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ABSTRACT

Transformer models have revolutionized natural language processing, achieving
state-of-the-art performance and demonstrating remarkable scalability. However,
their memory demands, particularly due to maintaining full context in memory,
pose significant challenges for inference. In this paper, we present FlashEVA,
an efficient implementation of EVA (Efficient Attention via Control Variates),
and demonstrate how to finetune transformers to adapt to FlashEVA attention.
Our method enables fine-tuning of Transformer models with as few as 1.5B to-
kens while preserving effectiveness across various downstream tasks. Notably,
FlashEVA achieves up to 6.7x higher throughput and 5x lower peak GPU mem-
ory usage during inference compared to standard Transformer implementations.
Despite these improvements, we observe limitations in retrieval-focused tasks.
Our implementation offers control over the trade-off between throughput and ac-
curacy through adjustable hyperparameters, providing flexibility for diverse use
cases. This work represents a significant step towards more efficient and adapt-
able Transformer-based models for inference.

1 INTRODUCTION

Transformer models have become ubiquitous in the field of natural language processing, achieving
state-of-the-art performance across a wide range of tasks (Dosovitskiy et al., 2021; Wang et al.,
2019; Radford et al., 2019; Dong et al., 2018). Their success can be attributed to their ability to
scale effectively and the possibility of parallel training, which has led to significant improvements in
model capabilities (Kaplan et al., 2020; Gadre et al., 2024). However, these advancements come at
a cost: Transformers have high memory requirements during inference, particularly due to the need
for an ever-increasing cache to keep the full history in context (Pope et al., 2022).

This memory constraint poses a significant challenge, especially as new use cases emerge that de-
mand higher throughput. Such applications include inference on long contexts (e.g. Q&A over long
documents or large codebases) (Rozière et al., 2024; Li et al., 2023; Guo et al., 2022; Shaham et al.,
2022), agentic workflows that require exploring multiple trajectories in parallel (Yang et al., 2024a;
Yao et al., 2023b), as well as workflows combining search algorithms with LLMs (Chen et al., 2023;
Yao et al., 2023a; Wang & Zhou, 2024)

As these demands grow, it becomes increasingly important to address the limitations of Transformer
models. A crucial consideration is the desire to leverage the existing pre-trained Transformer mod-
els, avoiding the need for resource-intensive retraining from scratch. There are different approaches
that aim to address these issues:

• Distributed KV cache storage, as shown by Liu et al. (2023a), can be achieved without
communication overhead, due to the fact that the attention operation can be computed in a
blockwise fashion (Dao et al., 2022). This allows the computation of different blocks to be
done on separate devices and can in principle support an infinite context length provided
enough GPUs are available.

• KV cache compression techniques aim to compress the existing KV cache Zhao et al.
(2024); Yue et al. (2024), or discard uninformative tokens from the cache (Jiang et al., 2023;
Han et al., 2024) to minimize the memory cost without sacrificing model performance.
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• State-Space Models (SSMs) are an alternative class of models that have shown to be com-
petitive with transformers on small to medium scale (Gu & Dao; Yang et al., 2023; Qin
et al., 2024b; Peng et al., 2023). Recent works Wang et al. (2024); Bick et al. (2024)
have shown that transformers can be efficiently distilled into Mamba, keeping most of the
downstream performance.

• Linearized attention approaches aim to replace the Softmax attention in the transformer
with linearized variants, which promises to reduce the computational and memory require-
ments of the attention (Zheng et al., 2023; Qin et al., 2022; Peng et al., 2021). Previous
works attempting to adapt pretrained transformers into linearized transformers have not
scaled or maintained model performance on downstream tasks (Chen et al., 2024; Mao,
2022; Kasai et al., 2021a).

In this paper, we propose to revisit and enhance the Efficient Attention via Control Variates (EVA)
method (Zheng et al., 2023) to address these challenges. We present an efficient implementation of
EVA attention using custom CUDA and Triton kernels, which allows us to maintain the benefits of
Transformer models while reducing their memory and computational footprint.

Our approach demonstrates that Transformers can be fine-tuned with as little as 1.5 billion tokens,
recovering most of the original performance on downstream tasks. Nevertheless, the performance
still suffers on retrieval focused tasks, similar to previous approaches with linearized attention and
state space models (Waleffe et al., 2024).

While FlashEVA attention still requires to keep a cache of (compressed) past context, this overhead
is less than the memory overhead for computing the prefix during model inference, and is thus does
not represent a limitation for the inference. Notably, compared to vanilla transformers, our method
achieves significant improvements in inference scenarios of particular interest, such as generating
content with long prompts, handling extended generations, and maximizing parallel throughput. We
report up to 6.7x inference throughput increase on long sequence generation, and up to 5x reduc-
tion in peak GPU memory usage on long sequence generation. Additionally, EVA attention allows
for trading off memory and model performance in a principled manner, through two hyperparam-
eters, allowing up to 50% lower memory usage with 0.5% accuracy impact on downstream task
performance.

The remainder of this paper is structured as follows: In Section 2, we review the theoretical founda-
tions of EVA attention and introduce our efficient implementation, which we call FlashEVA. Section
3 details our experimental setup, including model architecture, training procedures, and evaluation
metrics. Section 4 presents our results, comparing FlashEVA’s performance to existing methods
across various tasks and inference scenarios. We also provide an in-depth analysis of the trade-offs
between speed, accuracy, and memory usage. Finally, Section 5 concludes the paper, summarizing
our findings and discussing potential avenues for future research in efficient attention mechanisms
for large language models. An extended review of related works, as well as ablation studies are in
the Appendix.

2 BACKGROUND

This section provides a comprehensive review of key attention mechanisms, establishing the foun-
dation for our work. We begin by revisiting the Softmax attention mechanism and elucidating its
relationship to Random Feature Attention. Subsequently, we examine the Efficient Vision Attention
(EVA) framework, which reinterprets Randomized Attention through the lens of control variates.
Finally, we highlight the practical implementation challenges associated with EVA attention and
demonstrate how these limitations can be addressed by reformulating the approach as Softmax at-
tention over a modified set of keys and values.

2.1 SOFTMAX ATTENTION

Softmax attention is a fundamental component of transformer architectures. Let Q ∈ RN×D, K ∈
RM×D, and V ∈ RM×D denote the query, key, and value matrices, respectively, where N is
the number of queries, M is the number of keys and values, and D is the dimensionality of the
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embedding space.1 The Softmax attention mechanism for a single query vector qn (the n-th row of
Q) can be expressed as:

SoftmaxAttn(qn,K,V ) :=

M∑
m=1

exp(q⊤
n km)∑M

m′=1 exp(q
⊤
n km′)

v⊤
m =

M∑
m=1

sim(qn,km)∑M
m′=1 sim(qn,km′)

v⊤
m (1)

where km and vm are the m-th rows of K and V , respectively, and sim(·, ·) denotes the similarity
function, typically implemented as a dot product. In the case of causal attention, the summation
is restricted to m ≤ n, ensuring that each token attends only to previous tokens and itself. It is
important to note that computing the attention output for the latest query necessitates a summation
over all previous timesteps, which is the reason why it is memory intensive to run inference with
Softmax attention.

2.2 RANDOM FEATURE ATTENTION

Random Feature Attention, introduced by Peng et al. (2021) and Choromanski et al. (2022), lever-
ages random feature methods (Rahimi & Recht, 2007) to linearize the exponential kernel in attention
mechanisms. This approach approximates the exponential kernel using the following expectation:

exp(x⊤y) = Eω∼N (0,I)

[
ξ(x, ω)⊤ξ(y, ω)

]
≈ 1

S

S∑
s=1

ξ(x, ωs)
⊤ξ(y, ωs) (2)

where ξ(·, ·) : RD×RD → Rl is a randomized mapping that projects the input into a random feature
space. While the exact formulation of this mapping differs slightly between Peng et al. (2021) and
Choromanski et al. (2022), we adopt the latter’s approach, defining ξ(x, ω) = exp

(
ω⊤x− 1

2∥x∥
2
)
.

Employing this random feature mapping, we can reformulate the standard attention mechanism as
Random Feature Attention:

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

v⊤
m ≈

∑S
s=1 ξ(qn, ωs)

⊤ ∑M
m=1 ξ(km, ωs)v

⊤
m∑S

s=1 ξ(qn, ωs)⊤
∑M

m′=1 ξ(km′ , ωs)
:= RFA(qn,K,V) (3)

2.2.1 RANDOMIZED ATTENTION

Furthermore, Zheng et al. (2022) demonstrate that the Softmax attention can be expressed as the
following expectation:

SoftmaxAttn(qn,K,V) = Epn(ω)[fn(ω)] = Epn(ω)

[
ξ(qn, ω)

T
∑M

m=1 ξ(km, ω)vT
m

ξ(qn, ω)T
∑M

m′=1 ξ(km′ , ω)

]
(4)

where pn(ω) =
∑M

m=1 πmN (ω;qn + km, I) represents the proposal distribution and πm =
exp(qT

nkm)∑M
m′=1

exp(qT
nkm′ )

denotes the component weight. The RFA attention can thus be interpreted as

performing self-normalized importance sampling of Equation 4, utilizing q(ω) = N (ω; 0, I) as the
proposal distribution. Consequently, the equivalent RFA formulation can be expressed as:

RFA(qn,K,V) =
Eq(ω)

[
pn(ω)
q(ω) fn(ω)

]
Eq(ω)

[
pn(ω)
q(ω)

] ≈
∑S

s=1
pn(ωs)
q(ωs)

fn(ωs)∑S
s=1

pn(ωs)
q(ωs)

(5)

2.3 EVA ATTENTION

Zheng et al. (2023) demonstrate that RFA attention in the SNIS formulation (Equation 5) can be
rewritten as a sum of control variate estimates. By altering the order of summation, we obtain:

g(ω) =

S∑
s=1

pn(ωs)

q(ωs)
fn(ωs) =

S∑
s=1

1

S

M∑
m=1

N (ωs; 0, I)

Zq(ωs)
ξ(qn, ωs)ξ(km, ωs)vm =

M∑
m=1

gm(ω) (6)

1For simplicity, we omit the batch and head dimensions in our formulations.
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h(ω) =

S∑
s=1

pn(ωs)

q(ωs)
=

S∑
s=1

1

S

M∑
m=1

N (ωs; 0, I)

Zq(ωs)
ξ(qn, ωs)ξ(km, ωs) =

M∑
m=1

hm(ω) (7)

This simplification leads to a control variates formulation of RFA as a sum of control variate esti-
mates for each token:

RFA(qn,K, V ) = g(ω)− β̂(ω) (h(ω)− E [h(ω)]) =

M∑
m=1

gm(ω)− β̂(ω) (hm(ω)− E [hm(ω)])

(8)

While RFA employs a single β(ω) shared across all tokens, this approach can be generalized to uti-
lize multiple coefficients. In the limit, where each token has its own coefficient, each control variate
coefficient can be independently optimized to minimize variances, resulting in an exact recovery
of Softmax attention. To balance approximation quality and computational efficiency, Zheng et al.
(2023) propose locally shared coefficients.

EVA attention incorporates a local attention component (for m ∈ E), which can be interpreted as
locally optimizing the coefficients for individual tokens, as well as local RFA estimates of subsets
of tokens (m ∈ Pc) reweighed by their corresponding true attention score. The local set E and the
disjoint subsets {Pc}Cc=1 collectively comprise the full set of tokens over which attention is applied.
Thus, EVA attention is formulated as:

EVA(qn,K, V ) := g̃(ω) =
∑
m∈E

g̃m(ω) +

C∑
c=1

∑
m∈Pc

g̃m(ω)

=
∑
m∈E

exp(qT
nkm)

Z
vm +

C∑
c=1

∑
m∈Pc

exp(qT
nkm)

Z

∑
m∈Pc

gm(ω)∑
m∈Pc

hm(ω)

(9)

For practical implementation, the normalization constant requires approximation, as computing it
would necessitate summing over all Keys in the context, leading to quadratic complexity in the
attention:

Z =
∑
m∈E

exp(qTn km) +

C∑
c=1

∑
m∈Pc

exp(qTn km) ≈
∑
m∈E

exp(qTn km) +

C∑
c=1

exp(qTn k̃c) (10)

Furthermore, to efficiently compute βc(ω), EVA attention employs a single random sample (i.e.,
S = 1), which eliminates the dependency of βc(ω) on the query qn, allowing for precomputation
across all queries. For a comprehensive derivation and detailed explanation of term calculations, we
refer the reader to Zheng et al. (2023).

2.4 FLASHEVA

We now demonstrate that EVA attention can be reformulated as Softmax attention over a modified
set of keys and values, encompassing both the original keys from the local chunk and derived keys
and values from the random feature approximation. By substituting the normalization constant Z
from Equation 10 into Equation 9, we can express EVA attention as:

EVA(qn,K,V) ≈
∑

m∈E exp(q⊤
nkm)vm +

∑C
c=1 exp(q

⊤
n k̃c)β̂c(ω)∑

m∈E exp(q⊤
nkm) +

∑C
c=1 exp(q

⊤
n k̃c)

= SoftmaxAttn(qn, K̃, Ṽ)

(11)

where i ranges over both m ∈ E and c ∈ {1, . . . , C}. We define the augmented key and value sets
as:

K̃ = {km | m ∈ E} ∪ {k̃c | c ∈ {1, . . . , C}} (12)

Ṽ = {vm | m ∈ E} ∪ {β̂c(ω) | c ∈ {1, . . . , C}} (13)
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Note, in the rest of the paper, we refer to the k̃c and β̂c(ω) as RFA keys and values, or simply
random feature-based tokens. This reformulation allows us to leverage existing optimized attention
implementations. In the non-causal setting, we can directly utilize the FlashAttention CUDA kernels
(Dao et al., 2022) to optimize FlashEVA’s performance. The causal setting, however, presents addi-
tional challenges. It necessitates attending separately to past keys and random-feature based keys,
requiring a custom attention mask not supported by the standard FlashAttention implementation.
To address this, we adapt the FlashAttention Triton kernels2 to accommodate the required attention
mask.

This adaptation facilitates a significant enhancement to the original EVA attention mechanism.
Specifically, it enables the implementation of a sliding window for local attention, which has the
potential to improve model performance by providing an effectively larger context window for the
deeper attention layers in the model.

3 EXPERIMENTAL SETUP

Our main experiments leverage the open-source Pythia checkpoints (Biderman et al., 2023) for fine-
tuning. This choice provides a consistent family of models at various scales, enabling us to evaluate
our method’s scalability while maintaining architectural and pretraining consistency.

Pythia was pretrained on the Pile (Gao et al., 2020), an 825 GB corpus of English text designed for
language model pretraining. To minimize discrepancies between pretraining and fine-tuning setups
that could impact the efficiency of adaptation to a different attention mechanism, we utilize the same
dataset for model fine-tuning. Due to copyright disputes rendering the original dataset unavailable,
we employ the uncopyrighted version accessible on HuggingFace3.

We fine-tune the models for 50k steps with a sequence length of 2048 and a total batch size of 16,
amounting to approximately 1.6B tokens. For larger models, we initially warm up the attention
layers for 2k steps (using a constant learning rate of 3e− 4) before continuing the fine-tuning of all
weights for an additional 48k steps (using a one-cycle cosine decay schedule). This approach miti-
gates the risk of large gradients disrupting the pre-learned weights and enhances training stability.

To accelerate training, we employ custom-implemented Triton kernels for FlashEVA, torch compile,
and mixed precision. As these optimizations can cause instabilities in larger models during the initial
stages of training due to large gradients, we conduct the first 2k steps without mixed precision or
custom Triton kernels.

We adapt the Pythia model to incorporate gated output projection in the attention layer, similar to Sun
et al. (2023) and Chen et al. (2024). To stabilize training, we clip the values and reduce the variance
of the random weights in EVA attention. Additionally, we employ RoPE positional encoding (Su
et al., 2023) during fine-tuning with FlashEVA, applied to all tokens prior to the random feature
projections. Detailed ablation studies on various model and training choices are presented in the
Appendix.

For downstream model performance evaluation, we utilize the LM evaluation harness (Gao et al.,
2024) to conduct reproducible assessments. Following prior work (Chen et al., 2024; Biderman
et al., 2023), we select six tasks: PIQA (Bisk et al., 2019), WinoGrande (Sakaguchi et al., 2019),
WSC (Sakaguchi et al., 2019), ARC-C and ARC-E (Clark et al., 2018), and LogiQA (Liu et al.,
2020). To further assess the model’s retrieval capabilities, we include two additional tasks: FDA
(Arora et al., 2023) and SWDE (Arora et al., 2024a).

To assess inference throughput, we consider a fixed prefix/prompt of 2048 tokens, similar to Gu &
Dao, with varying numbers of generated tokens ranging from 1024 to 10240. To measure maximum
throughput, we explore batch sizes up to 32. For the EVA hyperparameters inference performance
trade-off analysis, we constrain the setting to a prefix of 2048 tokens and 1024 generated tokens.

2Available at: https://github.com/Dao-AILab/flash-attention/blob/main/flash_
attn/flash_attn_triton.py

3https://huggingface.co/datasets/monology/pile-uncopyrighted
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4 RESULTS

4.1 FINETUNING PERFORMANCE

Table 1: Comparison of downstream task performance for various attention mechanisms across dif-
ferent model sizes. Results show accuracy scores for six general language understanding tasks (left)
and two long-context tasks (right). Bold indicates the best performance for each model size, while
underlined values represent the second-best. FlashEVA demonstrates competitive performance with
Pythia (full attention) on general tasks while outperforming DiJiang and sliding window attention in
most cases.

Model WinoGrande PiQA WSC ARC-E ARC-C LogiQA Avg. SWDE FDA

Sliding-1B 0.520 0.632 0.590 0.419 0.233 0.267 0.444 0.182 0.126
Pythia-1B 0.521 0.610 0.590 0.407 0.253 0.272 0.442 0.635 0.579

FlashEVA-1B 0.500 0.608 0.557 0.407 0.240 0.261 0.429 0.112 0.012
DiJiang-1B 0.497 0.590 0.513 0.356 0.221 0.226 0.401 0.032 0.000

Pythia-410M 0.509 0.596 0.559 0.392 0.231 0.269 0.426 0.629 0.517
FlashEVA-410M 0.510 0.597 0.566 0.379 0.237 0.250 0.423 0.074 0.004

Sliding-410M 0.512 0.596 0.544 0.370 0.239 0.272 0.422 0.072 0.000
DiJiang-410M 0.506 0.588 0.533 0.348 0.221 0.232 0.405 0.029 0.000

FlashEVA-160M 0.512 0.582 0.510 0.347 0.225 0.251 0.405 0.060 0.001
Pythia-160M 0.493 0.570 0.532 0.331 0.210 0.281 0.403 0.152 0.247
Sliding-160M 0.499 0.558 0.514 0.320 0.225 0.277 0.399 0.021 0.043
DiJiang-160M 0.488 0.568 0.523 0.326 0.226 0.234 0.394 0.010 0.000

FlashEVA-70M 0.506 0.567 0.522 0.328 0.222 0.250 0.399 0.011 0.000
Pythia-70M 0.502 0.560 0.516 0.325 0.216 0.278 0.399 0.094 0.120

DiJiang-70M 0.506 0.558 0.512 0.325 0.217 0.238 0.393 0.001 0.000
Sliding-70M 0.497 0.544 0.491 0.309 0.216 0.250 0.384 0.026 0.005

The experimental results demonstrate that FlashEVA effectively recovers the performance of Pythia
on the majority of downstream tasks across various model sizes, ranging from 70M to 1B parame-
ters. Notably, the average performance across six downstream tasks is nearly identical to the Pythia
baseline, despite utilizing only 1.6B tokens for finetuning. Furthermore, FlashEVA consistently out-
performs DiJiang across all model sizes, suggesting that the random feature approach employed by
FlashEVA provides a more effective approximation of Softmax attention.

However, an exception is observed in retrieval-focused tasks, where the pairwise interaction facil-
itated by full Softmax attention appears to be crucial. In these tasks, while FlashEVA marginally
outperforms DiJiang, it exhibits significantly lower performance compared to both the Softmax
and sliding window attention baselines. This suboptimal performance can be attributed to the ab-
sence of a sliding window mechanism in FlashEVA’s architecture. Although we have implemented
a FlashEVA variant incorporating sliding window attention (detailed in the Appendix), it was not
employed in the current experiments due to training instabilities on larger models, likely stemming
from the custom Triton kernel implementation.

Interestingly, the sliding window attention baseline exhibits remarkably robust performance, recov-
ering a substantial portion of Softmax attention’s capabilities, with a more pronounced performance
gap in retrieval tasks (but higher than FlashEVA or DiJiang). This phenomenon may be partially
explained by the limited finetuning of 1.6B tokens, which, while sufficient for adaptation to sliding
window attention, may be suboptimal for larger models to fully leverage the FlashEVA or DiJiang
attention mechanisms. It is noteworthy that FlashEVA outperforms sliding window attention on
smaller models, with this performance differential diminishing as model size increases. Addition-
ally, the sliding window in the attention effectively expands the context window of deeper attention
layers, resulting in a more expressive model.

Bick et al. (2024) recently proposed distilling transformers into Mamba architectures. To compare
their approach with our method, we fine-tuned the Phi-1.5-1.3B model into FlashEVA and DiJiang
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architectures. As evident from the results in Table 2, the distillation approach significantly out-
performs our fine-tuning method. However, it is important to note several key differences in the
experimental setup. Firstly, their method used twice the amount tokens for training. Secondly, their
approach leveraged multiple stages in the process and employed a specialized distillation objective,
potentially enabling more effective learning. FlashEVA’s improvements are orthogonal to the train-
ing setup employed in the training approach, so we hypothesize that combining FlashEVA with a
distillation training objective could yield competitive performance.

Table 2: Downstream task performance comparison of Phi-1.5 model variants. Results show accu-
racy percentages for various benchmarks, as well as their average.

Model WinoG. ARC-E ARC-C PiQA HellaS. Lamb. Avg.

Phi-1.5-1.3B 73.4 75.6 48.0 76.6 62.6 53.4 64.9
Phi-Mamba-1.5B 71.7 74.0 44.1 75.5 60.2 50.1 62.6
Phi-Mamba-1.5B (stage 3) 62.8 64.3 27.8 75.6 52.6 43.8 54.5
Phi-EVA 54.7 47.8 28.9 72.5 51.1 34.3 48.2
Phi-DiJiang 51.2 43.1 26.3 69.2 41.8 19.3 41.8

4.2 INFERENCE THROUGHPUT AND MEMORY USAGE

Figure 2 presents a comparative analysis of inference throughput and peak GPU memory utilization
across various attention mechanisms for different generation lengths. Despite FlashEVA’s theoretical
design incorporating a cache that scales with sequence length, our empirical observations reveal that
peak memory consumption occurs during prefix computation. In practical scenarios, FlashEVA thus
exhibits peak memory usage comparable to Sliding Window Attention, while DiJiang Attention
demonstrates the lowest memory footprint. Notably, FlashEVA achieves a significant reduction in
peak memory usage, up to 5-fold—compared to the vanilla Transformer.

Our results further indicate that FlashEVA surpasses DiJiang Attention in terms of throughput, while
marginally underperforming Sliding Window Attention. This performance differential can be at-
tributed to two factors: (1) the reduced number of sequential operations required for token compu-
tation in Sliding Window Attention, and (2) the generally memory-bound nature of inference tasks.
Nevertheless, FlashEVA demonstrates substantial throughput improvements over the vanilla Trans-
former, achieving a 2-fold increase when generating 1024 tokens and up to a 6.7-fold improvement
for 10240 token generation tasks.
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Figure 1: Comparative analysis of maximum throughput and peak GPU memory usage across dif-
ferent attention mechanisms and generation lengths.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 FLASHEVA INFERENCE PERFORMANCE TRADEOFF

(Flash)EVA introduces two key hyperparameters that influence its performance and computational
requirements: the local attention window size and the number of keys/values compressed into a
single random feature-based token. Generally, larger local attention windows or reduced token
compression result in increased computational costs.

Our findings demonstrate that FlashEVA can substantially reduce peak memory usage while main-
taining competitive performance. Certain configurations decrease peak memory by up to 50% with
only a 0.5% reduction in average performance on downstream tasks (excluding retrieval-focused
tasks). Moreover, we observe up to a 50% increase in total inference throughput with minimal
performance degradation. It is noteworthy that configurations with larger local attention windows
exhibit superior performance on retrieval-focused tasks. However, we do not include these tasks in
the reported average accuracy, hypothesizing that hybrid models may offer a more favorable trade-
off for retrieval task performance.

Interestingly, the configuration used for our main results (local window size 256, RFA chunk size 16)
is suboptimal in terms of inference performance. Our analysis suggests that configurations (256, 8)
or (512, 8) may offer a more optimal balance between performance and computational efficiency.

550 600 650 700 750 800 850
Generation throughput [tokens/s]

39.5

40.0

40.5

41.0

41.5

42.0

42.5

Av
er

ag
e 

do
w

ns
tr

ea
m

 a
cc

ur
ac

y 
[%

]

6 7 8 9 10 11 12
Peak GPU memory [GB]

Figure 2: Performance trade-offs between average downstream accuracy and generation throughput
or peak GPU memory for various FlashEVA-410M configurations. Each point represents a unique
combination of local attention window size and RFA chunk size.

4.4 FLASHEVA ATTENTION SPEEDUP

We benchmark the time to run a forward and backward pass of the (Flash)EVA attention layer and
compare it to FlashAttention2 kernels. We evaluate at different sequence lengths, adjusting batch
sizes to maintain a constant total token count. FlashEVA used a local attention window of size 256
and another 128 random-feature based tokens.

Despite its theoretical promise of improved computational complexity, EVA attention encounters
challenges similar to previous linear attention implementations, where practical performance gains
fail to materialize, particularly when compared to the efficient FlashAttention implementation. Fla-
shEVA attention does achieve speedups over FlashAttention2 for longer sequences due to its lower
computational complexity, up to 2.2x on for the 16k sequence length. However, for shorter se-
quences, the overhead associated with random feature computation results in slower performance.

5 CONCLUSION

This paper presents FlashEVA, an efficient implementation of EVA attention, demonstrating its ap-
plication for addressing memory constraints in traditional Transformer models during inference.
Our experiments reveal that EVA attention enables effective fine-tuning of Transformer models with
minimal performance degradation, particularly when retaining a few attention layers.
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Figure 3: Comparison of forward and backward pass execution times for (Flash)EVA attention
layer and FlashAttention2, including both causal and non-causal attention variants. Results are
reported for a constant number of chunks C across different sequence lengths, varying chunk size
accordingly. Additional results with fixed chunk size and varying C are presented in the Appendix,
yielding qualitatively similar outcomes.

Unlike state-space models such as Mamba, EVA attention still requires maintaining a cache that
grows with sequence length, however, it is orthogonal to other KV cache compression techniques.
As the compression in EVA attention is integral to the forward pass rather than a post-hoc operation,
we anticipate high compatibility with existing KV cache compression methods, potentially leading
to further reductions in KV cache overhead. This synergistic exploration remains a promising avenue
for future work.

Our work on FlashEVA attention represents a significant advancement towards more efficient Trans-
former models, addressing critical challenges in large language model inference. By balancing
performance preservation with memory efficiency, we contribute to ongoing efforts to enhance the
accessibility and applicability of advanced language models across diverse computational environ-
ments and use cases.
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A RELATED WORK

Linear transformers Linear transformers were introduced by (Katharopoulos et al., 2020) where
they also showed their formulation as RNNs. Following works Peng et al. (2021); Zheng et al.
(2022); Qin et al. (2022); Choromanski et al. (2022), focused on improving the features maps used
in linear transformers to close the gap to Vanilla transformer. Subsequent works added also architec-
tural improvements, such as output gating of the attention Qin et al. (2024a); Sun et al. (2023); Hua
et al. (2022), and (learned) decay of the hidden state Yang et al. (2023); Ma et al. (2023); Peng et al.
(2023). Despite closing the performance gap to transformers on most tasks, there are still funda-
mental limitations of linear transformers, especially when it comes to retrieval tasks and in context
learning (Arora et al., 2024b; Merrill et al., 2024; Akyürek et al., 2024). Finally, (Dao & Gu, 2024)
also showed that there exists a connection between linear transformers and specific subset of SSM
models.

State Space Models Deep State Space Models were introduced as an efficient architecture to model
long sequences. S4, DSS showed promising results on long range synthetic tasks. Later models such
as GSS (Mehta et al., 2022), BiGS (Wang et al., 2023), and H3 (Fu et al., 2023) introduced gating as
a way to increase the expressivity of the model (i.e. increase the interactivity between tokens). The
newest generation of models (Mamba (Gu & Dao), GLA Yang et al. (2023), DeltaNet (Yang et al.,
2024b), HGRNN (Qin et al., 2024b), xLSTM(Beck et al., 2024)) introduce input dependent SSM
parameters, which does not allow the SSM to be expressed as a convolution over the input, however,
it can still be computed efficiently with parallel scan. These models are achieving comparable
performance to Transformers on language modeling tasks, and crucially, have significantly higher
throughput, thanks to the fact, that they do not require to store the full past context on inference, but
rather only the hidden state.

Hybrid Models Currently, the biggest gap in performance between SSMs/Linear transformer mod-
els and Transformer models is the performance on (in context) retrieval tasks (Wen et al., 2024;
Jelassi et al., 2024). Consequently, many of the recent models propose to use a combination of
attention and recurrent layers in the same model Zancato et al. (2024). Griffin (De et al., 2024)
uses a combination of Linear Recurrent Units (Orvieto et al., 2023) with sliding window attention
layers, matching the performance of Llama-2, while achieving lower latency and higher throughput
on inference in models of size up to 14B parameters. Similarly, Dao & Gu (2024); Waleffe et al.
(2024); Glorioso et al. (2024) use a combination of Mamba layers and Attention layers to achieve
same or better performance than transformer based baselines.

Distilling transformers into RNNs This idea has been initially investigated by Kasai et al. (2021b),
where they replaced the Sofmax in the attention with learnable feature maps for the queries and keys,
composed of a one layer MLP with ReLU activation and then finetuned the pretrained transformer
model. They obtained substantial memory savings and inference speedup, however, the performance
lagged the pretrained transformer performance on language modelling and machine translation tasks.
(Zhang et al., 2024) improved on this by finetuning the transformer into a linearized transformers,
where an additional loss terms is used to match the linearized attention to the softmax attention.
However, this method required having access to teh full attention matrix of the base transformer
during training, which is computationally expensive. Instead, recent works (Bick et al., 2024; Wang
et al., 2024) apply more involved distillation methods to distill Transformers into (hybrid) Mamba
based models with as few as 3B tokens. They show competitive performance to Transformer on
downstream tasks on models up to 7B parameters.

KV cache compression The autoregressive nature of language models requires storing the full past
context to produce the next new token. To speed up inference, caching key-value states (KV-Cache)
in memory is a simple yet effective technique Pope et al. (2022), however, this necessitates a large
amount of memory. Consequently, there are several lines of research that looked into compress-
ing KV cache. Quantization based techniques Zhao et al. (2024); Yue et al. (2024); Zhang et al.
(2023); Liu et al. (2023b) aim to reduce the memory footprint needed by each token in the cache.
Eviction based techniques seek ways to keep only a subset of tokens in the KV cache without sac-
rificing model performance significantly Jiang et al. (2024; 2023); Han et al. (2024). Additionally,
some works looked at compressing the cache via low rank projection of the tokens. Unlike these
approaches, our method compresses the cache through summarizing chunks of tokens into single
tokens as part of the attention mechanism itself.
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B ABLATIONS

B.1 EVA LOCAL WINDOW ATTENTION VARIANTS

While the original EVA implementation employs local attention with potentially overlapping win-
dows, recent approaches favor sliding window attention due to its ability to extend the model’s
effective context window with depth. Our Triton kernel implementations support both variants,
prompting a comparative analysis of their performance.

We finetuned the Pythia-70M checkpoint on the Pile dataset for 50k steps, utilizing a learning rate
of 3e−4 with a one-cycle cosine decay schedule and 1000 steps of warmup. The AdamW optimizer
was employed with parameters (0.9, 0.95) and a weight decay of 0.1. The total batch size was set to
16, with a sequence length of 2048.
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Figure 4: Comparison of training loss and gradient norm during finetuning of CausalEVA with local
attention and sliding window attention. The sliding window variant achieves marginally lower loss
for the 70M model, but exhibits more unstable gradients with frequent large spikes in norm. The
local attention variant demonstrates occasional loss spikes, potentially attributable to the random
weight sampling in EVA attention.

B.2 IMPACT OF RANDOM FEATURE SAMPLING DISTRIBUTION

While Zheng et al. (2023) employ a standard normal distribution centered around the µc vector
for each group as the proposal distribution for random features, we observed that this approach
leads to instabilities during the training of larger models. To mitigate this issue and stabilize the
training process, we introduce a clipping and downscaling mechanism for the distribution width.
This modification results in smoother training trajectories with fewer spikes. We define the modified
sampling distribution qc(ω) as:

qc(ω) := λ · clip[−1,1] (N (ω;µc, I)) (14)

where λ = 0.1 is the scaling parameter, and clip[−1,1](·) denotes the clipping operation that con-
strains values to the interval [−1, 1]. Figure 5 illustrates the effectiveness of our proposed sampling
method by comparing the training loss trajectories of models initialized with clipped and unclipped
weight distributions.

B.3 WARMING UP NEW WEIGHTS BEFORE FINETUNING

During the transition from a standard transformer to a linearized variant, we observed that while the
MLP is directly transferable, the attention layer undergoes significant changes. This discrepancy can
lead to large gradients, potentially pushing weights away from their learned optima and, in larger
models, causing numerical instabilities manifesting as NaN values during training. To mitigate these
issues, we investigated various strategies for warming up the new weights utilized by FlashEVA or
DiJiang attention mechanisms.
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Figure 5: Comparison of training loss trajectories for models initialized with clipped and unclipped
weight distributions, demonstrating the stabilizing effect of our proposed sampling method.

We conducted experiments using the 70M Pythia model with CausalEVA attention, employing ran-
dom weight clipping as defined in Equation equation 14. Our warmup protocol consisted of 2000
steps with a ’warmup and constant’ learning rate schedule, followed by 48k steps using the config-
uration from our main experiments. Similar outcomes were observed for DiJiang finetuning, hence
we omit those results for brevity. Based on these findings, we adopted the practice of warming up
attention layer weights with full precision for experiments involving larger model sizes. Figure 6
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Figure 6: Comparison of training loss stability and gradient norms across different training strate-
gies. Warming up attention layers prior to finetuning yields the most stable training and minimizes
gradient norm spikes, informing our approach for larger-scale model experiments.

illustrates the comparative stability of training loss across various training configurations. We also
present gradient norm trajectories for three key options, as their training curves exhibit notable simi-
larities. The results demonstrate that warming up attention layers before proceeding with finetuning
leads to the most stable training process and minimizes gradient norm fluctuations. Consequently,
we adopted this approach for our experiments with larger model architectures.

B.4 FINETUNING DURATION

Recent work by Bick et al. (2024) demonstrated effective performance when distilling a trans-
former into a Mamba model using 3B tokens for finetuning. Motivated by this, we investigate
the impact of finetuning duration on FlashEVA’s performance. We finetune the Pythia 70M model
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using consistent training setups and hyperparameters across experiments, varying the total steps:
[50k, 100k, 200k, 350k, 500k]. We evaluate the minimum training loss achieved and the average
accuracy on the downstream tasks (excluding retrieval focused tasks).
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Figure 7: Comparison of minimal training loss and average downstream task performance across
varying finetuning durations. While extended finetuning leads to continued decrease in training
loss, downstream performance remains relatively stable, suggesting limited benefits from prolonged
training.

Our results, illustrated in Figure 7, reveal that downstream performance remains relatively consis-
tent across all tested finetuning durations, with variations falling within the range of random seed
fluctuations. Consequently, we conduct our main experiments using 50k steps, corresponding to
approximately 1.6B tokens.

C ADDITIONAL RESULTS

C.1 EVA KERNEL SPEEDUP

For the attention layer speed comparison, we consider sequence lengths
[512, 1024, 2048, 4096, 8192, 16384], and we vary the batch size B = 16384Bmin

L , where L
is the sequence length and Bmin is the minimum batch size at the longest sequence length. We
considered Bmin ∈ [1, 2, 4, 8], and report the results for Bmin = 8 (however, the results are
qualitatively the same, only the exact speedup values differ slightly)

We report here also the results for the attention layer speedup for the setting where the size of the
chunk that is used to compute the local control variates is kept fixed as the sequence length is varied.
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Figure 8: Time to run the forward and backward pass of the (Flash)EVA attention layer compared
to FlashAttention2 for the setting where the chunk size is kept constant.
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