The full training objective is a weighted sum of the above terms:

Ltotal = λrgbLRGB + λgravLgrav + λsky-opLsky-op + λsky-L1Lsky-L1 + λdepthLdepth, (14)

where weights λ· are hyperparameters.

4 EXPERIMENTS

Datasets and Splits. We train on GPS-matched satellite–ground image pairs. Training uses three
cities (Chicago, New York, San Francisco) in the VIGOR dataset (Zhu et al., 2021), and out-of-domain
(OOD) testing uses the held-out city Seattle (VIGOR-OOD). VIGOR provides multiple street-view
panoramas per satellite tile together with relative camera poses; the satellite zoom level is fixed at 20,
yielding near-constant ground sampling distance per pixel. In total, we use 78,188 pairs for training
and 11,875 pairs for quantitative evaluation on VIGOR. More details, data preparation, and statistics
are provided in Appendix F.

Implementation Details. We resize satellite images to 256×256 as input, and the generated triplane
features have dimensions of 320 × 320 × 32 × 3. For fair comparison, the generated panorama
images are shaped 512 × 128, and the perspective images are 256 × 256. The training process is
conducted on 8 NVIDIA H20 GPUs with a batch size of 32, comprising 600,000 iterations for the
training phase. More implementation details can be seen in the supplementary materials.

3D Comparision. We compare our 3D results with Sat2Scene (Li et al., 2024), Sat2City (Hua et al.,
2025) and Sat2Density++ (Qian et al., 2025). The colored meshes are generated by the Marching
Cubes algorithm for Sat2Density++ and ours. Since there are no ground truth 3D assets available
to evaluate the reconstruction quality, we can only perform qualitative comparisons, as shown on
Fig. 1, Fig. 3, Fig. 4 (b), and Fig. 6. We observe consistent improvements in geometric plausibility
and semantic faithfulness across diverse urban layouts. Compared with Sat2Scene and Sat2City,
which mainly texture simplified building blocks and leave non-building regions weakly modeled, our
reconstructions better preserve road markings, crosswalks, medians, tree belts, and sidewalks that are
visible in the satellite input(Fig. 1. Relative to Sat2Density++, although both adopt a feed-forward
image-to-3D framework, our method jointly integrates several lightweight components to improve
geometry learning at street level under sparse, cross-view supervision. Taken together, these design
choices strengthen scene layout near the satellite patch boundary, bias the volumetric field toward
gravity-aligned structures, and inject rooftop depth cues from the overhead view, while increasing

6
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Input Satellite OursSat2Density++

Figure 3: The comparison of generation 3D between Sat2Density++ (Qian et al., 2025) and our
model on the VIGOR-OOD test set (Zhu et al., 2021).

(a) Input sat. and cameras (b) 3D generated by Sat2Density++ (left) and Ours (right)

(c) Generated panorama frames by Sat2Density++ (Top) and Ours (Bottom)

(d) Generated multi-view perspective frames by Ours

Figure 4: Visual results of generated mesh (b), panorama videos (c), and multi-view perspective
video (d) from a single satellite image input and camera trajectories (rainbow line) (a). The full video
can be seen in the supplemental materials.

effective viewpoint coverage via panorama-to-perspective supervision. The resulting reconstructions
exhibit more coherent ground planes and periphery geometry, with fewer torn edges and warped
borders across the tile extent. Rooftops and building bases become geometrically plausible: roofs

7
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Table 1: Quantitative results of street-view comparison on the test set of VIGOR-OOD. Bold indicates
the best results, while underlined text represents the second-best results.

Method Realism Evaluation Semantic Structure Pixel Perceptual Similarity
FID↓ KID↓ DINO↑ SSIM↑ PSNR↑ Palex ↓ Psqueeze ↓

ControlNet 23.6 / / 0.34 12.02 0.46 0.34
ControlS2S 28.0 / / 0.42 13.80 0.38 0.27
Sat2Density 85.6 0.079 0.451 0.32 12.48 0.45 0.37

Sat2Density++ 40.8 0.035 0.465 0.34 12.51 0.44 0.34
Canonical Image-to-3D 35.6 0.030 0.479 0.35 12.63 0.42 0.32

Ours 19.2 0.014 0.525 0.37 12.83 0.38 0.30

avoid bubbling or sagging, flat roofs remain planar, pitched roofs retain credible tilt, and facades
connect cleanly to the ground (Fig. 1, Fig. 3, and Fig. 6).

Image and Video Comparison. We provide quantitative and qualitative comparisons. The qualita-
tive comparison can be seen on Fig. 4, and more video comparisons are provided in the supplementary
ZIP archive. The quantitative comparison is shown on Table 1.

Quantitative comparison. We follow prior work (Qian et al., 2025; Ze et al., 2025) for evaluation.
We report Fréchet Inception Distance (FID) (Heusel et al., 2017) and Kernel Inception Distance
(KID) (Bińkowski et al., 2018) to quantify distributional similarity between generated and real image
sets, reflecting realism and coverage. Semantic alignment is assessed using a DINO-based feature
similarity following (Qian et al., 2025). Pixel-level fidelity and structural similarity are evaluated
with PSNR and SSIM, and perceptual similarity is measured with LPIPS (Zhang et al., 2018) using
AlexNet and SqueezeNet backbones, denoted Palex (Krizhevsky et al., 2012) and Psqueeze (Iandola
et al., 2016). Given that our task is an input-view conditioned novel view generation problem
with a very large viewpoint gap, pixel-level correspondence to any single real image is inherently
brittle due to occlusions, parallax, and minor pose or scene changes. The primary desiderata are
photorealism and semantic faithfulness rather than exact pixel matching. We therefore treat FID,
KID, and DINO-based semantic similarity as primary metrics, and report PSNR, SSIM, and LPIPS
for completeness.

We compare our model with Sat2Density (Qian et al., 2023), Sat2Density++ (Qian et al., 2025), the
diffusion-based image generation model ControlNet (Zhang et al., 2023b), and ControlS2S (Ze et al.,
2025). We also provide results from a feed-forward image-to-3D model (denoted as “Canonical
Image-to-3D” in Table 1), which removes the proposed spatial token module, gravity-based density
variation loss, perspective training strategy, Lgrav, and Ldepth proposed in our method. For Sat2Density,
Sat2Density++, and our model, we pair each satellite image with a randomly selected global illu-
mination feature input from the training set for a fair comparison. For ControlNet and ControlS2S,
we use the results reported in the ControlS2S paper. It is worth noting that in the ControlS2S work,
they divided the training and testing sets within each city. In contrast, our approach trains on three
cities and conducts out-of-domain testing on an additional city, Seattle. This out-of-domain testing is
significantly more challenging.

As shown in Table 1, our method leads in FID, KID, and DINO. Compared with the Canonical
Image-to-3D, we only add our 3D optimization modules, yet the rendered images improve a lot.
When compared with diffusion image generation models, our model also achieves lower FID and
KID. This is because we learn a high-quality, view-consistent 3D representation that handles the large
aerial-to-ground viewpoint change and produces more realistic and semantically correct images.

Qualitative Comparison. We provide a qualitative comparison in Fig. 4 (c), and more video compar-
isons can be seen in the zip supplemental materials. We can render videos from a given satellite image
and any street-view camera trajectory, as illustrated in Fig. 4 (c) We compared the panorama video
results generated by Sat2Density++ and our model. Consistent with the conclusions drawn from
the generated 3D assets, our model enhances the generated videos primarily by reducing artifacts
and producing smoother edges around buildings and scene boundaries through the generation of
higher-quality 3D representations.

Geometric Comparison To quantitatively evaluate the geometric accuracy of the generated 3D
models, we compare the predicted satellite-view depth against the ground truth. The detailed
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Table 2: Ablation results on the VIGOR-OOD test set. The first row removes all proposed key
components: Ldep, Lgrav, Spatial Tokens, and perspective training. The next three rows ablate each
component individually under the same setting (without perspective training). “Base (Full model w/o
perspective training)” enables Ldep, Lgrav, and Spatial Tokens but omits perspective training. ”Full
model” enables all components, including perspective training.

DINOv3 Ldep Lgrav Sp. Tok. Per. Train FID↓ KID×100 ↓ RMSE↓
Canonical Image-to-3D ✓ 35.6 30.1 6.21
Base w/o Ldep ✓ ✓ ✓ 23.7 18.4 5.75
Base w/o Lgrav ✓ ✓ ✓ 25.9 19.0 5.21
Base w/o Spatial Tokens ✓ ✓ ✓ 24.8 18.1 5.64
Base (Full w/o per. training) ✓ ✓ ✓ ✓ 21.6 16.2 5.23
Full model ✓ ✓ ✓ ✓ ✓ 19.2 13.6 5.20

Left: w/o Spatial Tokens, Right: w. Spatial Tokens 

Left: w/o Gravity-based Density Variation Loss, Right: w. Gravity-based Density Variation Loss

Left: w/o Satellite-view Depth Regularization, Right: w. Satellite-view Depth Regularization

Figure 5: Qualitative ablation on key modules.

procedure for preparing the ground truth DSM pairs for our VIGOR-OOD test set is provided in the
Appendix Section D. As shown in Table 3, we adopt the standard evaluation metrics from satellite
stereo literature (Gao et al., 2021), including Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and the percentage of pixels with errors below 2.5m and 7.5m.

The results clearly demonstrate the effectiveness of our proposed methodology. The state-of-the-art
method, Sat2Density++, achieves an RMSE of 6.76m. Our controlled baseline, Canonical Image-to-
3D, which benefits from a stronger backbone, already improves upon this with an RMSE of 6.21m.
Our full model, however, significantly outperforms both, establishing a new state-of-the-art with an
RMSE of 5.20m and a MAE of 3.47m. Notably, our model reconstructs 62.69% of the surface with an
error of less than 2.5m, a substantial improvement over Sat2Density++ (49.69%). This underscores
the superior capability of our method in generating geometrically precise urban scenes. In addition to
these quantitative results, we provide extensive qualitative comparisons of the rendered satellite-view
depth and the groundtruth DSM in the Appendix Fig. 8, which visually corroborate our model’s
superior geometric fidelity.

Ablation Study. We conduct a comprehensive ablation study to validate our design choices, with
quantitative results in Table 2, Table 3 and qualitative visualizations in Fig. 5. Starting from our
Canonical Image-to-3D baseline (FID 35.6, RMSE 6.21m), integrating our core geometric priors
(Ldep, Lgrav, Spatial Tokens) synergistically boosts performance to an FID of 21.6. Among them,
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Table 3: Quantitative comparison for predicted DSM.
MAE↓ RMSE↓ < 2.5m ↑ < 7.5m ↑

Sat2Density++ 4.72 6.76 49.69 83.65
Canonical Image-to-3D 4.23 6.21 52.73 84.54
Base w/o Lgrav 3.53 5.21 61.17 88.94
Base w/o Ldep 3.82 5.75 59.88 87.04
Base w/o Spatial Tokens 3.87 5.64 57.10 86.46
Base (Full w/o per. training) 3.52 5.23 61.97 88.52
Ours (Full model) 3.47 5.20 62.69 88.68

the gravity-based loss (Lgrav) is most critical for photorealism, as its removal causes the largest
FID degradation (to 25.9). Conversely, removing Ldep or Spatial Tokens leads to more significant
geometric errors (RMSE increases to 5.75m and 5.64m, respectively). Finally, adding perspective
training achieves our best results across both photorealism (FID 19.2) and geometric accuracy (RMSE
5.20m).

These quantitative gains are visually corroborated in Fig. 5. As intended, Spatial Tokens regularize
boundaries, Lgrav yields straighter facades and reduces floaters, and Ldep corrects rooftop geometry.
The consistent improvements across metrics and visuals confirm that each component is essential,
targeting distinct aspects of the final high-fidelity reconstruction.

Applications. We show a few application examples in Fig. 1. Additional downstream results and
implementation details are provided in Appendix Section B, including satellite-to-DSM (metric
depth) conversion without ground-truth depth data supervision (Fig. 9), semantic map to 3D recon-
struction (Fig. 11), large-area 3D mesh generation from a single large satellite patch (Fig. 10), and
surround-view multi-camera video synthesis from satellite imagery (Section B.2).

5 CONCLUSION

In this work, we introduce Sat3DGen, a novel algorithm for generating a 3D outdoor scene from a
satellite image. Our algorithm is trained exclusively on GPS-aligned satellite and panorama street
view image data. By incorporating the novel approaches such as gravity-based Density Variation Loss
and spatial tokens proposed in this paper, our experiments demonstrate that Sat3DGen effectively
improves the quality of the generated 3D assets and enhances the quality of the generated videos.
We hope that our approach inspires future research in 3D outdoor scene generation and that our
model can effectively support downstream tasks such as digital Earth and scene simulation, thereby
enhancing the efficiency and performance of outdoor 3D-related applications.

ETHICS STATEMENT

Our work builds on a publicly available dataset (VIGOR (Zhu et al., 2021), which consists of
satellite images and street-view panoramas collected from widely accessible map platforms. We
do not gather or release any personally identifiable information (PII). All data sources follow the
original dataset licenses and terms of use, and no effort is made to identify individuals or private
properties beyond what is already visible in the released benchmarks. Potential misuse of our
approach should be considered: while our method advances urban-scale 3D scene reconstruction
for beneficial applications such as autonomous driving simulation, AR/VR urban planning, and
geographic visualization, it could also be applied to large-scale surveillance if deployed irresponsibly.
To mitigate such risks, we emphasize that our framework is intended solely for academic research
and positive societal use cases, and we release neither additional sensitive data nor pre-trained models
tied to private regions.
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REPRODUCIBILITY STATEMENT

We aim to ensure the reproducibility of our results. All implementation is based on standard deep
learning frameworks (PyTorch (Paszke et al., 2019)), and our model architecture, training strategies,
and evaluation protocols are fully described in Sec. 4 and Appendix F. We specify dataset splits,
preprocessing steps, and evaluation metrics in detail, and we adopt widely used benchmarks (VIGOR)
to facilitate fair comparisons. Hyperparameters, batch sizes, number of iterations, and hardware
configurations are reported in the Implementation Details paragraph. We will release the training
scripts, configuration files, and inference code, together with instructions for data preparation and
evaluation, upon publication. This enables other researchers to reproduce our quantitative scores and
qualitative visualizations, and to extend our method to new geographic regions or related cross-view
generation tasks.
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Abhijit Ogale, Luc Vincent, and Josh Weaver. Google street view: Capturing the world at street
level. Computer, 43(6):32–38, 2010.
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This appendix provides more details and results of our Sat3DGen.

LLM USAGE

In this section, we clarify the role of large language models (LLMs) in preparing this work. The
model was used exclusively for language polishing, such as refining grammar, style, and readability,
without contributing to the research design, analysis, or conclusions.

A MORE 3D AND VIDEO RESULTS

A.1 MESH RESULTS COMPARED TO SAT2DENSITY++

We provide additional mesh results in Fig. 6, with all satellite images sourced from the VIGOR-OOD
test set.
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Satellite input OursSat2Density++

Figure 6: Comparison of generation 3D assets between Sat2Density++(Qian et al., 2025) and Ours.

A.2 MESH RESULTS COMPARED TO CANONICAL IMAGE-TO-3D

As shown in Fig. 7, the Canonical Image-to-3D baseline produces significantly inferior geometry
compared to our full model. Specifically, its ground surfaces are noisy and uneven, and it fails to
capture distinct shapes for trees or produce flat building rooftops. The mesh boundaries also exhibit
irregular, spiky extrusions. These geometric flaws result in a much lower rate of watertight meshes.
In contrast, our model consistently generates smoother surfaces, more plausible object structures,
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Canonical Image-to-3D Ours

Figure 7: Comparison of generation 3D assets between the baseline Canonical image-to-3D model
and Ours.

and cleaner boundaries. This visual evidence strongly corroborates the quantitative results in Table 2,
where the baseline’s poor geometric fidelity is reflected in its high RMSE score.

A.3 PANORAMA VIDEO RESULTS.

In the supplementary ZIP archive, the ‘video result’ folder contains results from 16 sets of VIGOR-
OOD test data. Each video is named according to its latitude and longitude, allowing you to view the
latest satellite images by entering these coordinates into Google Maps2. In each video, the top-left
corner displays the satellite image and camera trajectory, the top-right section presents the results
of the Sat2Density++ (Qian et al., 2025), and the adjacent section showcases our results. From the
presented videos, it is clear that our method, by producing enhanced 3D assets, achieves superior
panorama video generation—yielding more regular building shapes, fewer floating artifacts, and
improved generation of ground vehicles, road signs, and trees.

A.4 SATELLITE-VIEW DEPTH COMPARISON

We present a qualitative comparison of the generated depth maps in Fig. 8. It is important to note the
inherent challenge of temporal misalignment between the satellite images and the ground truth DSM,

2https://www.google.com/maps/
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(a) Satellite Img. (b) Sat2Density++ (c) Ours (d) Real DSM

Figure 8: Comparison of predicted satellite-view height map.
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which was collected over a year (Section D). This leads to discrepancies from transient objects (e.g.,
vehicles) and noise within the DSM itself, making a perfect reconstruction unattainable.

Despite these challenges, a clear difference emerges. Sat2Density++ (b) yields overly-smoothed
results with indistinct building edges and noisy ground planes. In contrast, our model (c) generates
significantly sharper and more geometrically plausible structures, featuring flat rooftops and clean
ground surfaces. These visual improvements directly corroborate our superior quantitative metrics
reported in the main paper, demonstrating a better capability to reconstruct high-fidelity geometry
from a single image.

B MORE APPLICATIONS RESULTS.

B.1 SINGLE SATELLITE IMAGE TO DSM (METRIC DEPTH)

AS shown in Fig. 9, our model can render satellite-view metric depth from the learned NeRF-based
3D representation, even though no metric-depth annotations are used during training.

B.2 SURROUND-VIEW MULTI-CAMERA VIDEO GENERATION FROM A SINGLE SATELLITE
IMAGE.

We provide some surround-view multi-camera video results in Fig. 4 and the supplementary ZIP
archive, with four fixed 120-degree FOV perspectives shown at the bottom of each video. Our
algorithm leverages NeRF-based 3D representations, allowing the generation of perspective im-
ages/videos with varying FOV and image sizes. The videos demonstrate that the quality of our
generated perspective images is nearly on par with panorama images, underscoring the superiority of
our model design.

To the best of our knowledge, our approach is the first to generate diverse content in multi-view
perspective videos from a single satellite image without requiring video data or 3D geometry as
training input. The most relevant existing method for generating perspective videos from a single
satellite image is Sat2Scene (Li et al., 2024). However, this method is limited to synthesizing
buildings and ground surfaces, primarily due to its strong reliance on building height maps converted
into point clouds. Moreover, as their code and dataset are not fully open-sourced, a direct comparison
with our results is not feasible. In summary, we demonstrate the capability of our algorithm to
generate multi-view perspective videos, underscoring its potential applications in vehicle driving
simulation.

B.3 LARGE-SCALE MESH GENERATION

The process for generating a big mesh from a large satellite image is as follows: We first download
an extensive satellite image from online platforms and then resize it to ensure the per-pixel resolution
remains consistent with the pixel resolution of our training data. We then perform inference using a
sliding window approach, processing each patch. Each patch resolution is 256x256 with a step set to
128. For the density at the edges, we simply average the values to obtain the final result. In our demo,
as shown in Fig. 10, the input for the large-scale satellite image is at zoom level 19, covering a spatial
area of approximately 150m× 150m. In theory, we can download larger remote sensing images to
generate results over even broader areas. However, at a fixed zoom level, the Google Maps Static API
returns at most 640×640 pixels per request.

Our demo results clearly demonstrate that the proposed algorithm produces smooth and coherent
ground surfaces, seamlessly integrating multiple patches. The transitions between buildings show
minimal discontinuities, highlighting the effectiveness of our method and its strong potential for
large-scale 3D content generation.

B.4 SEMANTIC MAPS TO 3D ASSETS.

Generating 3D scenes from 2D semantic maps is a highly effective application. We can utilize open
street map data to obtain ground semantic maps or directly create semantic maps through drawing.
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Figure 9: Visual results of our model generated DSM (metric depth) from the monocular satellite
image, which is rendered from the satellite view, with no metric depth data for training.

In our work, we collected multiple semantic map-satellite image pairs using OpenStreetMap3 and
Google Satellite Maps4 to train an additional model for transforming color semantic maps into satellite
images. This model is based on diffusion (Song et al., 2021), composed of ControlNet (Zhang et al.,
2023a) and SDXL (Podell et al., 2023).

3https://www.openstreetmap.org/
4https://mapsplatform.google.com/

18

https://www.openstreetmap.org/
https://mapsplatform.google.com/


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Large Input Image Generated Mesh Zoom In

Figure 10: Given a large satellite image, our model can generate mesh with sliding window inference
mode.

Synthesized sat. Generated 3D by oursInput semantic map

Figure 11: Given a colored semantic map, our model can generate 3D mesh through a pipeline that
first converts the semantic map to a satellite map and then transforms the satellite map into 3D assets.

As shown in Fig. 11, given a colored semantic map, the diffusion model first generates a satellite map,
followed by Sat3DGen generating 3D assets based on the satellite image input. The results indicate
that the generated 3D assets maintain spatial consistency with the semantic positions in the input
semantic map. This application of generating 3D assets from semantic maps can be advantageous in
spatial planning and game modeling, underscoring the significance of our work.
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C IMPLEMENTATION DETAILS

Perspective sampling. During training, we randomly obtain perspective images from panorama
street view images. We set the pitch range to [-30, 30] and fix the roll at 0. The yaw is selected within
the range [-79, 179], and the field of view (FOV) is randomly chosen from [90, 105, 120]; the render
size is 256× 256.

Volume Rendering. The triplane dimension is set to 32, and there are 96 samples per ray.

Other Hyperparameters. In our reconstruction of the panorama and satellite view perspectives,
as well as in the sections of GAN loss and opacity loss, we maintain the same weight settings as
Sat2Density++. For the newly introduced Gravity-based Density Variation Loss, we assign a weight
of 3.5. As for the Satellite View Depth Regularization based on Midas loss, we set the weight to 0.1,
acknowledging that the pseudo-labels for relative depth predicted by existing models may not be
entirely accurate, hence opting for a smaller weight to mitigate potential adverse effects on the model.

Regarding the perspective view image reconstruction loss, we assign a weight that is half of the
panorama view reconstruction loss. Conversely, the weight for the perspective view GAN loss is
kept consistent with the panorama view GAN loss weight. This approach is due to the significant
detail present in perspective images and the substantial difference between input satellite views and
output perspective views. Given that the satellite input offers limited effective information for such
detailed perspective views, we aim to prioritize realism and image quality in generating perspective
images (as constrained by GAN loss) rather than achieving visual consistency with the ground truth
images (which is the target of the reconstruction loss constraint). The full code will be released after
acceptance.

D GROUND TRUTH DSM PREPARATION FOR VIGOR-OOD

Quantitative evaluation of 3D geometry requires accurate ground truth Digital Surface Models
(DSMs). However, high-quality, publicly available LiDAR-derived DSM data is scarce and typically
limited to a few cities. We were fortunate that our out-of-distribution (OOD) test set, VIGOR-OOD,
is based on the city of Seattle, for which we were able to obtain a corresponding high-precision DSM
dataset. This section details the entire pipeline for processing and aligning this raw data to create the
ground truth for our geometric evaluation.

D.1 DATA SOURCE AND JUSTIFICATION

The ground truth DSMs were derived from the King County West 2021 dataset, which is publicly
available through the Washington State Department of Natural Resources (DNR) Lidar Portal5. As
shown in the data’s official report, this consists of Quality Level 1 (QL1) LiDAR data collected in
the spring and summer of 2021. We specifically chose this data as its acquisition timeline closely
matches the period when the VIGOR dataset (Zhu et al., 2021) was being created.

We selected six large GeoTIFF tiles from this collection that collectively cover the geographical
extent of the VIGOR-OOD test images in Seattle, as visualized in Fig. 12. The official metadata
confirms the high quality of this source data, reporting positional errors of less than 5.6 cm with 95%
confidence, which provides a reliable basis for our geometric evaluation.

D.2 METHODOLOGY FOR SATELLITE-DSM ALIGNMENT

A significant technical challenge lies in aligning the raw DSM GeoTIFF files with the individual
satellite images from the VIGOR-OOD test set. The datasets use different Coordinate Reference
Systems (CRS), resolutions, and are not spatially aligned. We developed a robust processing pipeline
to address this, which is outlined in Algorithm 1.

The key to our approach is leveraging the metadata provided by the VIGOR dataset, which, fortunately,
includes the precise WGS84 latitude/longitude coordinates and the Google Maps zoom level for each

5https://lidarportal.dnr.wa.gov/
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satellite image. This allows us to first estimate the geographic bounding box of each image. We
then reproject the corresponding section of the high-resolution DSM onto the exact pixel grid of the
satellite image, ensuring perfect alignment. The main steps are detailed below.

Algorithm 1 DSM Ground Truth Preparation Pipeline
1: Input: Set of VIGOR-OOD satellite images I , set of raw DSM GeoTIFF tiles T .
2: Output: A ground truth DSM array Di for each valid input image Ii.
3: Initialize an in-memory spatial index dsm index for all tiles in T for fast lookups.
4: for each satellite image Ii in I do
5: {Step 1: Estimate satellite image’s geographic footprint}
6: Parse center latitude/longitude and zoom level from Ii’s filename.
7: Estimate the WGS84 bounding box target bounds for Ii.
8: {Step 2: Find and Reproject Overlapping DSM Data}
9: Find all candidate tiles candidate tiles from dsm index that spatially overlap with

target bounds.
10: if candidate tiles is empty then
11: continue {No DSM coverage for this image}
12: end if
13: Initialize best dsm to ‘null’ and max coverage to 0.
14: for each tile Tj in candidate tiles do
15: Create an empty destination array temp dsm with the same dimensions as Ii.
16: Reproject the data from Tj onto temp dsm using bilinear resampling.
17: if coverage of temp dsm > max coverage then
18: best dsm← temp dsm, max coverage← coverage.
19: end if
20: end for
21: {Step 3: Post-processing and Quality Control}
22: if best dsm is not ‘null’ then
23: Convert elevation values in best dsm from feet to meters.
24: Calculate the percentage of NaN pixels nan percent in best dsm.
25: if nan percent ≤ 5.0% then
26: Save best dsm as the final ground truth Di.
27: else
28: Discard this pair due to insufficient DSM coverage.
29: end if
30: end if
31: end for

This automated pipeline ensures that for every test image, we generate an aligned, unit-corrected, and
quality-controlled DSM that can be used for direct, pixel-wise comparison in our geometric accuracy
evaluation. Fig. 8 shows visualizations of several paired satellite images and their corresponding
DSM data.

E MORE ABLATIONS

E.1 VARIATION REGULARIZATION ABLATION.

As shown in Table 4, removing variation regularization gives the worst results (FID 25.90, KID 19.0).
Replacing it with a TV loss slightly lowers FID (24.83) but hurts KID (20.1), indicating oversmoothing
and weak structural guidance. Our Lgrav outperforms both, with ϵ = 1.0 yielding the best metrics
(FID 21.60, KID 16.2). Setting ϵ = 0 degrades performance because it fails to accommodate genuine
voids (e.g., gaps beneath tree canopies outside the trunk), leading to over-penalization and smoothing.
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Figure 12: The collected DSM data in Seattle City.

Table 4: Ablation on variation regularization. “No variation loss” means starting from the base (Full
model w/o perspective training) and removing Lgrav. “w. TV loss” replaces Lgrav with total variation
(TV) loss Chan et al. (2022). The remaining rows use Lgrav with different ϵ; our choice ϵ=1.0 (Ours)
performs best overall. Lower is better.

Method FID↓ KID×100↓
No variation loss 25.90 19.0
w. TV loss 24.83 20.1

Lgrav (ϵ=0) 24.52 18.7
Lgrav (ϵ=0.01) 22.61 17.2
Lgrav (ϵ=0.1) 22.63 16.2
Lgrav (ϵ=0.5) 21.94 17.9
Lgrav (ϵ=1.0) 21.60 16.2
Lgrav (ϵ=5.0) 21.74 18.5
Lgrav (ϵ=10.0) 21.66 17.5

F DATASET PREPARATION AND DETAILS

VIGOR. VIGOR (Zhu et al., 2021) contains four cities and, for each satellite image, multiple
associated street-view panoramas with known relative poses. The satellite zoom level is 20. We train
in Chicago, New York, and San Francisco, and use Seattle as an unseen-city OOD test set. We use
78,188 satellite–panorama pairs for training and 11,875 pairs for metric evaluation. In principle,
additional cities could be incorporated to further scale training.

Discussion on other Datasets. CVACT (Shi et al., 2022) and CVUSA (Zhai et al., 2017) are widely
used for satellite-to-street image synthesis and localization. However, they are unsuitable for our 3D
generation task due to two main reasons.
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First, their data structure provides insufficient geometric supervision. Each satellite tile in these
datasets is paired with a single ground-level image at the tile center, without multi-view coverage. This
data design is incompatible with our method, which relies on panoramas captured at spatially distinct
positions to learn consistent street-level 3D. With only a centered street view, the supervision is too
sparse to learn reliable geometry, rendering our optimization components ineffective. Consequently,
we do not use CVACT or CVUSA for training. In practice, VIGOR-style datasets can be constructed
for any geographic region where street-level panoramic imagery is available (e.g., via Google Maps)
by pairing a single satellite image with N panoramic views.

Second, these datasets are unsuitable for a fair out-of-distribution (OOD) evaluation. The satellite
images in CVACT and CVUSA were captured by different satellites and at different zoom levels
than those in VIGOR. This results in significant appearance shifts and differences in pixel-level
spatial resolution. Evaluating our VIGOR-trained model on these datasets would conflate the test of
geometric generalization with a test of resilience to data source domain shift, which is beyond the
scope of this work. We test on an unseen city from the same data source.

Our Strategy for Generalization Evaluation. We explicitly test generalization using the VIGOR-
OOD split, by training on three cities and testing on the unseen city of Seattle. This setup introduces
a significant domain gap in terms of urban layouts and architectural styles, providing a strong signal
of our model’s robustness. Furthermore, the notion that VIGOR is purely ”urban” is a misconception.
Like other datasets derived from vehicle-based captures, it covers a wide range of environments,
including many less-dense, suburban areas, as shown in our qualitative results (e.g., Figure 7). The
primary generalization challenge is not urban vs. suburban density, but rather the architectural and
environmental shifts between disparate geographic regions.

G LIMITATIONS

Our work faces challenges rooted in both data availability and model assumptions.

Pose Inaccuracy. A primary limitation is the lack of precise pose data. We treat satellite images as
ideal orthogonal projections, which is not always the case. Moreover, the panoramas lack authentic
intrinsic/extrinsic parameters; we only have GPS data. Our model assumes panoramas are captured
perpendicular to the ground, ignoring roll angles from terrain or road banking. Accessing or predicting
accurate poses is a valuable direction for future work.

Geometric and Terrain Assumptions. Our model’s performance is also constrained by its underlying
assumptions. By its generative nature, it struggles with atypical architectures that are rare in the
training data, as we lack explicit 3D ground-truth shapes for supervision. Furthermore, our framework
assumes a locally flat ground plane and does not model significant terrain variations like hills, which
are difficult to infer from sparse imagery alone. Future work could address this by incorporating
multi-modal data, such as terrain maps.

Evaluation Metrics. Finally, while metrics like multi-view photometric consistency or temporal
flicker are powerful, they are not applicable to the VIGOR dataset. VIGOR’s sparse, non-sequential
collection of still images does not support the evaluation of temporal stability or dense view consis-
tency.
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