
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLASHEVA: ACCELERATING LLM INFERENCE VIA
EFFICIENT ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer models have revolutionized natural language processing, achieving
state-of-the-art performance and demonstrating remarkable scalability. However,
their memory demands, particularly due to maintaining full context in memory,
pose significant challenges for inference. In this paper, we present FlashEVA,
an efficient implementation of EVA (Efficient Attention via Control Variates),
and demonstrate how to finetune transformers to adapt to FlashEVA attention.
Our method enables fine-tuning of Transformer models with as few as 1.5B to-
kens while preserving effectiveness across various downstream tasks. Notably,
FlashEVA achieves up to 6.7x higher throughput and 5x lower peak GPU mem-
ory usage during inference compared to standard Transformer implementations.
Despite these improvements, we observe limitations in retrieval-focused tasks.
Our implementation offers control over the trade-off between throughput and ac-
curacy through adjustable hyperparameters, providing flexibility for diverse use
cases. This work represents a significant step towards more efficient and adapt-
able Transformer-based models for inference.

1 INTRODUCTION

Transformer models have become ubiquitous in the field of natural language processing, achieving
state-of-the-art performance across a wide range of tasks (Dosovitskiy et al., 2021; Wang et al.,
2019; Radford et al., 2019; Dong et al., 2018). Their success can be attributed to their ability to
scale effectively and the possibility of parallel training, which has led to significant improvements in
model capabilities (Kaplan et al., 2020; Gadre et al., 2024). However, these advancements come at
a cost: Transformers have high memory requirements during inference, particularly due to the need
for an ever-increasing cache to keep the full history in context (Pope et al., 2022).

This memory constraint poses a significant challenge, especially as new use cases emerge that de-
mand higher throughput. Such applications include inference on long contexts (e.g. Q&A over long
documents or large codebases) (Rozière et al., 2024; Li et al., 2023; Guo et al., 2022; Shaham et al.,
2022), agentic workflows that require exploring multiple trajectories in parallel (Yang et al., 2024a;
Yao et al., 2023b), as well as workflows combining search algorithms with LLMs (Chen et al., 2023;
Yao et al., 2023a; Wang & Zhou, 2024)

As these demands grow, it becomes increasingly important to address the limitations of Transformer
models. A crucial consideration is the desire to leverage the existing pre-trained Transformer mod-
els, avoiding the need for resource-intensive retraining from scratch. There are different approaches
that aim to address these issues:

• Distributed KV cache storage, as shown by Liu et al. (2023a), can be achieved without
communication overhead, due to the fact that the attention operation can be computed in a
blockwise fashion (Dao et al., 2022). This allows the computation of different blocks to be
done on separate devices and can in principle support an infinite context length provided
enough GPUs are available.

• KV cache compression techniques aim to compress the existing KV cache Zhao et al.
(2024); Yue et al. (2024), or discard uninformative tokens from the cache (Jiang et al., 2023;
Han et al., 2024) to minimize the memory cost without sacrificing model performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• State-Space Models (SSMs) are an alternative class of models that have shown to be com-
petitive with transformers on small to medium scale (Gu & Dao; Yang et al., 2023; Qin
et al., 2024b; Peng et al., 2023). Recent works Wang et al. (2024); Bick et al. (2024)
have shown that transformers can be efficiently distilled into Mamba, keeping most of the
downstream performance.

• Linearized attention approaches aim to replace the Softmax attention in the transformer
with linearized variants, which promises to reduce the computational and memory require-
ments of the attention (Zheng et al., 2023; Qin et al., 2022; Peng et al., 2021). Previous
works attempting to adapt pretrained transformers into linearized transformers have not
scaled or maintained model performance on downstream tasks (Chen et al., 2024; Mao,
2022; Kasai et al., 2021a).

In this paper, we propose to revisit and enhance the Efficient Attention via Control Variates (EVA)
method (Zheng et al., 2023) to address these challenges. We present an efficient implementation of
EVA attention using custom CUDA and Triton kernels, which allows us to maintain the benefits of
Transformer models while reducing their memory and computational footprint.

Our approach demonstrates that Transformers can be fine-tuned with as little as 1.5 billion tokens,
recovering most of the original performance on downstream tasks. Nevertheless, the performance
still suffers on retrieval focused tasks, similar to previous approaches with linearized attention and
state space models (Waleffe et al., 2024).

While FlashEVA attention still requires to keep a cache of (compressed) past context, this overhead
is less than the memory overhead for computing the prefix during model inference, and is thus does
not represent a limitation for the inference. Notably, compared to vanilla transformers, our method
achieves significant improvements in inference scenarios of particular interest, such as generating
content with long prompts, handling extended generations, and maximizing parallel throughput. We
report up to 6.7x inference throughput increase on long sequence generation, and up to 5x reduc-
tion in peak GPU memory usage on long sequence generation. Additionally, EVA attention allows
for trading off memory and model performance in a principled manner, through two hyperparam-
eters, allowing up to 50% lower memory usage with 0.5% accuracy impact on downstream task
performance.

The remainder of this paper is structured as follows: In Section 2, we review the theoretical founda-
tions of EVA attention and introduce our efficient implementation, which we call FlashEVA. Section
3 details our experimental setup, including model architecture, training procedures, and evaluation
metrics. Section 4 presents our results, comparing FlashEVA’s performance to existing methods
across various tasks and inference scenarios. We also provide an in-depth analysis of the trade-offs
between speed, accuracy, and memory usage. Finally, Section 5 concludes the paper, summarizing
our findings and discussing potential avenues for future research in efficient attention mechanisms
for large language models. An extended review of related works, as well as ablation studies are in
the Appendix.

2 BACKGROUND

This section provides a comprehensive review of key attention mechanisms, establishing the foun-
dation for our work. We begin by revisiting the Softmax attention mechanism and elucidating its
relationship to Random Feature Attention. Subsequently, we examine the Efficient Vision Attention
(EVA) framework, which reinterprets Randomized Attention through the lens of control variates.
Finally, we highlight the practical implementation challenges associated with EVA attention and
demonstrate how these limitations can be addressed by reformulating the approach as Softmax at-
tention over a modified set of keys and values.

2.1 SOFTMAX ATTENTION

Softmax attention is a fundamental component of transformer architectures. Let Q ∈ RN×D, K ∈
RM×D, and V ∈ RM×D denote the query, key, and value matrices, respectively, where N is
the number of queries, M is the number of keys and values, and D is the dimensionality of the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

embedding space.1 The Softmax attention mechanism for a single query vector qn (the n-th row of
Q) can be expressed as:

SoftmaxAttn(qn,K,V) :=

M∑
m=1

exp(q⊤
n km)∑M

m′=1 exp(q
⊤
n km′)

v⊤
m =

M∑
m=1

sim(qn,km)∑M
m′=1 sim(qn,km′)

v⊤
m (1)

where km and vm are the m-th rows of K and V , respectively, and sim(·, ·) denotes the similarity
function, typically implemented as a dot product. In the case of causal attention, the summation
is restricted to m ≤ n, ensuring that each token attends only to previous tokens and itself. It is
important to note that computing the attention output for the latest query necessitates a summation
over all previous timesteps, which is the reason why it is memory intensive to run inference with
Softmax attention.

2.2 RANDOM FEATURE ATTENTION

Random Feature Attention, introduced by Peng et al. (2021) and Choromanski et al. (2022), lever-
ages random feature methods (Rahimi & Recht, 2007) to linearize the exponential kernel in attention
mechanisms. This approach approximates the exponential kernel using the following expectation:

exp(x⊤y) = Eω∼N (0,I)

[
ξ(x, ω)⊤ξ(y, ω)

]
≈ 1

S

S∑
s=1

ξ(x, ωs)
⊤ξ(y, ωs) (2)

where ξ(·, ·) : RD×RD → Rl is a randomized mapping that projects the input into a random feature
space. While the exact formulation of this mapping differs slightly between Peng et al. (2021) and
Choromanski et al. (2022), we adopt the latter’s approach, defining ξ(x, ω) = exp

(
ω⊤x− 1

2∥x∥
2
)
.

Employing this random feature mapping, we can reformulate the standard attention mechanism as
Random Feature Attention:

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

v⊤
m ≈

∑S
s=1 ξ(qn, ωs)

⊤ ∑M
m=1 ξ(km, ωs)v

⊤
m∑S

s=1 ξ(qn, ωs)⊤
∑M

m′=1 ξ(km′ , ωs)
:= RFA(qn,K,V) (3)

2.2.1 RANDOMIZED ATTENTION

Furthermore, Zheng et al. (2022) demonstrate that the Softmax attention can be expressed as the
following expectation:

SoftmaxAttn(qn,K,V) = Epn(ω)[fn(ω)] = Epn(ω)

[
ξ(qn, ω)

T
∑M

m=1 ξ(km, ω)vT
m

ξ(qn, ω)T
∑M

m′=1 ξ(km′ , ω)

]
(4)

where pn(ω) =
∑M

m=1 πmN (ω;qn + km, I) represents the proposal distribution and πm =
exp(qT

nkm)∑M
m′=1

exp(qT
nkm′)

denotes the component weight. The RFA attention can thus be interpreted as

performing self-normalized importance sampling of Equation 4, utilizing q(ω) = N (ω; 0, I) as the
proposal distribution. Consequently, the equivalent RFA formulation can be expressed as:

RFA(qn,K,V) =
Eq(ω)

[
pn(ω)
q(ω) fn(ω)

]
Eq(ω)

[
pn(ω)
q(ω)

] ≈
∑S

s=1
pn(ωs)
q(ωs)

fn(ωs)∑S
s=1

pn(ωs)
q(ωs)

(5)

2.3 EVA ATTENTION

Zheng et al. (2023) demonstrate that RFA attention in the SNIS formulation (Equation 5) can be
rewritten as a sum of control variate estimates. By altering the order of summation, we obtain:

g(ω) =

S∑
s=1

pn(ωs)

q(ωs)
fn(ωs) =

S∑
s=1

1

S

M∑
m=1

N (ωs; 0, I)

Zq(ωs)
ξ(qn, ωs)ξ(km, ωs)vm =

M∑
m=1

gm(ω) (6)

1For simplicity, we omit the batch and head dimensions in our formulations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

h(ω) =

S∑
s=1

pn(ωs)

q(ωs)
=

S∑
s=1

1

S

M∑
m=1

N (ωs; 0, I)

Zq(ωs)
ξ(qn, ωs)ξ(km, ωs) =

M∑
m=1

hm(ω) (7)

This simplification leads to a control variates formulation of RFA as a sum of control variate esti-
mates for each token:

RFA(qn,K, V) = g(ω)− β̂(ω) (h(ω)− E [h(ω)]) =

M∑
m=1

gm(ω)− β̂(ω) (hm(ω)− E [hm(ω)])

(8)

While RFA employs a single β(ω) shared across all tokens, this approach can be generalized to uti-
lize multiple coefficients. In the limit, where each token has its own coefficient, each control variate
coefficient can be independently optimized to minimize variances, resulting in an exact recovery
of Softmax attention. To balance approximation quality and computational efficiency, Zheng et al.
(2023) propose locally shared coefficients.

EVA attention incorporates a local attention component (for m ∈ E), which can be interpreted as
locally optimizing the coefficients for individual tokens, as well as local RFA estimates of subsets
of tokens (m ∈ Pc) reweighed by their corresponding true attention score. The local set E and the
disjoint subsets {Pc}Cc=1 collectively comprise the full set of tokens over which attention is applied.
Thus, EVA attention is formulated as:

EVA(qn,K, V) := g̃(ω) =
∑
m∈E

g̃m(ω) +

C∑
c=1

∑
m∈Pc

g̃m(ω)

=
∑
m∈E

exp(qT
nkm)

Z
vm +

C∑
c=1

∑
m∈Pc

exp(qT
nkm)

Z

∑
m∈Pc

gm(ω)∑
m∈Pc

hm(ω)

(9)

For practical implementation, the normalization constant requires approximation, as computing it
would necessitate summing over all Keys in the context, leading to quadratic complexity in the
attention:

Z =
∑
m∈E

exp(qTn km) +

C∑
c=1

∑
m∈Pc

exp(qTn km) ≈
∑
m∈E

exp(qTn km) +

C∑
c=1

exp(qTn k̃c) (10)

Furthermore, to efficiently compute βc(ω), EVA attention employs a single random sample (i.e.,
S = 1), which eliminates the dependency of βc(ω) on the query qn, allowing for precomputation
across all queries. For a comprehensive derivation and detailed explanation of term calculations, we
refer the reader to Zheng et al. (2023).

2.4 FLASHEVA

We now demonstrate that EVA attention can be reformulated as Softmax attention over a modified
set of keys and values, encompassing both the original keys from the local chunk and derived keys
and values from the random feature approximation. By substituting the normalization constant Z
from Equation 10 into Equation 9, we can express EVA attention as:

EVA(qn,K,V) ≈
∑

m∈E exp(q⊤
nkm)vm +

∑C
c=1 exp(q

⊤
n k̃c)β̂c(ω)∑

m∈E exp(q⊤
nkm) +

∑C
c=1 exp(q

⊤
n k̃c)

= SoftmaxAttn(qn, K̃, Ṽ)

(11)

where i ranges over both m ∈ E and c ∈ {1, . . . , C}. We define the augmented key and value sets
as:

K̃ = {km | m ∈ E} ∪ {k̃c | c ∈ {1, . . . , C}} (12)

Ṽ = {vm | m ∈ E} ∪ {β̂c(ω) | c ∈ {1, . . . , C}} (13)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Note, in the rest of the paper, we refer to the k̃c and β̂c(ω) as RFA keys and values, or simply
random feature-based tokens. This reformulation allows us to leverage existing optimized attention
implementations. In the non-causal setting, we can directly utilize the FlashAttention CUDA kernels
(Dao et al., 2022) to optimize FlashEVA’s performance. The causal setting, however, presents addi-
tional challenges. It necessitates attending separately to past keys and random-feature based keys,
requiring a custom attention mask not supported by the standard FlashAttention implementation.
To address this, we adapt the FlashAttention Triton kernels2 to accommodate the required attention
mask.

This adaptation facilitates a significant enhancement to the original EVA attention mechanism.
Specifically, it enables the implementation of a sliding window for local attention, which has the
potential to improve model performance by providing an effectively larger context window for the
deeper attention layers in the model.

3 EXPERIMENTAL SETUP

Our main experiments leverage the open-source Pythia checkpoints (Biderman et al., 2023) for fine-
tuning. This choice provides a consistent family of models at various scales, enabling us to evaluate
our method’s scalability while maintaining architectural and pretraining consistency.

Pythia was pretrained on the Pile (Gao et al., 2020), an 825 GB corpus of English text designed for
language model pretraining. To minimize discrepancies between pretraining and fine-tuning setups
that could impact the efficiency of adaptation to a different attention mechanism, we utilize the same
dataset for model fine-tuning. Due to copyright disputes rendering the original dataset unavailable,
we employ the uncopyrighted version accessible on HuggingFace3.

We fine-tune the models for 50k steps with a sequence length of 2048 and a total batch size of 16,
amounting to approximately 1.6B tokens. For larger models, we initially warm up the attention
layers for 2k steps (using a constant learning rate of 3e− 4) before continuing the fine-tuning of all
weights for an additional 48k steps (using a one-cycle cosine decay schedule). This approach miti-
gates the risk of large gradients disrupting the pre-learned weights and enhances training stability.

To accelerate training, we employ custom-implemented Triton kernels for FlashEVA, torch compile,
and mixed precision. As these optimizations can cause instabilities in larger models during the initial
stages of training due to large gradients, we conduct the first 2k steps without mixed precision or
custom Triton kernels.

We adapt the Pythia model to incorporate gated output projection in the attention layer, similar to Sun
et al. (2023) and Chen et al. (2024). To stabilize training, we clip the values and reduce the variance
of the random weights in EVA attention. Additionally, we employ RoPE positional encoding (Su
et al., 2023) during fine-tuning with FlashEVA, applied to all tokens prior to the random feature
projections. Detailed ablation studies on various model and training choices are presented in the
Appendix.

For downstream model performance evaluation, we utilize the LM evaluation harness (Gao et al.,
2024) to conduct reproducible assessments. Following prior work (Chen et al., 2024; Biderman
et al., 2023), we select six tasks: PIQA (Bisk et al., 2019), WinoGrande (Sakaguchi et al., 2019),
WSC (Sakaguchi et al., 2019), ARC-C and ARC-E (Clark et al., 2018), and LogiQA (Liu et al.,
2020). To further assess the model’s retrieval capabilities, we include two additional tasks: FDA
(Arora et al., 2023) and SWDE (Arora et al., 2024a).

To assess inference throughput, we consider a fixed prefix/prompt of 2048 tokens, similar to Gu &
Dao, with varying numbers of generated tokens ranging from 1024 to 10240. To measure maximum
throughput, we explore batch sizes up to 32. For the EVA hyperparameters inference performance
trade-off analysis, we constrain the setting to a prefix of 2048 tokens and 1024 generated tokens.

2Available at: https://github.com/Dao-AILab/flash-attention/blob/main/flash_
attn/flash_attn_triton.py

3https://huggingface.co/datasets/monology/pile-uncopyrighted

5

https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/flash_attn_triton.py
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/flash_attn_triton.py
https://huggingface.co/datasets/monology/pile-uncopyrighted

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 RESULTS

4.1 FINETUNING PERFORMANCE

Table 1: Comparison of downstream task performance for various attention mechanisms across dif-
ferent model sizes. Results show accuracy scores for six general language understanding tasks (left)
and two long-context tasks (right). Bold indicates the best performance for each model size, while
underlined values represent the second-best. FlashEVA demonstrates competitive performance with
Pythia (full attention) on general tasks while outperforming DiJiang and sliding window attention in
most cases.

Model WinoGrande PiQA WSC ARC-E ARC-C LogiQA Avg. SWDE FDA

Sliding-1B 0.520 0.632 0.590 0.419 0.233 0.267 0.444 0.182 0.126
Pythia-1B 0.521 0.610 0.590 0.407 0.253 0.272 0.442 0.635 0.579

FlashEVA-1B 0.500 0.608 0.557 0.407 0.240 0.261 0.429 0.112 0.012
DiJiang-1B 0.497 0.590 0.513 0.356 0.221 0.226 0.401 0.032 0.000

Pythia-410M 0.509 0.596 0.559 0.392 0.231 0.269 0.426 0.629 0.517
FlashEVA-410M 0.510 0.597 0.566 0.379 0.237 0.250 0.423 0.074 0.004

Sliding-410M 0.512 0.596 0.544 0.370 0.239 0.272 0.422 0.072 0.000
DiJiang-410M 0.506 0.588 0.533 0.348 0.221 0.232 0.405 0.029 0.000

FlashEVA-160M 0.512 0.582 0.510 0.347 0.225 0.251 0.405 0.060 0.001
Pythia-160M 0.493 0.570 0.532 0.331 0.210 0.281 0.403 0.152 0.247
Sliding-160M 0.499 0.558 0.514 0.320 0.225 0.277 0.399 0.021 0.043
DiJiang-160M 0.488 0.568 0.523 0.326 0.226 0.234 0.394 0.010 0.000

FlashEVA-70M 0.506 0.567 0.522 0.328 0.222 0.250 0.399 0.011 0.000
Pythia-70M 0.502 0.560 0.516 0.325 0.216 0.278 0.399 0.094 0.120

DiJiang-70M 0.506 0.558 0.512 0.325 0.217 0.238 0.393 0.001 0.000
Sliding-70M 0.497 0.544 0.491 0.309 0.216 0.250 0.384 0.026 0.005

The experimental results demonstrate that FlashEVA effectively recovers the performance of Pythia
on the majority of downstream tasks across various model sizes, ranging from 70M to 1B parame-
ters. Notably, the average performance across six downstream tasks is nearly identical to the Pythia
baseline, despite utilizing only 1.6B tokens for finetuning. Furthermore, FlashEVA consistently out-
performs DiJiang across all model sizes, suggesting that the random feature approach employed by
FlashEVA provides a more effective approximation of Softmax attention.

However, an exception is observed in retrieval-focused tasks, where the pairwise interaction facil-
itated by full Softmax attention appears to be crucial. In these tasks, while FlashEVA marginally
outperforms DiJiang, it exhibits significantly lower performance compared to both the Softmax
and sliding window attention baselines. This suboptimal performance can be attributed to the ab-
sence of a sliding window mechanism in FlashEVA’s architecture. Although we have implemented
a FlashEVA variant incorporating sliding window attention (detailed in the Appendix), it was not
employed in the current experiments due to training instabilities on larger models, likely stemming
from the custom Triton kernel implementation.

Interestingly, the sliding window attention baseline exhibits remarkably robust performance, recov-
ering a substantial portion of Softmax attention’s capabilities, with a more pronounced performance
gap in retrieval tasks (but higher than FlashEVA or DiJiang). This phenomenon may be partially
explained by the limited finetuning of 1.6B tokens, which, while sufficient for adaptation to sliding
window attention, may be suboptimal for larger models to fully leverage the FlashEVA or DiJiang
attention mechanisms. It is noteworthy that FlashEVA outperforms sliding window attention on
smaller models, with this performance differential diminishing as model size increases. Addition-
ally, the sliding window in the attention effectively expands the context window of deeper attention
layers, resulting in a more expressive model.

Bick et al. (2024) recently proposed distilling transformers into Mamba architectures. To compare
their approach with our method, we fine-tuned the Phi-1.5-1.3B model into FlashEVA and DiJiang

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

architectures. As evident from the results in Table 2, the distillation approach significantly out-
performs our fine-tuning method. However, it is important to note several key differences in the
experimental setup. Firstly, their method used twice the amount tokens for training. Secondly, their
approach leveraged multiple stages in the process and employed a specialized distillation objective,
potentially enabling more effective learning. FlashEVA’s improvements are orthogonal to the train-
ing setup employed in the training approach, so we hypothesize that combining FlashEVA with a
distillation training objective could yield competitive performance.

Table 2: Downstream task performance comparison of Phi-1.5 model variants. Results show accu-
racy percentages for various benchmarks, as well as their average.

Model WinoG. ARC-E ARC-C PiQA HellaS. Lamb. Avg.

Phi-1.5-1.3B 73.4 75.6 48.0 76.6 62.6 53.4 64.9
Phi-Mamba-1.5B 71.7 74.0 44.1 75.5 60.2 50.1 62.6
Phi-Mamba-1.5B (stage 3) 62.8 64.3 27.8 75.6 52.6 43.8 54.5
Phi-EVA 54.7 47.8 28.9 72.5 51.1 34.3 48.2
Phi-DiJiang 51.2 43.1 26.3 69.2 41.8 19.3 41.8

4.2 INFERENCE THROUGHPUT AND MEMORY USAGE

Figure 2 presents a comparative analysis of inference throughput and peak GPU memory utilization
across various attention mechanisms for different generation lengths. Despite FlashEVA’s theoretical
design incorporating a cache that scales with sequence length, our empirical observations reveal that
peak memory consumption occurs during prefix computation. In practical scenarios, FlashEVA thus
exhibits peak memory usage comparable to Sliding Window Attention, while DiJiang Attention
demonstrates the lowest memory footprint. Notably, FlashEVA achieves a significant reduction in
peak memory usage, up to 5-fold—compared to the vanilla Transformer.

Our results further indicate that FlashEVA surpasses DiJiang Attention in terms of throughput, while
marginally underperforming Sliding Window Attention. This performance differential can be at-
tributed to two factors: (1) the reduced number of sequential operations required for token compu-
tation in Sliding Window Attention, and (2) the generally memory-bound nature of inference tasks.
Nevertheless, FlashEVA demonstrates substantial throughput improvements over the vanilla Trans-
former, achieving a 2-fold increase when generating 1024 tokens and up to a 6.7-fold improvement
for 10240 token generation tasks.

2000 4000 6000 8000 10000
Tokens Generated

200

400

600

800

1000

1200

1400

1600

M
ax

 T
hr

ou
gh

pu
t

(t
ok

en
s/

s)

2000 4000 6000 8000 10000
Tokens Generated

5

10

15

20

25

30

Pe
ak

 M
em

or
y

(G
B)

Attention type
DiJiang FlashEVA Sliding window Softmax Attn.

Figure 1: Comparative analysis of maximum throughput and peak GPU memory usage across dif-
ferent attention mechanisms and generation lengths.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 FLASHEVA INFERENCE PERFORMANCE TRADEOFF

(Flash)EVA introduces two key hyperparameters that influence its performance and computational
requirements: the local attention window size and the number of keys/values compressed into a
single random feature-based token. Generally, larger local attention windows or reduced token
compression result in increased computational costs.

Our findings demonstrate that FlashEVA can substantially reduce peak memory usage while main-
taining competitive performance. Certain configurations decrease peak memory by up to 50% with
only a 0.5% reduction in average performance on downstream tasks (excluding retrieval-focused
tasks). Moreover, we observe up to a 50% increase in total inference throughput with minimal
performance degradation. It is noteworthy that configurations with larger local attention windows
exhibit superior performance on retrieval-focused tasks. However, we do not include these tasks in
the reported average accuracy, hypothesizing that hybrid models may offer a more favorable trade-
off for retrieval task performance.

Interestingly, the configuration used for our main results (local window size 256, RFA chunk size 16)
is suboptimal in terms of inference performance. Our analysis suggests that configurations (256, 8)
or (512, 8) may offer a more optimal balance between performance and computational efficiency.

550 600 650 700 750 800 850
Generation throughput [tokens/s]

39.5

40.0

40.5

41.0

41.5

42.0

42.5

Av
er

ag
e

do
w

ns
tr

ea
m

 a
cc

ur
ac

y
[%

]

6 7 8 9 10 11 12
Peak GPU memory [GB]

Figure 2: Performance trade-offs between average downstream accuracy and generation throughput
or peak GPU memory for various FlashEVA-410M configurations. Each point represents a unique
combination of local attention window size and RFA chunk size.

4.4 FLASHEVA ATTENTION SPEEDUP

We benchmark the time to run a forward and backward pass of the (Flash)EVA attention layer and
compare it to FlashAttention2 kernels. We evaluate at different sequence lengths, adjusting batch
sizes to maintain a constant total token count. FlashEVA used a local attention window of size 256
and another 128 random-feature based tokens.

Despite its theoretical promise of improved computational complexity, EVA attention encounters
challenges similar to previous linear attention implementations, where practical performance gains
fail to materialize, particularly when compared to the efficient FlashAttention implementation. Fla-
shEVA attention does achieve speedups over FlashAttention2 for longer sequences due to its lower
computational complexity, up to 2.2x on for the 16k sequence length. However, for shorter se-
quences, the overhead associated with random feature computation results in slower performance.

5 CONCLUSION

This paper presents FlashEVA, an efficient implementation of EVA attention, demonstrating its ap-
plication for addressing memory constraints in traditional Transformer models during inference.
Our experiments reveal that EVA attention enables effective fine-tuning of Transformer models with
minimal performance degradation, particularly when retaining a few attention layers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

512 1024 2048 4096 8192 16384
Sequence Length

0.0

0.1

0.2

0.3

0.4

Fo
rw

ar
d

+
B

ac
kw

ar
d

pa
ss

 ti
m

e
[s

]

0.31x

1.00x

0.41x

0.37x

1.00x

0.51x

0.46x

1.00x

0.64x

0.62x

1.00x

0.85x

0.92x

1.00x

1.28x

1.53x

1.00x

2.12x

Non-Causal Attention
EVA
FlashAttention2
FlashEVA

512 1024 2048 4096 8192 16384
Sequence Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fo
rw

ar
d

+
B

ac
kw

ar
d

pa
ss

 ti
m

e
[s

]

0.30x

1.00x

0.63x

0.34x

1.00x

0.78x

0.39x

1.00x
0.93x

0.47x

1.00x

1.13x

0.62x

1.00x

1.52x

0.93x

1.00x

2.25x

Causal Attention
EVA
FlashAttention2
FlashEVA

Figure 3: Comparison of forward and backward pass execution times for (Flash)EVA attention
layer and FlashAttention2, including both causal and non-causal attention variants. Results are
reported for a constant number of chunks C across different sequence lengths, varying chunk size
accordingly. Additional results with fixed chunk size and varying C are presented in the Appendix,
yielding qualitatively similar outcomes.

Unlike state-space models such as Mamba, EVA attention still requires maintaining a cache that
grows with sequence length, however, it is orthogonal to other KV cache compression techniques.
As the compression in EVA attention is integral to the forward pass rather than a post-hoc operation,
we anticipate high compatibility with existing KV cache compression methods, potentially leading
to further reductions in KV cache overhead. This synergistic exploration remains a promising avenue
for future work.

Our work on FlashEVA attention represents a significant advancement towards more efficient Trans-
former models, addressing critical challenges in large language model inference. By balancing
performance preservation with memory efficiency, we contribute to ongoing efforts to enhance the
accessibility and applicability of advanced language models across diverse computational environ-
ments and use cases.

REFERENCES

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-Context Language Learning: Ar-
chitectures and Algorithms, January 2024. URL http://arxiv.org/abs/2401.12973.
arXiv:2401.12973 [cs].

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trum-
mer, and Christopher Ré. Language models enable simple systems for generating structured views
of heterogeneous data lakes, 2023.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff, 2024a.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance the
recall-throughput tradeoff, February 2024b. URL http://arxiv.org/abs/2402.18668.
arXiv:2402.18668 [cs].

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Ex-
tended Long Short-Term Memory, May 2024. URL http://arxiv.org/abs/2405.
04517. arXiv:2405.04517 [cs, stat].

9

http://arxiv.org/abs/2401.12973
http://arxiv.org/abs/2402.18668
http://arxiv.org/abs/2405.04517
http://arxiv.org/abs/2405.04517

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Aviv Bick, Kevin Y. Li, Eric P. Xing, J. Zico Kolter, and Albert Gu. Transformers to SSMs: Distilling
Quadratic Knowledge to Subquadratic Models, August 2024. URL http://arxiv.org/
abs/2408.10189. arXiv:2408.10189 [cs].

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Hanting Chen, Zhicheng Liu, Xutao Wang, Yuchuan Tian, and Yunhe Wang. Dijiang: Efficient
large language models through compact kernelization, 2024. URL https://arxiv.org/
abs/2403.19928.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking Attention with Performers, November 2022. URL
http://arxiv.org/abs/2009.14794. arXiv:2009.14794 [cs, stat].

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality, May 2024. URL http://arxiv.org/abs/2405.
21060. arXiv:2405.21060 [cs].

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Soham De, Samuel L. Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, Guillaume Des-
jardins, Arnaud Doucet, David Budden, Yee Whye Teh, Razvan Pascanu, Nando De Freitas,
and Caglar Gulcehre. Griffin: Mixing Gated Linear Recurrences with Local Attention for Ef-
ficient Language Models, February 2024. URL http://arxiv.org/abs/2402.19427.
arXiv:2402.19427 [cs].

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence
model for speech recognition. 2018 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 5884–5888, 2018. URL https://api.semanticscholar.
org/CorpusID:52287921.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
Hungry Hippos: Towards Language Modeling with State Space Models, April 2023. URL http:
//arxiv.org/abs/2212.14052. arXiv:2212.14052 [cs].

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Worts-
man, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina,
Igor Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei

10

http://arxiv.org/abs/2408.10189
http://arxiv.org/abs/2408.10189
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2403.19928
https://arxiv.org/abs/2403.19928
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2009.14794
https://arxiv.org/abs/1803.05457
http://arxiv.org/abs/2405.21060
http://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
http://arxiv.org/abs/2402.19427
https://api.semanticscholar.org/CorpusID:52287921
https://api.semanticscholar.org/CorpusID:52287921
https://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2212.14052
http://arxiv.org/abs/2212.14052

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muen-
nighoff, and Ludwig Schmidt. Language models scale reliably with over-training and on down-
stream tasks, 2024. URL https://arxiv.org/abs/2403.08540.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling, 2020. URL https://arxiv.org/
abs/2101.00027.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A Compact 7B SSM Hybrid Model, May 2024. URL
http://arxiv.org/abs/2405.16712. arXiv:2405.16712 [cs].

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces.

Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, and
Yinfei Yang. Longt5: Efficient text-to-text transformer for long sequences, 2022. URL https:
//arxiv.org/abs/2112.07916.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-
Infinite: Zero-Shot Extreme Length Generalization for Large Language Models, June 2024. URL
http://arxiv.org/abs/2308.16137. arXiv:2308.16137 [cs].

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer Quality in Linear Time, June
2022. URL http://arxiv.org/abs/2202.10447. arXiv:2202.10447 [cs].

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat After Me:
Transformers are Better than State Space Models at Copying, February 2024. URL http:
//arxiv.org/abs/2402.01032. arXiv:2402.01032 [cs].

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Compressing
Prompts for Accelerated Inference of Large Language Models, December 2023. URL http:
//arxiv.org/abs/2310.05736. arXiv:2310.05736 [cs].

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and
Lili Qiu. LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios
via Prompt Compression, August 2024. URL http://arxiv.org/abs/2310.06839.
arXiv:2310.06839 [cs].

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
Weizhu Chen, and Noah A. Smith. Finetuning pretrained transformers into rnns, 2021a. URL
https://arxiv.org/abs/2103.13076.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama, Gabriel Ilharco, Nikolaos Pappas, Yi Mao,
Weizhu Chen, and Noah A. Smith. Finetuning Pretrained Transformers into RNNs, September
2021b. URL http://arxiv.org/abs/2103.13076. arXiv:2103.13076 [cs].

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention, August 2020. URL http:
//arxiv.org/abs/2006.16236. arXiv:2006.16236 [cs, stat].

11

https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
http://arxiv.org/abs/2405.16712
https://arxiv.org/abs/2112.07916
https://arxiv.org/abs/2112.07916
http://arxiv.org/abs/2308.16137
http://arxiv.org/abs/2202.10447
http://arxiv.org/abs/2402.01032
http://arxiv.org/abs/2402.01032
http://arxiv.org/abs/2310.05736
http://arxiv.org/abs/2310.05736
http://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2103.13076
http://arxiv.org/abs/2103.13076
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source
be with you!, 2023. URL https://arxiv.org/abs/2305.06161.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023a. URL https://arxiv.org/abs/2310.01889.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa:
A challenge dataset for machine reading comprehension with logical reasoning, 2020. URL
https://arxiv.org/abs/2007.08124.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache.
2023b. doi: 10.13140/RG.2.2.28167.37282. URL http://arxiv.org/abs/2402.
02750. arXiv:2402.02750 [cs].

Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving Average Equipped Gated Attention, January 2023.
URL http://arxiv.org/abs/2209.10655. arXiv:2209.10655 [cs].

Huanru Henry Mao. Fine-tuning pre-trained transformers into decaying fast weights, 2022. URL
https://arxiv.org/abs/2210.04243.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long Range Language Mod-
eling via Gated State Spaces, July 2022. URL http://arxiv.org/abs/2206.13947.
arXiv:2206.13947 [cs].

William Merrill, Jackson Petty, and Ashish Sabharwal. The Illusion of State in State-Space Models,
April 2024. URL http://arxiv.org/abs/2404.08819. arXiv:2404.08819 [cs].

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting Recurrent Neural Networks for Long Sequences, March 2023.
URL http://arxiv.org/abs/2303.06349. arXiv:2303.06349 [cs].

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen
Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden
Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang,
Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang
Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs
for the Transformer Era, December 2023. URL http://arxiv.org/abs/2305.13048.
arXiv:2305.13048 [cs].

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random Feature Attention, March 2021. URL http://arxiv.org/abs/2103.02143.
arXiv:2103.02143 [cs].

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently Scaling
Transformer Inference, November 2022. URL http://arxiv.org/abs/2211.05102.
arXiv:2211.05102 [cs].

12

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2007.08124
http://arxiv.org/abs/2402.02750
http://arxiv.org/abs/2402.02750
http://arxiv.org/abs/2209.10655
https://arxiv.org/abs/2210.04243
http://arxiv.org/abs/2206.13947
http://arxiv.org/abs/2404.08819
http://arxiv.org/abs/2303.06349
http://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2103.02143
http://arxiv.org/abs/2211.05102

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosFormer: Rethinking Softmax in Attention, February 2022. URL
http://arxiv.org/abs/2202.08791. arXiv:2202.08791 [cs].

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. TransNormerLLM: A Faster and Better Large
Language Model with Improved TransNormer, January 2024a. URL http://arxiv.org/
abs/2307.14995. arXiv:2307.14995 [cs].

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
HGRN2: Gated Linear RNNs with State Expansion, April 2024b. URL http://arxiv.org/
abs/2404.07904. arXiv:2404.07904 [cs].

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Neural
Information Processing Systems, 2007. URL https://api.semanticscholar.org/
CorpusID:877929.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.
URL https://arxiv.org/abs/2308.12950.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, and Omer Levy. Scrolls: Standardized comparison over long lan-
guage sequences, 2022. URL https://arxiv.org/abs/2201.03533.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive Network: A Successor to Transformer for Large Language Models, July
2023. URL http://arxiv.org/abs/2307.08621. arXiv:2307.08621 [cs].

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Al-
bert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika
Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An Empirical Study
of Mamba-based Language Models, June 2024. URL http://arxiv.org/abs/2406.
07887. arXiv:2406.07887 [cs].

Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M. Rush. Pretraining Without Atten-
tion, May 2023. URL http://arxiv.org/abs/2212.10544. arXiv:2212.10544 [cs].

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, and Tri Dao. The Mamba in the
Llama: Distilling and Accelerating Hybrid Models, August 2024. URL http://arxiv.org/
abs/2408.15237. arXiv:2408.15237 [cs].

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao.
Learning deep transformer models for machine translation, 2019. URL https://arxiv.
org/abs/1906.01787.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting, 2024. URL
https://arxiv.org/abs/2402.10200.

13

http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/2307.14995
http://arxiv.org/abs/2307.14995
http://arxiv.org/abs/2404.07904
http://arxiv.org/abs/2404.07904
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:877929
https://api.semanticscholar.org/CorpusID:877929
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2201.03533
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2307.08621
http://arxiv.org/abs/2406.07887
http://arxiv.org/abs/2406.07887
http://arxiv.org/abs/2212.10544
http://arxiv.org/abs/2408.15237
http://arxiv.org/abs/2408.15237
https://arxiv.org/abs/1906.01787
https://arxiv.org/abs/1906.01787
https://arxiv.org/abs/2402.10200

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. RNNs are not Transformers (Yet): The Key Bot-
tleneck on In-context Retrieval, February 2024. URL http://arxiv.org/abs/2402.
18510. arXiv:2402.18510 [cs, stat].

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024a. URL https://arxiv.org/abs/2405.15793.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated Linear Attention
Transformers with Hardware-Efficient Training, December 2023. URL http://arxiv.org/
abs/2312.06635. arXiv:2312.06635 [cs].

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing Linear Trans-
formers with the Delta Rule over Sequence Length, June 2024b. URL http://arxiv.org/
abs/2406.06484. arXiv:2406.06484 [cs].

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023a.
URL https://arxiv.org/abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie.
WKVQuant: Quantizing Weight and Key/Value Cache for Large Language Models Gains More,
February 2024. URL http://arxiv.org/abs/2402.12065. arXiv:2402.12065 [cs].

Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya Golatkar, Yantao Shen, Benjamin Bow-
man, Matthew Trager, Alessandro Achille, and Stefano Soatto. B’MOJO: Hybrid State Space
Realizations of Foundation Models with Eidetic and Fading Memory, July 2024. URL http:
//arxiv.org/abs/2407.06324. arXiv:2407.06324 [cs].

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The Hedgehog & the
Porcupine: Expressive Linear Attentions with Softmax Mimicry, February 2024. URL http:
//arxiv.org/abs/2402.04347. arXiv:2402.04347 [cs].

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H$ 2$O:
Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, December
2023. URL http://arxiv.org/abs/2306.14048. arXiv:2306.14048 [cs].

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit Quantization for Efficient
and Accurate LLM Serving, April 2024. URL http://arxiv.org/abs/2310.19102.
arXiv:2310.19102 [cs].

Lin Zheng, Chong Wang, and Lingpeng Kong. Linear Complexity Randomized Self-attention Mech-
anism, June 2022. URL http://arxiv.org/abs/2204.04667. arXiv:2204.04667 [cs].

Lin Zheng, Jianbo Yuan, Chong Wang, and Lingpeng Kong. Efficient Attention via Control Variates,
February 2023. URL http://arxiv.org/abs/2302.04542. arXiv:2302.04542 [cs].

14

http://arxiv.org/abs/2402.18510
http://arxiv.org/abs/2402.18510
https://arxiv.org/abs/2405.15793
http://arxiv.org/abs/2312.06635
http://arxiv.org/abs/2312.06635
http://arxiv.org/abs/2406.06484
http://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2402.12065
http://arxiv.org/abs/2407.06324
http://arxiv.org/abs/2407.06324
http://arxiv.org/abs/2402.04347
http://arxiv.org/abs/2402.04347
http://arxiv.org/abs/2306.14048
http://arxiv.org/abs/2310.19102
http://arxiv.org/abs/2204.04667
http://arxiv.org/abs/2302.04542

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

Linear transformers Linear transformers were introduced by (Katharopoulos et al., 2020) where
they also showed their formulation as RNNs. Following works Peng et al. (2021); Zheng et al.
(2022); Qin et al. (2022); Choromanski et al. (2022), focused on improving the features maps used
in linear transformers to close the gap to Vanilla transformer. Subsequent works added also architec-
tural improvements, such as output gating of the attention Qin et al. (2024a); Sun et al. (2023); Hua
et al. (2022), and (learned) decay of the hidden state Yang et al. (2023); Ma et al. (2023); Peng et al.
(2023). Despite closing the performance gap to transformers on most tasks, there are still funda-
mental limitations of linear transformers, especially when it comes to retrieval tasks and in context
learning (Arora et al., 2024b; Merrill et al., 2024; Akyürek et al., 2024). Finally, (Dao & Gu, 2024)
also showed that there exists a connection between linear transformers and specific subset of SSM
models.

State Space Models Deep State Space Models were introduced as an efficient architecture to model
long sequences. S4, DSS showed promising results on long range synthetic tasks. Later models such
as GSS (Mehta et al., 2022), BiGS (Wang et al., 2023), and H3 (Fu et al., 2023) introduced gating as
a way to increase the expressivity of the model (i.e. increase the interactivity between tokens). The
newest generation of models (Mamba (Gu & Dao), GLA Yang et al. (2023), DeltaNet (Yang et al.,
2024b), HGRNN (Qin et al., 2024b), xLSTM(Beck et al., 2024)) introduce input dependent SSM
parameters, which does not allow the SSM to be expressed as a convolution over the input, however,
it can still be computed efficiently with parallel scan. These models are achieving comparable
performance to Transformers on language modeling tasks, and crucially, have significantly higher
throughput, thanks to the fact, that they do not require to store the full past context on inference, but
rather only the hidden state.

Hybrid Models Currently, the biggest gap in performance between SSMs/Linear transformer mod-
els and Transformer models is the performance on (in context) retrieval tasks (Wen et al., 2024;
Jelassi et al., 2024). Consequently, many of the recent models propose to use a combination of
attention and recurrent layers in the same model Zancato et al. (2024). Griffin (De et al., 2024)
uses a combination of Linear Recurrent Units (Orvieto et al., 2023) with sliding window attention
layers, matching the performance of Llama-2, while achieving lower latency and higher throughput
on inference in models of size up to 14B parameters. Similarly, Dao & Gu (2024); Waleffe et al.
(2024); Glorioso et al. (2024) use a combination of Mamba layers and Attention layers to achieve
same or better performance than transformer based baselines.

Distilling transformers into RNNs This idea has been initially investigated by Kasai et al. (2021b),
where they replaced the Sofmax in the attention with learnable feature maps for the queries and keys,
composed of a one layer MLP with ReLU activation and then finetuned the pretrained transformer
model. They obtained substantial memory savings and inference speedup, however, the performance
lagged the pretrained transformer performance on language modelling and machine translation tasks.
(Zhang et al., 2024) improved on this by finetuning the transformer into a linearized transformers,
where an additional loss terms is used to match the linearized attention to the softmax attention.
However, this method required having access to teh full attention matrix of the base transformer
during training, which is computationally expensive. Instead, recent works (Bick et al., 2024; Wang
et al., 2024) apply more involved distillation methods to distill Transformers into (hybrid) Mamba
based models with as few as 3B tokens. They show competitive performance to Transformer on
downstream tasks on models up to 7B parameters.

KV cache compression The autoregressive nature of language models requires storing the full past
context to produce the next new token. To speed up inference, caching key-value states (KV-Cache)
in memory is a simple yet effective technique Pope et al. (2022), however, this necessitates a large
amount of memory. Consequently, there are several lines of research that looked into compress-
ing KV cache. Quantization based techniques Zhao et al. (2024); Yue et al. (2024); Zhang et al.
(2023); Liu et al. (2023b) aim to reduce the memory footprint needed by each token in the cache.
Eviction based techniques seek ways to keep only a subset of tokens in the KV cache without sac-
rificing model performance significantly Jiang et al. (2024; 2023); Han et al. (2024). Additionally,
some works looked at compressing the cache via low rank projection of the tokens. Unlike these
approaches, our method compresses the cache through summarizing chunks of tokens into single
tokens as part of the attention mechanism itself.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ABLATIONS

B.1 EVA LOCAL WINDOW ATTENTION VARIANTS

While the original EVA implementation employs local attention with potentially overlapping win-
dows, recent approaches favor sliding window attention due to its ability to extend the model’s
effective context window with depth. Our Triton kernel implementations support both variants,
prompting a comparative analysis of their performance.

We finetuned the Pythia-70M checkpoint on the Pile dataset for 50k steps, utilizing a learning rate
of 3e−4 with a one-cycle cosine decay schedule and 1000 steps of warmup. The AdamW optimizer
was employed with parameters (0.9, 0.95) and a weight decay of 0.1. The total batch size was set to
16, with a sequence length of 2048.

0 10000 20000 30000 40000 50000
Global Step

4

6

8

10

12

14

16

Tr
ai

n
Lo

ss

Local attention
Sliding Window attention

0 10000 20000 30000 40000 50000
Global Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

ie
nt

 N
or

m

Local attention
Sliding Window attention

45000 46000 47000 48000 49000 50000

3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16

Figure 4: Comparison of training loss and gradient norm during finetuning of CausalEVA with local
attention and sliding window attention. The sliding window variant achieves marginally lower loss
for the 70M model, but exhibits more unstable gradients with frequent large spikes in norm. The
local attention variant demonstrates occasional loss spikes, potentially attributable to the random
weight sampling in EVA attention.

B.2 IMPACT OF RANDOM FEATURE SAMPLING DISTRIBUTION

While Zheng et al. (2023) employ a standard normal distribution centered around the µc vector
for each group as the proposal distribution for random features, we observed that this approach
leads to instabilities during the training of larger models. To mitigate this issue and stabilize the
training process, we introduce a clipping and downscaling mechanism for the distribution width.
This modification results in smoother training trajectories with fewer spikes. We define the modified
sampling distribution qc(ω) as:

qc(ω) := λ · clip[−1,1] (N (ω;µc, I)) (14)

where λ = 0.1 is the scaling parameter, and clip[−1,1](·) denotes the clipping operation that con-
strains values to the interval [−1, 1]. Figure 5 illustrates the effectiveness of our proposed sampling
method by comparing the training loss trajectories of models initialized with clipped and unclipped
weight distributions.

B.3 WARMING UP NEW WEIGHTS BEFORE FINETUNING

During the transition from a standard transformer to a linearized variant, we observed that while the
MLP is directly transferable, the attention layer undergoes significant changes. This discrepancy can
lead to large gradients, potentially pushing weights away from their learned optima and, in larger
models, causing numerical instabilities manifesting as NaN values during training. To mitigate these
issues, we investigated various strategies for warming up the new weights utilized by FlashEVA or
DiJiang attention mechanisms.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
Global Step

4

6

8

10

Tr
ai

n
Lo

ss

clip[1, 1]((; c, I))
(; c, I)

45000 46000 47000 48000 49000 50000
3.06

3.08

3.10

3.12

3.14

3.16

3.18

Clip
No clip

Figure 5: Comparison of training loss trajectories for models initialized with clipped and unclipped
weight distributions, demonstrating the stabilizing effect of our proposed sampling method.

We conducted experiments using the 70M Pythia model with CausalEVA attention, employing ran-
dom weight clipping as defined in Equation equation 14. Our warmup protocol consisted of 2000
steps with a ’warmup and constant’ learning rate schedule, followed by 48k steps using the config-
uration from our main experiments. Similar outcomes were observed for DiJiang finetuning, hence
we omit those results for brevity. Based on these findings, we adopted the practice of warming up
attention layer weights with full precision for experiments involving larger model sizes. Figure 6

0 10000 20000 30000 40000 50000
Global Step

4

6

8

10

12

Tr
ai

n
Lo

ss

FP32 training, no warmup
AMP training, no warmup
New weights warmup (FP32)
Attn layer warmup (FP32)
All weights warmup (FP32)

0 10000 20000 30000 40000 50000
Global Step

0

2

4

6

8

10

Gr
ad

ie
nt

 N
or

m

AMP training, no warmup
New weights warmup (FP32)
Attn layer warmup (FP32)

Figure 6: Comparison of training loss stability and gradient norms across different training strate-
gies. Warming up attention layers prior to finetuning yields the most stable training and minimizes
gradient norm spikes, informing our approach for larger-scale model experiments.

illustrates the comparative stability of training loss across various training configurations. We also
present gradient norm trajectories for three key options, as their training curves exhibit notable simi-
larities. The results demonstrate that warming up attention layers before proceeding with finetuning
leads to the most stable training process and minimizes gradient norm fluctuations. Consequently,
we adopted this approach for our experiments with larger model architectures.

B.4 FINETUNING DURATION

Recent work by Bick et al. (2024) demonstrated effective performance when distilling a trans-
former into a Mamba model using 3B tokens for finetuning. Motivated by this, we investigate
the impact of finetuning duration on FlashEVA’s performance. We finetune the Pythia 70M model

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

using consistent training setups and hyperparameters across experiments, varying the total steps:
[50k, 100k, 200k, 350k, 500k]. We evaluate the minimum training loss achieved and the average
accuracy on the downstream tasks (excluding retrieval focused tasks).

100000 200000 300000 400000 500000
Total finetuning steps

2.8

3.0

3.2

3.4

3.6

M
in

. t
ra

in
in

g
lo

ss

DiJiang
FlashEVA
Pythia
Sliding window

100000 200000 300000 400000 500000
Total finetuning steps

39.0

39.5

40.0

40.5

41.0

Av
er

ag
e

do
w

ns
tr

ea
m

 ta
sk

 a
cc

ur
ac

y
[%

]

DiJiang
FlashEVA
Pythia
Sliding window

Figure 7: Comparison of minimal training loss and average downstream task performance across
varying finetuning durations. While extended finetuning leads to continued decrease in training
loss, downstream performance remains relatively stable, suggesting limited benefits from prolonged
training.

Our results, illustrated in Figure 7, reveal that downstream performance remains relatively consis-
tent across all tested finetuning durations, with variations falling within the range of random seed
fluctuations. Consequently, we conduct our main experiments using 50k steps, corresponding to
approximately 1.6B tokens.

C ADDITIONAL RESULTS

C.1 EVA KERNEL SPEEDUP

For the attention layer speed comparison, we consider sequence lengths
[512, 1024, 2048, 4096, 8192, 16384], and we vary the batch size B = 16384Bmin

L , where L
is the sequence length and Bmin is the minimum batch size at the longest sequence length. We
considered Bmin ∈ [1, 2, 4, 8], and report the results for Bmin = 8 (however, the results are
qualitatively the same, only the exact speedup values differ slightly)

We report here also the results for the attention layer speedup for the setting where the size of the
chunk that is used to compute the local control variates is kept fixed as the sequence length is varied.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

512 1024 2048 4096 8192 16384
Sequence Length

0.0

0.1

0.2

0.3

0.4

Fo
rw

ar
d

+
B

ac
kw

ar
d

pa
ss

 ti
m

e
[s

]

0.31x

1.00x

0.41x

0.37x

1.00x

0.51x

0.46x

1.00x

0.64x

0.62x

1.00x

0.85x

0.92x

1.00x

1.28x

1.53x

1.00x

2.11x

Non-Causal Attention
EVA
FlashAttention2
FlashEVA

512 1024 2048 4096 8192 16384
Sequence Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Fo

rw
ar

d
+

B
ac

kw
ar

d
pa

ss
 ti

m
e

[s
]

0.30x

1.00x

0.62x

0.34x

1.00x

0.78x

0.39x

1.00x
0.93x

0.47x

1.00x

1.14x

0.62x

1.00x

1.52x

0.93x

1.00x

2.25x

Causal Attention
EVA
FlashAttention2
FlashEVA

Figure 8: Time to run the forward and backward pass of the (Flash)EVA attention layer compared
to FlashAttention2 for the setting where the chunk size is kept constant.

19

	Introduction
	Background
	Softmax Attention
	Random Feature Attention
	Randomized Attention

	EVA Attention
	FlashEVA

	Experimental setup
	Results
	Finetuning Performance
	Inference throughput and Memory usage
	FlashEVA inference performance tradeoff
	FlashEVA Attention speedup

	Conclusion
	Related Work
	Ablations
	EVA Local Window Attention Variants
	Impact of random feature sampling distribution
	Warming up new weights before finetuning
	Finetuning Duration

	Additional results
	EVA kernel speedup

