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Abstract

We introduce SpidR, a self-supervised speech representation model that efficiently learns
strong representations for spoken language modeling. It is trained on unlabelled speech
using a masked prediction objective combined with self-distillation and online clustering.
The intermediate layers of the student model learn to predict assignments derived from
the teacher intermediate layers. This learning objective stabilizes the online clustering
procedure compared to previous approaches, resulting in higher-quality codebooks. SpidR
outperforms previous state-of-the-art methods on downstream language modeling metrics
while significantly reducing pretraining time, requiring only a day to pretrain with 16 GPUs
instead of a week. We will open-source the training code and model checkpoints upon
acceptance.

1 Introduction

Self-supervised learning (SSL) has revolutionized speech processing (Mohamed et al., 2022). Speech repre-
sentations learned without supervision have gained traction in speech and audio processing, for two broad
classes of downstream applications. In the first class, SSL is applied with large corpora of unlabelled speech,
and the resulting representations are used as is or fine-tuned for specific classification or recognition tasks
(e.g., automatic speech recognition, phoneme classification, or speaker identification). In the second class,
representations learned with SSL are interpreted as a proxy for linguistic units, and are used to train pure
spoken language models directly from audio for the purpose of generation (Arora et al., 2025).

Early research on spoken language modeling (SLM) (Lakhotia et al., 2021; Dunbar et al., 2021) based on
automatically discovered discrete units has shown the best performance was obtained when these units were
extracted from speech encoders for which phonetic information was the most easily accessible, as measured
by phoneme classification of a linear probe or by computing the ABX discriminability of the representations
(Schatz, 2016; Schatz et al., 2013). HuBERT (Hsu et al., 2021) was then the leading open model, and
subsequent studies have therefore used it (Polyak et al., 2021; Kharitonov et al., 2022; Kreuk et al., 2022;
Nguyen et al., 2023). Despite its transformative potential for speech applications, pure SLM (spoken language
modeling from raw audio without any text) remains quite understudied, and spoken language models are
far from being as advanced as text-based language models. These models still lag behind their text-based
counterparts in terms of capturing semantics when trained with similar data quantity (Nguyen et al., 2020),
with scaling laws up to three orders of magnitude slower (Cuervo & Marxer, 2024). To tackle this issue,
recent efforts have focused more on bridging the gap between speech and text modalities, transferring the
knowledge of large language models to speech (Hassid et al., 2023; Nguyen et al., 2025; Défossez et al., 2024;
Cuervo et al., 2025), and achieving more favorable scaling laws (Maimon et al., 2025b).

This line of work has focused on improving the language model itself, but the performance gap between speech-
and text-based language models also stems from a more fundamental issue: current speech units are less
efficient for language modeling than text-derived units such as BPE tokens or even phonemic transcriptions.
Speech units capture phonetic information (Choi et al., 2024), but they lack robustness to both acoustic
variations (Gat et al., 2023) and contextual variations caused by coarticulation (Hallap et al., 2023). As a
result, these units align more closely with contextual phone states (Young et al., 1994) than with actual
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Figure 1: Architecture of SpidR. The downsampling module, a stack of convolutional layers, transforms the
speech waveform into 20ms frames. The student and teacher are Transformers with L = 12 layers. For every
layer k in the last K = 8 ones, the student predicts—through a prediction head ϕk—the nearest neighbor
codebook assignment on the masked positions from the teacher at the same layer. The downsampling module,
the student and the predictions heads are updated by gradient descent (in blue). The teacher is an exponential
moving average (EMA) of the student, and the codebooks are updated with an EMA of the embeddings of
the teacher (in gray).

linguistic units (Dunbar et al., 2022). To address these limitations, some approaches added a new step on
the units derived from SSL models to make them larger and closer to syllables or words (Algayres et al.,
2023; Baade et al., 2025; Visser & Kamper, 2025). However, training new SSL models from scratch is costly.
For example, HuBERT is trained in several passes, demanding terabytes of storage to store the extracted
features (Zanon Boito et al., 2024). It requires alternating between model training and clustering, with some
manual decision to be made between each pass to select the intermediate layer used to compute the targets.
DinoSR (Liu et al., 2023) is a recent single-pass alternative to HuBERT that demonstrates better phonetic
discriminability, making it a suitable candidate for spoken language modeling. Its original implementation
still requires a week of training, which limits the exploration of its training properties.

In this work, we introduce SpidR, a novel self-supervised method for speech representation that learns strong
representations for spoken language modeling in a single pass. While inspired from DinoSR’s architecture,
SpidR’s learning objective makes pretraining significantly more stable and resistant to codebook collapse.
Our approach incorporates self-distillation and online clustering with pseudo-labels derived from codebooks
at the intermediate layers of the teacher encoder. However, it differs from DinoSR in a key way. Instead of
using only the student’s final layer to predict the assignments for each teacher intermediate layer, we use the
student’s own intermediate representations. Our experimental results demonstrate that SpidR outperforms
both HuBERT and DinoSR on zero-shot spoken language modeling metrics. We also release a minimal
pure PyTorch codebase for training DinoSR or SpidR, using the latest advancements of PyTorch. With our
implementation, full pretraining requires only one day of 16 GPUs—a substantial efficiency improvement
over previous approaches that enables faster iteration.
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2 Related Work

Self-supervised speech representation learning. Self-supervised learning for speech evolved from
early autoregressive models (van den Oord et al., 2019; Schneider et al., 2019; Chung & Glass, 2020) to
predominantly bidirectional masked prediction approaches (Devlin et al., 2019) that leverage surrounding
unmasked context. The wav2vec 2.0 (Baevski et al., 2020) model is trained with contrastive learning between
the contextual representations and quantized units. Its architecture also established a standard backbone
that has been adopted by most subsequent approaches, the key differentiation between models lying in how
they compute the self-supervised loss and derive training targets. HuBERT (Hsu et al., 2021) introduced
an iterative approach where pseudo-targets are obtained from a previous iteration of the model, alternating
between clustering and pretraining. Baevski et al. (2022) use self-distillation to derive the targets, an approach
followed by DinoSR (Liu et al., 2023) but with discrete targets instead of continuous embeddings. Our work
builds directly on DinoSR, maintaining the established architecture while focusing specifically on improving
the stability of the learning objective rather than architectural innovations. The pseudo-targets in data2vec,
DinoSR and our work are derived from intermediate layers, an approach also explored by Chung et al. (2021);
Wang et al. (2022). Another line of research has focused on enhancing robustness through additional training
objectives—addressing acoustic (Chen et al., 2022; Chang & Glass, 2024) or speaker variations (Chang et al.,
2023). Particularly relevant to our goals, Chang et al. (2024) fine-tune HuBERT to learn codebooks optimized
for spoken language modeling. We focus in this work on single-pass pretraining without additional fine-tuning
steps, making our approach complementary to these specialized adaptation methods.

Efficient speech representation learning. With the increasing cost to train self-supervised speech
models, researchers have explored various approaches to simplify the training procedure and accelerate
training time. For instance, Baevski et al. (2023) improve the sample efficiency of data2vec by training with
multiple masked versions of the same sample. For HuBERT specifically, several efficiency improvements
have been proposed: Lin et al. (2023) and Yang et al. (2023) replace the learned downsampling module by
mel-filterbanks and use a cross-entropy loss, while Chen et al. (2023a) use an existing ASR model to extract
the targets for the first training iteration instead of MFCC features. Yang et al. (2025) take a different
approach by replacing the encoder with a Zipformer (Yao et al., 2024). It’s worth noting that training
HuBERT also requires terabytes of available storage to save the high-dimensional embeddings extracted
between each iteration (Zanon Boito et al., 2024)—a inherant limitation that architectural changes alone
cannot address. Additionally, most models derived from wav2vec 2.0, including HuBERT, were originally
pretrained using the fairseq library (Ott et al., 2019). While fairseq initially provided essential solutions
for distributed training, mixed precision, etc., these features now exist natively in PyTorch (Ansel et al.,
2024), and fairseq is no longer maintained. Our streamlined PyTorch-native implementation of SpidR and
DinoSR reduces compute requirements, enables faster iteration during development, and provides a hackable
foundation for future research without legacy dependencies.

Spoken Language Modeling. Generative text pretraining has inspired a new family of speech generation
models. By proposing to quantize self-supervised representations, Lakhotia et al. (2021) rephrased speech
generation as a language modeling task. The discrete tokens function as phonetic units, due to their accessible
phonetic information (Nguyen et al., 2022; Sicherman & Adi, 2023; Yeh & Tang, 2024), and serve as inputs to
train a Transformer decoder. Borsos et al. (2023) combined these units with audio codec tokens (Zeghidour
et al., 2022; Défossez et al., 2023) to capture finer acoustic details. Non-phonetic information has also been
incorporated with phonetic units to capture style or prosody (Kharitonov et al., 2022; Nguyen et al., 2025).
Chen et al. (2025); Zhang et al. (2024) and Défossez et al. (2024) only use units from audio codecs, with the
latter two training their codecs with distillation from a SSL model. Despite their ability to learn linguistic
structures (Dunbar et al., 2021), purely speech-based models have exhibited limited factual knowledge and
reasoning abilities. This prompted the development of hybrid speech-text models (Hassid et al., 2023; Nguyen
et al., 2025; Défossez et al., 2024; Cuervo et al., 2025). A parallel research direction focuses on improving
the speech units themselves (Algayres et al., 2023; Baade et al., 2025), as speech representations with more
accessible phonetic information significantly improves linguistic knowledge (Poli et al., 2024). In our work,
we deliberately focus on pure spoken language modeling from raw audio to isolate and evaluate the specific
contributions of our speech encoder.
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3 Method

As illustrated in figure 1, SpidR leverages self-distillation and online clustering, making predictions at multiple
layers of the network. It is based on DinoSR, but with a novel learning objective. The student layers directly
predict the assignment given by the corresponding codebook, instead of having multiple prediction heads at
the end of the student encoder, which results in more stable training runs.

We first extract feature frames x = (x1, ..., xn) from a speech utterance, with xi ∈ Rd, using a convolutional
block. We sample a random mask M ⊂ {1, ..., n}, with the sampling procedure from Baevski et al. (2020), and
build x̃, a corrupted version of x where for each i ∈M , xi has been replaced by a learned mask embedding.
The student encoder is a Transformer (Vaswani et al., 2017) with L layers, trained to predict the pseudo-labels
derived from a teacher at the masked positions. Let z̃k = (zk

1 , ..., zk
n) be the output of the student encoder at

layer k from x̃. As in previous works, this is the output of the feed-forward network in the Transformer block,
before the final residual connection and layer normalization. The prediction is done at the last K layers of
the encoder. The labels prediction at frame i and intermediate layer k is

ỹk
i = ϕk(z̃k

i ) ∈ (0, 1)V , (1)

where ϕk is the prediction head at layer k, with L−K ≤ k ≤ L, and V is the number of labels. The prediction
head is made of a single linear projection followed by a softmax. To derive the pseudo-labels, we first feed the
unmasked frames x to the teacher. Let zk be the output of the teacher encoder at intermediate layer k after
instance normalization. The one-hot target label at frame i and layer k is

yk
i ∈ {0, 1}V where for 1 ≤ v ≤ V, (yk

i )v =
{

1 if v = arg min1≤u≤V ∥zk
i − Ck

u∥2

0 otherwise
, (2)

where Ck is the codebook associated to layer k, with V codewords. The model is trained to predict the target
labels from the teacher on the masked positions by minimizing the cross-entropy

− 1
|M | ·K

∑
i∈M

L−K≤k≤L

yk
i log ỹk

i , (3)

The teacher is updated with an exponential moving average (EMA) of the student: the update at step t is
θteacher ← βtθteacher + (1− βt)θstudent. Following Liu et al. (2023) and Baevski et al. (2022), the positional
embeddings of the teacher are copied from the student, not updated by EMA. All activated codewords are
updated with an EMA of the teacher output embeddings:

sk
v ←

{
τsk

v + (1− τ)
∑

i:(yk
i

)v=1 zk
i if {i | (yk

i )v = 1} ≠ ∅,
sk

v otherwise,

nk
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τnk

v + (1− τ)
∑

i:(yk
i

)v=1 1 if {i | (yk
i )v = 1} ≠ ∅,

nk
v otherwise,

Ck
v ←

sk
v

nk
v

,

(4)

where sk
v is initialized randomly and nk

v to 1, and τ is a constant decay parameter. Note that with this
update procedure, all embeddings zk

i are used to update the codewords, but the non-activated codewords do
not move. The main change from Liu et al. (2023) is that the predictions are now aligned with the target
layer. The output of layer k of the student is used to predict the label derived from layer k of the teacher,
whereas DinoSR uses only the output of the last layer of the student encoder with ỹk

i = ϕk(z̃L
i ).
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Figure 2: Codebook and prediction perplexities during training for SpidR and DinoSR on LibriSpeech
dev-clean, with K = 8 codebooks. For each layer k, the codebook perplexity is computed over each batch
with p = yk and then averaged across the dataset. The prediction perplexity uses p = ỹk.

Baevski et al. (2022; 2023) also used the intermediate representations to train a SSL speech model, but in
their case there was only one prediction head at the top of the student, trained to predict the average of
the representations of the last K layers of the teacher. Our approach is reminiscent of the deep supervision
literature (Lee et al., 2015), but in a self-supervised learning context.

4 Experiments

We pretrain SpidR, compare its training stability to DinoSR in section 4.2, and evaluate the phonetic and
word discriminability of its representations in section 4.3. We then extract discrete tokens and train spoken
language models. In section 4.4, we show the improvement of SpidR on zero-shot spoken language modeling
task over other SSL encoders in identical conditions. Finally, in section 4.5 we compare the training time of
SpidR to that of HuBERT, DinoSR, and previous work on efficient SSL.

4.1 Setup

Pretraining. The architecture follows the standard backbone from Baevski et al. (2020), and we make
minimal changes from DinoSR. The model has a feature extractor with seven temporal convolutions and a
projection layer, downsampling the 16 kHz input speech to 50Hz features of dimension d = 768. The student
and teacher are Base size Transformer encoders with L = 12 layers. The prediction is done at the top K = 8
layers, using codebooks with V = 256 codewords. We pretrain with 960 hours of speech from LibriSpeech
(Panayotov et al., 2015). To maintain a fair comparison with DinoSR, we keep the same total batch size of 63
minutes of audio across 16 GPUs. The codebook decay parameter is kept constant: τ = 0.9. The student
encoder and feature extractor are optimized with AdamW1 (Loshchilov & Hutter, 2019) for 400k steps. We
use the same learning rate scheduler as Liu et al. (2023), with a warmup from 5× 10−6 to 5× 10−4 within
the first 12k steps, held constant until mid-training, and then exponentially decayed to 5× 10−6. We freeze
the feature extractor after 200k steps. See appendix A in appendix for more details on the model and the
hyperparameters.

1Previous work in SSL for speech (Baevski et al., 2020; Hsu et al., 2021; Liu et al., 2023) reported using Adam, but the
Adam optimizer in fairseq that was used is actually implemented as AdamW.
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Table 1: Zero-shot evaluation of self-supervised speech representations (in %, chance level 50% for ABX). All
models are trained on LibriSpeech 960h. For each model, the selected layer is the one with the lowest average
ABX. The best scores are in bold and second best are underlined.

Model Layer ABX within speaker ↓ ABX across speaker ↓ MAP words ↑
dev-clean dev-other dev-clean dev-other dev-clean dev-other

wav2vec 2.0 6 4.47 5.63 5.25 7.82 44.81 31.92
HuBERT 11 3.38 4.26 4.01 6.49 46.07 33.37
data2vec 4 4.41 5.49 5.07 7.40 39.34 27.90
data2vec 2.0 1 5.13 5.77 5.72 7.53 69.38 53.49
DinoSR 5 4.05 5.11 4.72 7.29 63.02 45.86
DinoSR† 5 4.29 5.56 5.22 8.56 51.35 33.74
SpidR 6 3.32 3.74 3.66 4.95 66.50 55.26
† Our re-implementation.

We found during preliminary experiments that the norm of the weights of the Q, K, V projections in
the attention layers could increase along training, and potentially lead to spikes in the loss and model
collapse. Removing the biases in those layers fixed this issue, with no negative impact. We also modify
the schedule of the decay parameter of the teacher βt. Instead of the warmup-and-constant schedule of
Baevski et al. (2022) and Liu et al. (2023), we take a smoother approach and set the decay at step t to be
βt = 1− (1− β0) exp(−t/T ), where T = 10000 is a timescale parameter and β0 = 0.999. See appendix C in
appendix for an ablation from DinoSR to SpidR.

Discrete units. We extract the embeddings from the layer with the best phonetic discriminability. The
output representations of this layer are then quantized to derive the discrete units. We consider two
quantization methods. We first use vector quantization with K-means clustering (Nguyen et al., 2020;
Lakhotia et al., 2021), training it with the train-clean-100 subset of LibriSpeech. For DinoSR and SpidR,
we also consider using the codebook predictions, by taking the assignment made by the prediction heads
from the student encoder ϕk and selecting the label for which the probability is maximum. We deduplicate
the tokens before passing them to the language model.

Spoken language models. The SLMs are OPT-125M models (Zhang et al., 2022), trained on the 6k
hours subset of Libri-Light (Kahn et al., 2020) using the SlamKit framework (Maimon et al., 2025a). We
train on one GPU with a batch size of 16, with 4 gradient accumulation steps, and a context length of 2048
for 100k steps. The other training parameters follow the defaults of OPT-125M. The selected checkpoint in
the one with the lowest validation loss.

4.2 Training stability

Our motivation for changing DinoSR’s learning objective was to stabilize the training procedure. We found in
preliminary studies that the online clustering of DinoSR tended to collapse, as tracked by the codebook and
prediction head perplexities. The perplexity 2H(p), with H(p) = −∑

v∈V pv log2 pv the entropy, measures
the diversity of codewords used by the model, with pv being the probability of the assignment v. The
codebook perplexity at layer k is measured with p = yk ∈ {0, 1}V , and the prediction head perplexity with
p = ỹk ∈ (0, 1)V . With a perplexity of V , all codewords are used equally.

In figure 2, we compare the codebook and prediction perplexities of DinoSR and SpidR during training.
The perplexities are computed on LibriSpeech dev-clean over each batch, using the same batch size as in
pretraining, and then averaged across the dataset. Liu et al. (2023) report that DinoSR has a much higher
perplexity than other online clustering methods, such as VQ-APC (Chung et al., 2020) and Co-training
APC (Yeh & Tang, 2022). However, DinoSR is still prone to codebook collapse, especially in the last layers.
In DinoSR, the output of the last layer z̃L is given to all heads ϕk to derive the pseudo-labels from the
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Table 2: Zero-shot discrete units quality and spoken language modeling metrics from HuBERT, DinoSR, and
SpidR (in %, chance level 50%, except for PNMI). The speech encoders are trained on LibriSpeech 960h and
the language models on Libri-Light 6k. The vocabulary size is V = 256. For each model, the selected layer is
the one with the lowest average ABX on continuous embeddings. The best scores are in bold and second
best are underlined.

Model Layer Units
Discrete units quality Language modeling
ABX ↓ PNMI ↑ sWUGGY ↑ sBLIMP ↑ tSC ↑

all in-vocab
HuBERT 11 K-means 7.32 0.636 65.15 73.21 55.68 67.66
DinoSR 5 Codebook 7.89 0.620 57.50 60.35 55.97 68.04

K-means 10.81 0.588 55.76 57.81 54.14 64.72
DinoSR† 5 Codebook 7.70 0.614 59.44 62.61 54.64 65.95

K-means 10.61 0.589 55.59 57.27 53.40 62.43
SpidR 6 Codebook 6.32 0.602 70.24 80.45 57.48 69.37

K-means 7.10 0.633 71.90 82.33 57.09 70.55
† Our re-implementation.

intermediate layers of the teacher. The codebook assignments information for all K layers must be linearly
extractable from z̃L. SpidR is more straightforward: z̃k is used to predict the assignments from layer k. This
result suggests that our training objective reduces the distribution shift between the embeddings and the
codebooks, a challenge frequently encountered in neural networks with vector quantization (Huh et al., 2023).

4.3 Evaluation of the learned speech representations

In order to train a spoken language model, we derive discrete units from the representations of the SSL model.
For successful language modeling, the units need to encode the underlying linguistic content, not the speaker
information or the acoustic background. Therefore, we want the model to have highly accessible phonetic
and word information in its representations, and a well clustered representation space. Following previous
work (Nguyen et al., 2020), we evaluate the SSL models with metrics computing the discriminability of the
embeddings. This evaluation is then used to select the target layer for spoken language modeling (Lakhotia
et al., 2021).

The first metric of interest is the ABX discriminability over phonemes (Schatz, 2016). It measures how well
triphones differing only by the central phone (like /bag/ and /beg/) are discriminated in the embedding space
by comparing the distances between two instances X and A of the same triphone to the distance between X
and another triphone B. The test is successful if the representations of X and A are closer than those of X
and B. In the within speaker task, A, B and X are from the same speaker, whereas in the across speaker
task, A and B are from the same speaker and X from another one. We use the implementation of Poli et al.
(2025) to compute ABX scores. It fixes issues with the slicing of features that existed in the Libri-Light
version, which explains the differences with the scores reported by Liu et al. (2023).

In addition to the ABX, which operates at the triphone level, we evaluate embedding discriminability at the
word level. An ABX task where A and X are instances of the same word and B is from a different word would
be too easy in most cases. Instead, we opt for a more challenging metric: Mean Average Precision (MAP)
over words (Carlin et al., 2011). This retrieval task requires that, for each word, the closest embeddings
correspond to other instances of the same word. Unlike ABX, which uses Dynamic Time Warping to handle
duration differences between speech segments, we average word representations over the time axis. Following
Algayres et al. (2020), we use MAP@R (Musgrave et al., 2020) and get the final score by averaging over all
words, where R is the number of other instances of a given query word, and

MAP@R = 1
R

R∑
i=1

P (i), where P (i) =
{

precision at i if the i-th retrieval is correct,
0 otherwise.

(5)
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Figure 3: Data scaling results for a 125M parameters OPT model trained on Libri-Light, with different
discrete units encoders. Zero-shot accuracy in %, chance level 50%. The speech encoders have V = 256 units.
The log-likelihoods are normalized by the number of tokens, except for WUGGY with text.

The intermediate layer chosen for each model is the one with the lowest average ABX error rate, which is not
necessarily the best layer in terms of MAP (see figure 7 in appendix). As shown in table 1, SpidR outperforms
baseline SSL models on both metrics. For all models, we computed the ABX using the angular distance on
the representations of the intermediate layers, contrary to Liu et al. (2023) who used the prediction heads
with the KL-symmetric distance for DinoSR. See appendix B.1 in appendix for additionnal discriminibility
results and appendix B.2 for a visualization of the learned embeddings.

4.4 Evaluation of downstream spoken language modeling

Evaluation metrics. In order to assess the role of the speech encoder in spoken language modeling, we
consider three standard tasks. At the lexical level, sWUGGY (Nguyen et al., 2020) evaluates the ability of
the network to assign a higher probability to the true word than to a matching non-word. We also report
results for “in-vocab” pairs, keeping only the words present in LibriSpeech. At the syntactic level, in sBLIMP,
the network has to decide which sentence is grammatically correct, given minimal sentence pairs. Spoken
StoryCloze (Mostafazadeh et al., 2017; Hassid et al., 2023) measures the ability of the model to choose the
correct continuation of the beginning of a short story. We report the results for the “Topic” version (tSC),
based on simpler negative examples. Following previous works, the log-likelihoods are normalized by the
number of tokens.

Comparison against other speech encoders. To evaluate the contribution of units from SpidR for
spoken language modeling, we compare in table 2 SLMs trained with units from HuBERT, DinoSR or SpidR
on those three metrics. We keep a vocabulary size of V = 256 for all models to allow for exact comparison
between units derived from K-means and from the codebook predictions. We also add an analysis of the
discrete units’ quality with the ABX on one-hot tokens, as well as the Phone Normalized Mutual Information
(PNMI) (Hsu et al., 2021). The alignements used for PNMI are those from the ZeroSpeech 2021 challenge
(Nguyen et al., 2020). Both metrics indicate how well the units correlate with the underlying phonemes.
See appendix B.3 in appendix for a layer-wise analysis of the discrete units quality and downstream spoken
language modeling results. SpidR outperforms all other encoders on SLM metrics and on ABX on discrete
units.

Data scaling analysis. To assess how the advantage of SpidR over other SSL models generalizes across
different training conditions, we compare the scaling properties of SLMs trained with HuBERT or SpidR
across varying data quantities in figure 3. We train SLMs on three dataset sizes: the 600h subset of Libri-Light,
the 6k subset, or the full 60k dataset. We maintain the same hyperparameters as before, and we train for
500k steps when using the Libri-Light dataset instead of 100k steps. Additionally, we train a topline text LM
using BPE tokens from the original books read, ensuring exact dataset matching between text and spoken
LMs. The transcriptions are from Kang et al. (2024); we use the standard OPT tokenizer. Apart from the
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Table 3: Zero-shot spoken language modeling results (in %, chance level 50%) for ∼150M parameters models
trained on Libri-Light 6k from HuBERT or SpidR discrete units, across different number of units. Results for
models based on HuBERT are from Chang et al. (2024); Messica & Adi (2024). The best scores are in bold
and second best are underlined.

Num. units Model Units sWUGGY ↑ sBLIMP ↑ tSC ↑
all in-vocab

50 HuBERT K-means - 67.48 52.42 66.27
HuBERT Spin50 58.90 63.52 59.38 65.85
HuBERT DC-Spin50,4096 65.05 73.51 60.15 69.91
SpidR K-means 68.77 78.32 58.20 71.62

100 HuBERT K-means - 67.75 51.96 67.18
HuBERT Spin100 65.28 73.25 59.97 68.25
HuBERT DC-Spin100,4096 68.04 78.47 61.35 70.18
SpidR K-means 70.77 81.39 59.17 70.23

200 HuBERT K-means - 71.88 52.43 67.55
HuBERT Spin200 68.95 78.19 62.55 69.64
HuBERT DC-Spin200,4096 70.79 80.59 62.13 69.21
SpidR K-means 71.63 82.49 58.05 70.28

500 HuBERT K-means 66.74 74.72 55.54 63.23
HuBERT Spin500 70.03 79.31 60.08 67.45
HuBERT DC-Spin500,4096 71.48 81.38 60.84 67.50
SpidR K-means 70.14 80.32 56.87 69.27

vocabulary size, all training hyperparameters match those of the SLMs. We evaluate the text LM on the
original text versions of WUGGY, BLIMP and tSC. On WUGGY, we do not normalize log-likelihoods for
the text LM since non-words are segmented into more tokens by the tokenizer. Across all conditions, SpidR
consistently outperforms HuBERT on all metrics, whether using codebook predictions or K-means clustering.
However, it does not change the scaling properties: text LMs trained under the same conditions achieve both
better performance and superior scaling, particularly on tSC.

Across number of units. Finally, we investigate the role of the number of units in the spoken LM in
table 3. We train SLMs on SpidR units derived from K-means with vocabulary sizes in {50, 100, 200, 500}
under the same conditions as above. We compare the zero-shot scores to HuBERT-based models from Chang
et al. (2024); Messica & Adi (2024). Those works use transformer_lm_big from fairseq (Ott et al., 2019)
with 150M parameters, whereas we use the OPT-125M architecture. All language models are trained on
Libri-Light 6k. The advantage of SpidR over HuBERT remains consistent across different vocabulary sizes.
We also compare against units derived from HuBERT with Spin or DC-Spin. These approaches aim to
improve speaker invariance and speech tokenization by learning auxiliary codebooks using swapped prediction.
SpidR with standard K-means clustering matches the performance of HuBERT with DC-Spin units, with the
latter showing advantages on sBLIMP, while SpidR performs better on the other metrics.

4.5 Codebase and pretraining time

In addition to learning strong phonetic representations, SpidR was designed with practical considerations in
mind: reducing computational costs and simplifying the training pipeline. We developed a minimal PyTorch
codebase compatible with the latest PyTorch features, with model implementations based on HuBERT from
torchaudio (Hwang et al., 2023).
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Table 4: Pretraining compute footprint of SpidR against other SSL models operating at 50Hz. We report the
pretraining times in the default settings given in the corresponding papers. k2SSL Zipformer is trained using
labels from the first iteration of HuBERT, and Academic HuBERT with labels from E-branchformer (Kim
et al., 2023).

Model GPUs Steps Pretraining time GPU hours
HuBERT (Hsu et al., 2021) A100 ×32 650k 62 hr 1984
DinoSR (Liu et al., 2023) V100 ×16 400k 180 hr 2880
data2vec 2.0 (Baevski et al., 2023) A100 ×16 50k 43 hr 688
MelHuBERT (Lin et al., 2023) RTX 3090 ×1 630k 300 hr 300
Academic HuBERT (Chen et al., 2023a) A100 ×8 1760k 240 hr 1920
k2SSL Zipformer (Yang et al., 2025) V100 ×8 225k 64 hr 513
SpidR and DinoSR (our reimplem.) A100 ×16 400k 23 hr 369
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Figure 4: Approximate pretraining
time for various hardware configura-
tions with constant total batch size.

We re-implemented DinoSR in this codebase, reducing training time
from the reported 180 hours to just 70 hours on 16 V100 GPUs
under identical settings to Liu et al. (2023). We further optimized
the codebase for full compatibility with torch.compile (Ansel et al.,
2024) and minimized host-device synchronization points. Since
torch.compile merges native PyTorch modules and functions into
optimized kernels, this results in significant throughput improve-
ments. As shown in table 4, SpidR can be pretrained in under a day
on 16 A100 GPUs. With 32 A100 GPUs, training SpidR only takes
14 hours (maintaining the same total batch size), compared to 62
hours for HuBERT. The single-pass training of SpidR also eliminates
the feature extraction and label computation steps required by Hu-
BERT, removing common engineering challenges. Figure 4 shows
pretraining times for SpidR across different hardware configurations
(4, 8, and 16 A100 or H100 GPUs) with constant total batch size.
Using torch.compile provides approximately a 20% speedup in pre-
training time. We open-source both the final checkpoints and the
codebase.

5 Conclusion

We presented SpidR: a self-supervised speech representation model that efficiently learns strong representations
for spoken language modeling. We demonstrated that its learning objective, adapted from DinoSR, enables
stable training and produces representations with salient phonetic information. Spoken language models
using units from SpidR consistently outperform those based on HuBERT and DinoSR.

This work focused exclusively on English, and only with data from LibriVox audiobooks. Major multilingual
SSL models are based on either wav2vec 2.0 (Conneau et al., 2021; Babu et al., 2022; Pratap et al., 2024) or
HuBERT/WavLM (Chen et al., 2023b; 2024; Zanon Boito et al., 2024), and require massive computational
resources for training. SpidR offers a solution for learning strong representations much faster, serving
as foundation for future models and making approaches in other languages or multilingual settings more
accessible due to reduced computational cost. Future work will focus on scaling the speech encoder to more
data and languages while ensuring robustness to diverse acoustic conditions, with the goal of building a
speech encoder capable of learning linguistic representations from ecological speech.
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Table 5: SpidR pretraining hyperparameters. We trained with 16 A100 GPUs in our default setting.

Parameter Value
Model

Conv1d dimension 512
Conv1d [(kernel size, stride)] [(10, 5)] + [(3, 2)]× 4 + [(2, 2)]× 2
Conv1d bias False
Conv1d normalization LayerNorm
Projection dropout 0
Positional encoding layers 5
Positional encoding total kernel size 95
Positional encoding groups 16
Hidden dimension d 768
Number of Transformer layers L 12
Number of attention heads 12
Transformer dropout 0.1
Attention dropout 0.1
Feed-forward dimension 3072
Feed-forward dropout 0
Layer drop probability 5%
LayerNorm mode After
Q, K, V projection biases False
Number of codebooks K 8
Codebook decay τ 0.9
Codebook size V 256
Initial decay of teacher β0 0.999
Decay timescale T 10 000
Decay of teacher at step t 1− (1− β0) exp(−t/T )

Parameter Value
Optimizer

Name AdamW
Peak learning rate 5× 10−4

Betas (0.9, 0.95)
Weight decay 0.01
Epsilon 1× 10−6

Warmup steps 12 000
Hold steps 188 000
Decay steps 200 000
Conv. freeze step 200 000

Data
Min. sequence length 2000
Max. sequence length 320 000
Max. samples in batch 3 800 000
Number of buckets 1000
Padding False
Random crop True

Masking
Start probability 8%
Span length 10
With overlap True

A Implementation details

A.1 SpidR pretraining

Table 5 contains the full list of pretraining hyperparameters and figure 5 illustrates the two schedules that
occur during training: the learning rate schedule and the EMA decay schedule of the teacher.

The positional encodings of DinoSR and SpidR are the same as those used by Baevski et al. (2022), and
differ from Baevski et al. (2020); Hsu et al. (2021). Instead of only one convolutional layer with a large kernel
size, they are made of 5 layers, each with a kernel size of 95/5 = 19.

Batches are sampled using the following procedure. Audio files from LibriSpeech are first sorted and grouped
into buckets by length, with only samples within the same bucket shuffled together. Batches are formed by
selecting audio files from a given bucket until the target maximum number of samples in a batch is reached.
If the target is not met, we continue filling the batch using files from the next bucket. No padding is applied,
and audio samples longer than the maximum sequence length are randomly cropped.
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Figure 5: Learning rate schedule (left) and EMA decay schedule of the teacher for DinoSR and SpidR (right).
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Table 6: ABX error rate of the codebook predictions (in %, chance level 50%, KL-symmetric distance). All
models have codebooks of size 256. The best scores are in bold and second best are underlined.

Model Layer ABX within speaker ↓ ABX across speaker ↓
dev-clean dev-other dev-clean dev-other

DinoSR 5 3.48 3.89 3.80 4.89
DinoSR† 5 3.18 3.92 3.48 4.99
HuBERT + Spin256 - 3.85 5.20 4.32 6.36
WavLM + Spin256 - 4.41 4.67 4.80 5.82
SpidR 6 2.99 3.48 3.35 4.56
† Our re-implementation.

A.2 Masking procedure

Downsampling

x =

Masking

x̃ =

n

d

n

d

Figure 6: Masking procedure. The masked
frames are in black, and the unmasked ones
in gray.

We follow the masking procedure of Baevski et al. (2020), with
parameters of Liu et al. (2023), to sample the mask M , as
shown in figure 6. We first extract features x of shape (n, d)
with d = 768 from the audio signal using the downsampling
module. The masking process works as follows: each frame
i ∈ {1, ..., n} has an 8% probability of starting a mask span
of length 10. Mask spans can overlap, and the proportion of
masked frames depends on the total number of frames n.

Using the parameters from table 5, the average sequence length
in a LibriSpeech 960h batch is 216000, corresponding to 13.5
seconds of audio and to n = 675 frames. For a typical 13.5-
second audio sample, approximately 43% of all time-steps are
masked, with an average span length of 11.9 frames, correspond-
ing to 238ms of audio, a median of 8 frames, and a maximum of
about 50 frames. For reference, the average triphone duration
in LibriSpeech dev-clean and dev-other is 237ms, based on
the annotations from Nguyen et al. (2020).

B Additional results

B.1 Discriminability of continuous embeddings

In table 6, we compute ABX discriminability on the softmax outputs from either the prediction heads or
the Spin codebooks. Instead of using the standard angular distance, we use the symmetrized KL divergence.
This metric was used in Liu et al. (2023) to evaluate DinoSR. We select the Spin checkpoints from Chang
et al. (2023) with the same codebook size as DinoSR and SpidR.

We evaluate the phoneme and word discriminability of continuous embeddings from a wide range of monolingual
English speech models in table 7. All Base size models were trained on LibriSpeech and all Large models
on Libri-Light. For each model, we select the best-performing layer in terms of average ABX score. We
distinguish between standard self-supervised models (including SpidR), self-supervised models with additional
robustness losses such as WavLM (Chen et al., 2022), and supervised models. We conducted a preliminary
experiment where we fine-tuned SpidR with our own implementation of Spin.

Overall, masked prediction using discrete targets produces representations with salient phonetic information,
and additional losses promoting invariance to acoustic and speaker conditions further improve performance.
Supervision does not necessarily help—Whisper exhibits poor ABX scores, likely because it learns from
multiple tasks simultaneously, making phonetic information less salient in its encoder representations.
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Table 7: Evaluation of representations from monolingual English speech models. All operate at a 50Hz
framerate, except Conformer which is at 25Hz. Apart from Whisper, all Base size models were trained on
LibriSpeech and all Large ones on Libri-Light. The best scores are in bold and second best are underlined.

Model Layer ABX within speaker ↓ ABX across speaker ↓ MAP words ↑
dev-clean dev-other dev-clean dev-other dev-clean dev-other

Self-supervised models
wav2vec 2.0 (Baevski et al., 2020) 6 4.47 5.63 5.25 7.82 44.81 31.92
wav2vec 2.0 Large (Baevski et al., 2020) 16 4.35 5.14 5.20 7.29 46.10 34.21
HuBERT (Hsu et al., 2021) 11 3.38 4.26 4.01 6.49 46.07 33.37
HuBERT Large (Hsu et al., 2021) 24 3.90 4.30 4.49 5.92 68.99 59.11
HuBERT Extra Large (Hsu et al., 2021) 48 4.04 4.38 4.76 6.21 64.64 54.64
data2vec (Baevski et al., 2022) 4 4.41 5.49 5.07 7.40 39.34 27.90
data2vec Large (Baevski et al., 2022) 7 4.51 5.46 5.20 7.15 38.56 28.70
data2vec 2.0 (Baevski et al., 2023) 1 5.13 5.77 5.72 7.53 69.38 53.49
data2vec 2.0 Large (Baevski et al., 2023) 2 6.68 6.55 7.41 8.43 66.85 55.42
Eh-MAM (Seth et al., 2024) 1 4.31 5.36 4.96 7.58 60.63 42.80
DinoSR (Liu et al., 2023) 5 4.05 5.11 4.72 7.29 63.02 45.86
DinoSR†(Liu et al., 2023) 5 4.29 5.56 5.22 8.56 51.35 33.74
SpidR 6 3.32 3.74 3.66 4.95 66.50 55.26

With self-supervised robustness loss
WavLM Base (Chen et al., 2022) 11 3.03 3.71 3.50 5.21 71.57 58.09
WavLM Base+ (Chen et al., 2022) 12 3.54 4.08 4.08 5.82 62.77 51.63
WavLM Large (Chen et al., 2022) 24 3.94 4.32 4.62 5.99 67.56 57.49
ContentVec100 (Qian et al., 2022) 12 3.29 4.04 3.83 5.49 63.85 52.17
HuBERT + Spin2048 (Chang et al., 2023) 12 2.70 3.23 3.05 4.08 68.70 61.41
WavLM + Spin2048 (Chang et al., 2023) 12 3.05 3.51 3.52 4.44 75.20 67.13
SpidR + Spin2048 12 2.73 3.51 3.11 4.47 61.33 50.99

With supervision
Whisper small.en (Radford et al., 2023) 8 7.03 8.21 8.27 11.81 16.35 11.03
Conformer ASR‡ (Gulati et al., 2020) 8 2.79 3.76 3.21 5.22 63.03 45.74
wav2vec 2.0 ASR (Baevski et al., 2020) 6 3.94 4.90 4.50 6.52 56.98 43.52
wav2vec 2.0 Large ASR (Baevski et al., 2020) 10 3.52 4.58 4.09 6.20 54.04 40.06
HuBERT Large ASR (Hsu et al., 2021) 14 4.69 5.38 5.48 7.27 43.25 33.09
HuBERT + phoneme classif. (Poli et al., 2024) 12 0.82 1.54 0.97 2.35 68.48 57.04
† Our re-implementation.
‡ Using speechbrain/asr-conformer-transformerlm-librispeech (Ravanelli et al., 2024).

We compare in figure 7 the ABX and MAP on continuous embeddings by layer for HuBERT, DinoSR (both
the original checkpoint and our replication) and SpidR. The ABX scores are averaged across subsets and
speaker conditions, and MAP across the two subsets.
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Figure 7: ABX and MAP (in %, chance level 50% for ABX) by layer for SpidR, DinoSR and HuBERT.
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Figure 8: t-SNE visualization of phone embeddings from SpidR layer 6 on LibriSpeech dev-clean. Embeddings
are colored by phone class (left) and by speaker gender (right).

B.2 Embeddings visualization

We visualize the embedding space of SpidR in two dimensions using t-SNE (van der Maaten & Hinton, 2008),
following de Seyssel et al. (2022). We train t-SNE on phone embeddings of LibriSpeech dev-clean from layer
6 of SpidR. For each speaker, we sample 10 instances per phone and average each embedding along the time
dimension, resulting in approximately 15 000 samples.
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Figure 9: t-SNE visualization of phone embeddings from SpidR layer 6 on LibriSpeech dev-clean, colored
by individual phones within each phone class. Embeddings from other classes are shown in gray.
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(a) With codebook predictions (203 active codes).
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(b) With K-means quantization (256 active codes).

Figure 10: P(phone | code) visualization for SpidR layer 6 using either codebook predictions (left) or K-means
quantization (right), on LibriSpeech dev-clean and dev-other.

In figure 8, we color the embeddings by either the underlying phone class or by the speaker gender. For
more fine-grained visualization, we color by individual phones within each phone class in figure 9. Overall,
the embedding space is well clustered by phone class, and even by individual phone, whereas the speaker
information is not directly extractable from the embeddings.

B.3 Layer-wise analysis

In addition to the discrete units analysis in table 2, we compute in figure 11 the ABX discriminability and
PNMI for other intermediate layers of SpidR and HuBERT, with units derived from codebook predictions
or K-means quantization. As in section 4.1, the K-means are trained on LibriSpeech train-clean-100.
Figure 10 shows the P(phone | code), with codes from SpidR layer 6 on LibriSpeech dev-clean and dev-other.
The vertical axes are sorted by phone frequency in the annotated data.
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Figure 11: ABX (in %, chance level 50%) and PNMI by layer on discrete units from SpidR using codebook
predictions or K-means, and from HuBERT using K-means, with V = 256 units. ABX scores averaged across
subsets and speaker conditions, and PNMI computed on LibriSpeech dev-clean and dev-other.
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Figure 12: Zero-shot spoken language modeling from each layer of HuBERT and SpidR (in %, chance level
50%), with units from codebook predictions or from K-means quantization, with V = 256 units.

We also trained spoken language models from the units obtained from each intermediate layer in the same
conditions as section 4.1. Figure 12 shows the accuracies on zero-shot spoken language modeling for the three
encoders. Finally, to assess how well the zero-shot metrics serve as proxy tasks, we compare spoken language
modeling scores against phonetic- and word-level metrics in figure 13 (continuous embeddings) and figure 14
(discrete units). We distinguish between SpidR using K-means units, where ABX is computed on standard
embeddings, and SpidR using codebook predictions, where ABX is computed on codebook predictions with
symmetric KL divergence. We compute Pearson correlation coefficients between each proxy metric and
downstream evaluation score. Note that this analysis does not capture inter-model differences well, and that
correlations are influenced by the fact that SpidR’s final layers perform poorly across most metrics.
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Figure 13: Spoken language modeling against discriminability of the continuous representations. Dots are
labeled by intermediate layer index. ABX for SpidR (Codebooks) is computed over codebook predictions.
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Figure 14: Spoken language modeling against phonetic evaluation of the discrete units, with V = 256 units.
Dots are labeled by intermediate layer index.

C Ablation study

Table 8: Ablation study from DinoSR to SpidR (in % except for PNMI, chance level 50% for ABX). The
ABX scores are averaged across subsets and speaker conditions, MAP across the two subsets, and PNMI is
computed on LibriSpeech dev-clean and dev-other.

Model Layer Continuous embeddings Discrete units quality
ABX ↓ MAP ↑ ABX ↓ PNMI ↑

DinoSR† 5 5.91 42.55 7.70 0.614
DinoSR + Heads 7 4.22 63.39 7.87 0.610
DinoSR + Exp. EMA 6 5.86 51.85 8.77 0.609
DinoSR + Heads + Exp. EMA = SpidR 6 3.92 60.88 6.32 0.602
† Our re-implementation.

We developed SpidR by making two key changes from DinoSR. First, we modified the learning objective by
adding prediction heads to the student’s intermediate layers instead of using only the final layer. This showed
promising results, but we noticed that the training loss would slightly increase mid-training, suggesting that
the student was struggling to keep up with the teacher. To solve this problem, we modified the teacher’s
EMA decay schedule to follow a smoother trajectory that approaches 1 faster without plateauing at 0.9999.

In table 8 we ablate these two changes: “Heads” refers to the new learning objective, and “Exp. EMA”
refers to the new shape of the EMA decay schedule. We evaluate both in terms of continuous embedding
discriminability and discrete units quality.
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