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ABSTRACT

The expansion of large language models to effectively handle instructions with
extremely long contexts has yet to be fully investigated. The primary obstacle lies
in constructing a high-quality long instruction-following dataset devised for long
context alignment. Existing studies have attempted to scale up the available data
volume by synthesizing long instruction-following samples. However, indiscrimi-
nately increasing the quantity of data without a well-defined strategy for ensuring
data quality may introduce low-quality samples and restrict the final performance.
To bridge this gap, we aim to address the unique challenge of long-context align-
ment, i.e., modeling the long-range dependencies for handling instructions and
lengthy input contexts. We propose GATEAU, a novel framework designed to
identify the influential and high-quality samples enriched with long-range depen-
dency relations by utilizing crafted Homologous Models’ Guidance (HMG) and
Contextual Awareness Measurement (CAM). Specifically, HMG attempts to
measure the difficulty of generating corresponding responses due to the long-range
dependencies, using the perplexity scores of the response from two homologous
models with different context windows. Also, the role of CAM is to measure the
difficulty of understanding the long input contexts due to long-range dependencies
by evaluating whether the model’s attention is focused on important segments.
Built upon both proposed methods, we select the most challenging samples as the
influential data to effectively frame the long-range dependencies, thereby achieving
better performance of LLMs. Comprehensive experiments indicate that GATEAU
effectively identifies samples enriched with long-range dependency relations and
the model trained on these selected samples exhibits better instruction-following
and long-context understanding capabilities.

1 INTRODUCTION

Large Language Models (LLMs) with large context windows (Du et al., 2022; Li et al., 2023; Chen
et al., 2024b) have demonstrated impressive capabilities across a wide range of real-world tasks that
involve extremely long contexts, such as long-document summarization and multi-document question
answering (Bai et al., 2023). Recent works to build long-context LLMs mainly focus on broadening
the context window via position encoding extension and continual pre-training on long text (Chen
et al., 2023b; Pal et al., 2023; Peng et al., 2024; Xiong et al., 2024; Han et al., 2024).

Despite these advancements, few studies consider the alignment of long-context LLMs to leverage
their capabilities in understanding long input contexts and following complex instructions. A primary
obstacle lies in the difficulty of constructing a high-quality long instruction-following dataset for
supervised fine-tuning (SFT). Annotating long instruction-following data tends to be much more
challenging than short ones. Because it is non-trivial for annotators to understand an excessively
long context and provide high-quality responses. For example, annotators might be tasked with
writing a summary for a document containing more than 64k words based on the given instruction.
To bypass this, Li et al. (2023); Tworkowski et al. (2023); Xiong et al. (2024) construct the long
instruction-following dataset by concatenating short instruction-following samples. Nonetheless,
simply concatenating unrelated samples may not effectively simulate the long-range dependencies
required for long-context tasks. For long-context tasks, modeling long-range dependencies is crucial,
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as such strong semantic dependencies benefit LLMs to understand long input contexts and generate
high-quality responses (Chen et al., 2024a; Wu et al., 2024). To preserve the inherent long-range
dependency relations in the collected samples, Yang (2023); Chen et al. (2024b); Bai et al. (2024)
focus on synthesizing long instruction-following data. For instance, Bai et al. (2024) synthesizes
10k samples by employing Claude 2.1 (Anthropic., 2023), which supports a context window of 200k
tokens, to get responses for the collected long documents. However, LLMs trained on these synthetic
samples, even with sufficiently long contexts, may still struggle to model the long-range dependencies.
This is because indiscriminately increasing the quantity of data without a well-defined strategy for
ensuring data quality may introduce low-quality samples that lack long-range dependency relations,
e.g., such samples may rely solely on the limited tokens preceding the instruction or may not need to
use long input contexts to generate a correct response. Therefore, a critical question arises: How can
we effectively select influential samples from a vast amount of synthetic long instruction-following
data for long context alignment?

Unfortunately, previous studies for selecting high-quality instruction-following data primarily con-
centrate on short samples (Li et al., 2024b; Xia et al., 2024). Consequently, these studies may not be
effective for long context alignment, as they ignore the unique challenge in long context alignment,
i.e., how to select the samples enriched with meaningful long-range dependency relations. As such, we
introduce GATEAU, which consists of Homologous Models’ GuidAnce (HMG) and ConTExtual
Awareness MeasUrement (CAM), to identify the influential long instruction-following samples
enriched with long-range dependency relations to achieve better long context alignment. The two
proposed methods aim to separately measure the difficulty of generating corresponding responses
and understanding long input contexts due to the long-range dependencies.

Specifically, HMG measures the difficulty of generating corresponding responses due to the long-
range dependencies, by comparing the perplexity scores of the response between two homologous
models with different context windows (e.g., the perplexity scores from LLaMA-2-7B-base-4k
(Together.ai, 2023) and LLaMA-2-7B-base-64k (Bai et al., 2024)). The idea behind HMG is that the
primary difference between homologous models with varying context windows lies in their different
capabilities for modeling long-range dependencies. Thus, the disparity in the perplexity scores
can be interpreted as reflecting the difficulty of generating the response caused by the long-range
dependencies. The larger disparity between the scores indicates more difficulties for LLM in response
generation due to the long-range dependencies. We also introduce CAM to measure the difficulty
of understanding the long input contexts due to long-range dependencies, as it is hard for LLMs to
utilize crucial information hidden in extremely long contexts. We first calculate the importance score
of different input segments concerning the given response and subsequently measure whether LLMs
can pay more attention to more important segments. Should LLM’s attention focus more on less
important segments, it implies that it is hard for the LLM to comprehend the long input contexts
correctly. Ultimately, we take the weighted sum of both results from two methods as the final criterion
for ranking the data, selecting the most challenging samples as influential ones. When trained on
these selected samples characterized by complex long-range dependency relations, LLMs could
effectively model the long-range dependencies and achieve better instruction-following performance.

We conduct extensive experiments to evaluate the effectiveness of GATEAU, including long-context
understanding benchmark (LongBench (Bai et al., 2023)), long instruction-following benchmark
(LongBench-Chat (Bai et al., 2024)), short instruction-following benchmark (MT-Bench (Zheng et al.,
2023)), and Needle in A HayStack test (Gkamradt, 2023). With the proposed GATEAU, significant
performance boosts are observed by using selected samples, e.g., the model trained on only 10%
samples of the dataset achieves better performance than the model trained on the full dataset.

2 RELATED WORK

Long Context Alignment. Aligning the LLMs with instruction-following data can ensure they
understand user instructions and give high-quality responses, which has been extensively studied in
short context scenarios (Taori et al., 2023; Wang et al., 2023a;b). However, excessively long contexts
present unique challenges for long context alignment. Li et al. (2023); Tworkowski et al. (2023);
Xiong et al. (2024) construct the long instruction-following dataset by concatenating short instruction-
following samples. Yet, simply concatenating unrelated sentences may not effectively simulate the
long-range dependency relations for long-context tasks. Thus, Yang (2023); Chen et al. (2024b);
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Figure 1: An overview of our framework GATEAU. Unlike directly training LLMs with the entire
dataset, GATEAU first selects samples enriched with long-range dependency relations by using two
proposed methods. Then it uses selected influential samples for training long-context LLMs.

Bai et al. (2024) construct long instruction-following data by collecting long-context materials as
inputs and querying Claude to get the response. However, using these synthetic data without a clear
strategy for ensuring data quality may lead to the inclusion of low-quality samples (e.g., samples
without meaningful long-range dependency relations). Training LLMs on such low-quality samples
can ultimately constrain their final performance.

Data Selection for Alignment. As Zhou et al. (2023) makes the statement that less is more for
alignment, many works attempt to select influential and high-quality samples to empower the LLMs’
instruction-following capabilities. Chen et al. (2023a); Liu et al. (2024) attempt to utilize the feedback
from close-source LLMs (e.g., ChatGPT) to select samples. On the other hand, Cao et al. (2024);
Li et al. (2024b); Ge et al. (2024); Xia et al. (2024) try to utilize the well-designed metrics (e.g.,
complexity) based on open-source LLMs to rank and select the samples. Meanwhile, Li et al. (2024c);
Zhang et al. (2024) attempt to utilize the guidance from in-context learning. However, these methods
only focus on selecting short instruction-following data, ignoring the unique challenge in long context
alignment, i.e., selecting the samples enriched with meaningful long-range dependency relations.

By synthesizing long instruction-following data, Chen et al. (2024b); Bai et al. (2024) have effectively
expanded the data volume for long context alignment. In this work, we aim to select influential
samples from a vast ocean of synthetic data instead of indiscriminately increasing the quantity of
data. Meanwhile, different from previous works (Li et al., 2024b; Xia et al., 2024) that only consider
the selection of short instruction-following samples, we attempt to address the unique challenge
in long context alignment, i.e., the necessity for modeling long-range dependencies. Thus, we
propose GATEAU to measure the richness of long-range dependency relations in long samples. As
shown in Figure 1, GATEAU consists of Homologous Models’ Guidance and Contextual Awareness
Measurement, which separately measure the difficulty of generating corresponding responses and
understanding long input contexts due to the long-range dependencies.

2.1 HOMOLOGOUS MODELS’ GUIDANCE

Modeling long-range dependencies is essential for long context alignment (Chen et al., 2024a).
However, there is still no effective metric to directly quantify the richness of long-range dependency
relations in data, which hinders the selection of influential data. Therefore, in this section, we attempt
to approximately assess the richness of long-range dependency relations by measuring the difficulty
in generating corresponding responses due to the long-range dependencies. If LLMs find it harder to
generate target responses due to long-range dependencies, it means the sample has more complex
and meaningful long-range dependency relations. An intuitive approach is to use the perplexity score
to measure the difficulty of generating corresponding responses (Cao et al., 2024; Li et al., 2024b),
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as the score evaluates the extent to which the LLM’s output aligns with the corresponding correct
answer. For a given long instruction-following sample pc, x; yq, the perplexity score of the given
response y from LLMs θ is calculated as:

PPLθpy|c, xq “ Expp´
1

|y|

|y|
ÿ

i“1

logP pyi|c, x, yăi; θqq, (1)

where c means long input contexts and x means the given instruction. A higher PPLθpy|c, xq

indicates the harder the response of this long instruction-following data for LLM to generate.

However, we argue that a higher PPLθpy|xq does not mean the increased difficulty in generating
corresponding responses is due to long-range dependencies. A higher PPLθpy|c, xq might be
attributed to certain limited capabilities of LLMs, such as the limited instruction-following capability
for the model without alignment, instead of handling the long-range dependency relations in this
sample is more challenging for the LLM. Therefore, to minimize the influence of other factors, we
propose Homologous Models’ Guidance (HMG). Specifically, we compare the perplexity scores
of the response between two homologous models with different context windows to measure the
difficulty due to the long-range dependencies. As homologous models (Yu et al., 2024) share the same
pre-training stage and model architecture (e.g., LLaMA-2-7B-base-4k (Touvron et al., 2023) and
LLaMA-2-7B-base-64k (Bai et al., 2024)), the only difference lies in their capabilities to model long-
range dependency relations due to the extending context windows stage. Based on this motivation,
we introduce the homologous models’ perplexity score HMPpc, x; yq:

HMPpc, x; yq “ NormpPPLθApy|c, xqq ´ NormpPPLθB py|c, xqq. (2)

Model θA employs short context windows and θB is the model with long ones, e.g., LLaMA-2-7B-
base-4k θA and LLaMA-2-7B-base-64k θB . We compute the difference in normalized perplexity
scores between two homologous models with different context windows as the metric. We apply
softmax normalization to each score to determine its respective ranking among the datasets, since per-
plexity scores of one sample from different models often can’t be directly compared. By introducing
a model θA with weaker long-range dependencies modeling capability but other similar capabilities
learned during the pre-training stage, we mitigate the influence brought by lacking other capabilities
compared to simply using perplexity score as Eq. (1). Thus, the difference in perplexity scores is
primarily attributed to the different abilities in modeling long-range dependencies between model θA
and model θB . In other words, Eq. (2) reflects the difficulty of generating the corresponding response
caused by long-range dependencies. We use the drop from PPLθA to PPLθB in Eq. (2) because
model θA tends to produce a high perplexity score due to its weak ability to model long-range depen-
dencies. Thus, a higher HMPpc, x; yq indicates more difficulties for LLM in response generation due
to the long-range dependencies, i.e., more long-range dependency relations in this sample.

2.2 CONTEXTUAL AWARENESS MEASUREMENT

Another challenge in long context alignment lies in enabling LLMs to understand and utilize the
extremely long input contexts. Due to the long-range dependencies, it is hard for LLMs to utilize
crucial information hidden in extremely long contexts, e.g., LLM’s attention may focus on irrelevant
content. Thus, we introduce Contextual Awareness Measurement (CAM) to evaluate whether
LLMs’ attention is appropriately focused on important segments within the long input contexts.
Simply put, we attempt to evaluate the importance score of each segment and calculate the LLM’s
attention weights on each one, getting the Contextual Awareness Score (CAS) via calculating their
similarity. For a given data pc, x; yq, we divide the input contexts c into N segments rs1, s2, s3, ..., sN s

of equal length L. Specifically, for a given segment si, we first compute the designed importance
score ISθpsiq and measure the significance of the segment in the response generation for LLM θ:

ISθpsiq “ NormpExpp´
1

|y|

|y|
ÿ

j“1

logP pyi|si, x, yăj ; θqqq. (3)

We only keep the given segment si as input contexts to calculate the perplexity score of generating the
response y, indicating the difficulty of generating the corresponding response y based on segment si.
We apply softmax normalization to each score Expp´ 1

|y|

ř|y|

j“1 logP pyi|si, x, yăj ; θqq to determine
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its respective ranking among the segments tsiu
N
i“1. Thus, the higher ISθpsiq suggests a greater

difficulty for LLM θ to generate the response based on segment si, implying that it is less important.

Once the importance scores of different segments are calculated, we then utilize the attention weights
(i.e., the value of softmexp

QKT
?
dk

q ) in the multi-head attention mechanism (Vaswani et al., 2017) to
measure how the LLM utilizes these segments. To achieve it, we use the averaged attention weights
of tokens rt1, ..., tLs in segments si as the score Attnθpsiq, which takes the form:

Attnθpsiq “ Normp
1

L

L
ÿ

j“1

Attnθptj |y; θqq, (4)

where Attnθptj |y; θq means the attention weights averaged across the tokens in targeted response y
to the token tj in segment si. Meanwhile, we harness the attention weights averaged across different
decoder layers and attention heads to thoroughly model how the LLM utilizes the long input contexts
during the response generation (Hsieh et al., 2024). We apply softmax normalization to each score
1
L

řL
j“1 Attnθptj |y; θq to determine its respective ranking among the segments tsiu

N
i“1 to yield the

score Attnθpsiq. In so doing, we can calculate the attention weights between the response and
segments, indicating how segments are utilized during the response generation.

Finally, we measure the difficulty of understanding the long input contexts due to long-range de-
pendencies. For a given long instruction-following sample, we compute the CAS by resorting
to the cosine similarity between importance scores rISθps1q, ..., ISθpsN qs and attention weights
rAttnθps1q, ...,AttnθpsN qs, as follows:

CASpc, x; yq “ CosSimprISθps1q, ..., ISθpsN qs, rAttnθps1q, ...,AttnθpsN qsq. (5)

By doing this, we can measure the difficulty of understanding the long input contexts by checking
whether LLMs’ attention is focused on important segments. The insight is that should the LLM’s
attention focus more on less important segments, it suggests that the LLM struggles to accurately
comprehend long input contexts. The higher CASpc, x; yq indicates more difficulties in utilizing the
long input contexts to generate corresponding responses due to the long-range dependencies, which
also implies the more long-range dependency relations in this sample.

2.3 SELECTING AND TRAINING

In practice, we frame the overall metric by weighting and summing both designed metrics to rank the
data pc, x; yq, then select the most challenging samples as the influential samples, i.e.,

Scorepc, x; yq “ α ˚ NormpHMPpc, x; yqq ` p1 ´ αq ˚ NormpCASpc, x; yqq. (6)

α is a hyperparameter. We tap softmax normalization to the HMPpc, x; yq and CASpc, x; yq of the
given data across the whole dataset. Inspired by active learning (Li et al., 2024a), when trained
on these challenging data characterized by complex long-range dependency relations, LLMs could
effectively model the long-range dependencies and achieve better long context alignment.

LLMs are often fine-tuned with instruction-following data to learn to follow instructions. We aim to
apply supervised fine-tuning on the selected data (e.g., selecting 10% samples of full datasets with
top 10% scores according to Eq. (6)). Thus we train LLMs using the following objective function:

Lθpc, x; yq “ ´

|y|
ÿ

i“1

logP pyi|c, x, yăi; θq. (7)

It is similar to a language modeling loss, while only computing the loss associated with the response.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Training Datasets. We use LongAlign (Bai et al., 2024) as the long instruction-following dataset,
which encompasses 10,000 long instruction-following samples. LongAlign is developed by using
collected long sequences from 9 sources and applying the Self-Instruct (Wang et al., 2023b) approach
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Table 1: Results (%) on LongBench in Real-world Settings. We use the ID to represent the dataset in
LongBench, e.g., 1-1 is the ID of NarrativeQA dataset. More details can be found in Appendix C.2.

Model Single-Doc QA Multi-Doc QA Summarization
1-1 1-2 1-3 1-4 Avg 2-1 2-2 2-3 2-4 Avg 3-1 3-2 3-3 3-4 Avg

Auto Metrics
w/o SFT 0.9 3.9 6.4 3.6 3.7 7.3 8.71 2.1 15.4 8.4 23.9 6.2 14.0 1.78 11.5
w/o Long SFT 16.8 29.1 45.8 48.7 35.1 27.8 17.6 11.4 25.3 20.5 27.4 23.3 27.8 14.3 23.2
Full - 100% 18.4 29.9 46.1 49.9 36.1 27.1 20.8 11.2 30.0 22.3 28.7 24.0 26.7 15.9 23.8

Perplexity Guidance - 10% 19.9 32.0 46.6 45.8 36.1 22.1 23.2 10.4 30.3 21.5 31.3 23.8 26.0 17.7 24.7
CaR - 10% 16.9 24.1 47.6 42.3 32.7 22.1 19.8 11.3 30.0 20.8 31.9 23.1 26.2 18.6 25.0
Cherry Selection - 10% 19.9 30.8 47.2 43.1 35.3 25.2 21.4 10.6 28.3 21.4 30.0 24.1 25.1 17.0 24.1
GATEAU-LLaMA - 10% 23.5 34.2 49.6 54.5 40.5 28.7 25.0 12.1 30.5 24.0 31.2 24.7 26.9 18.9 25.4
∆ compared to Full - 100% +5.1 +4.3 +3.5 +4.6 +4.4 +1.6 +4.2 +0.9 +0.5 +1.8 +2.5 +0.7 +0.2 +3.0 +1.6

Perplexity Guidance - 30% 21.1 33.6 46.1 46.7 36.9 23.4 21.0 10.1 30.1 21.2 30.2 24.7 26.4 18.9 25.1
CaR - 30% 18.0 24.4 46.9 45.0 33.6 25.4 20.8 14.4 29.4 22.5 30.1 24.8 26.5 18.2 24.9
Cherry Selection - 30% 20.5 33.1 48.0 51.0 38.2 26.7 20.4 13.5 29.1 22.4 30.4 24.1 26.9 17.7 24.8
GATEAU-LLaMA - 30% 23.7 34.1 49.6 54.6 40.5 30.1 23.8 14.9 30.4 24.8 30.5 24.9 27.2 18.9 25.4
∆ compared to Full - 100% +5.3 +4.2 +3.5 +4.7 +4.4 +3.0 +3.0 +3.7 +0.4 +2.5 +1.8 +0.9 +0.5 +3.0 +1.6

Perplexity Guidance - 50% 19.2 32.8 50.1 49.5 37.9 27.1 23.1 12.1 31.1 23.4 31.5 24.1 27.1 18.7 25.4
CaR - 50% 17.6 24.5 47.6 44.7 33.6 29.3 19.4 17.3 29.6 23.9 30.3 23.7 26.0 18.2 24.6
Cherry Selection - 50% 19.0 32.6 51.7 49.6 38.2 26.2 23.9 13.5 30.4 23.5 30.5 23.8 26.9 18.8 25.0
GATEAU-LLaMA - 50% 20.2 33.4 52.1 49.8 38.9 30.7 25.2 15.0 32.5 25.8 31.3 24.6 27.1 18.8 25.5
∆ compared to Full - 100% +1.8 +3.5 +6.0 -0.1 +2.8 +3.6 +4.4 +3.8 +2.5 +3.6 +2.6 +0.6 +0.4 +2.9 +1.6

GPT-4 Evaluation
w/o SFT 33.8 38.0 41.1 34.8 36.9 41.3 37.2 33.3 42.0 38.5 39.2 20.2 37.1 30.9 31.9
w/o Long SFT 58.7 66.7 83.1 79.2 71.9 70.2 53.4 48.7 61.3 58.4 57.3 36.2 55.2 38.4 46.8
Full - 100% 62.8 69.0 83.1 81.3 74.1 71.5 54.8 51.3 66.2 61.0 58.7 39.8 57.6 41.2 49.3

Perplexity Guidance - 10% 62.0 68.8 86.4 85.6 75.7 73.5 59.7 52.1 68.2 63.4 67.6 41.3 67.0 44.9 55.2
CaR - 10% 60.3 69.0 86.0 84.8 75.0 69.1 58.3 52.3 68.5 62.1 64.1 41.4 60.3 42.1 52.0
Cherry Selection - 10% 60.8 67.2 86.7 84.3 74.8 71.3 57.8 51.0 69.0 62.3 61.3 40.0 64.8 41.5 51.9
GATEAU-LLaMA - 10% 63.6 69.2 86.9 87.1 76.7 74.8 60.8 53.1 69.5 64.6 67.6 42.6 66.2 47.8 56.1
∆ compared to Full - 100% +0.8 +0.2 +3.8 +5.8 +2.7 +3.3 +6.0 +1.8 +3.3 +3.6 +8.9 +2.8 +8.6 +6.6 +6.7

Perplexity Guidance - 30% 62.8 67.3 86.2 82.6 74.7 72.3 59.3 50.8 67.8 62.6 62.3 41.7 64.8 42.7 52.9
CaR - 30% 61.3 67.3 86.4 85.3 75.1 68.3 58.3 53.2 66.8 61.7 64.6 39.7 60.7 41.2 51.6
Cherry Selection - 30% 62.0 66.8 87.1 84.3 75.1 74.3 59.3 52.7 68.7 63.8 62.3 40.5 64.6 44.4 53.0
GATEAU-LLaMA - 30% 63.0 70.8 87.6 85.8 76.8 75.7 61.0 55.7 69.5 65.5 67.5 44.7 65.9 47.4 56.4
∆ compared to Full - 100% +0.2 +1.8 +4.5 +4.5 +2.8 +4.2 +6.2 +4.4 +3.3 +4.5 +8.8 +4.9 +8.3 +6.2 +7.1

Perplexity Guidance - 50% 63.1 68.1 87.8 82.1 75.3 74.2 59.2 52.5 69.2 63.8 64.7 41.1 65.7 42.1 53.4
CaR - 50% 60.0 66.3 85.6 84.2 74.0 70.7 55.8 54.3 68.2 62.3 64.4 41.1 60.8 40.3 51.7
Cherry Selection - 50% 62.8 65.5 86.2 82.8 74.3 72.2 56.8 52.7 67.8 62.4 64.6 39.4 64.1 42.1 52.6
GATEAU-LLaMA - 50% 63.5 70.3 89.7 86.5 77.5 75.3 60.8 53.5 68.5 64.5 65.1 41.6 65.9 46.1 54.7
∆ compared to Full - 100% +0.7 +1.3 +6.6 +5.2 +3.5 +3.8 +6.0 +2.2 +2.3 +3.6 +6.4 +1.8 +8.3 +4.9 +5.4

Table 2: Results (%) on LongBench-Chat in Real-
world and Limited Short Instruction Data Settings.

Model Real-world Limited
w/o SFT 10.4 10.4
w/o Long SFT 37.4 36.2
Full - 100% 48.8 50.8
Perplexity Guidance - 10% 52.2 49.0
CaR - 10% 50.8 49.0
Cherry Selection - 10% 53.2 50.8
GATEAU-LLaMA - 10% 55.4 58.0
Perplexity Guidance - 30% 50.6 51.8
CaR - 30% 48.6 51.4
Cherry Selection - 30% 50.4 52.4
GATEAU-LLaMA - 30% 57.8 55.2
Perplexity Guidance - 50% 49.8 51.0
CaR - 50% 49.6 51.6
Cherry Selection - 50% 50.6 53.2
GATEAU-LLaMA - 50% 56.8 59.0

with long-context LLM Claude 2.1 (An-
thropic., 2023). Though initially competi-
tive, its dependence on Claude 2.1 synthesized
data may lead to quality concerns. Thus, our
method to apply the selection of long instruc-
tion data is based on the LongAlign dataset.
Meanwhile, similar to Bai et al. (2024), to
maintain the model’s general capabilities and
its proficiency in following short instructions,
we utilize ShareGPT dataset (Chiang et al.,
2023) as the source of short instruction data
in our training data (empty assistant responses
are filtered out). To further explore the ef-
fects of mixture proportions of long and short
instruction-following samples, we evaluate our
method in both Real-world Settings and Lim-
ited Short Instruction Data Settings. Real-
world Settings (Bai et al., 2024) indicates real-world users prioritize short instruction-following
interactions. Thus, to stay close to real-world situations, we attempt to use the full ShareGPT dataset
as short instruction-following data. We also explore scenarios where short instruction data is limited,
utilizing only the first 10% of ShareGPT, named Limited Short Instruction Data Settings.

Training Settings. In our experiments, we use LLaMA-2-7B-base-4k (Touvron et al., 2023) and
LLaMA-2-7B-base-64k (Bai et al., 2024) as homologous models to apply the proposed Homologous
Models’ Guidance. LLaMA-2-7B-base-4k is a well-known open-sourced LLM with a context window
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Table 3: Results (%) on LongBench in Limited Short Instruction Data Settings.

Model Single-Doc QA Multi-Doc QA Summarization
1-1 1-2 1-3 1-4 Avg 2-1 2-2 2-3 2-4 Avg 3-1 3-2 3-3 3-4 Avg

Auto Metrics
w/o SFT 0.9 3.9 6.4 3.6 3.7 7.3 8.71 2.1 15.4 8.4 23.9 6.2 14.0 1.78 11.5
w/o Long SFT 13.8 19.2 38.3 37.1 27.1 15.2 14.7 8.2 25.7 16.0 29.4 24.4 25.0 19.3 24.5
Full - 100% 14.7 20.1 37.0 37.0 27.2 15.4 13.8 8.6 26.7 16.1 29.3 24.5 25.6 18.6 24.5

Perplexity Guidance - 10% 15.4 19.2 41.0 37.8 28.4 15.0 14.8 8.5 25.6 16.0 28.8 23.9 26.1 17.8 24.2
CaR - 10% 11.5 17.7 37.7 30.0 24.2 15.6 12.5 8.4 25.9 15.6 29.3 24.1 26.2 18.2 24.5
Cherry Selection - 10% 14.6 19.2 41.2 37.7 28.2 15.7 14.6 7.6 25.3 15.8 29.4 24.1 26.0 17.8 24.3
GATEAU-LLaMA - 10% 17.1 20.7 43.4 38.3 29.9 19.9 18.5 8.2 26.8 18.4 29.6 24.3 26.3 18.3 24.6
∆ compared to Full - 100% +2.4 +0.6 +6.4 +1.3 +2.7 +4.5 +4.7 -0.4 +0.1 +2.2 +0.3 -0.2 +0.7 -0.3 +0.1

Perplexity Guidance - 30% 15.3 20.6 42.3 38.2 29.1 17.4 15.9 8.6 27.5 17.4 28.3 24.3 25.7 19.0 24.3
CaR - 30% 13.6 18.3 41.0 30.5 25.9 16.7 15.8 9.4 27.0 17.2 28.8 24.3 25.3 18.4 24.2
Cherry Selection - 30% 15.9 19.5 42.3 39.0 29.2 17.3 16.3 9.3 26.2 17.3 29.2 25.0 26.1 18.2 24.6
GATEAU-LLaMA - 30% 17.7 20.4 43.1 38.6 29.9 22.5 18.5 11.6 27.7 20.1 30.5 24.3 26.8 19.7 25.3
∆ compared to Full - 100% +3.0 +0.3 +6.1 +1.6 +2.7 +7.1 +4.7 +3.0 +1.0 +4.0 +1.2 -0.2 +1.2 +1.1 +0.8

Perplexity Guidance - 50% 16.4 20.6 39.1 37.1 28.3 16.7 16.4 8.2 26.0 16.8 29.3 25.1 25.2 19.1 24.7
CaR - 50% 12.1 18.1 40.4 30.4 25.3 17.3 15.1 9.0 26.3 16.9 28.3 23.6 25.1 18.9 24.0
Cherry Selection - 50% 15.5 19.5 38.9 37.3 27.8 15.4 16.3 8.8 26.1 16.7 30.6 24.8 25.3 18.9 24.9
GATEAU-LLaMA - 50% 18.5 22.5 43.9 39.1 31.0 17.9 16.7 9.6 28.0 18.1 30.1 25.3 26.6 19.4 25.3
∆ compared to Full - 100% +3.8 +2.4 +6.9 +2.1 +3.8 +2.5 +2.9 +1.0 +1.3 +1.9 +0.8 +0.8 +0.9 +0.8 +0.8

GPT-4 Evaluation
w/o SFT 33.8 38.0 41.1 34.8 36.9 41.3 37.2 33.3 42.0 38.5 39.2 20.2 37.1 30.9 31.9
w/o Long SFT 62.3 70.8 88.5 82.7 76.1 72.8 60.6 51.8 67.3 63.1 64.7 41.1 61.4 41.6 52.2
Full - 100% 58.7 69.7 85.8 83.0 74.3 70.5 58.7 50.8 67.8 62.0 59.6 38.4 59.6 43.3 50.2

Perplexity Guidance - 10% 62.8 69.2 89.3 85.7 76.8 73.8 59.1 54.1 71.1 64.5 69.8 45.8 65.7 50.1 57.9
CaR - 10% 62.8 68.3 88.0 82.7 75.5 71.8 58.0 52.7 68.8 62.8 65.5 42.0 61.8 43.1 53.1
Cherry Selection - 10% 62.8 69.8 86.7 85.7 76.3 72.0 58.7 52.5 69.3 63.1 63.2 43.3 60.1 46.4 53.3
GATEAU-LLaMA - 10% 64.8 74.7 89.8 86.5 79.0 75.2 61.2 54.6 70.0 65.3 71.1 47.3 67.0 54.2 59.9
∆ compared to Full - 100% +6.1 +5.0 +4.0 +3.5 +4.7 +4.7 +2.5 +3.8 +2.2 +3.3 +11.5 +8.9 +7.4 +10.9 +9.7

Perplexity Guidance - 30% 62.5 71.8 88.2 83.8 76.6 74.6 58.5 53.5 69.3 64.0 67.5 44.0 64.7 50.4 56.7
CaR - 30% 60.8 70.7 88.4 81.8 75.4 73.0 59.0 53.5 68.5 63.5 64.1 40.9 62.3 45.8 53.3
Cherry Selection - 30% 62.8 71.7 88.9 87.5 77.7 70.3 58.7 50.3 68.2 61.9 62.9 43.5 65.2 44.6 54.1
GATEAU-LLaMA - 30% 64.8 73.0 89.3 86.2 78.3 74.7 61.0 54.2 69.8 64.9 70.8 46.0 66.4 51.4 58.7
∆ compared to Full - 100% +6.1 +3.3 +3.5 +3.2 +4.0 +4.2 +2.3 +3.4 +2.0 +3.0 +11.2 +7.6 +6.8 +8.1 +8.4

Perplexity Guidance - 50% 61.5 68.3 85.1 82.8 74.4 72.3 59.3 52.0 67.7 62.8 60.2 40.9 58.6 42.3 50.5
CaR - 50% 62.3 68.1 86.9 80.1 74.4 71.0 58.7 52.8 68.0 62.6 64.4 41.2 61.1 45.6 53.1
Cherry Selection - 50% 61.2 69.7 86.2 83.7 75.2 69.7 56.8 49.5 66.2 60.6 64.1 41.8 60.5 43.7 52.5
GATEAU-LLaMA - 50% 63.7 71.8 87.1 84.7 76.8 74.0 60.0 53.8 69.0 64.2 66.1 43.9 62.4 46.4 54.7
∆ compared to Full - 100% +5.0 +2.1 +1.3 +1.7 +2.5 +3.5 +1.3 +3.0 +1.2 +2.3 +6.5 +5.5 +2.8 +3.1 +4.5

Table 4: Results (%) on MT-Bench in both Real-
world and Limited Short Instruction Data Settings.

Model Real-world Limited
w/o SFT 34.6 34.6
w/o Long SFT 53.7 50.5
Full - 100% 54.3 47.7
Perplexity Guidance - 10% 56.1 50.9
CaR - 10% 54.9 49.9
Cherry Selection - 10% 56.8 47.6
GATEAU-LLaMA - 10% 58.6 53.4
Perplexity Guidance - 30% 55.0 50.2
CaR - 30% 54.3 48.6
Cherry Selection - 30% 54.3 45.8
GATEAU-LLaMA - 30% 58.8 52.9
Perplexity Guidance - 50% 55.9 49.2
CaR - 50% 54.7 51.2
Cherry Selection - 50% 56.3 49.6
GATEAU-LLaMA - 50% 57.3 54.2

of 4k tokens. To extend context windows of
LLaMA-2, Bai et al. (2024) propose LLaMA-
2-7B-base-64k by modifying the RoPE po-
sition encoding (Su et al., 2023) and apply-
ing continual training on data with lengths
under 64k, for a total of 10 billion tokens.
Meanwhile, for LLaMA-2-7B-base-4k, we ex-
pand the base frequency b of the RoPE posi-
tion encoding by 200 times (from 10,000 to
2,000,000) to extend the context windows and
avoid the model conducting extreme perplexity
score (>1,000) in Homologous Models’ Guid-
ance. For Contextual Awareness Measurement,
we use LLaMA-2-7B-base-64k to calculate
the score as we use selected samples to train
the LLaMA-2-7B-base-64k as our final model
GATEAU-LLaMA. We also use 13B-scale
LLaMA (i.e., LLaMA-2-13B-base-4k (Touvron et al., 2023) and LLaMA-2-13B-base-64k (Bai et al.,
2024)) to explore whether our method fits larger LLMs. More details are shown in the Appendix A.

Baselines. We compare our method GATEAU with multiple instruction data selection baselines,
including variants of our proposed method and methods that focus on the selection of short instruction
data. Cherry Selection (Li et al., 2024b) and CaR (Ge et al., 2024) are state-of-the-art methods
to select the influential short instruction-following data. We also use the perplexity score from
long-context LLM as guidance to select long instruction-following samples according to Eq. (1),
named as Perplexity Guidance. More details can be found in the Appendix B.
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(a) Limited Short Instruction Data Settings
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(b) Real-world Settings 
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GATEAU - LLaMA - 50%
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Figure 2: Needle in the Haystack test.

Evaluation. To gauge the effectiveness of our method, we conduct extensive evaluations on different
benchmarks. We use LongBench-Chat (Bai et al., 2024) to evaluate the models’ long context
alignment proficiency, which is a benchmark that compromises open-ended questions of 10k-100k
in length. It covers diverse aspects of instruction-following abilities such as reasoning, coding,
summarization, and multilingual translation over long contexts. GPT-4 (OpenAI, 2023) is employed
to score the machine-generated responses based on the annotated ground-truths and few-shot scoring
examples. We also employ bilingual and multi-task benchmark LongBench (Bai et al., 2023) to
evaluate the model’s long context understanding abilities. We conduct evaluations on three types of
tasks the same as Bai et al. (2024), including Single-Doc QA, Multi-Doc QA, and Summarization.
Meanwhile, as aligned models generally produce longer responses, rather than relying solely on the
original automated metrics (e.g., ROUGE, F1) to evaluate the models’ replies, we keep the same
as Bai et al. (2024) to employ GPT-4 to evaluate the model outputs based on their alignment with
the ground-truth answers on LongBench. We use MT-Bench (Zheng et al., 2023), a multi-turn chat
benchmark, to measure the models’ ability to follow short instructions via GPT-4 rating. To ensure
the most stable evaluation results, we use GPT-4 to score twice on LongBench-Chat, MT-Bench, and
LongBench, and average these scores to obtain the final score. More details about evaluation (e.g.,
the rating prompts) can be found in Appendix C.

3.2 IMPACT OF GATEAU

Enhancing the Long-Context Understanding Capabilities. The experimental results are shown
in Table 1 and Table 3 for the LongBench benchmark. Our methods achieve consistent and remark-
able performance gains in both different settings and evaluations. We show the improved scores
(∆ compared to Full-100%) compared to indiscriminately using the whole dataset (Full-100%),
indicating that GATEAU helps LLM to better understand and utilize the long input contexts. Further,
we find that the baselines focusing on the selection of short instruction-following data (CaR and
Cherry Selection) hold inferior results, sometimes even worse than indiscriminately using the whole
dataset (Full-100%). This can be attributed to these methods are not designed for long context
alignment and understanding, thus failing to select the samples enriched with long-range dependency
relations. Meanwhile, we can see that using 30% of the whole long instruction-following dataset
(GATEAU-LLaMA-30%) can achieve the best performance of LongBench in two different settings.
This is because its ability to maintain an optimal balance between the volume and quality of the long
instruction-following samples it utilizes, leading to the most desirable results.

Improving Instruction-Following Capabilities for Both Short and Long Inputs. The experimental
results are presented in Table 2 and Table 4 for the LongBench-Chat and MT-Bench benchmarks in
two settings. It shows our proposed method GATEAU can consistently improve LLMs’ capabilities
in following both long and short instructions and generating high-quality responses. Compared to
indiscriminately using the whole dataset (Full-100%), using the selected subset of the long instruction-
following dataset (GATEAU-LLaMA) can significantly improve the instruction-following capabilities,
e.g., increasing 9% in LongBench-Chat and 6.5% in MT-Bench. Meanwhile, the low performance of
w/o Long SFT in LongBench-Chat indicates that using long instruction-following data is important
for the performance of LLMs in handling the instructions with long input contexts. The results also

8
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Table 5: Results (%) of ablation study and scalability test.

Model LongBench LongBench-Chat MT-Bench
Single-Doc QA Multi-Doc QA Summarization Avg First-turn Second-turn Avg

Real-world Settings
GATEAU-LLaMA - 13B - 50% 40.2 27.1 25.7 61.4 66.8 55.3 61.1

-w/o Contextual Awareness Measurement 38.1 25.8 24.6 60.2 66.2 55.0 60.6
-w/o Homologous Models’ Guidance 38.6 26.0 25.1 60.6 66.0 54.6 60.3
-w/o Data Selection (i.e., Full - 100%) 33.6 16.7 24.4 59.4 66.0 54.1 59.6

GATEAU-LLaMA - 7B - 50% 38.9 25.8 25.5 56.8 64.1 50.4 57.3
-w/o Contextual Awareness Measurement 38.4 24.3 25.1 53.2 61.7 51.5 56.6
-w/o Homologous Models’ Guidance 38.6 24.5 24.9 52.8 63.1 49.3 56.3
-w/o Data Selection (i.e., Full - 100%) 36.1 22.3 23.8 48.8 60.0 48.7 54.3

Limited Short Instruction Data Settings
GATEAU-LLaMA - 13B - 50% 32.1 19.1 25.3 62.6 66.0 51.5 58.8

-w/o Contextual Awareness Measurement 31.4 18.4 24.7 59.6 64.2 50.3 57.3
-w/o Homologous Models’ Guidance 30.8 18.6 25.0 60.4 63.6 50.6 57.1
-w/o Data Selection (i.e., Full - 100%) 30.4 17.8 24.5 54.2 61.0 49.8 55.4

GATEAU-LLaMA - 7B - 50% 31.0 18.1 25.3 59.0 64.2 44.1 54.2
-w/o Contextual Awareness Measurement 28.5 17.5 24.7 53.2 61.3 42.4 51.8
-w/o Homologous Models’ Guidance 28.7 17.3 24.6 54.4 56.1 45.0 50.6
-w/o Data Selection (i.e., Full - 100%) 27.2 16.1 24.5 50.8 54.5 40.9 47.7

show that our method GATEAU achieves uniformly better performance in varying ratios of used
long instruction-following samples compared with other baselines, indicating the effectiveness of our
method. Compared with baselines focusing on short instruction-following samples (CaR and Cherry
Selection), GATEAU can identify samples enriched with long-range dependency relations more
effectively and help LLMs to achieve better overall performance. Also, we observe that the selection
of long instruction-following samples aids in augmenting the instruction-following capabilities for
short inputs. We conjecture that handling complex tasks (i.e., long input contexts) contributes to
handling the easy ones (i.e., short input contexts).

3.3 DISCUSSION

Coherence
(Long Input Contexts)

Necessity
(Long Input Contexts)

Complexity
(Instruction)

Faithfulness
(Response)

Helpfulness
(Response)

1% Highest
1% Lowest

Figure 3: The comparison between samples with
top 1% and least 1% scored by our method.

Needle in the Haystack Test. We conduct the
“Needle in A HayStack” experiment (result visu-
alization in Figure 2 ) to test the model’s ability
to utilize information from 10 different positions
within long contexts of varying lengths between
1k-60k. Specifically, this task asks for the model
to retrieve a piece of fact (the ‘needle’) that is
inserted in the middle (positioned at a specified
depth percent) of a long context window (the
‘haystack’). These results show that GATEAU
can help LLM’s ability to utilize information
from different positions within long texts, result-
ing in a decrease in the model’s retrieval error.

Ablation Study. To evaluate the effectiveness
of two designed metrics, including Homologous
Models’ Guidance and Contextual Awareness
Measurement, we conduct the ablation study
in Table 5. One can observe that Homologous
Models’ Guidance and Contextual Awareness
Measurement can both enhance LLMs’ instruction-following and long-context understanding ca-
pabilities. This indicates the effectiveness of GATEAU and using both two methods can further
improve the overall performance as they separately measure the difficulty of generating corresponding
responses and understanding long input contexts due to the long-range dependencies.

Scalability Test. We explore whether our method GATEAU can fit in larger LLMs in Table 5.
To do so, we apply GATEAU on Llama-2-13B and fine-tune Llama-2-13B-64k (Bai et al., 2024)
using the selected samples. Compared to the 7B-scale model (GATEAU-LLaMA-7B), the 13B model
(GATEAU-LLaMA-13B) shows consistent improvements on three benchmarks. This indicates that
GATEAU scales effectively to larger-scale models.

General Characteristics of Selected Samples. We delve into whether the selected samples based on
our method align with known characteristics of high-quality training data as shown in Figure 3. To
this end, we select 100 samples with the top 1% scores and 100 samples with the least 1% scores.
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Real-world Settings Limited Short Instruction Data Settings

Figure 4: Average score (%) under different context lengths on LongBench.

Ours Wins Tie Full (100%) Wins

50%

30%

10%

50%

30%

10%

0.0 0.2 0.4 0.6 0.8 1.0

L
im
it
ed

R
ea
l-
w
or
ld

Figure 5: Human evaluation in two settings.

Utilizing GPT-4, we evaluate each sample on
five aspects: the coherence of long input con-
texts, the necessity of long input contexts, help-
fulness of response, the faithfulness of response,
and the complexity of instruction. A sample
with a higher score tends to be more high-
quality, especially the long input contexts and
the response of the sample. It also illustrates
the difference between samples with high or low
scores and verifies the effectiveness of GATEAU
in identifying the influential samples. The com-
plexity of instruction, in particular, shows a
mere improvement compared to other charac-
teristics. We further evaluate the whole dataset
on this characteristic and find that all samples
show consistently low scores, which may be due
to the limitation of the synthetic dataset. As these samples are synthesized by close-source LLMs, the
instructions are easy for these close-source LLMs. More details can be found in the Appendix D.1.

Human Evaluation. To better illustrate the efficacy of our method, further human evaluation is
conducted. Specifically, we evaluate the whole LongBench-Chat benchmark, which consists of 50
instances. We invited three human participants (all of them are Ph.D. students or Master students) to
compare the responses generated by the models. For each comparison, three options are given (Win,
Tie, and Loss) and the final results are determined by the majority voting of the participants. Table 5
showcases the effectiveness of our method, i.e., our trained models show consistent preference from
human participants. More details can be found in the Appendix D.4.

Variation of Abilities under Different Context Lengths. Figure 4 reports the macro-average scores
(%) on data in length ranges of 0-4k, 4k-8k, and 8k+. We can find that our method improves the
performance in long input contexts scenarios (i.e., 4k-8k and 8k+) compared to using the whole
training dataset (Full-100%). Meanwhile, indiscriminately utilizing the whole long SFT dataset
(Full-100%) even hinders the performance in long input contexts scenarios (i.e., 4k-8k and 8k+)
compared to only utilizing short instruction-following dataset (-w/o Long SFT). This further confirms
the necessity of selecting influential samples and the effectiveness of our method.

4 CONCLUSION

In this study, we introduce GATEAU, a new novel framework designed to select influential samples
for long context alignment. Different from previous studies for selecting the short SFT samples, we
attempt to address the unique challenge in long context alignment, i.e., the necessity for modeling
long-range dependencies. To measure the richness of long-range dependency relations in long SFT
samples, we propose Homologous Models’ Guidance and Contextual Awareness Measurement to
separately measure the difficulty of generating corresponding responses and understanding long input
contexts due to the long-range dependencies. Trained on these selected influential samples based on
our method, our model achieves better alignment. Extensive experimental evaluation and analysis
have consistently shown the effectiveness of our proposed GATEAU compared to other methods.
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A TRAINING DETAILS

All models are trained with 8xA800 80G GPUs and DeepSpeed+ZeRO3+CPU offloading. We use
BF16 in both our training and inference. The models can be trained with a maximum length of 64k
tokens without GPU memory overflow. Consequently, we set the maximum length of the training data
to 64k, with any data exceeding this length being truncated from the right side. We keep the same
maximum length in the Homologous Model’s Guidance and Contextual Awareness Measurement but
truncated from the left side to keep the original responses. We set the batch size to 8, with a gradient
accumulation step of 12 for all the training methods. We train 2 epochs on the training data. We set
the learning rate as 2e-5 and use AdamW (Loshchilov & Hutter, 2019) as our optimizer. The β1 and
β2 in AdamW optimizer are set to 0.9 and 0.95. Meanwhile, the length of segment L is set to 128
in Contextual Awareness Measurement. Hyperparameter α in Eq. (6) is set to 0.7 in Limited Short
Instruction Data settings and 0.8 in Real-world Settings.

B BASELINES

In this section, we detail the design of baselines in our experiments.

w/o SFT. For w/o SFT, we directly utilize the base model without alignment to get the experiment
results, i.e., the results of LLaMA-2-7B-base-64k.

w/o Long SFT. For w/o Long SFT, we just use the short instruction data from ShareGPT to apply
the supervised fine-tuning stage for alignment. The number of used short instruction samples from
ShareGPT is determined by the different settings.

Full - 100%. For Full - 100%, we use the full data of LongAlign, including 10k long instruction
samples, to conduct the supervised fine-tuning for alignment. The number of used short instruction
samples from ShareGPT is determined by the different settings.

Perplexity Guidance. We use the perplexity score from LLM as guidance to select long instruction-
following samples according to Eq. (1). We select the long instruction-following samples with the
highest perplexity scores as the most influential samples to train the model. Meanwhile, the number
of used short instruction samples from ShareGPT is determined by the different settings.

CaR. This work (Ge et al., 2024) proposes a straightforward yet efficacious short instruction-following
selection framework. This method first selects a subset that ensures the retention of a large number of
high-quality instructions and then supplements a small number of high-quality instructions from each
cluster to enhance the diversity of the data while preserving instruction quality. Specifically, this work
first employs a small-scale trained reward model (355M parameters) to get the score of the samples.
Meanwhile, the cluster model is employed to cluster all candidate instruction pairs into k clusters
Finally, all instruction pairs are sorted based on their scores, and the top n1 pairs are selected; within
each cluster, instruction pairs are sorted by score, and the top n2 pairs are chosen. A high-quality
sub-dataset with preserved diversity is then curated by duplicating n1 ` k ˆ n2 pairs of instructions.
We directly use the same reward model and hyperparameters to select long instruction-following
samples. Meanwhile, the number of used short instruction samples from ShareGPT is determined by
the different settings.

Cherry Selection. Li et al. (2024b) proposes a method for autonomously sifting through expansive
open-source short instruction-following datasets to discover the most influential training samples. At
the heart of this method is the hypothesis that during their preliminary training stages with carefully
chosen instruction data, LLMs can develop an intrinsic capability to discern instructions. This
foundational understanding equips them with the discernment to assess the quality of broader datasets
thus making it possible to estimate the instruction-following difficulty in a self-guided manner. To
estimate the difficulty of a given example, this work proposes a novel metric called Instruction-
Following Difficulty (IFD) score in which both models’ capability to generate a response to a given
instruction and the models’ capability to generate a response directly are measured and compared. By
calculating IFD scores, this method quantifies the challenge each sample presents to the model and
utilizes selected data with standout IFD scores to hone the model. We apply this method to select the
long instruction-following samples as the baseline. Meanwhile, the number of used short instruction
samples from ShareGPT is determined by the different settings.
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C EVALUATIONS

C.1 LONGBENCH-CHAT

Evaluation Data. LongBench-Chat focuses on assessing LLMs’ instruction-following capability
under the long context. LongBench-Chat includes 50 long context real-world queries ranging
from 10k to 100k in length, covering various key user-intensive scenarios such as document QA,
summarization, and coding. It consists of 40 tasks in English and 10 in Chinese.

Evaluation Prompts. LongBench-Chat employs GPT-4 to score the model’s response in 1-10 based
on a given human-annotated referenced answer and few-shot scoring examples for each question. We
use the same prompt as LongBench-Chat to get GPT-4’s evaluation:

LongBench-Chat Evaluation Prompt

[Instructions] You are asked to evaluate the quality of the AI assistant’s answers to user questions
as an impartial judge, and your evaluation should take into account factors including correctness
(high priority), helpfulness, accuracy, and relevance. The scoring principles are as follows:
1. Read the AI assistant’s answer and compare the assistant’s answer with the reference answer.
2. Identify all errors in the AI Assistant’s answers and consider how much they affect the answer
to the question.
3. Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions
and providing the information the user needs.
4. Examine any additional information in the AI assistant’s answer to ensure that it is correct
and closely related to the question. If this information is incorrect or not relevant to the question,
points should be deducted from the overall score.
Please give an overall integer rating from 1 to 10 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".

[Question] {}
[Reference answer begins] {} [Reference answer ends]
Below are several assistants’ answers and their ratings:
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating: [[{}]]

Please rate the following assistant answers based on the scoring principles and exam-
ples above:
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating:

C.2 LONGBENCH

Evaluation Data. LongBench is the first bilingual, multitask benchmark tailored for long context
understanding. LongBench includes different languages (Chinese and English) to provide a more
comprehensive evaluation of the large models’ bilingual capabilities in long-context understanding.
Detailed statistics of the used dataset in LongBench can be found in Table 6.

Evaluation Prompts. We also conduct GPT-4 evaluation for LongBench. As aligned models
generally produce longer responses, rather than relying solely on the original automated metrics
(ROUGE, F1) to evaluate the models’ replies, we additionally employ GPT-4 to assess the model
outputs based on their alignment with the ground-truth answers on LongBench. For the first two QA
tasks, the prompt for the GPT-4 evaluator is the same as Bai et al. (2024):
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Table 6: An overview of the dataset statistics in LongBench. ‘Source’ denotes the origin of the
context. ‘Avg len’ (average length) is computed using the number of words for the English datasets
and the number of characters for the Chinese datasets.

Dataset ID Source Avg len Auto Metric Language #data

Single-Document QA
NarrativeQA 1-1 Literature, Film 18,409 F1 English 200
Qasper 1-2 Science 3,619 F1 English 200
MultiFieldQA-en 1-3 Multi-field 4,559 F1 English 150
MultiFieldQA-zh 1-4 Multi-field 6,701 F1 Chinese 200

Multi-Document QA
HotpotQA 2-1 Wikipedia 9,151 F1 English 200
2WikiMultihopQA 2-2 Wikipedia 4,887 F1 English 200
MuSiQue 2-3 Wikipedia 11,214 F1 English 200
DuReader 2-4 Baidu Search 15,768 Rouge-L Chinese 200

Summarization
GovReport 3-1 Government report 8,734 Rouge-L English 200
QMSum 3-2 Meeting 10,614 Rouge-L English 200
MultiNews 3-3 News 2,113 Rouge-L English 200
VCSUM 3-4 Meeting 15,380 Rouge-L Chinese 200

LongBench Evaluation Prompt for QA tasks

You are asked to evaluate the quality of the AI assistant’s answers to user question as an
impartial judge, and your evaluation should take into account factors including correctness (high
priority), and comprehensiveness (whether the assistant’s answer covers all points). Read the AI
assistant’s answer and compare against the reference answer, and give an overall integer rating
in 1, 2, 3 (1 = wrong or irrelevant, 2 = partially correct, 3 = correct and comprehensive) based on
the above principles, strictly in the following format:"[[rating]]", e.g. "[[2]]".

Question: {Question}
Reference answer: {Groundtruth}
Assistant’s answer: {Response}
Rating:

The prompt for GPT-4 evaluation on summarization tasks is the same as Bai et al. (2024):

LongBench Evaluation Prompt for summarization tasks

You are asked to evaluate the quality of the AI assistant’s generated summary as an impartial
judge, and your evaluation should take into account factors including correctness (high priority),
comprehensiveness (whether the assistant’s summary covers all points), and coherence. Read
the AI assistant’s summary and compare against the reference summary, and give an overall
integer rating in on a scale of 1 to 5, where 1 is the lowest and 5 is the highest based on the
evaluation criteria, strictly in the following format:"[[rating]]", e.g. "[[3]]".

Reference summary: {Groundtruth}
Assistant’s summary: {Response}
Rating:

C.3 MT-BENCH

Evaluation Data. MT-Bench is a benchmark consisting of 80 high-quality multi-turn questions. MT-
bench is designed to test multi-turn conversation and instruction-following ability, covering common
use cases and focusing on challenging questions to differentiate models. MT-Bench is also carefully
constructed to differentiate chatbots based on their core capabilities, including writing, roleplay,
extraction, reasoning, math, coding, knowledge I (STEM), and knowledge II (humanities/social
science). To automate the evaluation process, MT-Bench prompts strong LLMs like GPT-4 to act as
judges and assess the quality of the models’ responses. In MT-bench, we use single-answer grading
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Table 7: Detailed results (%) of MT-Bench.
Model First-turn Second-turn Writing Roleplay Reasoning Math Coding Extraction STEM Humanities

Real-world Settings
w/o SFT 43.5 25.6 44.5 44.0 35.0 16.5 18.0 28.0 42.0 48.8
w/o Long SFT 60.0 47.4 73.8 72.0 44.0 22.0 25.5 42.5 63.0 86.5
Full - 100% 60.0 48.7 78.5 70.3 45.5 19.0 29.0 42.0 67.5 83.0

Perplexity Guidance - 10% 63.1 48.9 68.7 67.0 43.5 26.5 33.2 50.5 69.8 88.5
CaR - 10% 59.8 50.0 76.5 75.3 44.5 24.5 24.8 43.5 64.2 84.9
Cherry Selection - 10% 63.0 50.5 74.5 73.8 42.3 25.0 32.5 48.3 70.3 87.5
GATEAU-LLaMA - 10% 63.1 54.1 73.8 79.2 43.8 26.5 27.8 46.0 77.0 94.8
Perplexity Guidance - 30% 62.1 47.8 69.0 63.7 46.0 28.0 28.4 49.0 72.5 82.2
CaR - 30% 60.0 48.6 79.3 77.0 38.5 21.0 19.8 44.0 71.9 83.0
Cherry Selection - 30% 61.6 47.0 68.2 71.5 39.8 22.0 26.3 50.8 69.3 88.4
GATEAU-LLaMA - 30% 64.1 50.4 78.0 73.5 42.0 24.5 29.5 46.8 73.8 92.1
Perplexity Guidance - 50% 62.3 49.6 79.0 71.0 47.3 24.5 28.0 42.0 69.5 86.3
CaR - 50% 61.6 47.9 74.0 77.3 39.0 21.5 24.5 42.0 67.8 91.8
Cherry Selection - 50% 62.9 49.6 77.8 76.2 48.3 22.5 30.5 35.8 68.2 91.5
GATEAU-LLaMA - 50% 64.1 50.4 78.0 73.5 42.0 24.5 29.5 46.8 73.8 92.1

Limited Short Instruction Data Settings
w/o SFT 43.5 25.6 44.5 44.0 35.0 16.5 18.0 28.0 42.0 48.8
w/o Long SFT 56.4 44.5 66.3 65.8 46.5 21.0 23.5 38.3 63.5 79.1
Full - 100% 54.5 40.9 65.8 56.0 35.5 21.0 23.5 34.0 67.5 78.3

Perplexity Guidance - 10% 61.9 39.5 73.8 61.8 39.3 27.5 29.1 47.1 58.5 72.3
CaR - 10% 59.3 40.3 66.5 64.3 49.3 21.5 26.3 28.8 62.0 80.5
Cherry Selection - 10% 53.0 42.3 56.8 72.3 39.5 17.0 26.5 34.8 59.3 75.3
GATEAU-LLaMA - 10% 62.2 44.6 69.9 67.5 39.8 24.0 27.5 50.7 66.3 83.0
Perplexity Guidance - 30% 58.9 41.4 69.4 68.0 37.0 28.5 28.9 47.8 57.8 64.8
CaR - 30% 52.8 44.3 67.0 66.5 37.3 25.0 24.8 28.5 68.5 71.0
Cherry Selection - 30% 54.8 36.6 67.5 57.5 34.0 19.5 20.4 35.5 63.5 69.7
GATEAU-LLaMA - 30% 62.0 43.7 62.0 65.7 45.4 27.5 31.7 41.7 71.7 72.0
Perplexity Guidance - 50% 57.6 40.9 59.5 74.5 41.0 25.0 26.0 37.3 55.3 75.3
CaR - 50% 58.3 44.1 70.0 67.2 43.3 25.5 30.5 28.5 71.5 73.5
Cherry Selection - 50% 57.7 41.4 70.0 63.2 37.5 18.3 26.3 43.9 61.1 76.5
GATEAU-LLaMA - 50% 64.2 44.1 61.5 67.0 46.3 28.0 31.4 47.0 65.8 84.3

mode as recommended by MT-Bench’s authors. This mode asks GPT-4 to grade and give a score to
the model’s answer directly without pairwise comparison. For each turn, GPT-4 will give a score on a
scale of 10. We then compute the average score on all turns.

More Detailed Results. We show the detailed results of MT-Bench in Table 7.

C.4 NEEDLE IN THE HAYSTACK TEST

For the “Needle in A Haystack” evaluation, following the same original configuration as the original
method (Gkamradt, 2023), we use “The best thing to do in San Francisco is eat a sandwich and sit
in Dolores Park on a sunny day.” as the needle fact, and Paul Graham’s essays as the long haystack
context. We use the same prompt as Bai et al. (2024): “What is the best thing to do in San Francisco?
Here is the most relevant sentence in the context:”.

C.5 GPT-4 VERSION

For all the evaluations using the GPT-4 (evaluations for LongBench-Chat, LongBench, MT-Bench,
and Needle in the Haystack test), we used GPT-4 API in August 2024. It ensures that we keep the
same as Bai et al. (2024). According to the documents from OpenAI 1, GPT-4 API currently points
to GPT-4-0613 API.

D FURTHER EXPLORATION

D.1 GENERAL CHARACTERISTICS OF SELECTED SAMPLES FROM GATEAU

Utilizing GPT-4, we evaluate each sample on five aspects: the coherence of long input contexts,
the necessity of long input contexts, helpfulness of response, the faithfulness of response, and the
complexity of instruction. Different from the previous GPT-4 evaluation detailed in the Appendix
C.5, we use GPT-4-Turbo API (now points to GPT-4-Turbo-2024-04-09) as our evaluator, as this
version of API has larger context window to conduct the more correct evaluation for our long input
contexts. The prompt for GPT-4 evaluation on the coherence of long input contexts is:

1https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
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Evaluation Prompt for the Coherence of Long Input Contexts

You are asked to evaluate the Long Input Contexts as an impartial judge, and your evaluation
should follow these scoring principles:
1. Read the given Long Input Contexts carefully.
2. Evaluate the fluency and coherence of Long Input Contexts.
3. Evaluate whether the Long Input Contexts are focused and relevant.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".

Please rate the following Long Input Contexts based on the scoring principles:

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Rating:

The prompt for GPT-4 evaluation on the necessity of long input contexts is:

Evaluation Prompt for the Necessity of Long Input Contexts

You are asked to evaluate the Long Input Contexts as an impartial judge, and your evaluation
should follow these scoring principles:
1. Read the given Instruction, Long Input Contexts and Assistant’s answer carefully.
2. Evaluate how difficult to get Assistant’s following the given Instruction without the given
Long Input Contexts.
3. Evaluate how necessary the given Long Input Contexts are to get the Assistant’s answer. If
the Long Input Contexts is meaningless or irrelevant, points should be deducted from the overall
score.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".

[Instruction begins]
{Instruction}
[Instruction ends]

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Please rate the following assistant answers based on the scoring principles:

[Assistant’s answer begins]
{Assistant’s answer}
[Assistant’s answer ends]

Rating:

The prompt for GPT-4 evaluation on the faithfulness of response is:

Evaluation Prompt for the Faithfulness of Response

You are asked to evaluate the AI assistant’s answers to user questions as an impartial judge, and
your evaluation should follow these scoring principles:
1. Read the given Instruction, Long Input Contexts and Assistant’s answer carefully.
2. Identify all errors in the AI Assistant’s answers and consider how much they affect the answer
to the question.
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3. Evaluate how faithful the AI assistant’s answers are to follow the Instruction, i.e., how correct
and closely related to the Instruction.
4. Evaluate how faithful the AI assistant’s answers are based on the Long Input Contexts, i.e.,
how correct and closely related to the Long Input Contexts.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".

[Instruction begins]
{Instruction}
[Instruction ends]

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Please rate the following assistant answers based on the scoring principles:

[Assistant’s answer begins]
{Assistant’s answer}
[Assistant’s answer ends]

Rating:

The prompt for GPT-4 evaluation on the helpfulness of response is:

Evaluation Prompt for the Helpfulness of Response

You are asked to evaluate the AI assistant’s answers to user questions as an impartial judge, and
your evaluation should follow these scoring principles:
1. Read the given Instruction and Assistant’s answer carefully.
2. Identify all errors in the AI Assistant’s answers and consider how much they affect the answer
to the question.
3. Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions
and providing the information the user needs.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".

[Instruction begins]
{Instruction}
[Instruction ends]

Please rate the following assistant answers based on the scoring principles:

[Assistant’s answer begins]
{Assistant’s answer}
[Assistant’s answer ends]

Rating:

The prompt for GPT-4 evaluation on the complexity of instruction is:

Evaluation Prompt for the Complexity of Instruction

You are asked to evaluate the Instruction as an impartial judge, and your evaluation should follow
these scoring principles:
1. Read the given Instruction carefully.
2. Evaluate the scope of the Instruction, i.e., whether the Instruction encompasses information
necessary for successful completion.
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Table 8: Further exploration of Homologous Model’s Guidance.

Model LongBench LongBench-Chat MT-Bench
Single-Doc QA Multi-Doc QA Summarization Avg First-turn Second-turn Avg

Real-world Settings
GATEAU-LLaMA - 50% 38.9 25.8 25.5 56.8 64.1 50.4 57.3
-w/o Extended Context Windows 38.1 25.4 25.6 55.8 63.7 50.6 57.1
-w/o Norm in Eq. (2) 37.5 24.1 25.3 56.2 64.1 50.4 57.3
Homologous Model’s Guidance 38.4 24.3 25.1 53.2 61.7 51.5 56.6
Perplexity Guidance 37.9 23.4 25.4 49.8 62.3 49.6 55.9
Non-Homologous Model’s Guidance 37.2 23.2 24.8 48.2 59.2 49.3 54.3

Limited Short Instruction Data Settings
GATEAU-LLaMA - 50% 31.0 18.1 25.3 59.0 64.2 44.1 54.2
-w/o Extended Context Windows 29.2 18.8 25.2 57.6 60.2 44.0 52.1
-w/o Norm in Eq. (2) 29.7 18.7 24.9 55.2 62.0 40.1 51.1
Homologous Model’s Guidance 28.5 17.5 24.7 53.2 61.3 42.4 51.8
Perplexity Guidance 28.3 16.8 24.7 51.0 57.6 40.9 49.2
Non-Homologous Model’s Guidance 28.7 16.8 24.8 50.2 60.1 40.3 50.2

3. Evaluate the depth of the Instruction, i.e., whether the Instruction provides thorough details
and nuances.
4. Evaluate whether Instruction integrates multiple steps or concepts that require careful attention
and understanding.
5. If the Instruction is too easy to follow, points should be deducted from the overall score.
Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the
following format:"[[rating]]", e.g. "[[5]]".

Please rate the following Instruction based on the scoring principles and examples above:

[Instruction begins]
{Instruction}
[Instruction ends]

Rating:

D.2 FURTHER EXPLORATION OF HOMOLOGOUS MODEL’S GUIDANCE

We further explore some key questions in the Homologous Model’s Guidance.

Why Do We Need Homologous Models? Homologous Model’s Guidance (HMG) aims to assess the
degree of long-range dependencies required for the corresponding response generation, by comparing
the perplexity scores of the response between two homologous models with different context windows.
The idea behind HMG is that the primary difference between homologous models with varying context
windows lies in their different capabilities for modeling long-range dependencies instead of other
capabilities. Thus, the disparity in the perplexity scores can be interpreted as reflecting the difference
in the long-range dependencies modeling capabilities required to generate the given response. To
evaluate the effectiveness of our idea, we replace LLaMA-2-7B-base-4k with Qwen-2-7b-base-8k
(Yang et al., 2024) as model θA in Eq. (2), namely Non-Homologous Model’s Guidance. As shown in
Table 8, we find Non-Homologous Model’s Guidance achieve worse performance than Homologous
Model’s Guidance in two designed settings. It shows that HMG can exclusively measure the richness
of long-range dependency relations in long SFT samples. As non-homologous models have different
pre-training phases and model architectures, the modified Eq. (2) can not effectively measure the
degree of long-range dependencies required for response generation and introduce the influence
brought by other different capabilities of non-homologous models, resulting in the worse performance.

Why Do We Apply Normalization in Eq. (2) ? We apply softmax normalization to each score in
Eq. (2) to determine its respective ranking among the datasets for two perplexity scores. This is
because our early experiments observed that applying softmax normalization can further improve
the performance shown in Table 8. This may due to the fact that some extremely noisy samples
tend to have large perplexity scores, which in turn lead to unstable HMP scores if we do not apply
normalization in Eq. (2). Training LLMs on these noisy samples further leads to poor results.

What Will Happen if We Do Dot Extend the Context Windows of LLaMA-2-4k? Our early
experiments also explore what will happen if we do not extend the context windows of model θA
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Figure 6: Results (%) on LongBench-Chat with different hyperparameter α in Eq. (6).

in Eq. (2). As shown in Table 8, we are surprised to find that -w/o Extended Context Windows also
achieves competitive results in three benchmarks compared to GATEAU-LLaMA. Even the perplexity
score PPLθApy|c, xq from the model θA can be very large, e.g., the value of PPLθApy|c, xq can
be larger than 1000, the value after softmax normalization is still useful and applicable in the
Homologous Models’ Guidance. This interesting finding can be used to reduce the complexity of
applying Homologous Models’ Guidance and achieve competitive performance.

D.3 PARAMETER STUDY

As shown in Figure 6, we conduct experiments to explore the impact of important hyperparameter
α in Eq. (6) to further understand our method. We report the results of GATEAU-LLaMA-50% on
LongBench-Chat in two settings. Overall, although the choice of different α will have some impact
on the LLM’s performance, the performance will always be improved over the baseline Full-100%,
i.e., using the whole training dataset without data selection. Meanwhile, we also find that using both
the Homologous Model’s Guidance and Contextual Awareness Measurement will further improve
the performance than only using one of them. This is because the Homologous Model’s Guidance
and Contextual Awareness Measurement attempt to measure the difficulty brought by the long-range
dependencies from two different perspectives, i.e., separately measuring the difficulty of generating
corresponding responses and understanding long input contexts due to the long-range dependencies.

D.4 HUMAN EVALUATION

During the human evaluation, the participants follow these principles to make the decision:

The Principles of Human Evaluation

You are asked to evaluate the responses generated by different models, and your evaluation
should follow these principles:
1. Correctness: Focus primarily on whether the response covers the key points in the reference
answer. For reference answers containing multiple key points, look for how many of these the
response accurately addresses and score accordingly.
2. Helpfulness: Evaluate how helpful the AI assistant’s answers are in directly answering the
user’s questions and providing the information the user needs.
3. Faithfulness: Examine any additional information in the AI assistant’s answer to ensure that
it is correct and closely related to the question. If this information is incorrect or not relevant to
the question, points should be deducted from the overall score.
4. Coherence: Evaluate how fluent and coherent the AI assistant’s answers are. Also, consider
deducting points for overly verbose responses or those that are excessively generalized.

Finally, please make a decision among 3 opinions, including Win, Tie, and Loss.

If the final result can not be determined by the majority voting of three participants, we will make the
discussion among the participants and vote on the result again.
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D.5 OOD CASE STUDY

As part of our research on aligning LLMs on long context, we further come up with a practical case
study. We consider using an out-of-distribution (OOD) query, that is, the query that the model has not
encountered in the long context SFT data. Specifically, we select the Biden-Trump debate transcript
2 from the 2024 election season as the OOD query, because this debate is organized subsequent to the
collection of our used training datasets.

OOD Case Study

  User:

[Debate transcript begins]
{}
[Debate transcript ends]

[Instruction begins]
As a professional summarizer, create a concise and comprehensive summary of the provided
debate, while adhering to these guidelines:
1. Craft a summary that is detailed, thorough, in-depth, and complex, while maintaining clarity
and conciseness.
2. Use proper grammar, punctuation, and spelling.
3. Write in a formal, objective, and impartial tone.
4. Provide a clear and accurate summary of the debate, without bias or personal opinions.
[Instruction ends]

Summary:

� Ours:

The CNN presidential debate between President Joe Biden and former President Don-
ald Trump was held in Atlanta, Georgia. The debate was moderated by CNN anchors
Jake Tapper and Dana Bash. The debate covered various topics including the economy,
immigration, foreign policy, democracy, and more. On the economy, President Biden defended
his administration’s actions, stating that he inherited a disastrous situation from the previous
administration. He highlighted his administration’s job creation efforts and infrastructure
spending. Former President Trump criticized Biden’s policies, claiming that Biden’s tax hikes
and regulations were hurting the economy. On immigration, President Biden defended his
administration’s handling of the border crisis, stating that he had increased border patrol and
asylum officers. Former President Trump criticized Biden’s immigration policies, claiming
that Biden was allowing "terrorists" to enter the country. On foreign policy, President Biden
criticized former President Trump’s handling of foreign affairs, particularly in regards to Russia
and Ukraine. He stated that Trump had encouraged Putin to invade Ukraine and that Trump had
not done enough to stop the war. Former President Trump defended his actions, stating that he
had put pressure on Ukraine to investigate Biden’s son and that he had not done enough to stop
the war because he was focused on China. On democracy, President Biden criticized former
President Trump’s handling of the January 6th attack on the Capitol, stating that Trump had
encouraged the protesters to go to the Capitol. Former President Trump defended his actions,
stating that he had spoken peacefully and patriotically. Overall, the debate was contentious and
both candidates strongly defended their records and policies.

2https://edition.cnn.com/2024/06/27/politics/read-biden-trump-debate-rush-transcript/index.html
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⌢ Full - 100%:

The debate between President Joe Biden and former President Donald Trump was held
in Atlanta, Georgia, on October 22, 2020. The debate was moderated by CNN anchors Jake
Tapper and Dana Bash. The debate focused on various issues such as the economy, immigration,
foreign policy, democracy, and more. On the issue of the economy, President Biden argued
that he inherited a disastrous economy from Trump, with high unemployment rates and no
jobs. He claimed that his policies have helped create jobs and increase wages for working-class
Americans. Trump, on the other hand, claimed that he had the best economy in history and that
Biden’s policies have caused inflation and driven up prices. On the issue of immigration, Trump
claimed that Biden was allowing "millions of people to come in and destroy our country." He
also claimed that Biden was responsible for the worst border crisis in history. Biden argued
that Trump had left the border in chaos and that his policies had caused the crisis. On foreign
policy, Trump claimed that he had brought the United States to the brink of war with Iran and
that he had made a deal with North Korea that was a "disaster." Biden argued that Trump had
put the United States in a dangerous position with his rhetoric and that he had made the world a
more dangerous place. On democracy, Trump claimed that the election was rigged and that he
had won the election. Biden argued that Trump had incited a violent insurrection at the Capitol
and that he had undermined democracy. In conclusion, the debate was contentious and both
candidates presented their respective arguments and policies. However, it remains to be seen
how the voters will interpret the debate and how it will impact the election outcome.

We show the results generated by GATEAU-LLaMA-30% and Full-100% in Real-world settings. We
highlight the sentences that can be easily misunderstood or contain factual errors (e.g., this debate is
organized in 2024 instead of 2020). We can find that our method achieves better faithfulness and
fluency, showing the effectiveness of our method in handling OOD queries.
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