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Abstract

Inspired by recent work on learning with distribution shift, we give a general
outlier removal algorithm called iterative polynomial filtering and show a number
of striking applications for supervised learning with contamination: (1) We show
that any function class that can be approximated by low-degree polynomials with
respect to a hypercontractive distribution can be efficiently learned under bounded
contamination (also known as nasty noise). This is a surprising resolution to
a longstanding gap between the complexity of agnostic learning and learning
with contamination, as it was widely believed that low-degree approximators only
implied tolerance to label noise. (2) For any function class that admits the (stronger)
notion of sandwiching approximators, we obtain near-optimal learning guarantees
even with respect to heavy additive contamination, where far more than 1/2 of the
training set may be added adversarially. Prior related work held only for regression
and in a list-decodable setting. (3) We obtain the first efficient algorithms for
tolerant testable learning of functions of halfspaces with respect to any fixed log-
concave distribution. Even the non-tolerant case for a single halfspace in this
setting had remained open. These results significantly advance our understanding
of efficient supervised learning under contamination, a setting that has been much
less studied than its unsupervised counterpart.

1 Introduction

Dataset curation is a fundamental part of the training pipeline of modern machine learning models and
often appears to be the bottleneck in obtaining models with improved performance [SKL17, LRB*21,
BGMMS21, GIFT23]. One way to theoretically model this problem is to assume that the learner has
access to a—potentially heavily—contaminated dataset and the goal is to learn a model that performs
well on some clean underlying target distribution. While there has been tremendous recent progress
for unsupervised learning with contamination [HM13, CSV17, KS17a, KS17b, BDLS17, DKS18b,
HL18, CDG19, RY20, BDHT20, CMY20, BK21, IK22, ZS22, DKK*22a, DHPT24], relatively
little is known for supervised learning with contamination, especially for binary classification.

Many efficient algorithms with strong error guarantees have been developed for agnostic learning, a
special case of contamination where only the labels are adversarially corrupted [KKMS08, KOSO0S,
BOW10, ABL17, DKS18a, DKTZ20b, DKK122b]. Most of these guarantees, however, had seemed
difficult to extend to the more challenging setting of contamination, where both labels and covariates
can be adversarially corrupted. In this paper—building on recent work on robust learning and learning
with distribution shift [DKS18a, GSSV24, KSV24c]—we give a general iterative polynomial filtering
procedure that greatly expands the set of known positive results for learning binary classifiers from
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contaminated datasets (see Tables 1, 2, and 4). In particular, we obtain the surprising conclusion that
all known near-optimal error guarantees for agnostic learning (that can be achieved efficiently) can
indeed be extended to the setting of contamination.

Learning with Bounded Contamination. The earliest works that explored learnability beyond label
noise date back more than 30 years ago [Val85, KL93]. Since then, the problem has been studied
in the context of learning with malicious [Val85, K193, KLS09, She25] and nasty [BEK02, ABL17,
DKS18a, GSSV24, KSV24c] noise. Here we focus on the harshest among these noise models, nasty
noise, which we call bounded contamination (defined below), in line with recent work in robust
learning (see [DK23, KSV24c]). In this model, the adversary is allowed to replace an arbitrarily
chosen but bounded fraction of a clean dataset with arbitrary labeled datapoints.

Definition 1.1 (Bounded Contamination (BC)). Let D be some distribution over X, n € (0,1) and
f: X — {£1}. We say that a set of samples Siy, is generated by (D, f) with bounded contamination
of rate 1 if it is generated as follows for some M > 1.

1. First, a set Sy, of M i.i.d. examples of the form (X, f(x)), where x ~ D, is drawn.

2. Then, an adversary receives Sen, chooses at most nM labeled examples in S’dn and
substitutes them with an equal number of arbitrary labeled examples S,y to form Sinp.

The learner receives a dataset with bounded contamination, and the goal is to output a classifier that
enjoys information-theoretically optimal error guarantees on the clean underlying target distribution.
Achieving an error better than twice the contamination rate is, in general, impossible [BEKO02].

Definition 1.2 (BC-Learning). An algorithm A is a BC-learner for C C {X — {£1}} if on input
(€,6, Sinp), where €, € (0,1), and Siyp, is generated by (D, f) with bounded contamination 1 for
some distribution D over X, some f € C andn € [0,1), the algorithm A outputs some hypothesis
h: X — {£1} such that with probability at least 1 — § over the clean examples in Sinp, and the

randomness of A:
P () £ Bl <20+ ¢

The sample complexity of A is the minimum number of examples required to achieve the above
guarantee. Moreover, a distribution-specific BC-learner with respect to some distribution D* over X
is a BC-learner that is guaranteed to work only when D = D*.

Most of the computationally efficient algorithms for learning with bounded contamination provide
suboptimal error guarantees and apply only to special concept classes [KLS09, ABL17, DKS18a].
Nevertheless, a recent line of works inspired by advances in learning with distribution shift [GKKM?20,
KSV24b, GSSV24] has given efficient algorithms with near-optimal guarantees for concept classes
that admit sandwiching polynomial approximators [GSSV24, KSV24c]. In contrast, for agnostic
learning (i.e., adversarial label noise), it is well known that the weaker notion of (non-sandwiching)
approximating polynomials is sufficient [KKMSO08], and there is strong evidence of its necessity
[DSFT* 14, DKPZ21].

Therefore, the following question naturally arises: does the existence of low-degree approximating
polynomials imply efficient learnability even with respect to bounded contamination?

In Theorem 4.2, we give a positive answer to this question, thereby resolving a longstanding gap
between the complexity of learning with bounded contamination and with adversarial label noise.
This is particularly important as it implies exponential improvements for BC-learning of fundamental
concept classes like intersections of halfspaces, monotone functions, and convex sets (see Table 2).

Learning with Heavy Contamination. Perhaps surprisingly, to our knowledge, binary classification
beyond bounded contamination is completely unexplored. In contrast, there is a substantial body of
work for learning from datasets where only a small proportion comes from the clean distribution in
unsupervised settings [CSV 17, DKS18b, RY20, BK21, IK22, ZS22, DHPT24] and linear regression
[RY20, KKK19, DHPT24]. These works typically provide list-decodable guarantees (i.e., multiple
candidate hypotheses) or require access to a small trusted clean sample. Here, we define a new model
for learning binary classifiers with heavy additive contamination that outputs a single hypothesis
with a strong error guarantee under the clean distribution. Our model is inspired by recent work on
regression (a basic supervised learning task) in additive semi-random models [JLM ™23, KLL"23].

>We use the notation S to denote a labeled dataset and distinguish it from its unlabeled counterpart S.



Definition 1.3 (Heavily Contaminated (HC) Datasets). Let D be some distribution over X x {£1}
(we think of D as the clean or uncorrupted distribution). We say that a set of samples Siny, is generated
by D with Q-heavy contamination if it is generated as follows for some m < M with M/m < Q.

1. First, a set Scy, of m i.i.d. labeled examples from D is drawn.
2. Then, an adversary receives Se, and adds M — m arbitrary labeled examples to form S'inp.

The heavy contamination model only allows the adversary to add points, since removing an arbitrary
fraction of the clean samples would correspond to learning with truncation [DGTZ18, DGTZ19,
KZZ724], which is beyond the scope of this work (see also Remark G.2). Another difference between
Definition 1.1 and Definition 1.3 is that in the HC model, clean labels need not be realized by some
function in the given concept class. We instead consider the following quantity

Pt =min —— S 1y £ f(x)}, (L)

C 7.
FEC | Smpl (x,9) € Sinp

which is the minimum error achievable by the concept class C on the whole (contaminated) input
dataset Siyp (including the misclassification errors on the clean samples). The error benchmark we
consider is a rescaling of opt,,;, proportional to the heavy contamination ratio ().

Definition 1.4 (HC-Learning). An algorithm A is an HC-learner for C C {X — {*1}} if on
input (€,6,Q, Sinp), where €,6 € (0,1), Q > 1 and Siyy, is a Q-heavily contaminated set of labeled
examples generated by distribution D (as described in Definition 1.3), the algorithm A outputs some
hypothesis h : X — {£1} such that with probability at least 1 — § over the clean examples in Sinp,
and the randomness of A:

Wy # X)) Q0P+ € where opty iy i given by Eg. (1.1)

x,y)~
The (clean) sample complexity of A is the minimum number of clean examples Sinp needs to contain
in order to achieve the above guarantee. Moreover, a distribution-specific HC-learner with respect to
D* is an HC-learner that is guaranteed to work only when the marginal of D on X is D = D*.

We show that the dependence on Q(Q - opt,;) is, in fact, necessary, even if the clean labels are
realized by the learned class C. The quantity @) - opt,,,; equals the number of errors |Sinp| - Optiotal
of the optimal classifier on the input set Si,;, divided by the size of the clean dataset. Our lower
bound essentially shows the existence of a contamination strategy that forces any HC learner to pay
for all the mistakes of the optimal classifier on Si,p,, even if these are not made on the clean dataset.
This is possible as the learner does not know which subset of Siy, is clean. In the following, we let
OPteiean = Mingec Py ) ply # f(x)] be the optimum error under the clean distribution.

Proposition 1.5 (Informal, see Propositions B.2 and B.3). Let C be any non-trivial class. Then, no
HC-learner for C can guarantee error better than % - @ - Optyoia1 €ven when the clean distribution
= 0. Moreover, if |X| < oo, then no HC-learner for C, = {+1}* can
=0.

is realizable, i.e., opt ean

guarantee error better than () - 0pt, g, even when opt .y

Naturally, one might wonder whether the existence of approximating polynomials is sufficient for HC-
learning. In Theorem E.2 we give a negative answer to this question, by providing a lower bound on the
sample complexity of HC-learning of monotone functions, which admits low-degree approximators.
A recent line of works has used the stronger notion of sandwiching approximators to provide efficient
algorithms for various challenging learning tasks [GKK23, KSV24b, GSSV24, CKK*24b, KSV24c].
Here, we expand on this paradigm and show that the existence of low-degree sandwiching polynomials
implies efficient HC-learning as well (Theorem 4.4).

1.1 Our Results

Learning from Contaminated Datasets. In Table 1, we present an overview of the upper bounds we
obtain as applications of our main theorems on learning with contamination (Theorems 4.2 and 4.4).
For comparison, we also provide the corresponding results on learning with label noise from prior
work. For the case of bounded contamination, and for constant error and confidence parameters
(¢, §), our results match the best known bounds for learning with label noise, since in both cases, the
existence of low-degree polynomial approximators is sufficient. See Tables 2 and 4 for further details.
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Concept Class Nil;fl :%fltal Label Noise Contamin. Contamin.
8 (Prior work) (This work) (This work)
Intersections of O(log k) O(log k) O (k)
k Halfspaces N(0,1a) e dre d
Depth-t, Size-d . d Ollog d)t—1 O(log d)* ! O(log d)°®)
Boolean Circuits Unif{£1} dotosd e e
Degree-k PTFs N(0,1,) dO**) dO**) dOx(1)
Monotone Unif{+1}¢ 20(Vd) 20(Va) 29(d)

Functions

Table 1: Bounds on the time complexity of learning under different noise models up to excess error
€ = 0.1 and failure probability 6 = 0.01. Except for the lower bound for monotone functions under
heavy contamination, all remaining entries correspond to upper bounds. See Appendix D for more
details on the complexity of learning with adversarial label noise.

All of our results work in the distribution-specific setting. Distributional assumptions are unavoidable,
as there is strong evidence that distribution-free learning of even the simplest classes (e.g., linear
classifiers) in the presence of noise is computationally hard [FGKP06, Dan16]. Although we present
our results for specific standard target marginal distributions, our results hold for any hypercontractive
(Definition 3.1) marginal D* that can be sampled efficiently, as long as the degree of approxima-
tion (resp. sandwiching for HC-learning) of the learned class is low under D*. Hypercontractive
distributions are an extremely wide class of probability distributions, which includes Gaussians, all
log-concave distributions over R?, as well as product distributions over {#+1}%. See Appendix C for
an overview of relevant results in approximation theory.

On the lower bound side, we show that learning monotone functions with heavy contamination
requires exponentially many samples, thereby separating bounded and heavy contamination. For a
more thorough discussion on lower bounds for learning with contamination, see Appendix E.°

Testable Learning. A recent line of works in learning theory has focused on providing learning
algorithms that can verify their distributional assumptions [RV23, GKK23, GKSV23, DKK*23,
GKSV24, STW24, GSSV24]. These algorithms are allowed to either accept and output a classifier
with certified optimal performance, or detect a violation of their target distributional assumptions and
reject. Here, we provide improved results for a tolerant version of this problem where the algorithm
has to accept even if the input distribution is close to the target distribution. Tolerant testable learning
was first studied in [GSSV24] (see Definition H.1).

In Theorem H.2, we show that the existence of low-degree sandwiching polynomials implies efficient
tolerant testable learning. Previously, [GSSV24] required the existence of low-degree L£o-sandwiching
polynomials, which is a stronger assumption. Moreover, all of the previous results in testable
learning—even the non-tolerant variants—required that the sandwiching polynomials have bounded
coefficients. Here, we do not impose such a requirement and obtain the first testable learning
results for functions of halfspaces with respect to any fixed log-concave distribution. All prior work
either gave worse error guarantees [GKSV24, GKSV23], or required target marginals with strictly
sub-exponential tails [GKK?23]. See Appendix H for more details.

1.2 Our Techniques

Iterative Polynomial Filtering. All of our results use the same iterative polynomial filtering
algorithm of Theorem 3.2 with appropriate hyperparameter choices. The algorithm receives a set Sinp
of data points and filters it, outputting a subset Sg; of Sinp that satisfies the following two conditions.
First, any low-degree polynomial p whose absolute expectation E[|p(x)|] over the pre-specified target

5We note that although learning with bounded contamination is clearly more challenging than learning
with adversarial label noise, many of the known lower bounds for agnostic learning do not transfer directly to
BC-learning as formalized in Definition 1.1 for technical reasons. See Appendix E for a way to circumvent this.



distribution D* is small, will also have bounded average over Sgy, i.e. ﬁ Y e Sy, P(X) is small.

Second, if Sj,p, contains a set of points .S that were initially generated independently by D*, then only
a limited number of points from .S can be removed by the filtering (the allowed number of removed
points is controlled by an appropriate hyperparameter).

Our algorithm is a refined version of bounded-degree outlier removal procedures from robust learning
and learning with distribution shift [DKS18a, DKK ™19, GSSV24, KSV24c]. The general principle
behind these algorithms is that one can iteratively find polynomials that violate the desired condition
over the input set and use them to filter the input points. In particular, the algorithm removes the points
that give such polynomials values larger than a threshold. By choosing this threshold appropriately,
one can control the proportion of removed points that lie in the clean set S in each step.

Prior work only gave guarantees for squared polynomials [DKS18a, GSSV24] and for non-negative
polynomials [KSV24c]. Here, we give a filtering algorithm that preserves the expectation of any
polynomial, as long as its absolute expectation is small with respect to the target distribution.
This is crucial for our application in BC-learning. Moreover, our filtering procedure works for
any hypercontractive target distribution D*, which is also true for [DKS18a, GSSV24] but not for
[KSV24c], which only works for the uniform distribution over the hypercube.

Learning with Bounded Contamination. Our algorithm follows a two-phase approach: (1) Run
our outlier-removal algorithm, and obtain a filtered subset Sgy;. (2) Following an approach similar to
[KKMSO08], construct a predictor based on the polynomial p with smallest £; error on Sg);. We now
give a sketch of the analysis of this algorithm and explain how an error of O(7 + €) can be guaranteed.
(The optimal dependence of 27 + € is obtained by carefully refining the analysis below.)

What would happen if we ran the phase (2) without filtering the dataset beforehand? As shown in
[KKMSO08], this approach works in the agnostic setting, i.e. when an adversary can corrupt only
the labels but not the examples. A key observation in [KKMSO08] is that if p* is an e-approximating
polynomial for the ground truth f*, then after 7 fraction of data labels are corrupted, the polynomial
p* will have an L -error of only at most 77 4+ €. However, in the more challenging setting of learning
with contamination over R?, even a single corrupted data-point can cause the £;-error of p* to be
arbitrarily large. The reason is that any non-zero polynomial over R? will be arbitrarily large in
absolute value when evaluated at inputs x far enough from the origin.

Hence, the first phase of our algorithm aims to filter out such bad input datapoints. The following
basic observation is key to our approach: if p* is an e*-approximator in £ norm for a {+1}-valued
function f*, then the average Ex.p-[|(p*(x))? — 1]] is at most O(€?). This observation, together
with our filtering guarantee, ensures that the average Ex~s,,, [(p*(x))? — 1] is likewise bounded by
O(e) while removing almost exclusively outliers.

Yet, the set Sg1; might still contain many outliers. We show that the condition Ex.s,,, [(p*(x))?—1] <
O(€) implies that the remaining outliers are not dangerous when it comes to phase (2) of our algorithm.
Indeed, this condition tells us that the number of remaining outliers x in Sg); with [p*(x)| > 7 is at
most O(|Sg1¢|e/72). Taking 7 = 2, we see that the total contribution to the £; error of p* on Sgj;
of outliers x with |p*(x)| > 2 is O(e). The remaining outliers contribute at most O(#) to this error,
since there are at most O(n) of such outliers and each satisfies [p*(x)| < 2.

Overall, we see that the £, error of p* on Sgy is at most O(n + €), and therefore the polynomial
p found in phase 2 of our algorithm will also have an £; error of at most O(n + €) on Sgy;. Since
phase (1) only removed at most O(e) clean datapoints, we conclude that the £; error of p on the
clean dataset Scy, is likewise O(7 + €), which we use to bound the out-of-distribution error of p.

Learning with Heavy Contamination. Our heavy contamination algorithm follows the same
structure as the one for bounded contamination: we first run the iterative filtering algorithm and
then run £; polynomial regression on the filtered dataset. This time, however, we choose the
hyperparameters of the iterative filtering algorithm so that the proportion of removed points that
are clean is inversely proportional to the heavy contamination ratio (). In this way, we make sure
to remove only a small fraction of the clean points. To conclude the proof, we use the notion of
sandwiching polynomials. In particular, if f* € C is the optimum classifier on the input dataset,
and Pup, Pdown are two low-degree polynomials such that (1) pyp(x) > f*(X) > Pdown(x) for
all x and (2) Exp+ [pup(X) — Pdown(X)] < O(€?/Q), then the filtering process guarantees that
Ex~ S [Pup (X) — Pdown (X)] scales proportionally to e. Overall, this implies that pyown has low
L1-error under Sg), and that £, -polynomial regression achieves near-optimal error guarantees.



1.3 Related Work

Supervised Learning with Noise. The majority of existing works on robust supervised learning
focus on label noise. In order to obtain efficient algorithms, it is standard and often necessary to
make assumptions on the marginal distribution [Danl16, DK22, DKMR22], although there have
been recent attempts to relax those assumptions [CKK™24a]. Even under common distributional
assumptions, the best possible error guarantees often require exponential dependence on the excess
error parameter € [DSFT+ 14, DKPZ21]. A line of works was focused on providing faster learning
algorithms for some classes at the expense of relaxed error guarantees [ABL17, DKS18a, DKTZ20b]
or under restricted noise models [DKTZ20a, DKK22b]. We consider the more challenging scenario
of learning with contamination, where there is noise on both the input examples and their labels.
Before this work, efficient algorithms for learning with bounded contamination up to optimal error
were known only for classes with low sandwiching degree [GSSV24, KSV24c], and nothing was
known about classification under heavy contamination.

Semi-Random Models. Our Definition 1.3 is inspired by semi-random models, which lie between the
average and worst case settings [BS95, FKO1]. In particular, it resembles an instantiation of the semi-
random model framework known as a monotone adversary, which breaks a statistical assumption
used by a learning algorithm (e.g., i.i.d. draws from a known distribution) by providing additional
data. Our approach is inspired by recent algorithms for supervised regression problems, e.g., solving
linear systems, sparse recovery, or matrix completion [CG18, KLL*23, JLM*23, KLL*24], that are
tolerant to monotone adversaries. These algorithms also use reweightings that come with certificates
of success. However, a major qualitative difference between the aforementioned works and ours
is that our Definition 1.3 does not require that the adversary uses labels consistent with a “clean
hypothesis.” Instead, our algorithms can tolerate label noise (alongside covariate noise) and achieve
the information-theoretically optimal clean error under such a contamination model (Proposition 1.5).

Testable Learning. In recent years, a number of works has focused on verifying the assumptions
of learning algorithms. Testable learning was introduced by [RV23] in the context of verifying
the distributional assumptions of agnostic learners and there are several subsequent works on this
setting [GKK23, GKSV24, DKK ™23, GKSV23, DKLZ24, STW24]. This paradigm has since been
expanded to testing for distribution shifts that may harm the performance of supervised learning
algorithms [KSV24b, KSV24a, CKK*24b, CKLS25], or even testing noise assumptions [GKSV25].
Here, we study a tolerant version of testable agnostic learning that was first studied by [GSSV24],
and provide the first guarantees for halfspaces with respect to any fixed log-concave measure.

Learning with heavy contamination can be thought of as a finding version of the testable learning
problem. More specifically, in testable learning the goal is to decide whether the input dataset is
structured enough so that a near-optimal hypothesis can be found efficiently, while in HC-learning
the goal is to find a subset of the input that is structured enough. An analogous connection was
observed in [GSSV24] between TDS learning [KSV24b] and PQ learning [GKKM20] in the context
of learning under distribution shift. There, the goal was to either decide whether the (unlabeled) test
examples come from a distribution that is similar to the one the learner has trained on (TDS), or find
a subset of the test examples where the learner is confident in its predictions (PQ). See Remark G.1.

2 Notation

We consider a d-dimensional feature space X which will either be R? or the hypercube {41},
A polynomial p over R? is of the form p(x) = Y e ¢p(@)x®, where x® = [Licg i isa
monomial of degree ||a||1. The degree of p is equal to the maximum ||a||; such that ¢, (a) # 0. Over
{1} we use the multilinear expansion p(x) = >_7¢ (4 ¢(Z)x", where x* = [];c; ;. In both
cases, we call c,, the vector of coefficients. We consider sets of points S to contain examples that are
separate instances of the correponding elements of X'. We denote with S the corresponding labeled
set of examples. We use x ~ S to say that x is drawn uniformly from S. For a labeled distribution D
over X x {£1}, D is the marginal on X. In the following the distribution-specific algorithms have
sample access to the unlabeled target distribution D*. We use Ny = A (0, 1) to denote the standard
d-dimensional Gaussian and Unif,; = Unif{£1}¢ for the uniform over the d-dimensional hypercube.
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3 Iterative Polynomial Filtering

We first define hypercontractivity, which is a crucial assumption for our filtering procedure.

Definition 3.1 (Hypercontractivity). We say that a distribution D over X" is A-hypercontractive with
respect to polynomials for some A > 1 if for any polynomial p over X’ and any ¢ > 2 we have

1. Exon[lp(x)[] < (A8)% (Exn[lp(x)]])", where £ = deg(p)

2. The absolute value of any degree-1 monomial has finite expectation under D.

Our main algorithmic tool is the following theorem, which gives a way to filter an arbitrary set of
examples in order to preserve the expectations of polynomials whose expected absolute value under
some hypercontractive target distribution is small. For the proof, see Appendix F.
Theorem 3.2 (Iterative Filtering). Let D* be an A-hypercontractive distribution over a d-dimensional
space X. Consider parameters €,6 € (0,1) and R,{,m > 1, and let Siyp, be an arbitrary set of
examples in X and Syer a set of myes i.i.d. examples from D*. For a sufficiently large universal
20
constant C > 1, if myes > RQ%(log %)4”1, then Algorithm 1 on input (Sinp, Sret, M, ¢, R, €)
runs in time poly (| Sinp|, Mret, (d + 1)) and outputs Sgy, C Sinp such that the following hold:
14
1. Let S.1, be any set of m i.i.d. examples from D* where m > C R? (2’4(5167?1))2 log %. Suppose
that Sinp is formed by first removing an arbitrary fraction of points in Scin and then adding

any number of arbitrary points. Then, the algorithm removes a relatively small number of
the examples in Sci, that appear in Sinp:

1
[(Sein N Sinp ) \ Sarg| < i [ Sinp \ St |+ % , with probability at least 1 — 6 over Sc1,, Sref

2. For any polynomial p of degree at most £, and Ex..p~|

p(x)|] < 457 we have:

Z p(x) < em, with probability at least 1 — 0 over Syet
x€E St

Algorithm 1: Iterative Polynomial Filtering

Input: S, set of M points, Syer set of myep points, m,¢ € N,R > 1,¢ € (0,1)

Output: Set Sgic € Sinp.

Let 8 < 2(24)%; v « 55%; B+ 4(d + 1)5(5)% A+ 55

Let P denote the family of polynomials p of degree at most ¢ for which we have:
B, [[P(%)]] < 7 and Exs,.[(p(x))?] < B;

S {x € Sinp : |p(x)| < Bforallp € P};

fori =0,1,2,...,M do

Compute p* and \* as follows.

1
p* = arg r;lg}(ezsp(X) an, - xezsp (x)

if \* < e then return Sg;; < 9
else
Let 7* > 0 be the smallest value such that

Blp, sllp*(x)] > 7] > R-Prus,, [IP*(x)] > 7] + A;
S+ S\{xeS:|px)|>1}
end

end

The algorithm iteratively removes the points that give large values to polynomials that do not satisfy
the stopping criterion of line 6. The hyperparameter R determines how selective the filtering is: larger



values of R imply that less points will be removed in each iteration, and the proportion of removed
points that are clean is smaller. The price one has to pay for larger choices of R is that the guarantee
of part 2 holds for polynomials with smaller absolute expectation under the target distribution.

Our algorithm requires access to a set of reference samples from the target distribution D* and uses
them to restrict its attention to polynomials with the desired properties under D*. The stopping
criterion ensures that upon completion all of these polynomials will have bounded expectations under
the empirical distribution over the filtered set. The bound depends on the hyperparameters € (target
error) and m (effective size), but not on the degree ¢ of the polynomials considered.

4 Applications

4.1 Learning with Bounded Contamination

We give results for BC-learning of any concept class that can be approximated by low-degree
polynomials in Lo distance.

Definition 4.1 (Polynomial Approximators). For e € (0, 1), we say thata class C C {X — {£1}}
has e-approximate degree ¢ = {(¢) with respect to some distribution D* over X if for any f € C
there is a polynomial p of degree at most £(¢) such that Ex.p-[(f(x) — p(x))?] < e.

Our main result additionally requires that the target marginal distribution is hypercontractive. This
assumption is inherited by Theorem 3.2.

Theorem 4.2 (Polynomial Approximation implies BC-Learning). Let¢,0 € (0,1) and A > 1. Let
D* be some A-hypercontractive distribution over a d-dimensional space and let C be a concept class
whose & -approximate degree w.r.t. D* is € for some large enough universal constant C > 1. Then,

there is an algorithm that (¢, §)-learns C under bounded contamination with respect to D* in time
poly(A*, (log $)*, (d+1)%, 1), and has (clean) sample complexity at most % O(Adlog(1/5))*+1.

In Table 2, we summarize some of the new results we obtain as corollaries of Theorem 4.2, combined
with appropriate known bounds on the approximate degree (see Appendix C.1). We also present
the previous state-of-the-art results for comparison. For monotone functions and convex sets, no
non-trivial results were known before this work. For halfspace intersections, we obtain exponential
improvements over prior work, and for polynomial threshold functions, we obtain the first near-
optimal error bounds. For small-depth circuits, we obtain an improved dependence on the depth.

Concept Class Target Marginal Runtime Error Reference
Intersections of Ny or Unif, dé(}og(k)/ €®) 2+ € This work
k Halfspaces Ny or Unif, dOk°/e*) dn+¢ [GSSV24]
N, (2)00) 1 (BYO*")  O(kiryir) +e [DKSI8a]
Ny dOK* /%) 2n+e This work
Degree-k PTFs Ny poly(d*,1/e) O(k*n™%) + ¢ [DKSI18a]
5 (k2

Unif, d(log(1/€) /" 2n+e This work

Monotone . O(Vd /) .
Functions Unify d 2n+e€ This work
Convex Sets Na dOWa/e) 2N+ This work
Depth-t, Size-s Unif, dO(log )" ™" log 1/ 2N+ € This work
Circuits Unify dOUlog )7 log 1/ 2 + € [KSV24c]

Table 2: Bounds on the time complexity of learning with bounded contamination of (unknown) rate
1 € (0, 1) up to failure probability 6 = 0.01.

Our results nearly match the best known upper bounds for agnostic learning, albeit with a worse
dependence on the excess error parameter €. In particular, to achieve excess error €, we require



O(€*)-approximating polynomials, while for agnostic learning an O(€?)-approximation suffices.
Therefore, our results imply, for example, a runtime of d°(°&(*)/ < for BC-learning of k-halfspace
intersections with respect to \V;;, but agnostic learning can be done in d°(°s(k)/<" [KOS08].

The proof of Theorem 4.2 is based on a delicate analysis of the error on the filtered dataset obtained by
applying Theorem 3.2 and can be found in Appendix G.1. The filtering algorithm is used to preserve
the following important property of any polynomial p* that approximates a boolean function:

E[(p*(x))*] <14 O(e) .1

We show that obtaining a filtered set that preserves this property is sufficient for learning with bounded
contamination. To prove this, we crucially use the fact that the noise is bounded and that the right
hand side of Eq. (4.1) is approximately equal to 1 (rather than some larger constant). On the other
hand, by applying part 2 of Theorem 3.2 on the polynomial ¢(x) = (p*(x))? — 1, we are able to
ensure the desired property for p* on the filtered set.

4.2 Learning with Heavy Contamination

For heavy contamination, our results are based on the stronger notion of sandwiching approximators
from pseudorandomness [Baz09].

Definition 4.3 (Sandwiching Approximators). For € € (0,1), we say that a class C C {X — {£1}}
has e-sandwiching degree ¢ = ¢(¢) with respect to some distribution D* over X if for any f € C
there are two polynomials p,p, Paown Of degree at most £(€) such that:

L. Pdown(x) < f(x) < pup(x) for all x € X and
2. Exp~ [pup(x) - pdown(x)] <e

Once more, our main result requires hypercontractivity of the marginal distribution.

Theorem 4.4 (Sandwiching implies HC-Learning). Let ¢,6 € (0,1) and A,Q > 1. Let D* be some
A-hypercontractive distribution over a d-dimensional space and let C be a concept class whose

C%-sandwiching degree w.r.t. D* is { for some large enough constant C' > 1. Then, there is an

algorithm that (¢, 8, Q)-HC learns C with respect to D* in time poly(A*, (log(1/6))¢, (d+1)%,Q/e),
2

and has (clean) sample complexity at most % - O(Ad)* -log ;.

The proof of Theorem 4.4 uses once more Algorithm 1 to filter the input set, but this time we set the
hyperparameter R to a value that scales with the heavy contamination ratio ). This ensures that we
keep most of the clean points, because the filtering process is highly selective. Due to the choice
of R, the required sandwiching degree scales with () as well. As a consequence, for many classes,
our bounds are exponential in ). After filtering, the approximation property of the sandwiching
polynomials is preserved under the empirical distribution over the filtered set, and this is sufficient for
efficient learnability of the optimum hypothesis on the filtered set, due to Theorem A.3 by [KKMSO08].
For a complete proof of Theorem 4.4 and quantitative bounds for HC-learning of various classes, see
Appendix G.2 and Table 4.

Limitations and Future Work. We lay the groundwork for a principled study of efficient learning
algorithms in the presence of contamination. There are several interesting directions for future work:
(1) Universality: All of our algorithms require sample access to the target unlabeled distribution
D*. Relaxing this requirement and obtaining algorithms that work universally with respect to
broad classes of distributions is an important question. This is known to be possible for several
problems in learning with label noise [BOW 10, ABL17, DKTZ20b], robust unsupervised learning
[KS17a, KS17b, DHPT24], as well as testable learning [GKSV23, CKK24b]. (2) Improved Error
Guarantees: Our algorithms obtain error guarantees that are proven to be optimal in general. However,
it is an open question whether one can achieve error 7 4 € for BC-learning or error %(Q - optiotal +
Optejean) for HC-learning for special classes, perhaps by allowing the learner to output randomized
hypotheses (also known as probabilistic concepts). (3) Characterization of Efficient Learnability
under Contamination: We show that Lo polynomial approximation suffices for efficient BC-learning
and £, sandwiching suffices for efficient HC-learning. However, it is not clear whether efficient
learnability in these models is completely characterized by these notions of approximation. For
agnostic learning, £; polynomial approximation is known to characterize efficient learnability for
algorithms in the statistical query framework [DSFT+ 14, DKPZ21]. See also Appendix E.
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address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Our assumptions are made clear in Definitions 3.1, 4.1 and 4.3 and we provide
complete proofs for all our results in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work fully complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is of theoretical nature and we do not identify any direct potential
negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not pose any such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLMs only for minor editing suggestions.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22


https://neurips.cc/Conferences/2025/LLM

A Additional Tools

In our proofs, we make use of the following results for hypercontractive distributions.

Lemma A.1 (Loewner Concentration, Lemma 3.8 in [CKLS25], Lemma B.1 in [GSSV24]). Let D
be some A-hypercontractive distribution in d dimensions and let S be a set of m i.i.d. examples from
D where m > (C Ad)*(log )*** for some sufficiently large universal constant C > 1, 6 € (0,1)
and A, l,d > 1. Then, with probability at least 1 — § over S the following condition holds.

1

2 o [(p(x))?] <2 E [(p(x))?], forany p of degree at most £

(PP < B E

Lemma A.2. Let D be some A-hypercontractive distribution in d dimensions for some A > 1. Let S
be a set of m i.i.d. samples from D and P3(S) be the family of polynomials of degree at most £ such
that By os[(p(x))?] < B, where £, 3,d > 1. Then, for any €, € (0,1), if m > (C Ad)*(log %)4”1,
and B > \/2f3/¢ - (d + 1)*/? the following holds with probability at least 1 — § over S:

PD[|p(x)| < B, forallp € Pg(S)]| >1—¢

Proof of Lemma A.2. We first apply Lemma A.1 to show that, with probability at least 1 — § over S,
for any p € P3(S) we have Exp[(p(x))?] < 2Ex~s[(p(x))?] < 28.

Consider now the moment matrix M = Ey.p[th(x)1¢(x) "], where 1h,(x) is the vector whose
coordinates correspond to monomials of x of degree at most /. Let M = UDU " be the concise
SVD of M, i.e., D is diagonal with dimension equal to the rank of M, U'TU =Tand UUT is the
orthogonal projection on the column (or row) space of M. Let ¢(x) = D~/2U T4,(x) and observe
that Exp[p(x)p(x) "] = I and the dimension of ¢ is equal to the rank of M, which is at most
(d + 1)%. Here, we use the fact that all the entries of M are finite, due to hypercontractivity.

We may express any polynomial p in Pg(S) as a linear combination of the elements of ¢, i.e.,
p(x) = ¢, ¢(x), where [|&,[|3 = Ex~p[(p(x))?] < 28. Moreover, we have the following due to
Markov’s inequality and the fact that E[||(x)||3] < (d + 1)%.

<e

B2 28(d 4+ 1)*
]g /3’(32 ) <

28
2 ~
In the event that ¢ (x)]|3 < %, we have |p(x)] < ||€p]l2]le(x)]l2 < V20 - \/% = B. O

P lleeol3 >

We will also use the following theorem which is implicit in [KKMSO08] and shows that polynomial
approximation is sufficient to find a simple hypothesis with near-optimum error on a given dataset.

Theorem A.3 (£; polynomial regression [KKMSO08]). Let S be a set of labeled examples and
C be a concept class such that for each f € C there is some polynomial p of degree at most {
such that By s[|f(x) — p(x)|] < e. Then, the degree-{ L, polynomial regression algorithm of
[KKMS08] outputs, in time poly(|S|d*/¢), a degree-¢ polynomial threshold function h such that

]P)(x,y)fvg[y 7é h(X)] < minfGC ]P)(x,y)rvg[y # f(X)] + e

We also give the definition of £; approximating polynomials, which are sufficient for agnostic
learning, but it is not clear whether they suffice for BC-learning. We instead use the notion of Lo
approximating polynomials (Definition 4.1).

Definition A.4 (£, Polynomial Approximators). For ¢ € (0,1), we say that a class C C {X —
{%1}} has e-approximate degree ¢ = £(¢) with respect to some distribution D* over X if for any
f € C there is a polynomial p of degree at most ¢(¢) such that Ex,p«[| f(x) — p(x)|] <.

The difference between £, and L, approximators is that the former enjoy the approximation property
with respect to the £4 norm, while the latter with respect to the L2 norm. Achieving £, approximation
is, in general, a stronger assumption, because the £; norm is upper bounded by the L5 norm, but not
vice versa. Nevertheless, for most interesting classes that £; approximators are known, we also have
Lo approximators. This is because of analytic advantages of the £ norm.
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B Error Lower Bounds for HC-Learning

In order to prove our lower bounds, we provide a definition for the adversary in the context of heavy
contamination.

Definition B.1 (Contamination Strategy). An algorithm M is called a (randomized) ()-HC strategy if,
upon receiving a labeled set Sciy, it outputs a set Sy, of size |Smp\ < Q| S| such that Smp C Scn-
For m € N and a labeled distribution D, we denote with M (D™) the distribution of the output Smp
of M on a set of m i.i.d. samples Se1n from D. Note that Smp depends on the random choice of Selns
as well as the randomness of M.

We first prove the following lower bound, which holds for any non-trivial concept class.

Proposition B.2. Let C be any concept class such that there is some f € C for which — f € C. For
any Q € {2,3,...}, any unlabeled distribution D*, any p € [0,1/2), €,0 > 0, and any m > log@/&)

there is a Q-HC strategy M and a distribution D whose marginal is D* such that, if we let D’ be the
distribution of (x, —y), where (x,y) ~ D, then the following hold.

1. M(D™) = M((D")™).
2. mingec ]P(x,y)N'Z_)[y # f(x)] = mingec P )~ ly # f(x)] = p.

3. With probability at least 1 — & over Sy, ~ M(D™), we have Q - optyoea < 1 —p + ¢,
where opty, = mingec Py )05, ly # f(x)].

Hence, no HC-learner for C with respect to D* can achieve error less than 5(Q-0pt a1 +0Ptean —€)

with probability more than 5 — 0, even when opt .., = p.

Proof of Proposition B.2. Let D = D*. Consider the following two labeled distributions. First, D;
is a distribution over X x {41} whose marginal on X is D and the labels are generated as follows:

_ [ f(x), with probability 1 — p
"= —f(x), with probability p

Consider also a distribution D, whose marginal is also D but the labels are generated as follows:

_ [—f(x), with probability 1 — p
Y27\ f(x), with probability p

The adversary receives a set Sern of m iid. samples from De {251, 252} and does the following.

1. First, the adversary computes the value my = 3, \c5  1{y = f(x)}, as well as the

value mg =3 es  1{y = —f(x)}.
2. If my > meg, then the adversary adds M — m examples drawn by D and labeled by — f (x).

Si

3. If iy < mg, then the adversary adds mo — m; examples drawn by D and labeled by f(x),
as well as M — 2my examples drawn by D and labeled by — f(x).

Part 1. Let & = m;, where i € {1,2} such that D = D;. We have that £ follows the binomial
distribution with parameters (m, 1 — p), and is independent from the value of i.

Given any realization m; of £ with m; > m/2, we can equivalently form the input examples Si,p,
by drawing M i.i.d. samples from D and labeling £ of them according to f(x) and M — £ of them
according to — f(x). We have that M(D7")|¢xr/2 = M(D5)|e5m/2-

Given any realization m; of £ with m; < m/2, we can equivalently form the input examples Sinp by
drawing M i.i.d. samples from D and labeling m — ¢ of them according to f(x) and M —m + & of
them according to — f(x). We, therefore, have M (D7")|¢<n /2 = M(DF")|¢<m /2.

Overall, since ¢ does not depend on i, we have M (D7) = M(DT).
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Part 2. Follows immediately from the fact that f, — f € C and the definition of D = Dy, D' = D,.

Part 3. Regarding the error benchmark, we have @ - opt, ;,; = M < 1-—p-+¢, whenever
|€ — (1 — p)m| < em, which happens with probability at least 1 — 5 according to the following
inequality.

P[|¢ — (1 — p)m| > em] < 2exp(—2€*m) < §

The bound follows from an application of Hoeffding’s inequality, since ¢ is binomial of mean
(1 — p)m. It follows that with probability at least 1 — J, the algorithm outputs a hypothesis with error
at least 3(Q - 0ptyyal + OPtejean — €)-

Implication to HC Learning. We have M(D}") = M(D4"). Let A be any, potentially randomized
algorithm, and let h := A(M(D7)) = A(M(D5")) be the random variable corresponding to its
output, where h : X — {£1}. Consider the event that & is such that: P, ,)..p, [h(x) # y] < 1/2.
Then, we have:
(h(x)#—yl= P [ax)#-y=1- P _[h(x)#y]>1/2
(x’y)~D2 (x,9)~D1 (x,y)~D

Note that the same is true even if & is a randomized classifier. Overall, the error of A on either D; or
Dyis 1 / 2 with probability at least 1/2. Finally, due to part 3, with probability at least 1 — &, we have
1/2 > 1(Q - optyogar + OPtejcan — €), Which implies the desired result. O

For finite feature spaces and the particular choice of the class of all functions, we obtain a sharper
information-theoretic lower bound on the error. Note that this lower bound captures the problem of
HC-learning halfspaces over {£1} in one dimension.

Proposition B.3. Suppose that |X'| < oo and C is any concept class from X to {x1}. Then, on any
value of Q in {2,3, ...}, any (distribution-specific) HC-learner will output a hypothesis with error 1
with probability at least 271! on some instance where Q - opt,..,; = 1. Moreover, if C = {+1}7%,
then the instance satisfies optgg,, = 0.

Proof of Proposition B.3. The adversary receives the clean dataset S.,, and creates a duplicate Sdn,
where all the labels are flipped but the feature vectors are unchanged. Then, the adversary draws
(Q — 2) - mii.d. examples S” from the marginal distribution D on X of the clean distribution D and

labels them according to f;. The input dataset is Sey, U S/, U S,

cln

Note that the input dataset is completely independent from the clean labels, since Sei, U S/, can be

constructed equivalently by choosing an arbitrary function g : X — {£1} to label the points in Sc,
and then label the points in S/, according to —g.

Therefore, we may assume that the ground truth labels are generated by the function f*, where — f*
is the most likely output of the HC-learner on a dataset of the form Sci, U S, U S”. Since there are

at most 2/*! possible functions, .A must output — f* with probability at least 2~1*!. When A outputs
— f*, the error is 1.

Finally, note that f; achieves error on S’inp equal to 1/Q, so opt, i, = 1/Q and @ - opt . = 1.
When C = {£1}*, we have f* € C and, hence, opt,,, := minyec Pxyply # f(x)]=0. O

C Approximation Theory Results

C.1 Low-Degree Approximators

Our structural Theorem 4.2 can be combined with results from polynomial approximation theory in
order to obtain end-to-end results on learning with nasty noise, including the results of Table 2.

Intersections of Halfspaces. For the class of k-halfspace intersections, [KOS08] showed that the
e-approximate degree with respect to the standard Gaussian distribution Ny (see Definition 4.1) is
¢(e) < log(k)/€* and [Kan14] obtains the same result with respect to the uniform distribution Unif 4
over the hypercube.
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Monotone Functions and Convex Sets. For monotone functions, the e-approximate degree with
respect to Unif,; was bounded by ¢(e) < \/&/ € in [BT96]. For convex sets, [KOS08] showed
that the e-approximate degree with respect to the Gaussian distribution can be bounded via the
Gaussian Surface Area (GSA). Combined with the result of [Bal93] on the GSA of convex sets, the

corresponding bound is £(¢) < v/d/e>.

Polynomial Threshold Functions. For the class of degree-k PTFs, the e-approximate degree with
respect to the standard Gaussian was bounded by £(¢) < k?/e? in [Kanlla]. In [Kan13], it was

O(k2) O(k log k)
shown that £(e) < £— (o8 22/6)

with respect to the uniform over {41}4.

Low-depth Circuits. For the class of AC? circuits of size s and depth ¢, the e-approximate degree
is known to be at most £(e) = O(log(s))!~!log(1/¢), due to the seminal work of [LMN93] and
subsequent improvements [Tall7].

C.2 Sandwiching Approximators

For the more challenging problem of learning with heavy contamination, we require the existence of
sandwiching approximators (see Theorem 4.4), and show that arbitrary (non-sandwiching) approxi-
mators do not suffice (see Theorem E.2).

Decision Trees of Halfspaces. For the class of depth-t, size-s decision trees of halfspaces,
[GOWZ10] showed that the e-sandwiching degree with respect to either the standard Gaussian

or the uniform on the hypercube is £(e) < O(ti—;z)

Low-Depth Circuits. The e-sandwiching degree of AC" circuits of depth ¢ and size s is known to
be at most £(¢) < O(log(s))°® log(1/e), due to the celebrated results of [Bra08, Tall7, HS19].

Polynomial Threshold Functions. The e-sandwiching degree of degree-k PTFs over the Gaussian

was bounded by £(€) < Op(e=** 7A) in [STW24], based on the pseudorandom generator of [Kan11b].
Here, Oy (+) is hiding a multiplicative factor that scales as an arbitrary function of k. For k = 2, the
sandwiching degree with respect to the uniform distribution over the hypercube is known to be at
most £(¢) < O(1/€”) due to [DKN10].

Functions of Halfspaces over Log-Concave Measures. For arbitrary functions of & halfspaces,
the e-sandwiching degree with respect to any log-concave distribution was shown to be at most
{(€) < exp((log(log(k)/€))°*) /e*) by [KM13, KKM13].

D Complexity of Learning with Adversarial Label Noise

The computational complexity of agnostic learning (or equivalently learning with adversarial label
noise) is much better understood than the complexity of learning with contamination. In this
setting, the learner receives i.i.d. examples from some labeled distribution D whose marginal
on the feature space X’ is well-behaved (i.e., Gaussian or uniform) and is, otherwise, arbitrary.
The goal is to output, with high probability, a hypothesis whose error is at most opt + €, where
opt = minfec Pk y)~p [y # f(x)], for some target concept class C.

Upper Bounds. On the upper bound side, [KKMSO08] showed that any class with bounded £
approximation degree admits dimension-efficient agnostic learners via low-degree £ polynomial
regression. Several prior and subsequent works provided such bounds for many fundamental classes,
based on Fourier or Hermite analysis [LMN93, BT96, DHK ™10, Kan11a, Kan13, Kan14], as well
as geometric properties of Gaussian spaces [KOS08]. Note that the usual way to bound the £,
approximation degree, is to first bound the £, approximation degree and then use Cauchy-Schwarz
inequality. This is because bounding the £, approximation is usually more analytically convenient.
However, this approach does not always give tight results for the degree in terms of the approximation
error. In [FKV20], it was shown that £; approximation bounds over the hypercube can be obtained
directly for any function class with bounded noise sensitivity.
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Concept Class Target Marginal Upper Bounds Lower Bounds

Intersections of 5 os(k) /<Y o —
k Halfspaces N(0,14) d=tos d(V1og

Depth-t, Size-d . t—1. . Qt)
Booﬁiean Circuits Umf{il}d dOUles ) log 1/ dlos) (e=0(1))
Degree-k PTFs N(0,1,) JO(K /") (K2 /€2)
1;40“0?0“6 Unif{+1}4 20(Vd/e) 90 (Vd/e)
unctions

Table 3: Upper and lower bounds on the time complexity of agnostic learning up to excess error e
and failure probability § = 0.01. The lower bounds either hold for algorithms in the Statistical Query
model [Kea98] or for any algorithm under appropriate cryptographic assumptions.

Lower Bounds. The complexity of agnostic learning with respect to Gaussian marginals was shown
to be characterized in terms of the £, approximation degree for algorithms that fall in the statistical
query (SQ) framework by [DKPZ21], implying the lower bounds of Table 3 for intersections of
halfspaces and polynomial threshold functions. For the uniform distribution on the hypercube, a
similar characterization was given by [DSFT*14]. Moreover, [BCO™15] showed an information-
theoretic lower bound for learning monotone functions even in the realizable setting, implying the
lower bound of Table 3 for monotone functions. For AC" circuits, [Kha93] provided a cryptographic
lower bound.

E Lower Bounds for Learning with Contamination

Bounded Contamination. Although the problem of learning from contaminated datasets is, in
principle, more challenging than learning with label noise, it is not clear whether the common
formulations of the former are formally stronger than those of the latter. In particular, the problem
of learning with label noise is usually formalized in terms of agnostic learning, where the goal is to
achieve error opt + € on the input distribution D for opt = minsec P(x ) ply # f(x)], where C is
the learned class. In contrast, learning with contamination is usually formulated as learning with nasty
noise, where the goal is to achieve error 27) + € on the farget distribution (D*, f*), where f* € C and
7 is the noise rate. Therefore, given an algorithm for learning with contamination, one may obtain an
agnostic learner with error guarantee 3opt + €, but it is not clear whether the guarantee of opt + € can
be achieved in a black-box way. This is because in one formulation the error is measured with respect
to the input distribution and in the other it is measured with respect to the clean target distribution.

Furthermore, many of the lower bounds for agnostic learning seem to exclusively rule out algorithms
with error guarantees of opt + ¢ [DKPZ21]. Therefore, these lower bounds do not transfer directly to
learning with bounded contamination as defined in Definition 1.1. One natural way to go around this,
is to observe that our result in Theorem 4.2 would also hold for the following stronger version of
Definition 1.1.

Definition E.1 (Agnostic BC-Learning). An algorithm A is an agnostic BC-learner for C C {X —
{£1}} if on input (€,9, Sinp), where €,6 € (0,1), and Sin, is generated by D with bounded
contamination 1 for some labeled distribution D, and n € [0, 1), the algorithm A outputs some
hypothesis h : X — {£1} such that with probability at least 1 — § over the clean examples in Sinp,
and the randomness of A:

P _[y # h(x)] S 27] + Optclean + €, where Optclean = min P _[y # f(X)}
(x,y)~D fEC (x,y)~D

The sample complexity of A is the minimum number of examples required to achieve the above
guarantee. Moreover, a distribution-specific BC-learner with respect to some distribution D* over X
is a BC-learner that is guaranteed to work only when D = D*.

Note that Definition E.1 is a generalization of agnostic learning, since we can set 7 = 0. Our
Theorem 4.2 holds even under this definition, and all the lower bounds for agnostic learning (Table 3)
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are inherited as well. However, agnostic learning is known to be characterized by the £;-approximate
degree [KKMSO08, DSFTT 14, DKPZ21], whereas we require the stronger assumption of low L-
approximate degree. Therefore, while for most interesting classes our results are essentially tight, a
complete characterization of efficient learnability in the setting of Definition E.1 remains open.

Heavy Contamination. We give the following, information-theoretic lower bound for learning
monotone functions with heavy contamination. Our lower bound highlights a separation between
bounded and heavy contamination and justifies the need for a stronger notion of approximation than
standard polynomial approximators.

Theorem E.2 (Lower Bound for HC-Learning of Monotone Functions). Let C be the class of
monotone functions over {£1}%. Any HC-learner for C with respect to the uniform distribution over

the hypercube Unif ({£1}?) requires sample complexity 2P, even when ¢ = 1/4, Q = 2 and
§=1/3.

Proof of Theorem E.2. Suppose that the ground truth is a constant function, i.e., either f* = 1 or
f* = —1, and that m < 2d/10 /10. Then, the adversary receives the m clean examples S’inp and
draws m additional i.i.d. examples S’ from Unif({£1}%), labeling them according to —f*. The
input dataset is Sinp = Sein U S’

Note, first, that no algorithm can achieve error better than 1/2 with probability at least 1/2, since
guessing f* randomly is an optimal strategy because the distribution of the input dataset Siyp, is
exactly the same in the two cases corresponding to f* = —1 and f* = 1. We will show that
Q - optyo, = 0 with high probability over the choice of Siyp,.

Let x, x’ be two independent samples from Unif({41}%). We say that x and x’ are comparable if
x < x orx’ <x,ie.,ifx(i) < x(i) for all i or x'(7) < x(4) for all i. Since the coordinates are
independent, we have

P [x(i) < x'(i), foralli € [d]] = H P [x(i) <x'(i)] = (3/4)¢
X,X ield) X,X
Similarly, for the other direction we have that Py ,/[x(i) > x'(4), foralli € [d]] < (3/4) and,
overall, that P/ [x, x’ are comparable] < 2 - (3/4)4.

We have a set Sinp, of 2m examples. It suffices to show that no pair of examples in Sy, is comparable,
because, then, any labeling of these examples is consistent with some monotone function and, hence,
OPt;oial = 0. We overall have at most 4m? pairs and each of them is comparable with probability at
most 2 - (3/4)%. Therefore, by a union bound, the probability that there is a pair that is comparable is
at most 8m?(3/4)? < 1/10. O

F Omitted Proofs for Iterative Polynomial Filtering

We now give the proof of our main technical tool, Theorem 3.2. The proof follows the approach of
[KSV24c], but has a number of technical differences. In particular, the algorithm of [KSV24c] only
gives guarantees for non-negative polynomials and works with respect to the uniform distribution
on the hypercube. Here, we preserve the expectation of any polynomial, with respect to any target
hypercontractive distribution that can be sampled efficiently.

Proof of Theorem 3.2. We first observe that the family P of polynomials p of degree at most ¢ for
which Exs,.,[[p(x)|] < vand Exws,..[(p(x))?] < B can be described by O () linear constraints
plus one convex quadratic constraint over the coefficient vectors whose dimension is (d + 1)*.
Therefore, lines 3 and 5 can be implemented as convex programs in time poly (| Sinp |, et (d + 1)%).
Lines 8 and 9 can be implemented with a single pass of the input points.

We first prove the following claim, which ensures that lines 8§ and 9 are well defined.

Claim. When \* > ¢, there exists T* > 0 that satisfies the guarantees of line 8.
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Proof. Suppose, for contradiction, that for any 7 > 0 we have

Bl
— P [p* - P * A
2L PGl > Tl < R B (p ol >+
We may now integrate both sides of the inequality over 7 € [0, B], since it holds for all 7 > 0. Note
that [p*(x)| > 0 for all x and, therefore, the following are true

e} B
Elr@l= [ Rl >rdar= [ P> (€D

&S] B
E (lp*()l] =/ P lp*(x)| > 7] dr 2/ P (lp"(x)| >7ldr  (F2)

—( X~ Shref 7=0 X~ Shref

The second equality in Eq. (F.1) follows from the fact that for any p* € P, S contains only points
such that p*(x) € [—B, B, due to line 3. The inequality in Eq. (F.2) follows from the fact that the
integrated function is non-negative. Overall, we obtain the following inequality

5] Bl
A="— E }p* <— E []p* R- E * AB <
CLEp )< B <R E (p o)+ AB<e,
where the last inequality follows from the fact that p* € P and, hence, Ex~s,..[|p*(x)|] < 5% and
A= 55~ We have reached contradiction, because we showed that \* < e. O
Note that due to the claim above, we have {x € S : [p*(x)| > 7*} # 0. This means that at each
iteration we remove at least one point from the input dataset and, therefore, we do not need more than
M = |Sinp| iterations. The following claim ensures that we only remove a small fraction of clean
points from Siyp.

Claim. With probability at least 1 — § over S¢1, and S..cf, we have
1
‘(Scln N Sinp) \ Sﬁlt| S E : ‘Sinp \ Sﬁlt‘

em+
2

Proof. We will show that with high probability over the clean and reference datasets, the number
of removed points from S, is small. First, we account for the initial filtering of line 3. In
this step, we remove points x from Sj,, that give large absolute values to polynomials in P, i.e.,
polynomials who, in particular, have bounded second norms over S;¢f. Due to Lemma A.2 and since
Myet > (CAd)*(log 3)*+1, the probability that some x drawn from D gives [p(x)| > B for some
p € P is at most €/4. Therefore, the total number of points removed from Sy, in this step follows the
binomial distribution with m number of trials and probability of success at most /4. By a standard

Chernoff bound, and since m > % log(1/6), with probability at least 1 — §/2 we have
[{x € Semn : |p(x)| > B for some p € P}| < em/2 (F.3)

It remains to account for the points removed in line 9. The removed points are always of the form
{x €S8 :|p*(x)| > 7} for some p* € P. Moreover, according to line 8, we have

1 * * * *
—E Hp*(x)|>7"}>R- P [p*(x)]>71]+A
mxes X~ Sref

Since m, myer > C’ %% for some sufficiently large universal constant C’ > 1 and the VC

dimension of the class of polynomial threshold functions of degree / is at most (d + 1)¢, we have that
with probability at least 1 — §/2 over Scin, Sret the following holds for all polynomials p of degree at
most £ and all 7 > 0
R- B lp&)I>7] <R B [lp&x)[>7]+4A,
X~ OScln X~ Ore
since Sgin and Syef are both i.i.d. samples from the distribution D* and 1{|p(x)| > 7} is equal to the
sum of two degree-¢ polynomial threshold functions, 1{p(x) > 7} + 1{p(x) < —7}. Therefore:

{xeS:p"(x)| > 77} = R-[{x € Sem : [p"(x)| > 77|,
for any update we make. Summing over all the updates, we obtain that the total number of points
removed from S, by the updates of line 9 is at most

(1/R) - [Sinp \ St (F4)
By combining Eq. (F.3) and (F.4), we obtain the desired result, where the probability of failure is at
most § due to a union bound. O
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So far, we have proven the first part of Theorem 3.2. We will now prove the second part, by showing
the following claim.

Claim. Any polynomial p of degree at most £ and Ex. .p[|p(x)|] < €/(4R), lies within P with
probability at least 1 — § over Syet.

Proof. Let D = D*. Fix any polynomial p with Ex..p[|p(x)|] < ¢/(4R). Due to the hypercontrac-
tivity of D (Definition 3.1), we have Exp[(p(x))?] < (24)2%¢ = 3/2, since Exp[|p(x)|] < 1. By
Lemma A.1, since myef is large enough, w.p. at least 1 — g over Sper, we have Ex s, [(p(x))?] < B.

It remains to show that with probability at least 1 —§/2, we have Ex..s,_,[|[p(x)|]] < v = €/(2R). The
following bound can be obtained for any ¢ > 1 by applying the Marcinkiewicz—Zygmund inequality
(see [Fer14]), due to the fact that .S;¢¢ consists of myc¢ i.i.d. examples.

2ti|

To conclude the proof of the claim, we use the simple inequality (a + b)?* < 4! max{a?,b*'}
for all a,b,t > 0 as well as hypercontractivity to bound the expectation on the right-hand side by
(8At)** Exp]|p(x)[]?. Due to the choice of my.s, if we choose ¢ = log(1/4), we obtain a bound
of /2, as desired. O

E (pll-_E [p6] > =] <2(220)' & [|b6ol-_E, [Ip(<)]

x~Sref E“Myef

|
Sref~D™Mref

This concludes the proof of Theorem 3.2. O

G Onmitted Details for Learning with Contamination

G.1 Bounded Contamination

We give the proof of our main result on learning with bounded contamination (Theorem 4.2) below.

Proof of Theorem 4.2. The algorithm receives a dataset S'inp generated by (D*, f*) with bounded
contamination of rate 7 € (0,1), where f* € C and 7, f* are unknown, draws a set Syt Of

Myef = el /’:d) (log 5)85+1 i.i.d. unlabeled examples from D*, where C’ > 1 is a sufficiently large
universal constant and does the following.

1. First, the algorithm runs the filtering procedure of Theorem 3.2 (that is, Algorithm 1) on
input (Sinp, Srer, M = |Sinp| 2(,R =2, 24€2 ) v/C) to form the filtered dataset Sg¢, where
the labels are consistent with Siyp.

2. Then, the algorithm finds a polynomial p of degree at most £ that minimizes the following
convex objective.

p=argmin  E _[[y—p(x)|]
P (%)~

s.t. p has degree at most ¢

3. The algorithm outputs h(x) = sign(p(x)+7), where 7 € R minimizes the one-dimensional
objective P, ) g, [y # sign(p(x) + 7)] over 7 € R.

We will now bound the error of h on the clean dataset S, according to which SHHP was formed
(see Definition 1.1). This suffices because, due to standard VC theory, and since h is a polynomial

_ ¢ 1

threshold function of degree at most ¢, as long as m = |Sei,| > C /(d+1)672+10gé for some sufficiently
large universal constant C’ > 1, we have that Pyp[f*(x) # h(x)] is approximately equal to its
empirical counterpart P, v 5, [y # h(x)].

Consider p* to be a polynomial of degree at most ¢ such that E,.p[(f*(x) — p*(x))?] < €, where

¢ = €*/C. Since p* approximates a Boolean-valued function f*, the values of p* should, in
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expectation, be close to either 1 or —1. In particular, we obtain the following bound using the
Cauchy-Schwarz inequality:

E 0 )P =1 = _E [I67(0) — (£ ()’
= E 569~ £ ()] (0 + ()]

< S E 00— G/ E 06+ 007

x~D* ~D*

< +2¢ <362/VC (G.1)

Note that ¢(x) = (p*(x))? — 1 is a polynomial of degree at most 2. Therefore, Algorithm 1 can be

used to filter out the points x such that ¢(x) is too large and, in particular, due to Theorem 3.2, the

following holds with probability at least 1 — §/4 over the random choice of S,ef and Sc, as long as
4 (C”AGd)“ (log %)8£+1:

m > C’% log% and My >

€2m

> ax) < o (G2)

X € Srilt

where C” = \/C'/24. We will now show that this bound is sufficient for our purposes.

Consider the quantity P = Ingltl P x.y)~See [¥ 7 1(x)]. We first bound the quantity P by P <

@—ﬂlﬁ‘l E (x,y)~8u. [y — P(x)|], where the factor 1/2 appears due to the fact that the choice of 7 is

optimal (and a random choice would yield the factor 1/2 with positive probability, see [KKMSO08]).
Furthermore, we have the following, due to the fact that p is optimal among low-degree polynomials
for Sg)¢ with respect to the absolute error.

1 - 1 ¥
P<o— 3 ly-pI<g5- > ly-p'()
(x,y) € Skine (%,y) € Srits
1 * * 1 *
D DRl I R Al ]
(x,y) €Ss1tNSein (x,y) €St \ Secin
1 | St \ Setn] 1
<— *(x) — p* 126\ 2eln] | 2 - G.3
D D R D S Y I (K
(x,y)E€Scin (x,y)E€SHis \ Sein
For the first term, observe that we choose m = |Siyp| = |Scm| and therefore we have

=L ()b T (X) = p*(x¥)| = 3 Exnsunllf*(x) — p*(x)[]. In order to bound this quan-

tity, we use the fact that Sg, is a set of m i.i.d. samples from a hypercontractive distribution,
combining the Marcinkiewicz-Zygmund inequality (which is a generalization of Chebyshev’s in-
equality to higher moments), hypercontractivity and boundedness of f* to obtain that, as long as
m > 5(C’A)*(log(1/6))?**1, with probability at least 1 — §/4 over the choice of S, we have:

CENE -l < E (17760 —p )l +¢/6
< /B (/") = p*(x))?] + /6

<e2/VC +¢€/6<e/3 (G4)

For the last term in Eq. (G.3), we first use the basic fact that the variance of any random variable
is non-negative and hence Exg,,\ 5., [[P* (X)]] < (Exw sy e [(P7(%))]) /2. Then, we observe
that Estfilt\Sclu [(p* (X))Q} = Ex’\‘sfilt\scln [q(x)] + 1. Overall, we have:

1 |Sﬁlt \ Scln‘ (
R E * < = VTt
2m (o)l = 2m +

x€Sti1e \ Sein

o)) (G5)

x~Si1t \ Sein
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We will now bound the quantity P’ = By g\ 5., [4(X)] = m e S\ Sunn (%)

1 1
P=— X)— ————— x
[Stit \ Scin| Z a(x) |Sgit \ Sein| Z a(x)

XE Skl X€Sei1tNSein

G2) e2m 1
< + q(x
C"|Ssie \ Sem| — |Sae \ Scinl x65§51 la()l

[lg(x)]] (G.6)

€2m m

< + E
C"|Sgis \ Sein| — |Ss1t \ Sein| x~Setn
The first inequality in the expression above follows from the guarantee of Eq. (G.2), which is provided

by the filtering algorithm. We may now use the Marcinkiewicz-Zygmund inequality once more to
obtain that, as long as m > % (C"A)*(log(1/8))***, with probability at least 1 — §/4, we have:

E (a0 < _E lla@ol]+e/VT < /e,

X~ Scln
where the last inequality follows from Eq. (G.1), the fact that ¢(x) = (p*(x))? — 1, and recall that
C" = +/C. Overall, we obtain the bound P’ < % Note that since for any a > 0 we have
v 1+ a <1+ +/a, by substituting the bound for P’ in Eq. (G.5), we obtain

1 |Sa1e \ Scinl €
— > lp*(x)| < + =
2m x€Si1e \ Seln 2m C///Q

where we used the fact that |Sgy; \ Scin| < m to bound the factor \/|Say; \ Sein|/m in the second
term of the above bound by 1. In total, by choosing C appropriately large, we have the following
bound, where we combine Eq. (G.3), (G.4), and (G.5).

P=% Y. Hy#hx)}<

(%,y) €8s

Sttt \ Sein n 2e 7
m 3
with probability at least 1 — 36/4 over the random choice of ginp and Sper.
We will now bound P, .5, [y # h(x)] by 2 + 5¢/6. We have the following:
1
P ly#hl=— 3 y#hx)}

(xvy)’\’scln _
(x,y) €Scin

:% 3 ]l{y#h(x)}+% Y Ly #hx)}

(x,4)ESc1nNSire (%,4) € Secin \Stire
|Scln\5ﬁlt|
< At bl
< Y HyAhGo}+
(x,y) €St

< |gﬁlt \ 5cln| + |(§cln N SYinp) \ 5ﬁlt| + |Scln \ Sinp‘
B m

In order to complete the proof, we use the guarantee of Algorithm 1 that with probability at least
1 — /4, we have

_ _ - 1 = - em
I(Scln N Sinp) \ Sﬁ1t| S §|Sinp \ Sﬁ1t| + ﬁ

+2¢/3

1 5 = - 1, 5 _ _
= §|(Scln N Sinp) \ Sﬁ1t| + §|(Sinp \ Scln) \ Sﬁltl + 6m/12 .

Therefore, we have |(Sein N Sinp) \ Stite| < [(Sinp \ Sein) \ S| + €m/6. Note that the union of
the sets (S’inp \ Scn) \ Sgie and Sgye \ Sein is disjoint and equals to the set of adversarial examples
Sadv = S'inp \ Scin. By the definition of the noise model (Definition 1.1), we have that |Saq, | < nm
and |Scin \ S’inp\ = |Sadv| < nm. Therefore, we overall obtain the desired bound of

5e
P h(x)] <2n+ —.
s Scln[y # h(x)] <20+

This concludes the proof of Theorem 4.2. O
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G.2 Heavy Contamination

In Table 4, we provide a number of end-to-end results for learning with heavy contamination, which
are obtained by combining Theorem 4.4 with appropriate known bounds on the sandwiching degree

(see Appendix C.2). The first row of Table 4 gives the bound dO@Q*k°/€") for learning intersections of

k halfspaces with (Q-heavy contamination by choosing s = t = k, as well as the bound dO@Q7k*4k /eh)
for arbitrary functions of k halfspaces, with the choice s = 2%, ¢ = k.

Concept Class Target Marginal Runtime
Depth-t, Size-s . O(Q2t4s2 /et
Decision Trees of Halfspaces N or Unifg d
Depth-t, Size-s . O(log 5)°® log(Q/€)
Boolean Circuits Unifg d
~ ok

Degree-k PTFs Ny dOx((Q/e)** ™)
Degree-2 PTFs Unify dOQ%/¢'®)

Table 4: Bounds on the time complexity of learning with ()-heavy contamination up to error
@ - optyia + € and failure probability § = 0.01.

We now give the proof of our main result on learning with heavy contamination (Theorem 4.4).

Proof of Theorem 4.4. The algorithm receives a (Q-heavily contaminated dataset S‘inp, draws a set

Syof Of Myet = M(log $)**1 ii.d. unlabeled examples from D = D*, where C’ > lisa

sufficiently large universal constant and does the following.

1. First, the algorithm runs the filtering procedure of Theorem 3.2 (that is, Algorithm 1) on
20t 20 1 _
input (Sinp, Srer, m = %, {,R = @, ¢/3) to form the filtered dataset Sg;.

2. Then, the algorithm finds a polynomial p of degree at most ¢ that minimizes the following
convex objective.

p=argmin  E [y —p(x)[]
P (x,y)~Srig

s.t. p has degree at most ¢

3. The algorithm outputs h(x) = sign(p(x)+7), where 7 € R minimizes the one-dimensional
objective P, ) g, [y # sign(p(x) + 7)] over 7 € R.

We will now bound the error of A on the clean distribution D. To this end, we first note that the
empirical error of h on the clean samples Sy, is, with high probability, close to the error on D, since
|Scin| is large enough and h is a polynomial threshold function of degree at most ¢. It therefore,
suffices to bound the error of h on S¢1,. We have the following.

PopAhl= Y Ly#hb b Y Ly #h)

(3,9)~Sein m (%,9)~Se1n NSt (%,4)~Setn\ Stits
1 1 - -
= ( )ZS Hy # h(o)} + — - Sen \ St (G.7)
X,Y)~otilt

The second term in the bound above can be bounded by €/3, due to part 1 of Theorem 3.2. It remains
to bound the first term.

Consider f* € C to be the concept in class C with minimum error on Stut, i.e., we have that
f* = argmingec Pk yyes,, [y # f(x)]. Note that there is some f' € C that makes at most
M -0pty, errors on the whole input dataset Siy,p, due to the definition of opt,,,; (see Definition 1.4).

We have that P, yeg,,, ly # f*(x)] < P (x,y)e8me [y # ['(x)] < M - optygia/| Skl
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Moreover, let pyp, Pdown be the %—sandwiching polynomials for f* and p = pyp —Pdown, Whichis a

2 .
< 7€2Q' Due to part 2 of Theorem 3.2, the expectation of
p under Sk 1S at most 73&’:“‘ s 1.e., Exn S, [Pup (X) — Pdown (%)] < ﬁ Since pup > f* > Paown:
we also have that

non-negative polynomial with E,.p[|p(x)|] <

]E * - own § o
S I5700 = paown (9] < 5

We now observe that A is the output of the £, polynomial regression algorithm on Sg); and, therefore,
according to Theorem A.3 by [KKMSO08], we overall have the following bound

em
P [ly#h(x)] < = optyga + 7=,
(x,y)~Smt[ Gl | Site | rotal 3] S|

which implies the desired bound:

1 M em

— Y Hy#h()} < — 0Pty + o < Q0P /3 (G-8)

m -~ m 2

(x,y)~Srire

The result follows by combining Eq. (G.7) and (G.8). O]

Remark G.1. Our result on HC-learning highlights the following analogy:

* Learning with heavy contamination can be thought of as a version of testable agnostic
learning (Definition H.1), where the algorithm is asked to find a subset of the input that is
structured enough, instead of merely verifying whether the whole input is structured.

* Similarly, in the context of learning with distribution shift, PQ learning [GKKM?20] requires
finding a subset of an unlabeled test dataset where the learner is confident in its own
predictions, while TDS learning [KSV24b] aims to verify whether the whole unlabeled test
dataset is drawn from some distribution that is similar to the one the learner has trained on.

* In [GSSV24], it is shown that by using a spectral iterative filtering algorithm, TDS learning
results can be extended to PQ learning. Here, we complete the analogy by showing that
our iterative filtering algorithm can extend known results from testable learning (i.e., that
sandwiching is sufficient, see [GKK?23]) to HC-learning.

Remark G.2. One could define a hybrid model where a bounded fraction of clean points are replaced
adversarially and a proportionally large number of adversarial points are then added. Our results
should apply to this setting as well, but we focus on BC and HC learning separately for simplicity of
presentation.

H Applications to Tolerant Testable Learning

We give new results for testable learning [RV23] and tolerant testable learning [GSSV24].

Definition H.1 (Tolerant Testable Learning [GSSV24]). An algorithm A is a tolerant tester-learner
for C C{X — {£1}} with respect to some target distribution D* over X if on input (€, 9, T, Sinp ),
where €,7,6 € (0,1) and S'inp is a set of i.i.d. examples from some arbitrary distribution D, the
algorithm A outputs either outputs Reject or outputs (Accept, h), where h : X — {£1} such that
with probability at least 1 — § over Sinp, and the randomness of A, the following conditions hold.

1. (Soundness) Upon acceptance, the error of h is bounded as follows:

(X,Em[y # h(x)] < min (xﬁwﬁ[y # X)) +7+e€

2. (Completeness) If drv (D, D*) < 7, where D is the marginal of D on X, then A accepts.

The sample complexity of A is the minimum number of examples required to achieve the above
guarantee.
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Previous work by [GSSV24] showed that the existence of L5 sandwiching polynomials with bounded
coefficients, i.e., polynomials pup, Pdown such that Exp+ [(Pup(X) — Pdown(X))?] < € implies toler-
ant testable learning. Here, we relax this condition to £; sandwiching polynomials (Definition 4.3),
without requiring any bound on the coefficients. Note that even for non-tolerant testable learn-
ing, where £ sandwiching is known to suffice [GKK23], all prior work required bounds on the
coefficients.

Theorem H.2 (Sandwiching implies Tolerant Testable Learning). Let €,0,7 € (0,1) and @ > 1. Let
D* be some A-hypercontractive distribution over a d-dimensional space and let C be a concept class

whose m—sandwiching degree w.r.t. D* is { for some large enough constant C > 1. Then,
there is an (e, 8, T)-tester-learner for C w.r.t. D* with runtime poly(A*, (log(1/8))%, (d + 1)¢,1/¢),

and sample complexity at most 6% -O(Ad)?" - log %.

The following corollary follows from Theorem H.2, combined with the fact that log-concave dis-
tributions are hypercontractive (see [Bob01]), as well as the results of [KM13, KKM13] on the
sandwiching degree of functions of halfspaces (see Appendix C.2). This is the first result for testably
learning even a single halfspace with respect to log-concave distributions up to optimal error.

Corollary H.3. Let C be the class of arbitrary functions of k halfspaces over R% and let D* be any
log-concave distribution. There is an (e, 0, T)-tester-learner for C with respect to D* that runs in

time (dlog(l/(?))é(e), where £ = exp((log(log(k)/e))O*) /€%).

We will now prove Theorem H.2, using once more the iterative polynomial filtering algorithm of
Theorem 3.2.

Proof of Theorem H.2. The algorithm receives a dataset ginp, draws a reference set Spef Of Myper =

(C/fisd)u (log %)4“1 i.i.d. unlabeled examples from D, where C’ > 1 is a sufficiently large universal

constant and does the following.

1. First, the algorithm runs the filtering procedure of Theorem 3.2 (that is, Algorithm 1) on
input (Sinp, Sref, M = |Sinp|, £, R = 4{ + 2,¢/8) to form the filtered dataset Sg.

2. Then, the algorithm checks if m — |Sgi;| < (7 + €/2)m and rejects if the inequality does
not hold.

3. Otherwise, the algorithm finds a polynomial p of degree at most £ that minimizes the
following convex objective.

p=argmin E [y —p(x)[]
P (x,y)~Srir
s.t. p has degree at most ¢

4. The algorithm outputs h(x) = sign(p(x)+7), where 7 € R minimizes the one-dimensional
objective P, ) 5. [y 7 sign(p(x) + 7)] over 7 € R.

Soundness.  Suppose, first, that the algorithm accepts. Observe that |5’inp \ Sqi| = \S'inp| — | S
since Sgi¢ € Sinp- Since the algorithm has accepted, we know the following.

|Sinp| — [Sa1e| = m — | S| < m(7 + €¢/2)
Recall that S'inp is a set of m 1.i.d. examples from the input distribution D. Since m is large enough,
due to standard VC dimension arguments (and the fact that h is a polynomial threshold function of

degree at most £), we have that with high probability:

P lyAh(x)]< P [y#h(x)]+e/4 (H.1)

(x,y)~D T (xy)~Sinp
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Therefore, it suffices to show a bound on the empirical error of i on Si,;,. We have the following:

1 1
Poy#hx]=— 3> Hy#Fhl+— Y Hy#hx)}
(ey)~Sime (%,5)€ Somp\ St (x,5)€ 5.
|Sﬁlt|
< —18imp \ Sare| + P h(x
| o \ St - (x,y)stm[y # h(x)]
€ |Saul
<74 g A p h(x
5 T s ly # h(x)]

It suffices to show that P, ) 5. [y # h(x)] < ‘S (mlnfec P yy~ply # h(x)] + €/4). Let
f* be the function that minimizes the error on D and let Pup» Pdown be its m—sandwiching
polynomials. Then according to part 2 of Theorem 3.2, and since for p = pyp — Pdown We have

2 .
Ex~p[p(x)] < m, we obtain:

| Stre | XNESM [pllp(x) — Pdown (X)] = Z (pup(x) — Pdown (X)) <

an

x€E Sl 8
Therefore, we also have Exs,, [|f*(%) = Paown (X)[] < Exsgy, [Pup(X) = Pdown (X)] < g5
Observe, now that & is the output of the low-degree polynomial regression algorithm and, hence,
according to Theorem A.3 by [KKMSO08], we have the following.

P y#hx)]< P fy#fx))+

(3¢,y) ~Sritg (3¢,y) ~Sritg 8|Sﬁ1t|

em

To conclude the argument, observe P,y g, [v # f*(x)] < ﬁ Pl y)~inp [V # [7(x)], since

# (%)) <
i

Sttt € Sinp and, due to a Hoeffding bound, with high probability we have P .. SV 7 S
fr(x)] =

Px,y)~ply # f*(x)] + €/8. Note that due to the choice of f*, we have P, ). .ply
mingec Pix ) ply # f(x)] =: opt. Overall, we have the following bound:
P [y #h(x)] <opt+ 7+ 3¢/4,

(%,9)~Sinp

which, together with the generalization bound of Eq. (H.1) implies the soundness of the algorithm.

Completeness. We will now show that the algorithm accepts with high probability whenever
drv(D,D*) < 7. It suffices to show that [Siyp, \ Srie| < (7 + €/2)m with high probability, since
|Sinp \ Sﬁlt| =m —

whether to reject or not.

Let Son = {x1),x®) ... x(™)} be a set of m i.i.d. examples drawn from D. Let Si,, be drawn as
follows:

* For each i € [m], draw an independent Bernoulli random variable &; with probability of
success 1 — 7.

* If 57, - 1, then let Z(z) = X(l)

* If & = 0, then draw z(») independently from the residual distribution D’ in the maximal
coupling between D and D* (i.e., the joint distribution (x,x*) that has marginals D and D*
respectively and maximizes the likelihood that x = x*).

* Let Scin = {Z(Z)}Le[m]

Note that the distribution of each z(*) is D* and they are drawn independently. Due to a Chernoff
bound, since m is large enough, we have that, with high probability, |Sinp \ Secin| < m(7 + €/8).
According to Theorem 3.2, we have the following, with high probability:

‘(Smp N Scln) \ Sﬁlt| < ‘Smp \ Sﬁlt‘ +
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Observe, now, that |Sinp \ Saie| = |(Sinp N Sein) \ Sae| + [Sinp \ Secin|. Therefore, if we solve for
|Sinp \ Stie|, we have the following

1 m
(1= 3) - 1Simp \ Stuel < [Sinp \ Seanl + T < mlr +€/4)

Due to the choice of R, we have the desired bound |Sinp, \ Sare| < m(r + €/2). O
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