
FuseFL: One-Shot Federated Learning through the
Lens of Causality with Progressive Model Fusion

Zhenheng Tang†∗ Yonggang Zhang† Peijie Dong♯ Yiu-ming Cheung†
Amelie Chi Zhou† Bo Han† Xiaowen Chu♯, §

† Department of Computer Science, Hong Kong Baptist University
♯ DSA Thrust, The Hong Kong University of Science and Technology (Guangzhou)
{zhtang, ygzhang, ymc, amelieczhou, bhanml}@comp.hkbu.edu.hk

{pdong212, xwchu}@connect.hkust-gz.edu.cn

Abstract

One-shot Federated Learning (OFL) significantly reduces communication costs
in FL by aggregating trained models only once. However, the performance of
advanced OFL methods is far behind the normal FL. In this work, we provide
a causal view to find that this performance drop of OFL methods comes from
the isolation problem, which means that locally isolatedly trained models in OFL
may easily fit to spurious correlations due to data heterogeneity. From the causal
perspective, we observe that the spurious fitting can be alleviated by augmenting
intermediate features from other clients. Built upon our observation, we pro-
pose a novel learning approach to endow OFL with superb performance and low
communication and storage costs, termed as FuseFL. Specifically, FuseFL decom-
poses neural networks into several blocks and progressively trains and fuses each
block following a bottom-up manner for feature augmentation, introducing no
additional communication costs. Comprehensive experiments demonstrate that
FuseFL outperforms existing OFL and ensemble FL by a significant margin. We
conduct comprehensive experiments to show that FuseFL supports high scalability
of clients, heterogeneous model training, and low memory costs. Our work is the
first attempt using causality to analyze and alleviate data heterogeneity of OFL2.

1 Introduction

Federated learning (FL) [96; 67] has become a popular paradigm that enables collaborative model
training without sharing private datasets from clients. Two typical characteristics of FL limit its
performance: (1) FL normally has non-IID (Independently and Identically Distributed) data, also
called data heterogeneity [67], which causes unstable slow convergence [68; 146; 124; 135] and
poor model performance [157; 94; 134; 162; 150]; (2) The extremely low bandwidth, e.g. 1 ∼ 10
MB/s of FL in Internet environments [67; 133; 129; 128; 132; 129], leads to high communication
time of a large neural network. For example, communicating once ResNet-50 [51] with 25.56M
parameters (102.24MB) or GPT-3 [14] with 175B parameters (700GB) will consume around 102.24
seconds or 194 hours, respectively. Current FL methods alleviate this problem by skipping the
gradient synchronization of traditional distributed training to save communication costs [96; 67]. But
the required hundreds or thousands of communication rounds still make the communication time
unacceptable.

∗This work is partially done during the visiting in The Hong Kong University of Science and Technology
(Guangzhou).

§
Correspondence to Xiaowen Chu (xwchu@hkust-gz.edu.cn).

2The code is publicly available: https://github.com/wizard1203/FuseFL

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/wizard1203/FuseFL

To reduce the communication costs at extreme, one-shot FL (OFL) [159; 38; 81; 164; 25; 23] only
communicates the local trained model once. Thus, the communication cost is the model size S
for each client, less than FedAvg-style algorithms for hundreds or thousands of times. However,
averaging for only once cannot guarantee the convergence of FedAvg. Thus, the direct idea is to
aggregate client models on the server and conduct inference as ensemble learning does. Some
advanced works also consider better model averaging [63; 112; 90; 6], neurons matching [5; 141],
selective ensemble learning [26; 52; 143], model distillation [81; 164; 25; 23]. These methods may be
impractical due to the requirements of additional datasets with privacy concerns, and the extra large
storage or computation costs. Most importantly, there still exists a large performance gap between
OFL and the normal FL or the ensemble learning. This motivates the following question:

How to improve FL performance under extremely low communication costs with
almost no extra computational and storage costs?

In this work, we provide a causal view [109; 110; 3; 119] to analyze the performance drop of OFL.
We firstly construct a causal graph to model the data generation process in FL, where the spurious
features build up the data heterogeneity between clients, and invariant features of the same class
remain constant in each client (domain) [3; 119; 22; 151; 161]. Then, we show the performance drop
comes from the isolation problem, which means that locally isolatedly trained models in OFL may
easily fit to spurious correlations like adversarial shortcuts [40; 35; 53], instead of learning invariant
features [3; 119], causing a performance drop of OFL on the test dataset. Consider a real-world
example, Alice takes photos of birds in the forests, while Bob near the sea. Now, the isolated models
will mistakenly identify birds according to the forests or the sea [53; 35]. Based on the causal
graph, we intuitively and empirically show that such spurious fitting can be alleviated by augmenting
intermediate features from other clients (Section 3).

Built upon this observation, we propose a simple yet effective learning approach to realizing OFL
with superb performance and extremely low communication and storage costs, termed as FuseFL,
which builds up the global model through bottom-up training and fusion to improve OFL performance
(Section 4). Specifically, we split the whole model into multiple blocks 3 (The “block” means a single
or some continuous layers in a DNN.). For each block, clients first train and share their local blocks
with others; then, these trained local blocks are assembled together, and the features outputted from
these blocks are fused together and fed into the next local blocks. This process is repeated until the
whole model is trained. Through this bottom-up training-and-fusion method, local models can learn
better feature extractors that learn more invariant features from other clients to avoid the isolation
problem. To avoid the large storage cost, given the number of clients M , we assign each local client
with a small model with reduced hidden dimension with ratio

√
M , to ensure the final learned global

model has the same size S as the original model.

Our main contributions can be summarized as follows:

• We provide a causal view to understand the gap between multi-round FL and OFL, showing that
augmenting intermediate features from other clients contributes helps improve OFL. As far as we
know, this is the first work using causality to analyze the data heterogeneity of OFL.

• To leverage causality to improve OFL, we design FuseFL, which decomposes models into several
modules and transmits one module for feature augmentation at each communication round.

• We conduct comprehensive experiments to show how FuseFL significantly promotes the perfor-
mance of OFL without no additional communication and computation cost.

2 Preliminary

2.1 Federated Learning

In FL, a set of clients M = {m|m ∈ 1, 2, ...,M} have their own dataset Dm. Given C classes
indexed by [C], a sample in Dm is denoted by (x, y) ∈ X × [C], where x is the input in the space X
and y is its corresponding label. These clients cooperatively learn a model F (θ, x) : X → RC that is

3Note that this method is general to any neural network, and the fusion is different from averaging.

2

parameterized as θ ∈ Rd. Formally, the global optimization problem can be formulated as [96]:

min
θ
L(θ) ≜

M∑
m=1

pmLm(θ) =

M∑
m=1

pmE(x,y)∼Dm
ℓ(F ;x, y),

where the local objective function of mth-client ℓ(F ;x, y) ≜ CE(ŷ, y) with ŷ ≜ F (θ;x), CE
denotes the cross-entropy loss, pm > 0 and

∑M
m=1 pm = 1. Usually, pm ≜ nm/N , where nm

denotes the number of samples on client m (nm = |Dm|) and N =
∑M
m=1 nm.

The classic FL algorithm is FedAvg [96]. In each communication round t, the central server randomly
samples a part of clients St ⊆ M and broadcasts the model θt to all selected clients, and then
each m-th client performs multiple local updates. After local training, all selected clients send the
optimized θtm,E to the server, and the server aggregates and averages local models to obtain a global
model. Such a multi-round communication introduces large communication costs [67].

2.2 Ensembled FL

The FedAvg requires multiple communication rounds T for convergence [146; 83], which might be
extremely large [67]. Given the model size S, FedAvg-style FL methods introduce communication
costs as T × S. As shown in Table 1, the current lowest communication cost of FL is reduced as S in
OFL, making FL possibly deployable in low communication bandwidth scenarios [133; 129]. Thus,
we analyze what causes the performance drop of OFL and how to improve it. As the performance
of average-based and model distillation OFL methods is upper bounded by ensemble learning [159;
38; 81; 164; 23], we mainly focus on analyzing ensemble learning and differentiating FuseFL from
it. The output of the ensemble learning can be formalized as: Fens(x) ≜ 1

M

∑
m∈M F loc

m (θm;x), in
which the local model F loc

m parameterized with θm is isolatedly trained with minimizing empirical
risk minimization (ERM) objective [152; 3; 22] function ℓ(F (θ, x), y), (x, y) ∼ Dm by SGD.

3 Federated Learning: A Causal View

3.1 The Sequential Structure of Neural Networks

(a) Isolated Training
& Ensemble

 𝚲𝟏

 𝑯𝟏
𝟐

(b) Federated Fusion

 𝑯𝟏
𝟑

 𝚲𝟐

 𝑯𝟐
𝟐

 𝑯𝟐
𝟑

 𝑯𝟐
𝟏 𝑯𝟏

𝟏

 𝒂 𝒂

𝟏 𝟐

 𝚲𝟏

 𝑯𝟏
𝟐

 𝑯𝟏
𝟑

 𝚲𝟐

 𝑯𝟐
𝟐

 𝑯𝟐
𝟑

 𝑯𝟐
𝟏 𝑯𝟏

𝟏

𝟏 𝟐

 𝑹𝟏
ୱ୮୳

 𝑿𝟏 𝑿𝟐 𝑿𝟏 𝑿𝟐

Higher possibility
of fitting on 𝑹𝟏

ୱ୮୳or 𝑹𝟐
ୱ୮୳

Lower possibility
of fitting on 𝑹𝟏

ୱ୮୳or 𝑹𝟐
ୱ୮୳

Train with
Augmented

Features

Filter out
 𝑹𝟏

ୱ୮୳features

No extra
features

 𝒀𝟏

 𝑹𝟏
୧୬୴ 𝑹𝟐

ୱ୮୳

 𝒀𝟐

 𝑹𝟐
୧୬୴ 𝑹𝟏

ୱ୮୳

 𝒀𝟏

 𝑹𝟏
୧୬୴ 𝑹𝟐

ୱ୮୳

 𝒀𝟐

 𝑹𝟐
୧୬୴

Figure 1: Structure Equation Model [109] of FL.

A neural network can be decomposed into the
sequential module-wise structure as shown in
Figure 1. Formally, it can be defined as:

F = Λ◦HK ◦HK−1◦· · ·◦H1, for 1 ≤ k ≤ K,
(1)

where Λ is the final classifier, and Hk is the
module that may consist of single or multiple
blocks. The Λ and eachHk are parameterized by
θΛ ∈ RdΛ and θk ∈ Rdk . TheHi◦Hj(·) means
Hi(Hj(·)). Thus, the parameter θ of F are con-
catenated by the θΛ and

{
θk|k ∈ 1, 2, · · ·K

}
,

and dΛ +
∑K
k=1 dk = d.

As Figure 1 illustrates, each moduleHk receives
the output of module Hk−1, and the final classi-
fier receives the output of the final hidden mod-
ule HK and makes predictions ŷ = f(x) on
the input x. We call the output from each mod-
ule, hk = Hk(hk−1) and h1 = H1(x), as the
feature for simplicity.

3.2 Structure Equation Model of FL

Inspired from the analysis of out-of-distribution
(OOD) generalization [3] through the lens of mutual information [122; 2] and structure equation

3

model (SEM) in causality [110; 3; 119; 161], we define the data generation SEM of FL as shown in
Figure 1. For local training dataset Dm at client m, the SEM is Ym → Rinv

m → Xm ← Rspu
m , where

Rinv
m and Rspu

m are invariant and spurious features, Ym and Xm are label and input data respectively.
Here, the dataset Dm is a subset of the whole dataset D. The Rspu

m is actually the nuisance at a global
level (respect to Y), being independent of Y , but dependent on Xm.

Non-IID data and causality. For a groundtruth label Y , its corresponding invariant features Rinv
m do

not change across clients [3; 119; 22; 151]. However, the spurious features Rspu
m are other factors that

occasionally exist in data and do not have a relationship to Y , which means that the heterogeneous
features of data (non-iid) with the same class come from the spurious featuresRspu

m (concept shift [67]).
For example, in photos of birds in the forests or the sea, pixels of birds are Rinv

m while the forests and
the sea are Rspu

m . Considering the test dataset includes all client data distribution and even OOD data,
the Ytest is largely dependent on Rinv

test: P (Ytest|Xtest, R
inv
test)≫ P (Ytest|Xtest, R

spu
test)

4.

Non-IID scenarios. This SEM model considers the label shift (pi(y) ̸= pj(y)) and concept shift
(pi(x|y) ̸= pj(x|y)) scenarios [67; 80], or both of them appear simultaneously. When the support5
Ym of Ym is different or partly overlapped between clients m = 1, ...,M , this would be the severe
non-IID scenario [155]. And it is obvious that spurious features Rspu

m relate to the concept shift.

Spurious fitting. By conducting isolated local training on local dataset Dm at client m, the model
F loc
m is prone to learn to predict Ym based on spurious features Rspu

m , i.e. low distance dspu
loc,m =

d(P (Ym|Xm, R
spu
m), P (F loc

m |Xm, R
spu
m)) but high distance d(P (Ym|Xm, R

inv
m), P (F loc

m |Xm, R
inv
m)),

in which the distance d could be CE loss or KL divergence. The reason for the spurious fitting
by isolated training is that the invariant features Rinv

i̸=m from other clients are not observed by
client m, while the Rspu

m frequently appears in the local dataset Dm like the adversarial attacks or
shortcuts [40; 35; 53]. This guarantees low error on the training dataset Dm, because it has much
less data than Dtest and D1,...,M , thus introducing high probability P (Ym|Xm, R

spu
m). However, on

test dataset Dtest, the low dspu
loc,m of model F loc

m but high dinv
loc,m of model F loc

m leads to high test error.
Different from isolated training, FedAvg alleviates this problem by multiple times of averaging
models to find those common features, including more Rinv

1,...,M and removing Rspu
1,...,M .

Feature augmentation. Through the above analysis, the key to improve OFL performance is to
endow OFL with the ability of training to see invariant features across all clients. It has been
found that training on noised datasets with SGD to optimize ERM can still result in some feature
representations consisting of both spurious and invariant features; exploiting the invariant features is
the key to helping improve OOD performance [158; 3; 8]. In light of this, we introduce augmenting
features by fusing client models block by block. Concisely speaking, in FuseFL, each local model
can conduct local training with the view from other clients Hi ̸=m(Xm), which helps filter out Rspu

m

but retain Rinv
m , as other clients cannot see Rspu

m in their dataset Di ̸=m. This method can be seen as a
kind of invariant feature augmentation [22]. The details of FuseFL are shown in Section 4.

3.3 Mutual Information

The goal of FL is to obtain a model that performs well on all client datasets [67]. Thus, here we
consider the random variable X,Y sampled from the global dataset D. In this section, we also write
Hk as the features that output from Hk(Hk−1 . . . (H1(X))) for simplicity.

Given the probabilistic graph model (Rspu, Y) → X → H1 → · · · → Hk → F (X) (Eq. 1),
where Rinv are ignored for simplicity, the MI between Y and subsequent transformations Hk on
X satisfies a decreasing trend: I(X;Y) ≥ I(H1;Y) ≥ · · · ≥ I(HK ;Y); the MI between X
and subsequent transformations on X satisfies a decreasing trend: Entropy(X) ≥ I(H1;X) ≥
· · · ≥ I(HK ;X) [122]. If I(HK ;Rspu) = 0 and HK can predict labels, HK is called invariant
features so that the final classifier will not overfit to spurious correlations between Rspu and Y . The
previous works [122] show that achieving the following minimal sufficient statistic provides good

4Without loss of generality, one can also model the SEM of test data as Ytest → Rinv
test → Xtest for simplicity.

5Support is the region where the probability density for continuous random variables (probability mass
function for discrete random variables) is positive [3].

4

generalization:

Sufficient statistic: I(X;Y) = I(H(X);Y), (2)

Minimal statistic: H(X) = arg min
H̃(X)

I(H̃(X);X). (3)

Lemma 3.1 (Invariance and minimality [2]). Given spurious feature Rspu for the label Y , and
probabilistic graph model (Rspu, Y)→ X → H(X), then,

I(H(X);Rspu) ≤ I(H(X);X)− I(X;Y).

There is a nuisance Rspu such that equality holds up to a residual ϵ:

I(H(X);Rspu) = I(H(X);X)− I(X;Y)− ϵ,

where ϵ ≜ I(H(X);Y |Rspu)− I(X;Y). The sufficient statistic H(X) (satisfying Eq. 3) is invariant
to Rspu if and only if it is minimal (satisfying Eq. 2).
Remark 3.1. Based on Lemma 3.1, we can study how I(H(X);X) and I((H);Y) changes to study
to what degree the H(X) contains spurious features.

1 2 3 4 5 6 7
Module Index

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Es
tim

at
io

n
of

 I(
X,

H
) Local a = 0.1

Local a = 0.3
Local a = 0.5

Fusion a = 0.1
Fusion a = 0.3
Fusion a = 0.5

(a) Estimated MI I(Hk;X). (b) Estimated MI I(Hk;Y).

1 2 3 4 5 6 7
Module Index

50
55
60
65
70
75
80
85

Te
st

 A
cc

ur
ac

y
[%

]

(c) The separability of layers.

Figure 2: Estimated MI and separability of trained models with non-IID datasets.

1 2 3 4 5 6 7
Module Index

0.30
0.32
0.34
0.36
0.38
0.40

Es
tim

at
io

n
of

 I(
X,

H
)

Local a = 0.1
Local a = 0.3
Local a = 0.5

Fusion a = 0.1
Fusion a = 0.3
Fusion a = 0.5

(a) Estimated MI I(Hk;X).

1 2 3 4 5 6 7
Module Index

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Es
tim

at
io

n
of

 I(
Y,

H
)

(b) Estimated MI I(Hk;Y).

1 2 3 4 5 6 7
Module Index

50

60

70

80

Te
st

 A
cc

ur
ac

y
[%

]

(c) The separability of layers.

Figure 3: Estimated MI and separability of trained models with non-IID backdoored datasets.

Empirical study. We empirically estimate the MI I(Hk
loc, X) and I(Hk

loc, Y) of isolated local trained
features, and the I(Hk

fus, X) and I(Hk
fus, Y) of augmented features. As the deep neural networks

(DNNs) show layer-wise feature enhancements [7], we also measure the linear separability [7; 101]
of features Hk

loc and Hk
fus to see how they change. Details of MI estimation and linear separability

are shown in Appendix D.3 and D.4. The experiments are conducted by training ResNet-18 with
CIFAR-10 [74] partitioned across M = 5 clients. Figure 2 shows the local features Hk

loc have
significantly higher I(Hk, X) but lower I(Hk, Y) than augmented features Hk

fus. With the increased
non-IID degree (lower a), the I(Hk, Y) decreased further, demonstrating that the local feature Hk

loc
fits on a more anti-causal relationship between Rspu

m and Ym. The fused high-level features show
better linear separability. And Hk

fus is more robust to Rspu
m .

Except for the natural spurious features that exist in CIFAR-10, we also study the effect of spurious
features by handcraft. Specifically, we inject backdoored data samples [10; 97] of 1 out of 5 clients
as Dback

1 , in which the images have handcrafted textures generated according to the labels as a strong
anti-causal relation. Details of backdoored datasets are introduced in Appendix D.5. Figure 3 shows
that the backdoor features lead to information loss in X . And the backdoored data samples further
aggravate the information loss of label Y . The isolated local trained features retain significantly less
I(Hk, Y) than augmented features.

5

(a) Isolated Training

 𝚲𝟏

 𝑯𝟏
𝟐

 𝓓𝟏

(b) Fusing L1 & Training

 𝑯𝟏
𝟑

 𝚲𝟐

 𝑯𝟐
𝟐

 𝑯𝟐
𝟑

 𝚲𝟑

 𝑯𝟑
𝟐

 𝑯𝟑
𝟑

(c) Fusing L2 & Training

 𝓓𝟐 𝓓𝟐

Frozen Communicated and
shared across Clients

Training

 𝑯𝟐
𝟏 𝑯𝟑

𝟏 𝑯𝟏
𝟏

 𝒂 𝒂 𝒂

Data flow on local clients
Data flow on other clients

𝟏 𝟐 𝟑

 𝚲𝟏

 𝑯𝟏
𝟐

 𝓓𝟏

 𝑯𝟏
𝟑

 𝚲𝟐

 𝑯𝟐
𝟐

 𝑯𝟐
𝟑

 𝚲𝟑

 𝑯𝟑
𝟐

 𝑯𝟑
𝟑

 𝓓𝟐 𝓓𝟐

 𝑯𝟐
𝟏 𝑯𝟑

𝟏 𝑯𝟏
𝟏

 𝒂 𝒂 𝒂

𝟏 𝟐 𝟑

 𝒂 𝒂 𝒂

 𝚲𝟏

 𝑯𝟏
𝟐

 𝓓𝟏

 𝑯𝟏
𝟑

 𝚲𝟐

 𝑯𝟐
𝟐

 𝑯𝟐
𝟑

 𝚲𝟑

 𝑯𝟑
𝟐

 𝑯𝟑
𝟑

 𝓓𝟐 𝓓𝟐

 𝑯𝟐
𝟏 𝑯𝟑

𝟏 𝑯𝟏
𝟏

𝟏 𝟐 𝟑

(d) Deployment

 𝑯𝟏
𝟐

 𝑯𝟏
𝟑

 𝚲

 𝑯𝟐
𝟐

 𝑯𝟐
𝟑

 𝑯𝟑
𝟐

 𝑯𝟑
𝟑

 𝓓𝒕𝒆𝒔𝒕

 𝑯𝟐
𝟏 𝑯𝟑

𝟏 𝑯𝟏
𝟏

 𝒂 𝒂 𝒂

 𝒂 𝒂 𝒂

Module Adapter 𝒂 Dataset 𝓓୧
Modules on

difference clients

Figure 4: (a) Initially, all layers are isolated training. Note that the layer here does not only mean one
or Conv layer, but generally refers to a neural network block that can consist of multiple layers. (b)
Then, all first blocks (L1) of different clients are communicated, shared and frozen among clients.
Then, the adaptors are added behind the fused block, to fuse features outputted from the concatenated
local blocks. (c) Train the third blocks (L3) follow the similar process in (b). (d) inference process of
FuseFL. The larger squares represent the original training block in local models. The smaller squares
are adaptors that fuse features from previous modules together, which are 1 × 1 Conv kernels or
simple average operations with little or no memory costs. Note that (a) also represents local training
in ensemble FL, where different clients train models on local datasets.

4 FuseFL: Progressive FL Model Fusion

Motivated by analysis in Section 3, we propose augmenting local intermediate features H1,...,K
m on

client m, which helps reduce fitting to a spurious correlation between Ym and Rspu
m . However, direct

fusing features together to make predictions faces the following problems.

Altered feature distribution. During local training, the local subsequent model Γk+1
m ≜ Λm ◦

HK
m · · · ◦Hk+1

m after block k on client m is trained based on local features Hk
m. After feature fusion,

changed local features lead to feature drifts [75; 134].

Mismatched semantics. Each local feature Hk
m has totally different distributions, scales, or even

dimensions; thus, directly averaging may cause useful features to be overwhelmed or confused by
noisy features.

4.1 Train, Fuse, Freeze, and Re-Train

As Figure 4 and Algorithm 1 (Appendix 1) show, the main loop of FuseFL including training, fusing,
and freezing, which is repeated for all K split blocks following a progressive manner. Note that for
H1
m, there is no layer fusion, which is isolatedly trained.

Fuse. After each local training step, clients share theirHk
m with other clients, and fuse them following

Eq. 4. An adaptor A is stitched before Hk+1
m (Section 4.2). Then the local model becomes as F k,mfus

following Eq. 5.

Freeze and re-train. To address the altered feature distribution problem (A(Hk
fus(x))→ Hk

m(x)),
for each step k on client m, the subsequent layers Γk+1

m will be trained again based on Dm. Thus,
the Γk+1

m can learn from all low-level features of all clients. Note that we do not need to train each
block k with the same epochs in isolated training, because the DNNs naturally follow the layer-wise
convergence [113; 48].

6

Hk
fus(x) =

[
Hk

1 (x), ...,H
k
M (x)

]
. (4)

F k,mfus = Λm ◦HK
m ◦ ... ◦Hk+1

m ◦Hk
fus ◦ ... ◦H1

fus. (5)

Ffus = Λ ◦HK
fus ◦HK−1

fus ◦ ... ◦H1
fus. (6)

Aavg = Average(Hk
fus(x)). (7)

Aconv = Conv(Concat(Hk
fus(x))). (8)

By freezing fused blocks and retraining high-level models, the another benefit is to enforce the SGD
to use previous features from other clients to continue tuning the high-level model. The previous
local trained high-level models may overfit on shortcut features from the noisy data. This insight is
also utilized in defensing adversarial attacks [139; 107].

4.2 Feature Adaptation

To address the mismatched semantics problem, the intuitive approach is to preserve the original
feature structures through the concatenation of all features to the next block. However, this leads
to new problems: (1) requiring modification of subsequent modules; (2) feature size explosion of
subsequent blocks by O(MK). To address these two problems, we introduce an adaptor stitched
before local modules (k > 1), and training together with Γkm. As an initial trial to operationalize
FuseFL, we utilize conv1×1 as the adapter as Eq. 8. We also verify the use of average as an adapter
(Eq. 7) in experiments (Section 6).

4.3 Benefits of FuseFL Design

Mitigating fitting on spurious correlations. During the local training on datasets with spurious
features, the final learned representations with ERM still contain some invariant features [3; 22].
Thus, some work proposes to finetune the classifier based on data samples with invariant features to
let the classifier make predictions based on invariant features [70; 61; 106]. Similar to this motivation,
we hope to incorporate other client modules as auxiliary feature extractors to generate more invariant
features of local data during training subsequent layers. Figure 1 describes the mechanism that using
other local models Hi ̸=m(Xm) help to filter out spurious features Rspu

m , but retain Rinv
m . As other

clients {i ̸= m} cannot see Rspu
m in their dataset Di ̸=m during local training, only invariant features

can pass through Hi ̸=m(Xm). This method can be seen as the invariant feature augmentation [22].

Saving storage and communication costs than ensemble FL. Similar to ensemble learning, directly
collecting and fusing local models together will enlarge the total model size from S to S ×M . Note
that FuseFL actually builds up a global model with blocks fused together, with the hidden dimensions
(channels) enlarged from ns → ns ×M . Thus, intuitively, we can reduce the hidden dimension of
the local model nf to reduce the memory requirements. Interestingly, with a scaling ratio γ, when
scaling all local linear or convolutional layers, each matrix should be scaled on both input and output
dimension as nf = γns. The ratio of memory costs between FuseFL and the original single model is
rm =M × n2s/(γns)2. To obtain rm = 1, we obtain the scaling ratio γ =

√
M , which means that

FuseFL can keep similar memory requirements with the original model size S with reducing hidden
dimensions as ratio

√
M , demonstrating good theoretical scalability to the M . We will verify this in

experiments (Section 6.2).

Privacy concerns. FuseFL only shares layers between clients, which aligns with other classic and
advanced FL methods in all directions mentioned in Section 5.

Support of heterogeneous models. The block in FuseFL does not mean a single linear or convolution
layer, but a general module that can consist of any DNN, thus supporting FL with heterogeneous
models (see experiments 6.2). The adaptor can be designed to transform features of different shapes
to align with the input of the next local block.

Layer-wise training to reduce training epochs. Because each communication round means multiple
local training epochs. To keep the total training epochs the same as the one-shot FedAVG (represented
as E), we assign the local training epochs of the FuseFL as E/K. Thus, the number of total training
epochs of FuseFL is the same as other OFL methods. The core insight of this design can be referred
to as the progressive freezing during training DNNs [113].

7

5 Related Works

5.1 Data Heterogeneity in FL

Table 1: Demystifying different FL algorithms. T
represents communication rounds, S the model
size, M the number of clients. The “Centralized”
means training the model with all datasets aggre-
gated with SGD. “Comm.” means communication.

Method Comm.
cost Storage cost Support model

heterogeneity
Not require
extra data

FedAvg T × S S ✓ ✓

Average-based OFL S S ✗ ✗
Ensemble-based OFL S S ×M ✓ ✗

Model distillation OFL S S ✓ ✗

FuseFL S S ✓ ✓

The notorious non-IID data distribution in FL
severely harms the convergence rate and model
performance of FL. The model regularization
proposes to add a penalty of distances between
local and global models [117; 1]. Feature cal-
ibration aligns feature representations of differ-
ent clients in similar spaces [29; 134; 60; 135].
FedMA [141] exploits a layer-wise communica-
tion and averaging methods, in which the aggre-
gation is conducted on fine-grained layer. Thus,
its linear dependence of computation and com-
munication on the network’s depth, is not suit-
able for deeper models, which introduces large
computation costs in re-training and more com-
munication rounds [19; 58]. Unlike FedMA, FuseFL introduces block-wise communication and
aggregation with much less communication rounds and computation costs. Furthermore, due to the
matching and averaging aggregation, FedMA only supports linear or Conv layers, which severely
limits its practical usage. By viewing the separated block as a black box and concatenating output
features, FuseFL can successfully support merging any kind of neural layer. Some works on fairness
analysis in FL also relate to this work in perspective of local and global characteristics [42; 32].

5.2 One-shot FL

One-shot FL [159; 38; 81; 164; 25] reduces communication costs from T ×S to S by communicating
with only one round. Average-based methods focus on better averaging client models, like Fisher
information [63; 112], bayesian optimization [90; 6] or matching neurons [5; 141]. However, the non-
linear structure of DNNs makes it difficult to obtain a comparable global model through averaging.
Ensemble-based methods make prediction based on all or selected client models [26; 52; 143], but
requires additional datasets with privacy concerns. And they have low scalability of the number of
clients due to the storage of client models. Model distillation uses the public [81] or synthesized
datasets [164; 25] to distill a new model based on ensemble models [38; 81]. These methods may
be impractical in data-sensitive scenarios, such as medical and education, or continuous learning
scenarios [28; 27]. Furthermore, there exists a large performance gap between these methods and the
ensemble learning.

Due to the limited space, we leave the detailed reviews in Table 8 and Appendix C. Table 1 concisely
demystifies different FL methods in terms of communication cost, storage cost, model performance,
and whether supporting model heterogeneity or requiring extra data.

6 Experiments

6.1 Experiment Setup

Federated Datasets and Models. In order to validate the efficacy of FuseFL, we conduct compre-
hensive experiments with commonly used datasets in FL, including MNIST [77], CIFAR-10 [73],
FMNIST [147], SVHN [100], CIFAR-100 [73] and Tiny-Imagenet [76]. For studying the non-IID
problem in FL, we partitioned the datasets through a widely-used non-IID partition method, namely
Latent Dirichlet Sampling [56; 67; 114; 80], in which the coefficient a represents the non-IID degree.
Lower a generates more non-IID datasets, and vice versa. Consistent with established practices in
the field [159; 114; 93; 80], each dataset was divided with three distinct degrees of non-IID with
a ∈ {0.1, 0.3, 0.5}. If there is no additional explanation, the non-IID degree a is set to 0.5 by default.

Following other classic and advanced FL works studying non-IID problems and communication-
efficient FL [125; 52; 93; 159], we train ResNet-18 [51] on all datasets in main experiments. And we
reduce and increase the number of layers as ResNet-10 and ResNet-26 to verify the effect of FuseFL

8

in model-heterogeneity FL. The number of clients is set as M = 5 by default. Moreover, we study
the scalability of our methods with different M ∈ {5, 10, 20, 50}.
We use SGD optimizer with momentum coefficient as 0.9, and the batch size is 128. The number of
local training epochs E = 200. We search learning rates in {0.0001, 0.001, 0.01, 0.1} and report the
best results. The detailed hyper-parameters of different settings are shown in Table 9 of Appendix D.

Table 2: Accuracy of different methods across α = {0.1, 0.3, 0.5} on different datasets. Ensemble
means ensemble learning with local trained models, which is an upper bound of all previous methods
but impractical in FL due to the large memory costs and the weak scalability of clients. Thus, we
highlight the best results in bold font except Ensemble.

Dataset MNIST FMNIST CIFAR-10 SVHN CIFAR-100 Tiny-Imagenet

Method α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5 α=0.1 α=0.3 α=0.5

FedAvg 48.24 72.94 90.55 41.69 82.96 83.72 23.93 27.72 43.67 31.65 61.51 56.09 4.58 11.61 12.11 3.12 10.46 11.89
FedDF 60.15 74.01 92.18 43.58 80.67 84.67 40.58 46.78 53.56 49.13 73.34 73.98 28.17 30.28 36.35 15.34 18.22 27.43

Fed-DAFL 64.38 74.18 93.01 47.14 80.59 84.02 47.34 53.89 58.59 53.23 76.56 78.03 28.89 34.89 38.19 18.38 22.18 28.22
Fed-ADI 64.13 75.03 93.49 48.49 81.15 84.19 48.59 54.68 59.34 53.45 77.45 78.85 30.13 35.18 40.28 19.59 25.34 30.21
DENSE 66.61 76.48 95.82 50.29 83.96 85.94 50.26 59.76 62.19 55.34 79.59 80.03 32.03 37.32 42.07 22.44 28.14 32.34

Ensemble 86.81 96.76 97.22 67.71 87.25 89.42 57.5 77.35 79.91 65.29 88.31 85.7 35.69 49.41 53.39 30.85 39.43 45.8

FuseFLK = 2 97.02 98.43 98.54 83.15 89.94 89.47 70.85 81.41 84.34 76.88 91.07 90.87 34.07 45.12 46.12 29.28 31.11 34.34
FuseFLK = 4 97.19 98.34 98.29 83.05 84.58 90.50 73.79 84.58 81.15 78.08 89.63 89.34 36.86 42.79 49.30 27.63 33.04 34.28
FuseFLK = 8 96.66 98.35 98.16 83.2 88.57 88.24 70.46 80.70 74.99 80.31 88.88 89.94 34.97 39.08 40.73 25.21 32.59 33.82

Baselines. Except the classic baseline FedAvg [96] and advanced OFL method DENSE [159], we ap-
ply two prevailing data-free KD methods DAFL [18] and ADI [153] into OFL. We choose FedDF [88]
as its high efficiency in few-round FL. We conduct ensemble FL as it is the upper bound across
ensemble-and-distillation based methods, yet impractical in real-world scenarios. The communication
round for all baseline methods is only 1. For our method FuseFL, the number of communication
rounds is equal to the number of splitted blocks K. However, the actual communication cost is as
same as one-shot FL. Because FuseFL only communicates a part of the model. After all rounds, the
total communication cost is SM , where S is the model size, M the number of clients.

6.2 Experimental Results

Main Results. Table 2 shows that FuseFL generally outperforms all other baselines except for
ensemble FL. All ensemble-and-distillation baselines have lower performance than ensemble FL.
Nevertheless, by the insights from causality (Section 3) and our innovative design (Section 4),
FuseFL can significantly outperform ensemble FL for almost all cases except for CIFAR-100 with
a = 0.3, 0.5 and Tiny-Imagenet. We suppose the reason is that CIFAR-100 and Tiny-Imagenet has
much more data divergence between different classes, thus the overlap between Rinv

m is much less
than other datasets. Recall that the benefits of FuseFL come from fusing sub models training on other
clients, thus filtering out Rspu

m and collecting Rinv
m of the same class to improve the generalization

performance. The large data divergence in CIFAR-100 and Tiny-Imagenet limits benefits of FuseFL.

Table 3: Accuracy with FuseFL with
conv1×1 or averaging to support heteroge-
neous model design on CIFAR-10.

non-IID degree a = 0.1 a = 0.3 a = 0.5

Ensemble 57.5 77.35 79.91

FuseFL 73.79 84.58 81.15
FuseFL (Avg) 68.08 71.49 80.35
FuseFL-Hetero 75.33 81.71 82.71

FuseFL (Avg)-Hetero 68.31 76.27 79.74

Table 4: Memory Occupation. For different number
of clients, the number of basic channels in ResNet-
18 of FuseFL is set as 32, 20, 14, 9 with M ∈
{5, 10, 20, 50}, respectively. Other OFLs refer to Fe-
dAvg, FedDF, Fed-DAFL, Fed-ADI, DENSE.

Clients M = 5 M = 10 M = 20 M = 50

Single Model 42.66MB 42.66MB 42.66MB 42.66MB

Other OFLs 42.66MB 42.66MB 42.66MB 42.66MB
Ensemble 213.31MB 426.62MB 853.24MB 2133.10MB

FuseFLK = 2 53.71MB 42.32MB 42.13MB 45.48MB
FuseFLK = 4 55.38MB 44.92MB 47.22MB 58.63MB
FuseFLK = 8 68.08MB 64.77MB 86.11MB 159.08MB
FuseFL (Avg) 53.32MB 41.66MB 40.83MB 42.18MB

Support of heterogeneous model design. Table 3 shows training heterogeneous model using
FuseFL. In all M = 5 clients, 2 clients train ResNet-10 and other 2 clients train ResNet-26, the left 1
client trains ResNet-18. We set K = 4 for FuseFL. Results show that training with heterogeneous
models has similar or even better results than homogeneous models, demonstrating that FuseFL
supports training heterogeneous model well. This will be very useful in heterogeneous computation
environments.

9

Table 5: Accuracy of different methods across M = {5, 10, 20, 50}.
Dataset CIFAR-10 SVHN
Method M = 5 M = 10 M = 20 M = 50 M = 5 M = 10 M = 20 M = 50

FedAvg 43.67 38.29 36.03 23.01 56.09 45.34 47.79 36.53
FedDF 53.56 54.44 43.15 29.52 73.98 62.12 60.45 51.44

Fed-DAFL 55.46 56.34 45.98 29.41 78.03 63.34 62.19 54.23
Fed-ADI 58.59 57.13 46.45 27.45 78.85 65.45 63.98 57.35
DENSE 62.19 61.42 52.71 28.51 80.03 67.57 66.42 59.27

Ensemble 79.91 77.25 59.69 55.63 85.7 73.45 68.76 54.96

FuseFLK = 2 84.34 73.71 62.85 42.18 90.87 88.52 85.18 72.25
FuseFLK = 4 81.15 78.28 62.57 37.08 89.34 89.31 86.94 45.49
FuseFLK = 8 74.99 67.35 63.19 28.28 89.94 72.65 64.11 42.19

Table 6: Local and global accuracy of 5 local client
models. BD0 and BD1 represent two clients trained
on backdoored datasets. Normal0, Normal1, and
Normal2 represent three clients trained on clean
datasets.

Client BD0 BD1 Normal0 Normal1 Normal2

Local Acc. 100.0 100.0 99.7 99.9 100.0
Global Acc. 32.6 27.1 41.2 42.3 38.4

Memory occupation. Table 4 shows the mem-
ory occupation with varying number of clients
and split modules. Results show that FuseFL
requires similar memory with the single model
when K = 2, while the ensemble FL requires
the S ×M storage cost. And using averaging
as feature fusion method can further reduce the
memory cost. Table 12 shows that the FuseFL
with K = 2 or FuseFL with averaging has com-
parable or better performance than other variants
of FuseFL.

Table 7: Comparing accuracy on backdoored
CIFAR-10.

Backdoored clients Mbd = 1

Non-IID degree a = 0.1 a = 0.3 a = 0.5

Ensemble 52.76 74.88 73.46
FuseFLK = 2 43.99 75.61 84.79
FuseFLK = 4 55.99 78.39 80.52
FuseFLK = 8 45.66 74.01 82.12

Backdoored clients Mbd = 2

Non-IID degree a = 0.1 a = 0.3 a = 0.5

Ensemble 52.67 68.42 75.83
FuseFLK = 2 54.24 71.49 82.61
FuseFLK = 4 54.77 67.53 72.99
FuseFLK = 8 51.70 68.31 76.95

Scalability of the number of clients. We em-
pirically prove that the memory occupation in-
creases a little along with the increased M (Ta-
ble 4), and keeping performance outperforms
than baselines (Table 5).

Influence on local models of backdoored
datasets. As shown in Section 3, the back-
doored features lead to information loss in X .
Here we further show how the FL performance
is influenced by the backdoored features. Ta-
ble 6 shows that the backdoored (BD) clients fit
on the handcrafted spurious features, thus hav-
ing lower global accuracy than normal clients.

Test accuracy on backdoored datasets. Table 7
provides the test accuracy of different methods
training with backdoored CIFAR-10. The test
dataset is the original clean test set. We test
different numbers of backdoored clients Mbd =
1, 2 out of a total of 5 clients, to see how the
degree of the backdoor influences training. Results show FuseFL outperforms ensemble FL in all
cases. demonstrating that FuseFL can defend better against the backdoor samples than ensemble FL.

7 Conclusion

In this work, we draw inspiration from the causality and the information bottleneck to analyze
the cause of low performance of ensemble FL and OFL. Specifically, the local isolatedly trained
models are easily to fit spurious features, as local clients cannot learn more invariant features and
remove spurious features from other datasets. Built upon this insight, we provide a novel approach
FuseFL to augment features by fusing client layers in a bottom-up manner, thus mitigating the
spurious fitting and encourage learning of invariant features. FuseFL achieves OFL with extremely
low communication costs with significantly higher performance than current OFL and ensemble FL
methods.

10

Acknowledgments and Disclosure of Funding

This work was partially supported by National Natural Science Foundation of China under Grant No.
62272122, the Guangzhou Municipal Joint Funding Project with Universities and Enterprises under
Grant No. 2024A03J0616, the Hong Kong RIF grant under Grant No. R6021-20, and Hong Kong CRF
grants under Grant No. C2004-21G and C7004-22G. BH was supported by NSFC General Program
No. 62376235, Guangdong Basic and Applied Basic Research Foundation Nos. 2022A1515011652
and 2024A1515012399, HKBU Faculty Niche Research Areas No. RC-FNRA-IG/22-23/SCI/04, and
HKBU CSD Departmental Incentive Scheme. YGZ and YMC were supported in part by the NSFC
/ Research Grants Council (RGC) Joint Research Scheme under the grant: N-HKBU214/21, the
General Research Fund of RGC under the grants: 12201321, 12202622, 12201323, the RGC Senior
Research Fellow Scheme under the grant: SRFS2324-2S02, and the Initiation Grant for Faculty Niche
Research Areas of Hong Kong Baptist University under the grant: RC-FNRA-IG/23-24/SCI/02.

References
[1] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and V. Saligrama. Feder-

ated learning based on dynamic regularization. In International Conference on Learning
Representations, 2021.

[2] A. Achille and S. Soatto. Emergence of invariance and disentanglement in deep representations.
The Journal of Machine Learning Research, 2018.

[3] K. Ahuja, E. Caballero, D. Zhang, J.-C. Gagnon-Audet, Y. Bengio, I. Mitliagkas, and I. Rish.
Invariance principle meets information bottleneck for out-of-distribution generalization. Ad-
vances in Neural Information Processing Systems, 34:3438–3450, 2021.

[4] K. Ahuja, J. Wang, A. Dhurandhar, K. Shanmugam, and K. R. Varshney. Empirical or invariant
risk minimization? a sample complexity perspective. In International Conference on Learning
Representations, 2020.

[5] S. Ainsworth, J. Hayase, and S. Srinivasa. Git re-basin: Merging models modulo permutation
symmetries. In The Eleventh International Conference on Learning Representations, 2022.

[6] M. Al-Shedivat, J. Gillenwater, E. Xing, and A. Rostamizadeh. Federated learning via
posterior averaging: A new perspective and practical algorithms. In International Conference
on Learning Representations, 2020.

[7] G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier probes.
arXiv preprint arXiv:1610.01644, 2016.

[8] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

[9] S. Babakniya, S. Kundu, S. Prakash, Y. Niu, and S. Avestimehr. Federated sparse training:
Lottery aware model compression for resource constrained edge. In Workshop on Federated
Learning: Recent Advances and New Challenges (in Conjunction with NeurIPS 2022), 2022.

[10] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor federated
learning. In International Conference on Artificial Intelligence and Statistics, pages 2938–2948,
2020.

[11] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and D. Hjelm.
Mutual information neural estimation. In International conference on machine learning, pages
531–540. PMLR, 2018.

[12] S. Bibikar, H. Vikalo, Z. Wang, and X. Chen. Federated dynamic sparse training: Computing
less, communicating less, yet learning better. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 6080–6088, 2022.

[13] I. Bistritz, A. Mann, and N. Bambos. Distributed distillation for on-device learning. Advances
in Neural Information Processing Systems, 33:22593–22604, 2020.

11

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901, 2020.

[15] K. Cai, X. Lei, J. Wei, and X. Xiao. Data synthesis via differentially private markov random
fields. Proc. VLDB Endow., 14(11):2190–2202, jul 2021.

[16] H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr. Cronus: Robust and heterogeneous
collaborative learning with black-box knowledge transfer. arXiv preprint arXiv:1912.11279,
2019.

[17] A. Chatalic, V. Schellekens, F. Houssiau, Y. A. de Montjoye, L. Jacques, and R. Gribonval.
Compressive learning with privacy guarantees. Information and Inference: A Journal of the
IMA, 05 2021. iaab005.

[18] H. Chen, Y. Wang, C. Xu, Z. Yang, C. Liu, B. Shi, C. Xu, C. Xu, and Q. Tian. Data-free
learning of student networks. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 3514–3522, 2019.

[19] H.-Y. Chen and W.-L. Chao. Fedbe: Making bayesian model ensemble applicable to federated
learning. In NeurIPS, 2020.

[20] H.-Y. Chen and W.-L. Chao. On bridging generic and personalized federated learning for
image classification. In International Conference on Learning Representations, 2021.

[21] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020.

[22] Y. Chen, W. Huang, K. Zhou, Y. Bian, B. Han, and J. Cheng. Understanding and improving
feature learning for out-of-distribution generalization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[23] R. Dai, Y. Zhang, A. Li, T. Liu, X. Yang, and B. Han. Enhancing one-shot federated learning
through data and ensemble co-boosting. In The Twelfth International Conference on Learning
Representations, 2024.

[24] Y. Dai, Z. Chen, J. Li, S. Heinecke, L. Sun, and R. Xu. Tackling data heterogeneity in
federated learning with class prototypes. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2023.

[25] D. K. Dennis, T. Li, and V. Smith. Heterogeneity for the win: One-shot federated clustering.
In International Conference on Machine Learning, 2021.

[26] Y. Diao, Q. Li, and B. He. Towards addressing label skews in one-shot federated learning. In
The Eleventh International Conference on Learning Representations, 2023.

[27] J. Dong, H. Li, Y. Cong, G. Sun, Y. Zhang, and L. Van Gool. No one left behind: Real-world
federated class-incremental learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(4):2054–2070, 2024.

[28] J. Dong, L. Wang, Z. Fang, G. Sun, S. Xu, X. Wang, and Q. Zhu. Federated class-incremental
learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2022.

[29] X. Dong, S. Q. Zhang, A. Li, and H. Kung. Spherefed: Hyperspherical federated learning. In
European Conference on Computer Vision, 2022.

[30] R. Dorfman, S. Vargaftik, Y. Ben-Itzhak, and K. Y. Levy. Docofl: downlink compression
for cross-device federated learning. In Proceedings of the 40th International Conference on
Machine Learning, 2023.

[31] S. Dou, E. Zhou, Y. Liu, S. Gao, W. Shen, L. Xiong, Y. Zhou, X. Wang, Z. Xi, X. Fan, S. Pu,
J. Zhu, R. Zheng, T. Gui, Q. Zhang, and X. Huang. LoRAMoE: Alleviating world knowledge
forgetting in large language models via MoE-style plugin. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Aug.
2024.

12

[32] Y. H. Ezzeldin, S. Yan, C. He, E. Ferrara, and A. S. Avestimehr. Fairfed: Enabling group
fairness in federated learning. In Proceedings of the AAAI conference on artificial intelligence,
pages 7494–7502, 2023.

[33] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[34] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin. Linear mode connectivity and the lottery
ticket hypothesis. In Proceedings of the 37th International Conference on Machine Learning,
pages 3259–3269, 2020.

[35] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A.
Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):665–
673, 2020.

[36] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-
trained cnns are biased towards texture; increasing shape bias improves accuracy and robust-
ness. In International Conference on Learning Representations, 2018.

[37] J. Goetz and A. Tewari. Federated learning via synthetic data. arXiv preprint arXiv:2008.04489,
2020.

[38] N. Guha, A. Talwalkar, and V. Smith. One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

[39] I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2020.

[40] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Countering adversarial images using input
transformations. In ICLR, 2020.

[41] K. Gupta, M. Fournarakis, M. Reisser, C. Louizos, and M. Nagel. Quantization robust federated
learning for efficient inference on heterogeneous devices. Transactions on Machine Learning
Research, 2023.

[42] F. Hamman and S. Dutta. Demystifying local & global fairness trade-offs in federated learning
using partial information decomposition. In The Twelfth International Conference on Learning
Representations, 2024.

[43] W. Hao, M. El-Khamy, J. Lee, J. Zhang, K. J. Liang, C. Chen, and L. C. Duke. Towards
fair federated learning with zero-shot data augmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3310–3319, 2021.

[44] M. Hardt, K. Ligett, and F. Mcsherry. A simple and practical algorithm for differentially
private data release. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012.

[45] M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
pages 61–70, 2010.

[46] C. He, M. Annavaram, and S. Avestimehr. Group knowledge transfer: Federated learning of
large cnns at the edge. In Advances in Neural Information Processing Systems 34, 2020.

[47] C. He, S. Li, J. So, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu, L. Shen,
P. Zhao, Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, and S. Avestimehr. Fedml: A re-
search library and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518,
2020.

[48] C. He, S. Li, M. Soltanolkotabi, and S. Avestimehr. Pipetransformer: Automated elastic pipelin-
ing for distributed training of large-scale models. In Proceedings of the 38th International
Conference on Machine Learning, pages 4150–4159. PMLR, 18–24 Jul 2021.

13

[49] C. He, A. D. Shah, Z. Tang, D. F. N. Sivashunmugam, K. Bhogaraju, M. Shimpi, L. Shen,
X. Chu, M. Soltanolkotabi, and S. Avestimehr. Fedcv: A federated learning framework for
diverse computer vision tasks. arXiv preprint arXiv:2111.11066, 2021.

[50] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In CVPR, 2020.

[51] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[52] C. E. Heinbaugh, E. Luz-Ricca, and H. Shao. Data-free one-shot federated learning under
very high statistical heterogeneity. In The Eleventh International Conference on Learning
Representations, 2023.

[53] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15262–15271, 2021.

[54] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio. Learning deep representations by mutual information estimation and maximization.
In ICLR, 2019.

[55] C.-H. Ho and N. Nvasconcelos. Contrastive learning with adversarial examples. Advances in
Neural Information Processing Systems, 33:17081–17093, 2020.

[56] T. Hsu, H. Qi, and M. Brown. Measuring the effects of non-identical data distribution for
federated visual classification. ArXiv, abs/1909.06335, 2019.

[57] T.-M. H. Hsu, H. Qi, and M. Brown. Federated visual classification with real-world data
distribution. In A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, editors, Computer Vision –
ECCV 2020, pages 76–92, Cham, 2020. Springer International Publishing.

[58] S. Hu, Q. Li, and B. He. Communication-efficient generalized neuron matching for federated
learning. In Proceedings of the 52nd International Conference on Parallel Processing, ICPP
’23, page 254–263, New York, NY, USA, 2023. Association for Computing Machinery.

[59] C. Huang, Q. Liu, B. Y. Lin, C. Du, T. Pang, and M. Lin. Lorahub: Efficient cross-task
generalization via dynamic loRA composition, 2024.

[60] W. Huang, M. Ye, Z. Shi, H. Li, and B. Du. Rethinking federated learning with domain shift: A
prototype view. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[61] P. Izmailov, P. Kirichenko, N. Gruver, and A. G. Wilson. On feature learning in the presence of
spurious correlations. Advances in Neural Information Processing Systems, 35:38516–38532,
2022.

[62] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim. Communication-efficient on-
device machine learning: Federated distillation and augmentation under non-iid private data.
arXiv preprint arXiv:1811.11479, 2018.

[63] D. Jhunjhunwala, S. Wang, and G. Joshi. Towards a theoretical and practical understanding of
one-shot federated learning with fisher information. In Federated Learning and Analytics in
Practice: Algorithms, Systems, Applications, and Opportunities, 2023.

[64] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas. Model pruning
enables efficient federated learning on edge devices. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

[65] X. Jin, X. Ren, D. Preotiuc-Pietro, and P. Cheng. Dataless knowledge fusion by merging
weights of language models. In The Eleventh International Conference on Learning Represen-
tations, 2023.

14

[66] N. Johnson, J. P. Near, and D. Song. Towards practical differential privacy for sql queries.
Proceedings of the VLDB Endowment, 11(5):526–539, 2018.

[67] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira, H. Eichner, S. E. Rouayheb,
D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Har-
chaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak,
J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri,
R. Nock, A. Özgür, R. Pagh, M. Raykova, H. Qi, D. Ramage, R. Raskar, D. Song, W. Song,
S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang,
F. X. Yu, H. Yu, and S. Zhao. Advances and open problems in federated learning, 2021.

[68] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Scaffold:
Stochastic controlled averaging for federated learning. arXiv preprint arXiv:1910.06378, 2019.

[69] H. Kim, Y. Kwak, M. Jung, J. Shin, Y. Kim, and C. Kim. Protofl: Unsupervised federated
learning via prototypical distillation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2023.

[70] P. Kirichenko, P. Izmailov, and A. G. Wilson. Last layer re-training is sufficient for robustness to
spurious correlations. In The Eleventh International Conference on Learning Representations,
2023.

[71] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings of the
National Academy of Sciences, 2017.

[72] J. Konečný, H. Brendan McMahan, F. X. Yu, P. Richtárik, A. Theertha Suresh, and D. Bacon.
Federated Learning: Strategies for Improving Communication Efficiency. arXiv e-prints,
2016.

[73] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, 2009.

[74] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced research).
URL http://www.cs.toronto.edu/kriz/cifar.html, 2010.

[75] A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and P. Liang. Fine-tuning can distort
pretrained features and underperform out-of-distribution. In International Conference on
Learning Representations, 2022.

[76] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[77] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998.

[78] A. Li, J. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li. Lotteryfl: Empower edge intelli-
gence with personalized and communication-efficient federated learning. In 2021 IEEE/ACM
Symposium on Edge Computing (SEC), pages 68–79, 2021.

[79] D. Li and J. Wang. Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581, 2019.

[80] Q. Li, Y. Diao, Q. Chen, and B. He. Federated learning on non-iid data silos: An experimental
study, 2021.

[81] Q. Li, B. He, and D. Song. Practical one-shot federated learning for cross-silo setting. arXiv
preprint arXiv:2010.01017, 2020.

[82] Q. Li, B. He, and D. Song. Model-contrastive federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10713–10722,
2021.

15

[83] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid
data. In International Conference on Learning Representations, 2020.

[84] X. Li, Z. Zhou, J. Zhu, J. Yao, T. Liu, and B. Han. Deepinception: Hypnotize large language
model to be jailbreaker. arXiv preprint arXiv:2311.03191, 2023.

[85] Y. Li, B. Luo, Q. Wang, N. Chen, X. Liu, and B. He. A reflective llm-based agent to guide
zero-shot cryptocurrency trading. arXiv preprint arXiv:2407.09546, 2024.

[86] Z. Li, X. Shang, R. He, T. Lin, and C. Wu. No fear of classifier biases: Neural collapse
inspired federated learning with synthetic and fixed classifier. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 5319–5329, October 2023.

[87] P. P. Liang, T. Liu, L. Ziyin, N. B. Allen, R. P. Auerbach, D. Brent, R. Salakhutdinov, and L.-P.
Morency. Think locally, act globally: Federated learning with local and global representations.
arXiv preprint arXiv:2001.01523, 2020.

[88] T. Lin, L. Kong, S. U. Stich, and M. Jaggi. Ensemble distillation for robust model fusion in
federated learning. In NeurIPS, 2020.

[89] J. Liu, Z. Shen, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui. Towards out-of-distribution
generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

[90] L. Liu, X. Jiang, F. Zheng, H. Chen, G.-J. Qi, H. Huang, and L. Shao. A bayesian federated
learning framework with online laplace approximation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023.

[91] Y. Long, B. Wang, Z. Yang, B. Kailkhura, A. Zhang, C. Gunter, and B. Li. G-pate: Scalable
differentially private data generator via private aggregation of teacher discriminators. Advances
in Neural Information Processing Systems, 34, 2021.

[92] B. Luo, Z. Zhang, Q. Wang, A. Ke, S. Lu, and B. He. Ai-powered fraud detection in
decentralized finance: A project life cycle perspective. arXiv preprint arXiv:2308.15992,
2023.

[93] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng. No fear of heterogeneity: Classifier
calibration for federated learning with non-IID data. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

[94] Z. Luo, Y. Wang, Z. Wang, Z. Sun, and T. Tan. Disentangled federated learning for tackling
attributes skew via invariant aggregation and diversity transferring. In K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 14527–14541. PMLR, 17–23 Jul 2022.

[95] M. S. Matena and C. A. Raffel. Merging models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–17716, 2022.

[96] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282, 2017.

[97] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting unintended feature leakage
in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (SP), pages
691–706. IEEE, 2019.

[98] V. Mugunthan, E. Lin, V. Gokul, C. Lau, L. Kagal, and S. Pieper. Fedltn: Federated learning
for sparse and personalized lottery ticket networks. In European Conference on Computer
Vision, pages 69–85. Springer, 2022.

[99] M. Naseer, S. Khan, M. Hayat, F. S. Khan, and F. Porikli. A self-supervised approach for
adversarial robustness. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 262–271, 2020.

16

[100] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natu-
ral images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011.

[101] B. Neyshabur, S. Bhojanapalli, D. Mcallester, and N. Srebro. Exploring generalization in deep
learning. In Advances in Neural Information Processing Systems, 2017.

[102] B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learning?
Advances in neural information processing systems, 2020.

[103] J. Nguyen, K. Malik, M. Sanjabi, and M. Rabbat. Where to begin? exploring the impact of
pre-training and initialization in federated learning. arXiv preprint arXiv:2206.15387, 2022.

[104] N.-H. Nguyen, T.-A. Nguyen, T. Nguyen, V. T. Hoang, D. D. Le, and K.-S. Wong. Towards
efficient communication federated recommendation system via low-rank training. arXiv
preprint arXiv:2401.03748, 2024.

[105] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[106] M. Pagliardini, M. Jaggi, F. Fleuret, and S. P. Karimireddy. Agree to disagree: Diversity
through disagreement for better transferability. In The Eleventh International Conference on
Learning Representations, 2023.

[107] N. Papernot and P. McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and
robust deep learning. arXiv preprint arXiv:1803.04765, 2018.

[108] Y. Park, D.-J. Han, D.-Y. Kim, J. Seo, and J. Moon. Few-round learning for federated learning.
Advances in Neural Information Processing Systems, 34:28612–28622, 2021.

[109] J. Pearl. Causality. Cambridge university press, 2009.

[110] J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and
learning algorithms. The MIT Press, 2017.

[111] X. Qiu, J. Fernandez-Marques, P. P. Gusmao, Y. Gao, T. Parcollet, and N. D. Lane. ZeroFL: Ef-
ficient on-device training for federated learning with local sparsity. In International Conference
on Learning Representations, 2022.

[112] Z. Qu, X. Li, R. Duan, Y. Liu, B. Tang, and Z. Lu. Generalized federated learning via sharpness
aware minimization. In International Conference on Machine Learning, pages 18250–18280.
PMLR, 2022.

[113] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: singular vector canonical
correlation analysis for deep learning dynamics and interpretability. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, 2017.

[114] S. J. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar, and H. B.
McMahan. Adaptive federated optimization. In International Conference on Learning
Representations, 2021.

[115] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. Fedpaq: A
communication-efficient federated learning method with periodic averaging and quantiza-
tion. In International Conference on Artificial Intelligence and Statistics, pages 2021–2031.
PMLR, 2020.

[116] S. Sagawa, A. Raghunathan, P. W. Koh, and P. Liang. An investigation of why overparameteri-
zation exacerbates spurious correlations. In International Conference on Machine Learning,
pages 8346–8356. PMLR, 2020.

[117] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith. On the convergence of
federated optimization in heterogeneous networks. ArXiv, abs/1812.06127, 2018.

17

[118] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey, and D. D. Cox. On
the information bottleneck theory of deep learning. Journal of Statistical Mechanics: Theory
and Experiment, 2019(12):124020, 2019.

[119] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio.
Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634, 2021.

[120] V. Sehwag, S. Mahloujifar, T. Handina, S. Dai, C. Xiang, M. Chiang, and P. Mittal. Improving
adversarial robustness using proxy distributions. arXiv preprint arXiv:2104.09425, 2021.

[121] M. Shin, C. Hwang, J. Kim, J. Park, M. Bennis, and S.-L. Kim. Xor mixup: Privacy-preserving
data augmentation for one-shot federated learning. arXiv preprint arXiv:2006.05148, 2020.

[122] R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

[123] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, jan
2014.

[124] Y. Sun, L. Shen, S. Chen, L. Ding, and D. Tao. Dynamic regularized sharpness aware
minimization in federated learning: Approaching global consistency and smooth landscape. In
Proceedings of the 40th International Conference on Machine Learning, 2023.

[125] Y. Sun, L. Shen, T. Huang, L. Ding, and D. Tao. Fedspeed: Larger local interval, less
communication round, and higher generalization accuracy. In The Eleventh International
Conference on Learning Representations, 2023.

[126] A. Z. Tan, H. Yu, L. Cui, and Q. Yang. Towards personalized federated learning. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–17, 2022.

[127] Z. Tang, X. Chu, R. Y. Ran, S. Lee, S. Shi, Y. Zhang, Y. Wang, A. Q. Liang, S. Avestimehr, and
C. He. Fedml parrot: A scalable federated learning system via heterogeneity-aware scheduling
on sequential and hierarchical training. arXiv preprint arXiv:2303.01778, 2023.

[128] Z. Tang, J. Huang, R. Yan, Y. Wang, Z. Tang, S. Shi, A. C. Zhou, and X. Chu. Bandwidth-aware
and overlap-weighted compression for communication-efficient federated learning. In 53rd
International Conference on Parallel Processing, Gotland, Sweden, 12–15 August 2024.

[129] Z. Tang, X. Kang, Y. Yin, X. Pan, Y. Wang, X. He, Q. Wang, R. Zeng, K. Zhao, S. Shi,
A. C. Zhou, B. Li, B. He, and X. Chu. Fusionllm: A decentralized llm training system on
geo-distributed gpus with adaptive compression, 2024.

[130] Z. Tang, S. Shi, and X. Chu. Communication-efficient decentralized learning with sparsification
and adaptive peer selection. In 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS), pages 1207–1208. IEEE, 2020.

[131] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li. Communication-efficient distributed deep
learning: A comprehensive survey. arXiv preprint arXiv:2003.06307, 2020.

[132] Z. Tang, S. Shi, B. Li, and X. Chu. Gossipfl: A decentralized federated learning framework
with sparsified and adaptive communication. IEEE Transactions on Parallel and Distributed
Systems, pages 1–13, 2022.

[133] Z. Tang, Y. Wang, X. He, L. Zhang, X. Pan, Q. Wang, R. Zeng, K. Zhao, S. Shi, B. He, et al.
Fusionai: Decentralized training and deploying llms with massive consumer-level gpus. The
32nd International Joint Conference on Artificial Intelligence, Symposium on Large Language
Models (LLM@IJCAI 2023), 2023.

[134] Z. Tang, Y. Zhang, S. Shi, X. He, B. Han, and X. Chu. Virtual homogeneity learning:
Defending against data heterogeneity in federated learning. In K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 21111–21132. PMLR, 17–23 Jul 2022.

18

[135] Z. Tang, Y. Zhang, S. Shi, X. Tian, T. Liu, B. Han, and X. Chu. Fedimpro: Measuring and
improving client update in federated learning. In The Twelfth International Conference on
Learning Representations, 2024.

[136] C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun. Splitfed: When federated learning
meets split learning. arXiv preprint arXiv:2004.12088, 2020.

[137] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola. What makes for good views
for contrastive learning. arXiv preprint arXiv:2005.10243, 2020.

[138] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In Proc. of
the 37-th Annual Allerton Conference on Communication, Control and Computing, pages
368–377, 1999.

[139] F. Utrera, E. Kravitz, N. B. Erichson, R. Khanna, and M. W. Mahoney. Adversarially-trained
deep nets transfer better: Illustration on image classification. In International Conference on
Learning Representations, 2020.

[140] B. Vivek and R. V. Babu. Single-step adversarial training with dropout scheduling. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 947–956.
IEEE, 2020.

[141] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni. Federated learning with
matched averaging. In International Conference on Learning Representations, 2020.

[142] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. In arXiv preprint arXiv:2007.07481, 2020.

[143] N. Wang, W. Feng, yuchen deng, M. Duan, F. Liu, and S.-K. Ng. Data-free diversity-based
ensemble selection for one-shot federated learning. Transactions on Machine Learning
Research, 2023.

[144] Q. Wang, Z. Zhang, Z. Liu, S. Lu, B. Luo, and B. He. Ex-graph: A pioneering dataset bridging
ethereum and x. In The Twelfth International Conference on Learning Representations, 2024.

[145] Y. Wang, Z. Ni, S. Song, L. Yang, and G. Huang. Revisiting locally supervised learning: an
alternative to end-to-end training. In International Conference on Learning Representations,
2020.

[146] B. E. Woodworth, K. K. Patel, and N. Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292,
2020.

[147] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[148] P. Yadav, D. Tam, L. Choshen, C. Raffel, and M. Bansal. TIES-merging: Resolving interference
when merging models. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[149] K. Yang, T. Zhou, Y. Zhang, X. Tian, and D. Tao. Class-disentanglement and applications in
adversarial detection and defense. In NeurIPS, 2021.

[150] Z. Yang, Y. Zhang, Y. Zheng, X. Tian, H. Peng, T. Liu, and B. Han. Fedfed: Feature distillation
against data heterogeneity in federated learning. Advances in Neural Information Processing
Systems, 36, 2024.

[151] H. Ye, C. Xie, T. Cai, R. Li, Z. Li, and L. Wang. Towards a theoretical framework of out-
of-distribution generalization. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[152] M. Yi, L. Hou, J. Sun, L. Shang, X. Jiang, Q. Liu, and Z. Ma. Improved ood generalization
via adversarial training and pretraing. In M. Meila and T. Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 11987–11997. PMLR, 18–24 Jul 2021.

19

[153] H. Yin, P. Molchanov, J. M. Alvarez, Z. Li, A. Mallya, D. Hoiem, N. K. Jha, and J. Kautz.
Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8715–8724, 2020.

[154] T. Yoon, S. Shin, S. J. Hwang, and E. Yang. Fedmix: Approximation of mixup under mean
augmented federated learning. In International Conference on Learning Representations,
2021.

[155] F. Yu, A. S. Rawat, A. Menon, and S. Kumar. Federated learning with only positive labels. In
International Conference on Machine Learning, 2020.

[156] B. Yuan, Y. He, J. Q. Davis, T. Zhang, T. Dao, B. Chen, P. Liang, C. Re, and C. Zhang.
Decentralized training of foundation models in heterogeneous environments. In NeurIPS,
2022.

[157] H. Yuan, W. R. Morningstar, L. Ning, and K. Singhal. What do we mean by generalization in
federated learning? In International Conference on Learning Representations, 2022.

[158] D. Zhang, K. Ahuja, Y. Xu, Y. Wang, and A. Courville. Can subnetwork structure be the key to
out-of-distribution generalization? In International Conference on Machine Learning, pages
12356–12367. PMLR, 2021.

[159] J. Zhang, C. Chen, B. Li, L. Lyu, S. Wu, S. Ding, C. Shen, and C. Wu. Dense: Data-free
one-shot federated learning. Advances in Neural Information Processing Systems, 35, 2022.

[160] J. Zhang, Z. Li, B. Li, J. Xu, S. Wu, S. Ding, and C. Wu. Federated learning with label
distribution skew via logits calibration. In Proceedings of the 39th International Conference
on Machine Learning. PMLR, 2022.

[161] Y. Zhang, M. Gong, T. Liu, G. Niu, X. Tian, B. Han, B. Schölkopf, and K. Zhang. Ad-
versarial robustness through the lens of causality. In International Conference on Learning
Representations, 2021.

[162] Y. Zhang, Z. Yang, X. Tian, N. Wang, T. Liu, and B. Han. Robust training of federated
models with extremely label deficiency. In The Twelfth International Conference on Learning
Representations, 2024.

[163] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018.

[164] Y. Zhou, G. Pu, X. Ma, X. Li, and D. Wu. Distilled one-shot federated learning. arXiv preprint
arXiv:2009.07999, 2020.

[165] Z. Zhou, R. Tao, J. Zhu, Y. Luo, Z. Wang, and B. Han. Can large language models reason ro-
bustly with noisy rationales? In ICLR 2024 Workshop on Reliable and Responsible Foundation
Models.

20

Appendix / supplemental material

A Details of Algorithm

Details of our algorithm is shown in Algorithm 1.

Algorithm 1 FL with FuseFL
Input: The number of split modules K; Initialized local modules H1

m, ...,H
K
m and classifier Λm.

Output: The fused model Ffus (Eq. 6).

1: # Train and fuse
2: for module k = 1, · · · ,K do
3: for each client m ∈M in parallel do do
4: θkm ← ClientTrain(k);
5: end for
6: Fuse Hk

fus ← (Hk
1 , ...,H

k
M) as Eq. 4;

7: for each client m ∈M in parallel do do
8: ClientAdapt(k,Hk

fus);
9: end for

10: end for
11: # Calibrate classifier
12: Averaging and calibrating final classifier Λ using CCVR [93] with object ℓ(Ffus;x, y) (Eq. 6);
13: Return Ffus.
14:
15: ClientTrain(k):
16: Build F k,mfus follows Eq. 5;
17: Freeze Hk−1

m , ...,H1
m;

18: for each local iteration j = 0, · · · , E do
19: θm,j+1 ← θm,j − ηk,j∇θℓ(F k,mfus ;x, y), x, y ∼ Dm;
20: end for
21: Return Hk

m parameterized with θkm,E ;
22:
23: ClientAdapt(k,Hk

fus):
24: Build adaptor Ak+1

m following Eq 7 or 8;
25: Stitch Hk+1

m ≜ Hk+1
m ◦Ak+1

m ;
26:

B Broader Impact

This work provides a novel OFL approach, aiming at advancing the field of federated learning.
There are many potential societal consequences of our work. For instance, our work can extremely
reduce the communication cost of FL, reducing energy consumption. Under the low-bandwidth
communication environments like Internet with 1∼ 10 MB/s [133; 156; 129], this method provides
possibility to train super large models like large language models with low communication time.
Furthermore, to the best of our knowledge, this is the first work that understands FL from the view of
causality. There exist a large space for future works to study along this direction.

FuseFL can further inspire more research and applications in the communication-constrained sce-
narios, like extremely low communication bandwidth, and training large language models (LLM) in
FL [129; 84; 165]. We will try to extend FuseFL into training LLMs or MoE in FL scenarios with its
low communication costs.

To deploy transformer-based frameworks like current LLMs with the core idea of FuseFL in one-shot
FL, we envision two methods here.

• Concat-and-freeze. Similar to training ResNet in FuseFL, we can block-wisely train and collect
the transformer blocks together for each round; during local training, the output features of all

21

transformer blocks are concatenated to feed into the subsequent layers. Due to the large resource
consumption of pretraining, we do not evaluate this idea here.

• Averaging-and-freeze LoRA. Here, we consider the finetuning scenarios with LoRA [59].
LoRA blocks can be seen as additional matrix mapping applied on the local Q V attentions
and MLP layers. The output is the original feature plus the LoRA output. To use LoRA in
FuseFL, we can follow the MoE style [31] or the averaging style [59]. Specifically, we consider
averaging LoRAs on different clients together, then averaging and freezing all LoRAs in each
transformer block to freeze the obtained aggregated features in each communication round.

C More related works

We provide the comprehensive introduction of the related works in this section. The data heterogeneity
problem in FL is introduced in Section C.1, and the communication compression in FL is introduced
in Section C.3. Further, by seeing local datasets from other clients as the OOD datasets with respect
to the isolated locally trained models, we review some methods in OOD generalization (Section C.5
and mutual information (Section C.4) to build a connection between them and FL with extremely low
communication costs. We demystify our work from current works in Table 8, which is a detailed
version of Table 1.

Table 8: Demystifying different FL algorithms. T represents communication rounds, S the model size,
M the number of clients. Practically, in communication-compression FL, the minimal sparsification
ratio QSpar is 0.1, the quantization ratio QQuant is 0.125 (32→ 4bits), and the low rank ratio QLowR
is 0.1, otherwise the convergence is difficult to achieve and significantly harming model performance.
The “Centralized” means training the model with all datasets aggregated with SGD. Due to the data
heterogeneity, the performance usually is: Centralized ≥ FedAvg ≥ Ensemble.

Method type Core technique Communication
cost Storage cost Performance

upper bound
Support model
heterogeneity

Not require
extra data

FedAvg

No compression T × S S Centralized ✓ ✓
Sparsification T × S ×QSpar S FedAvg ✓ ✓
Quantization T × S ×QQuant S FedAvg ✓ ✓

Low-rank T × S ×QLowR S FedAvg ✓ ✓

One-shot FL
Average-based S S Ensemble ✗ ✗

Ensemble-based S S ×M Centralized ✓ ✗
Model distillation S S Ensemble ✓ ✗

FuseFL S S Centralized ✓ ✓

C.1 Data Heterogeneity in FL

The Non-IID data distribution is the notorious problem in FL, which severely harms the convergence
rate and model performance of FL. The sharp Non-IID data makes local clients learn much different
weights [68; 146], resulting in heterogeneous feature [160; 134] and classifiers [93]. Current methods
that address Non-IID data problems include following typical directions.

Some works design new FL optimizers to stabilize and accelerate convergence [114; 125]. Per-
sonalized FL aims to optimize different client models by learning knowledge from other clients
and adapting to their own datasets [126; 88]. Distinguished from these works, how to alleviate data
heterogeneity within extremely low communication costs is a new challenging problem, as clients
have little possibility of communicating information with other clients.

Model regularization. This direction proposes to add a penalty of distances between local trained
models and the server model. FedProx [117] directly uses the L2 distance between local models
to the server model to constrain the local models not moving too far. SCAFFOLD [68] utilizes the
historical local updates to correct update directions of local clients during local training. FedDyn [1]
dynamically updates the objective functions to ensure the local optima between devices are asymptot-
ically consistent. FedIR [57] claims that applying important weight to the client’s local objectives
helps to obtain an unbiased estimator of the global loss objective function.

Feature calibration. Some works focuses on align feature representations of different clients in
similar spaces [82; 29; 134; 60]. MOON [82] adds the contrastive loss to between local and global

22

models to learn a similar representation between clients, in which the global model acts as an
intermediate agent to communicate between clients. It is found the local features of the same data
largely shift between client models during local training [134]. To address this problem, virtual
homogeneous learning [134] proposes to use a homogeneous dataset which can contain completely
no information of original datasets, to calibrate the feature representations between clients. This
technique improves the generalization performance and convergence speed of federated learning.
SphereFed [29] adds constraints on learned representations of input data to be in a unit hypersphere
shared by clients. Besides, SphereFed discovers that the non-overlapped feature distributions for the
same class lead to weaker consistency of the local learning targets from another perspective. The
prototype [60] methods propose to utilize a pre-defined vector of each class in the representation
space, then align client feature representations with such prototype, which is also called virtual feature
transfer learning [134]. FedImpro [135] estimates and share the feature distribution to alleviate the
gradient diversity and enhance high-level model training.

Classifier calibration. Due to the shifted features between clients, the classifier is usually trained
with bias. And the final obtained classifier with FedAvg is normally prone to some specical classes.
CCVR [93] is the first work to transmit the statistics of logits and label information of data samples
to calibrate the classifier. In SphereFed [29], the classifier is fiexed with weights spanning the unit
hypersphere, and calibrated by a mean squared loss. Some works also calibrate the classifier during
or after training [24; 86; 69].

Optimization schemes. From the optimization perspective, some methods regard local updates at
clients as pseudo gradients [114] and design new FL optimizers to stabilize and accelerate convergence.
FedNova [142] normalizes the local updates to reduce the inconsistency between the local and global
optimization objective functions. FedAvgM [56] exploits the history updates of server model to
avoid the overfits on the selected clients in each round. FedOpt [114] generalizes the centralized
optimizers into FL scenario, and proposes FedAdaGrad, FedYogi, FedAdam. FedSpeed [125]
utilizes a correction term on local updates to reduce the biases during training. FedSpeed also
merges the stochastic gradient with a perturbation computed from an extra gradient ascent step in the
neighborhood, to reduce the gradient heterogeneity.

Data&Feature sharing. The phenomenon of client drift primarily originates from data heterogeneity.
To address this issue, researchers have discovered that sharing a subset of private data can markedly
enhance convergence speed and generalization capability, as highlighted in [163]. However, this
approach entails a compromise on the privacy of client data.

Consequently, to simultaneously mitigate data heterogeneity and uphold data privacy, a range of
studies [45; 44; 17; 66; 85; 15] have proposed the addition of noise to data. This method allows for
the sharing of data while providing a certain level of privacy protection. Alternatively, other research
efforts concentrate on disseminating synthetic data portions [62; 91; 37; 43] or data statistics [121;
154], as opposed to raw data, in order to alleviate data heterogeneity. FedDF [88] employs external
data and engages in knowledge distillation based on these data to facilitate the transfer of model
knowledge between the server and clients. The fundamental concept of FedDF involves fine-tuning
the aggregated model through knowledge distillation using newly shared data.

Additionally, to address feature shift, certain methodologies advocate for the sharing of features to
enhance the convergence rate. Cronus [16] suggests the sharing of logits as a means to counteract
poisoning attacks. CCVR [93] transmits the statistical data of logits to calibrate the final layer of
federated models. CCVR [93] also shares parameters representative of local feature distribution.
Importantly, this approach does not necessitate sharing the count of different labels with the server,
thereby preserving the privacy of clients’ label distribution. Furthermore, our method serves as
a framework to leverage shared features in reducing gradient dissimilarity. The feature estimator
employed need not be confined to the Gaussian distribution of local features; alternative estimators or
even features from additional datasets, rather than private ones, may be utilized. In this direction,
VHL [134] only requires to share the pure noise dataset, which can have completely no related
information of the local private datasets, largely reducing the requirements of the shared datasets and
can be exploited in practical scenarios.

Personalized FL. Personalized Federated Learning (PFL) aims to enable clients to optimize distinct
personal models that can absorb knowledge from other clients and tailor it to their individual
datasets, as detailed in [126]. The process of knowledge transfer in personalization primarily

23

involves the introduction of personalized parameters [87; 136; 78], or the employment of knowledge
distillation [46; 88; 79; 13] utilizing shared local features or supplementary datasets.

However, due to the tendency of personalized federated models to prioritize optimizing local objective
functions, they often do not achieve generic performance (as evaluated on a global test dataset)
that is on par with conventional Federated Learning (FL) methodologies [20]. Given our primary
objective of learning an enhanced generic model, we have chosen not to include comparisons and
improve performance of personalized FL algorithms in our work. While achieving extremely low
communication costs in PFL can be an interesting future work.

C.2 One-shot FL

Current FL methods with communication costs of only one model size are referred as one-shot
FL, different one-shot learning, the “one-shot” here means one communicating round [159; 38; 81;
164; 25]. Thus, the communication cost is limited as the model sizeM for each client, less than
FedAvg-style algorithms for R times. While there are works that introduce additional communication
costs to improve the performance of one-shot FL. Existing one-shot FL works can be categorized
into average-based [63], ensemble-based [143] or model distillation based [52; 26],

Average-based methods include the basic baseline, one-shot FedAvg, which shows a severely bad
performance, and some other advanced average methods [95; 65; 148]. FedFisher [63] proposes
to utilize fisher information to avoid harming knowledge of local models when averaging on the
server. Note that the similar methodology of using fisher information is also utilized to enhance the
FedAvg [112] or bayesian FL [90; 6], which belongs to multi-round FL. All of them aims to avoid
forgetting local learned knowledge like the classical exploitation of fisher information in continual
learning [71]. Matching permutations between the weights of different models [5; 141] is another
advanced method for model averaging. Linear mode connectivity [34; 102; 5] helps to explain to
the part of the success of model averaging. However, due to the highly non-linear structure of deep
neural networks, it is extremely difficult to find a method to directly average local clients through one
round to obtain a perfect server model. Therefore, one-shot average method usually fails to achieve a
good performance.

Ensemble-based methods are based on ensemble learning [38]. Intuitively, the server aggregates
multiple local client models. Then, the direct way of deploying these models is to average outputed
logits of them and make predictions [143]. Some methods propose to find a better model selection
method to select local models that might be more familiar with the given inputs [143]. Some methods
utilize prototype data [26] or generated datasets [52] to conduct better model selection in ensemble
learning.

Model distillation methods are built upon the ensemble models [38; 81]. The core motivation is that
the ensemble models occupy too much storage and require much extra computation costs. Thus [81]
involved a public dataset for training. As a replacement of using global data, [164] transmits the
distilled local datasets to server for model distillation. [25] clusters clients and communicates the
mean data of each cluster. These methods require extra datasets, which may be impractical in some
data-sensitive scenarios like medical and education data. And the large storage costs still exist when
many clients upload their models for ensemble learning.

Note that there is also some work [108] that proposes to find a good initial model of FL in few
communication rounds. Thus the convergence rate of FedAvg can be accelerated by this good
initialization [103; 49]. The objective of this work is different from one-shot FL or ours.

C.3 Communication compressed FL

Different from one-shot FL which reduces the communication frequency, communication compression
methods aim to reduce the communication size in each round. Typical communication-compression
methods [131] include sparsification [12; 64; 130; 132], quantization [115; 41] and low-rank decom-
position [104; 72].

Sparsification. Studies in [30; 12; 111; 132] have introduced a significant level of sparsity in the
local model training stage, effectively reducing the number of parameters that need to be transmitted.
The works represented in [33] have put forth the Lottery Ticket Hypothesis, suggesting the existence
of trainable sub-networks within over-parameterized networks that can be independently trained

24

without accuracy loss. Inspired by this concept, LotteryFL [78] and FedLTN [98] aim to identify
and exchange these personalized lottery ticket networks between the server and clients. Moreover,
Hetero-FLASH [9] employs adaptive sparsity, with objectives extending beyond identifying the
optimal sub-network, to fully leveraging clients’ resources. In contrast to focusing on personalized
Federated Learning (FL), this paper primarily considers generic FL, where all clients share the same
model structure.

Quantization. Orthogonally to Sparsification, quantization emerges as an additional pivotal strategy
to alleviate the communication bottleneck in Federated Learning. This method represents model
updates with fewer bits than the conventional 32 or 64 bits, thus reducing numerical precision.
FedPAQ [115] adopts periodic averaging of low-bit representations of local model updates to minimize
both the frequency of communication and the overhead per round. Advancements in this realm have
been furthered by [41], which introduces a variant of Quantization-Aware Training (QAT) robust to
multiple bit-widths, eliminating the necessity for retraining in the FL context.

Low-rank decomposition. Concurrently, research in [104; 72] has utilized a low-rank decompo-
sition of matrices to cultivate sparse models. Specifically, the weights of local trained models are
decomposed into smaller matrices. Then these smaller matrices are communicated to the server for
recovering the original weights.

While these methods also reduce the communication costs, they are far from reducing costs at an
extremely low level of the one-shot FL and ours. Because these methods still require many even more
communication rounds than FedAvg to achieve training convergence.

C.4 Mutual Information

The mutual information (MI) has garnered increasing attention in recent years with its explanation
of how deep neural networks learn intermediate representations of the raw data. The Information
Bottleneck (IB) principle [122; 118; 138] provides insights into the training dynamics of deep neural
networks. Specifically, the neural network reduces the mutual information between raw data and
representations layer by layer, while maximizing the mutual information between labels and repre-
sentations. [2] introduces the nuisance variable into the mutual information, and proposes that mutual
information between representation and the nuisance should be as less as possible. And it is proved
that the empirical risk minimization (ERM) with stochastic gradient descent (SGD) has implicitly
achieved the IB principle [2]. Some methods in unsupervised learning exploit maximization of mutual
information [105; 137; 54] to enhance the feature representation. The contrastive learning [21; 50]
maximizes the mutual information across varying views of the same input.

C.5 Out-of-Distribution Generalization

Out-of-Distribution (OOD) generalization refers to the model performance on the unseen data
distribution, which is called OOD data [89; 22; 3]. The spurious features widely exist in the real-
world datasets, like the textures, shapes, colors of objects [53; 36; 35; 144; 92]. Classification with
original labels with these properties often leads overfitting on these variables instead of learning the
real mapping relationship X → Y . It is found that the out-of-distribution generalization performance
of a model learned by ERM [22; 151] is connected with the spurious features. It is found that the
over-parameterization, increasing model size well beyond the point of zero training error, may hurt
the test error on some data samples, while it improving the average test error on all data samples [116].
These aggravated test errors are called worst-group error [89].

Invariant risk minimization (IRM) [8; 3] is proposed to address inheriting spurious correlations in
trained models. It is shown that exploiting invariant causal relationships between datasets gathered
from multiple environments rather than relying on varying spurious relationships appearing in isolated
local datasets, help to improve the robustness of the learned predictors. [158] proposes that there
exists a sub-network hidden in the full neural network that is unbiased functional (not focusing on
spurious correlation), thus achieving better OOD performance.

However, some studies show that there is no clear winner between ERM and IRM when covariate
shift happens [4], and ERM is still the state-of-the-art on many problems of OOD generalization [39].

The colored MNIST (CMNIST) is also called anti-causal CMNIST proposed by [8; 4] is often used
to study the OOD performance of different training methods. In our work, we directly add different

25

geometry shapes with random colors on local clients as the spurious features (also called adversarial
samples [149; 120; 55]) to explore how isolated local training and our algorithm are influenced by
them.

It is proven that the self-supervised or unsupervised training with contrastive learning [55; 99] can
help reduce the overfitting on spurious features. And dropout [123] also helps learning spurious
relationships between label and the spurious features [140].

D Details of Experiment Configuration

D.1 Hyper Parameters

Table 9: Learning rate of all experiments.

Dataset MNIST FMNIST CIFAR10 SVHN CIFAR100 Tiny-Imagenet

a = 0.1 0.001 0.001 0.01 0.001 0.01 0.01
a = 0.3 0.001 0.01 0.01 0.01 0.01 0.01
a = 0.5 0.001 0.01 0.01 0.01 0.01 0.01

The learning rate configuration has been listed in Table 9. We report the best results and their learning
rates (searched in {0.0001, 0.001, 0.01, 0.1}). During local updating, the optimizer is SGD with 0.9
momentum following most FL baselines []

D.2 Hardware and software

The FedAvg baseline is conducted based on the standard commonly used FL library FedML [47; 127].
While other OFL baselines are implemented following [159]. All experiments are conducted based
on NVIDIA 2080 Ti or NVIDIA V100 GPU for several hours. Users just need one single GPU to run
these experiments.

D.3 Mutual Information Estimation

Due to the extremely high dimension of intermediate features, MI estimation is very difficult [11].
Simple neural networks may fail to accurately estimate MI. Thus, we follow [145], to use the
reconstruction error from h to x to estimate the I(h,x), and the classification error to estimate
I(h, y). The details are provided as follows.

Estimating I(h,x). Assume thatR(x|h) denotes the expected error for reconstructing x from h. It
has been widely known thatR(x|h) follows I(h,x) = H(x)−H(x|h) ≥ H(x)−R(x|h), where
H(x) denotes the marginal entropy of x, as a constant [54]. We estimate I(h,x) by training a decoder
parameterized by w to reconstruct the original image x, namely I(h,x) ≈ maxw[H(x)−Rw(x|h)].
For estimating I(h,x), the decoders are multiple up-sampling convolutional layers following [145].

Estimating I(h, y). Since I(h, y) = H(y) − H(y|h) = H(y) − E(h, y)[−log p(y|h)], we can
directly train an auxiliary classifier qψ(y|h) with parameters ψ to approximate p(y|h), such that we
have I(h, y) ≈ maxψH(y)− Eh[

∑
y −p(y|h)log qψ(y|h)]. To summarize, given the split features

Hk at layer k, we freeze previous layers that with index i ≤ k, and train a new inserted linear layer
as classifier as to estimate I(h, y). For estimating I(h, x), the decoder follows [145].

D.4 Linear Separability

Following [7; 101], for each layer k to be examined, we stitch and train a linear classifier MLPk
following it, while freezing previous layers. Thus, the linear separability of feature Hk is shown by
the classification error of MLPk. The MLP is trained by 10 epochs.

D.5 Backdoored Datasets

Figure 5 shows the original images and the backdoored images of CIFAR-10. The shapes are added
on images according to label indexes but with random colors. By training on backdoored images, the

26

local model is easily to fit on the shapes instead of original images. Each shape occupies 10× 10
image size. Table 7 provides the test accuracy of different methods training with backdoored CIFAR-
10, showing that the performance is severely harmed by the backdoored datasets. While FuseFL is
not severely affected by the backdoor.

Figure 5: Each row is a class of original (upper) and backdoored (lower) images of CIFAR-10. The
shapes are added on images according to label indexes.

E More Results

To validate the effect of FuseFL when training heterogeneous models with more clients, we further
conduct experiments with M = 10 and compare results with M = 5 as shown in Table 10. Results
show that the FuseFL well supports training heterogeneous models, of which the performance is still
comparable with Ensemble FL, but requires much less storage cost than Ensemble.

E.1 Heterogeneous Model with Different Number of Clients

Table 10 shows how number of clients influences the performance of FuseFL with average or
conv1×1 as adapter. Results show that with increased M = 10, FuseFL still provide benefits to
training heterogeneous model.

Table 10: Accuracy with FuseFL with conv1×1 or averaging to support heterogeneous model design
on CIFAR-10 with different number of clients.

Clients M = 5 M = 10

Ensemble 79.91 77.25

FuseFL 81.15 78.28
FuseFL (Avg) 80.35 76.52
FuseFL Hetero 82.71 76.47

FuseFL (Avg) Hetero 79.74 75.90

E.2 Comparisons with FedMA

FedMA [141] does not support training ResNet-18 and aggregating multi-layers blocks. Thus, we
compare it with FedAvg and our methods on training VGG-9 on CIFAR-10. For FedAvg, we run

27

it for 10 communication rounds. For ensemble FL methods, the training epoch is set as 200 and
communication with only one round. For fair comparison, to keep the same computation burden,
we divide the 200 epochs to each communication round in FuseFL and FedMA. Thus, FedMA,
FuseFL and Ensemble FL have the same communication costs and 10× less than FedAvg. Note
that the FuseFL can have different K to decide its communication rounds, while FedMA has a fixed
number of communication rounds, i.e. the number of layers in VGG-9. Thus, the total computation
and communication costs of different baselines are same except for FedAvg. Results in Table 11
shows that FuseFL successfully outperforms other methods. Note that to achieve the comparable
performance to hundreds-of-rounds FedAvg, the FedMA actually requires communicating multiple
model size. UNder the limited communication constraints, the matching and averaging ways in
FedMA show inferior performance than the feature concatenation and merging as used in FuseFL.

Table 11: Comparing accuracy on CIFAR-10 with FedMA.
Algorithm a = 0.1 a = 0.3 a = 0.5

FedAvg 21.19 26.16 38.63
FedMA 66.28 71.95 73.34

Ensemble 65.72 67.29 69.58
FuseFLK = 2 73.99 75.58 76.66
FuseFLK = 3 72.31 75.29 76.10
FuseFLK = 4 71.34 76.87 75.71

E.3 Different Feature Fusion Methods

Table 12: Accuracy with FuseFL with conv1×1 or averaging as adapters of different non-IID degree
on CIFAR-10.

non-IID degree a = 0.1 a = 0.3 a = 0.5

Ensemble 57.5 77.35 79.91

FuseFLK = 2 70.85 81.41 84.34
FuseFLK = 4 73.79 84.58 81.15
FuseFLK = 8 70.46 80.7 74.99

FuseFL (Avg) K = 2 70.79 81.5 83.56
FuseFL (Avg) K = 4 68.08 71.49 80.35
FuseFL (Avg) K = 8 71.58 81.87 83.29

We verify the effect of using conv1×1 or simply averaging features as feature fusion in Table 12.
Results shows that using conv1×1 is generally better than averaging. With the decreased non-IID
degree, the gap between conv1×1 and averaging is smaller, demonstrating that more similar features
require less feature adaptation through learning a mapping i.e. training a conv1×1.

E.4 Communication Cost Comparison

We provide the detailed communication costs of different methods in Table 13. The Other OFLs refer
to advanced OFL method including DENSE [159], data-free KD methods DAFL [18] and ADI [153].
Table 13 shows that FuseFL does not increase the communication costs, while largely improving the
model performance.

E.5 Higher Heterogeneity and More Baselines

Table 14 provides more results of the higher heterogeneity (a = 0.05) and more baselines including
DENSE [159] and CoBoosting [23]. Results show that the CoBoosting can improve the performance
than other baseline methods but fail to outperform FuseFL.

Both CoBoosting [23] and FEDCVAE-KD [52] focus on exploiting knowledge distillation methods
to improve the performance of global models, while our method focuses on how to aggregate models

28

Table 13: Communication costs. For different number of clients, the number of basic channels in
ResNet-18 of FuseFL is set as 32, 20, 14, 9 with M ∈ {5, 10, 20, 50}, respectively.

Clients M = 5 M = 10 M = 20 M = 50

Single Model 42.66MB 42.66MB 42.66MB 42.66MB

FedAvg (10 rounds) 2133.1MB 4266.2MB 8532.4MB 21331.0MB
Other OFLs 213.31MB 426.62MB 853.24MB 2133.10MB
Ensemble 213.31MB 426.62MB 853.24MB 2133.10MB

FuseFLK = 2 268.55 MB 423.2 MB 842.6 MB 2274.0 MB
FuseFLK = 4 276.9 MB 449.2 MB 944.4 MB 2931.5 MB
FuseFLK = 8 340.4 MB 647.7 MB 1722.2 MB 7954.0 MB
FuseFL (Avg) 266.6 MB 416.6 MB 816.6 MB 2109.0 MB

together. Thus, the knowledge distillation is orthogonal with our method and may be utilized to
enhance FuseFL. For example, one can consider running FuseFL first to obtain a fused global model.
Then, this model can be used to conduct knowledge distillation to guide local model training with the
FuseFL once again.

Table 14: Results of higher data heterogeneiry (a = 0.05).
Datasets MNIST FMNIST SVHN CIFAR-10 CIFAR-100

Ensemble 58.06 66.19 62.22 53.33 32.25

FedAvg 46.35 20.07 39.41 17.49 6.45
FedDF 80.73 44.73 60.79 37.53 16.07
F-ADI 80.12 42.25 56.58 36.94 13.75

F-DAFL 78.49 41.66 59.38 37.82 15.79
DENSE 81.06 44.77 60.24 38.37 16.17

CoBoosting 93.93 50.62 65.40 47.20 19.24
FuseFLK = 2 95.23 83.23 75.08 46.38 29.98
FuseFLK = 4 95.37 83.65 75.53 51.59 32.71

F Limitation

Finding invariant features. With our analysis in Section 3, it will be useful to choose the invariant
features Rinv

m during local training for client n. Currently, under the communication and privacy
constrains, it is further difficult to identify which features are spurious. We left this as the future work
to explore. We do not explore and exploit this technique in this paper, as it is orthogonal to our core
innovation technique, augmenting features by layer-wise model fusion. Nevertheless, by manually
crafting spurious correlations by adding backdoored data samples into local dataset, we empirically
prove FuseFL can effectively avoid the influences of spurious features.

Limited feature adaptation. In this work, as an initial trial, we only explore using averaging and
conv1×1 as the feature adaptation. Further methods can consider exploring better feature adaptation
methods like using non-linear models.

Security issues. In this work, we do not explicitly consider the security issue. However, the
vulnerability to attacks of FuseFL will not be higher than previous multi-round FedAvg, which
requires many more communication rounds to achieve the same model performance as FuseFL. For
example, FedAvg may require more than 100 rounds to achieve 70% test accuracy as FuseFL with
2 ∼ 4 rounds, which introduces more communicated information and a higher possibility of attacks.
And FuseFL has the same communication size with other OFL methods.

However, while the size of the communication does not increase, FuseFL increases the number of
communication rounds compared to other OFL methods. There are some possible mitigations to
address the security issues:

29

• Adversarial attacks. Some malicious clients might upload adversarial modules or backdoored
modules that are used to misguide the aggregated model to generate incorrect or handcrafted
predictions. For these attacks, the possible solution is to detect and reject such malicious uploading
also through the lens of causality. Specifically, some images with the invariant features can be
fed into the uploaded modules to see whether the output feature can be used to correctly classify
images;

• Model inversion or Membership attack. Some malicious clients or the server may consider to
conduct model inversion or membership attack to obtain the raw data of clients, thus threatening the
user privacy. In this case, the learned module can be protected with differential privacy to enhance
its security.

Multiple communication rounds. To enable concatenating local modules together and training
based on aggregated features from these modules, multiple communication rounds are required in
FuseFL. In this sense, FuseFL belongs to the few-shot FL. However, the communication cost of
FuseFL is as same as other OFL methods, which is the main claim in the introduction (extremely low
communication costs).

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations have been discussed in Section F. The communication cost
and storage costs are compared in Table 4 and 13. The scalability on datasets and clients,
computation efficiency, and whether supporting personalized model design have been
discussed in Experiment Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

31

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We build the causal graph without giving the theorem. The proof of Lemma 3.1
comes from [2]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the experiment setting, specific baselines (Section 6), hyper-
parameters (Section D), the algorithm details (Algorithm A, hardware and software details
(Section D.2). We have provided our open-sourced code link.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

32

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided our open-sourced code link. The library has provided the
experiment and code instructions. And the datasets are public datasets as listed in Section 6,
which can be downloaded online, or using Pytorch.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the experiment setting, specific baselines, optimiz-
ers(Section 6), hyper-parameters (Section D), the algorithm details (Algorithm A, hardware
and software details (Section D.2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report the error bars in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the experiment setting (Section 6) and hardware and software
details (Section D.2).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work does not incorporate any ethic concerns of NeurIPS. The datasets
and models are commonly used in the community, and the method does not incorporate
potential concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

34

https://neurips.cc/public/EthicsGuidelines

Justification: We have discussed the broader impact in Section B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets and baselines, used libraries are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

35

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The datasets and baselines, used libraries are well documented and cited.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

36

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Preliminary
	Federated Learning
	Ensembled FL

	Federated Learning: A Causal View
	The Sequential Structure of Neural Networks
	Structure Equation Model of FL
	Mutual Information

	FuseFL: Progressive FL Model Fusion
	Train, Fuse, Freeze, and Re-Train
	Feature Adaptation
	Benefits of FuseFL Design

	Related Works
	Data Heterogeneity in FL
	One-shot FL

	Experiments
	Experiment Setup
	Experimental Results

	Conclusion
	Details of Algorithm
	Broader Impact
	More related works
	Data Heterogeneity in FL
	One-shot FL
	Communication compressed FL
	Mutual Information
	Out-of-Distribution Generalization

	Details of Experiment Configuration
	Hyper Parameters
	Hardware and software
	Mutual Information Estimation
	Linear Separability
	Backdoored Datasets

	More Results
	Heterogeneous Model with Different Number of Clients
	Comparisons with FedMA
	Different Feature Fusion Methods
	Communication Cost Comparison
	Higher Heterogeneity and More Baselines

	Limitation

