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Abstract. Federated learning (FL) plays a vital role in boosting both
accuracy and privacy in the collaborative medical imaging field. The im-
portance of privacy increases with the diverse security standards across
nations and corporations, particularly in healthcare and global FL initia-
tives. Current research on privacy attacks in federated medical imaging
focuses on sophisticated gradient inversion attacks that can reconstruct
images from FL communications. These methods demonstrate potential
worst-case scenarios, highlighting the need for effective security measures
and the adoption of comprehensive zero-trust security frameworks. Our
paper introduces a novel method for performing precise reconstruction
attacks on the private data of participating clients in FL settings us-
ing a malicious server. We conducted experiments on brain tumor MRI
and chest CT data sets, implementing existing 2D and novel 3D re-
construction technique. Our results reveal significant privacy breaches:
35.19% of data reconstructed with 6 clients, 37.21% with 12 clients in
2D, and 62.92% in 3D with 12 clients. This underscores the urgent need
for enhanced privacy protections in FL systems. To address these is-
sues, we suggest effective measures to counteract such vulnerabilities by
securing gradient, analytic, and linear layers. Our contributions aim to
strengthen the security framework of FL in medical imaging, promoting
the safe advancement of collaborative healthcare research. The source
code is available at: https://www.github.com/anonymous.
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1 Introduction

Privacy and regulatory challenges limit the gathering of large medical datasets
for deep neural network training [11]. Federated Learning (FL) [12] addresses
these challenges by enabling collaborative training across hospitals, without cen-
tralizing patient data. Hospitals train models locally, share only model updates
with a central server, which then aggregates these to improve a global model.
Although patient data remains distributed in FL, there is still a significant risk
of data leakage through information encoded in model updates, which may be
exploited by attackers to reconstruct training data and hence poses a major pri-
vacy concern (e.g. in the case of images by facial reconstruction from MRI data
[18]).

https://www.github.com/anonymous
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With the rise in popularity of FL, its associated software and frameworks, in-
cluding NVFlare[15], Kaapana[10], MonaiFL[13], and Flower[1], have also gained
prominence. Alongside this growth, various privacy attacks have been proposed.
This paper focuses on data reconstruction attacks, which aim to recover private
training data points as accurately as possible. These attacks utilize methods
such as optimization [7,25,23,6,4], analytical techniques [22,16], or exploit vul-
nerabilities in linear layers [2,5] to compromise FL privacy. Medical FL research
has mainly focused on threats through gradient-based optimization [24,11,21,8]
and model inversion [20] techniques. These strategies face major challenges, such
as high computational resource demands, and typically result in incomplete or
blurred reconstructions. This low reconstruction fidelity poses challenges in ac-
curately identifying original records despite being indicative of a privacy breach
and is especially relevant in medical imaging, where subtle structural variances
are often crucial.

Our research investigates the potential of data reconstruction attacks in FL
that can closely replicate the private data of patients, in the scenario of a ma-
licious FL server. We apply an analytical approach[2] to 2D medical imaging
and introduce a novel adaptation for 3D medical imaging within the context of
FL. This marks the first effort in 3D imaging, achieving superior reconstruc-
tion fidelity with minimal architecture modifications from a malicious server.
Our study underscores the need for measures to prevent data leakage through
malicious server activities, even in the context of a secure client, in terms of soft-
ware and network aspects. The used attack highlights the importance of deeply
understanding the machine learning architecture involved, when an institution
decides to participate in a federated learning collaboration. In summary, our
study presents the subsequent contributions:

– To our knowledge, this is the first demonstration of privacy attacks in FL
using 3D medical imaging data with malicious server-shared gradients. Our
method reconstructs slices into 3D volumes with minimal modifications,
highlighting significant privacy concerns. In simulations with 6 and 12 clients,
we achieve high-fidelity 2D and 3D reconstructions without complex opti-
mization, showing the potential for reconstructing identifiable body parts or
whole bodies.[18].

– We showcase that irrespective of client security, a malicious server can easily
attack clients as long as the server or central entity provides the training
algorithm, which is common in most FL scenarios.

– We also outline simple but effective techniques to mitigate malicious server-
based attacks in cross-consortia medical FL.

2 Method

In Federated Learning with a central server, the server can introduce vulnerabil-
ities when distributing models to clients. This study adapts a 2D attack method
from [2] to 3D, where a malicious server inserts a linear layer with ReLU activa-
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Fig. 1. (a) Illustrates the federated medical imaging setup with hospitals connecting to
a central server via a web platform for algorithm exchange and gradient sharing, mim-
icking real-world practices. (b) Depicts the central server’s attack on client 3D and 2D
medical imaging data through model preprocessing and malicious weight adjustments,
demonstrating successful reconstruction of both data types.

tion before the first original network layer to extract sensitive image information
from the clients’ model updates.

Data Reconstruction Overview: Let yi = wT
i x+bi, the output of neuron

i in the inserted linear layer. Then the input x can be reconstructed from the
gradients of the loss L with respect to both the bias and the weights in the
following manner[6,2]:
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where ReLU activation is > 0. This shows that the input data can be re-
trieved from the gradients of the linear layer at the front which receives that
data as input. When using mini batches, for the ith neuron, the batch gradient
is represented by:
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Under the condition that all but one term in equation (4) vanish, individual
datapoints can be reconstructed from minibatch gradients. As [2] point out, this
happens when the ReLU activations are zero for all but one input, allowing to
reconstruct samples even when B > 1. They further show that reconstruction is
even possible when using FedAvg. Initializing the layer with malicious weights
allows to increase the chances for the exact reconstruction of individual dat-
apoints. In our experiments, A malicious server added an attack layer, which
effectively inserted a linear layer before the actual network. A single federated
optimization step was simulated, after which gradients were shared with the
server. The server used the gradients from the attack layer to invert the fully
connected layer’s gradients for data reconstruction.

Adaptation to 3D Data: We introduce a methodology within the feder-
ated learning round where a malicious server employs a custom preprocessor
to execute attacks. This preprocessor converts the original 3D volume into 2D
slices, facilitating the server’s malicious algorithm. This approach extends the
2D attack by injecting specialized preprocessing code, enabling spatial mapping
of the extracted data to the corresponding slices to accurately reconstruct the
3D volume. The server then applies the same attack method described in equa-
tion (3) to reconstruct the 2D slices. These slices are then reassembled into one
3D volume of the target client’s data, as we are focusing on a single client’s
single 3D volume data during a specific epoch. By incorporating trap weights
into the initial fully connected (FC) layer, we can increase the attack’s accu-
racy when targeting a specific client’s specific batch. For weight row wi, with N
and P indicating negative and positive weights, a neuron activates with ReLU
if negative-weighted sums are less than positive-weighted sums. Due to this ma-
licious weight initialisation 5 hold rare inputs, typically only affecting a single
data point per mini-batch which can be then extracted using 3.∑

n∈N

wn,ixn <
∑
p∈P

wp,ixp. (5)

3 Experiments

Brain Tumor MRI Dataset (2D Attack): [3] contains 7023 MRI brain tumor
slices with dimensions 512× 512. Each slice is labeled with one of the 4 classes
Glioma, Meningioma, Pituitary, and No Tumor. For the 6-client experiment,
we used a total of 1800 images (300 per client). For the 12-client experiment,
we used 2640 images (220 per client). In both setups, the server targeted one
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client and metrics are based on this target client’s dataset. Experiments were
conducted on an Nvidia V100 16GB GPU, with training data limited to 1800
and 2640 images due to memory constraints.

MosMedData (3D Attack): [14] includes 1110 anonymized CT lung scans
with dimensions of 512 x 512 x (36-41), comprising 42% male and 56% female
participants, with the remaining unknown. The scans were categorized into five
classes of COVID-19 severity. For the experiment, we selected volumes with 40
slices.

Technical Setup: We conducted federated learning simulations with 6 and
12 clients for both 2D and 3D models, with one client also acting as the central
server. These settings reflect realistic client numbers typical in medical imag-
ing collaborations. Each client received a local private dataset, generated by a
random uniform split of the main datasets. Experiments, focusing on analytic
attacks rather than optimization-based ones, were implemented using PyTorch
[17].

Reconstruction Attack: 2D vs Proposed 3D: In the 2D Attack, the
central server provides algorithms to participating clients with initial weights.
For the 4-class classification problem, we employed the ResNet18[9] architecture.
Subsequently, the central server possesses the ability to engage with any client
during any epoch round. The 2D attack perform effectively when individual
client weight updates are observable. The 2D method fails for 3D data due to its
inability to maintain spatial correlations across all three dimensions, leading to
suboptimal reconstructions. The original 3D file undergoes conversion into slices
before being fed into the model by the model preprocessor, which is initialized
by the malicious server. This preprocessing step can be a lightweight snippet
initialized by the server. Subsequently, the server initializes malicious weights to
target the client data with the malicious model. Once the slices are reconstructed
by the server from received gradients, they are converted into a numpy array and
patched together to generate the 3D data.

4 Results and Discussion

For 2D reconstruction metrics, we used Mean Squared Error (MSE) and Struc-
tural Similarity Index (SSIM). For 3D reconstruction, we chose SSIM and Peak
Signal-to-Noise Ratio (PSNR). PSNR was preferred over MSE for its ability to
consider the dynamic range of pixel values in 3D metrics. PSNR assesses image
quality by calculating MSE between original and reconstructed images, offering
pixel-level accuracy. SSIM evaluates perceptual quality by comparing luminance,
contrast, and structure. MSE and PSNR quantify numerical differences, provid-
ing accuracy insights, while SSIM measures perceptual similarity, reflecting hu-
man visual perception. Together, these metrics offer a comprehensive evaluation
of reconstruction quality.

2D Attack The 2D attack experiment (Table 1) reveals the critical influ-
ence of batch size on reconstruction attack efficacy. With six federated clients,
increasing batch size decreases the number of reconstructions and degrades qual-
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Fig. 2. 2D Brain Tumor MRI Data Reconstruction attack: The left side of the green line
depicts the original client data, while the right side displays the corresponding recon-
structed images derived from shared gradients of clients reconstructed by a malicious
central server.The brown block indicates images not reconstructed, with reconstruction
success dependent on the impact of malicious weights on neurons.

Fig. 3. 3D Attack: (a) depicts the original and reconstructed volume with two image
planes cut through each of them, respectively. The axial plane (red frame) shows one
slice of the slice stack (completely shown in (b)). The coronal plane (blue frame) shows
a cut through all slices of the respective volume, visualized using MITK [19] Figure (b)
contrasts original 3D CT scan slices on the left with their reconstructed counterparts
on the right, processed by a malicious server from gradients, where black indicates
failed reconstruction.

ity, evidenced by higher MSE and lower SSIM. Larger batch sizes lead to fewer
affected data points per batch, as malicious weights deactivate other data points,
allowing only positive neurons to activate and potentially leak a single data
point. This complicates reconstructing gradients of multiple activated neurons,
as shown in Figure 1b of the 2D scenario. Conversely, with twelve federated
clients, larger batch sizes improve reconstruction quality, marked by lower MSE
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and higher SSIM when compared with 6 clients. This suggests that while the
quantity of data points susceptible to attack may decrease, the quality of the
leaked data points remains high even at larger batch sizes, such as 128.

FL Clients Batch Reconstructed images MSE SSIM

6

8 114/300 0.0003 0.7171
12 102/300 0.0007 0.5665
16 102/300 0.0009 0.5822
24 99/300 0.0012 0.5212
32 107/300 0.0025 0.6171
64 113/300 0.0040 0.4134
128 102/300 0.0070 0.5139

12

8 89/220 0.0001 0.8666
12 94/220 0.0001 0.8497
16 86/220 0.0002 0.8240
24 86/220 0.0002 0.8489
32 82/220 0.0002 0.8189
64 72/220 0.0002 0.8379
128 64/220 0.0002 0.8070

Table 1. Comparative analysis of reconstruction metrics for 2D brain tumor data in
federated learning experiments, focusing on scenarios with 6 and 12 federated clients.
The evaluation encompasses varying batch sizes and the number of data points recon-
structed from targeted client, utilizing 300 training data points from the targeted client
in the 6-client FL scenario and 220 in the 12-client FL scenario.

3D Attack The results obtained from our investigation into the reconstruc-
tion metrics of 3D chest CT scans 3 present valuable insights into the vulnerabil-
ity of sensitive data to malicious reconstruction attempts. Table 2 presents the
results of one target client’s average reconstructed slices from a single 3D vol-
ume with a depth of 40 slices, showing the average slices/depth that the server
can reconstruct across different batches of a single 3D volume from the target
client. Our experiments, conducted with six federated clients, involved varying
batch sizes to evaluate the reconstruction process. The results demonstrate a
clear trend wherein the quality of reconstruction diminishes as the batch size in-
creases. Specifically, as the number of reconstructed slices per batch rises, both
SSIM and PSNR exhibit a gradual decline. For instance, with a batch size of 8,
the SSIM is measured at 0.8095 and the PSNR at 65.95, whereas with a batch
size of 64, these metrics decrease to 0.6221 and 53.66, respectively. Moreover,
the total number of reconstructed slices also plays a crucial role in determining
the efficacy of the reconstruction process. We also show that a decrease in the
total number of reconstructed slices corresponds to a reduction in both SSIM
and PSNR metrics. This suggests that the reconstruction rate is less effective
when the batch size increases.
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Batch Average reconstructed slices SSIM PSNR

8 34/40 0.8095 65.95
12 32/40 0.7730 69.86
16 30/40 0.7544 65.30
24 22/40 0.7143 65.11
32 19/40 0.7055 51.23
64 14/40 0.6221 53.66

Table 2. Reconstruction metrics for 3D chest CT imaging in federated learning (recon-
structed from the targeted client) were evaluated with 12 federated clients and varied
batches, averaged over 3 runs in each case. Images consisted of 40 slices. Among these,
some slices are reconstructed, and their metrics are detailed. These slices are then as-
sembled to recreate the original 3D image.

5 Limitations and Mitigation Strategies

In this study, we explore the threat of malicious central servers in FL consortia,
even when client security is high. This risk is crucial in FL collaborations across
large jurisdictions or competitive environments. Client security alone does not
ensure data safety, especially in cross-organizational FL where servers may be
malicious. A malicious server can easily attack clients if it provides the training
algorithm, which is common in FL. While we tested with ResNet18, this ana-
lytic attack can extend to other models. Despite the simplicity of our attack,
real-world attackers would likely use more sophisticated methods, necessitating
robust countermeasures by institutions.

To address risks associated with malicious server attacks we outline a multi-
faceted, effective strategy. This includes monitoring server models with a robust
scanning architecture to detect unauthorized changes, using encrypted weights,
auditing Fully Connected layers and ensuring code integrity through Hashsum
Verification. A designated Clearance Officer, or a designated board, can ensure
model update and result integrity by vetting changes to preserve trust in the
learning process, while a dedicated person/group/third party algorithm moni-
tors FL logs for significant weight changes during iterations. Increasing batch
sizes and the number of FL clients in a 3D environment appears to enhance
data protection effectively. Although it remains to be seen how common such
malicious server attacks are in practice, they represent a significant threat ca-
pable of leaking high-fidelity data, particularly in sensitive domains like medical
imaging. Due to the complex structure and spatial information, reconstruction
is challenging when the algorithm reads the 3D scan as it is. Our future research
will focus on reading 3D data directly and reconstructing the entire volume.

In conclusion, reconstructing over 35% of private high-fidelity 2D MRI and
3D CT data reveals significant privacy risks. Hospitals in federated learning
should seek help to ensure patient privacy beyond software and network security..
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