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ABSTRACT

Chirality is a fundamental molecular property that governs stereospecific behavior
in chemistry and biology. Capturing chirality in machine learning models remains
challenging due to the geometric complexity of stereochemical relationships and
the limitations of traditional molecular representations that often lack explicit
stereochemical encoding. Existing approaches to chiral molecular representation
primarily focus on central chirality, relying on handcrafted stereochemical tags or
limited 3D encodings, and thus fail to generalize to more complex forms such as
axial chirality. In this work, we introduce ChiDeK (Chiral Determinant Kernels),
a framework that systematically integrates stereogenic information into molecu-
lar representation learning. We propose the chiral determinant kernel to encode
the SE(3)-invariant chirality matrix and employ cross-attention to integrate stere-
ochemical information from local chiral centers into the global molecular repre-
sentation. This design enables explicit modeling of chiral-related features within
a unified architecture, capable of jointly encoding central and axial chirality. To
support the evaluation of axial chirality, we construct a new benchmark for elec-
tronic circular dichroism (ECD) and optical rotation (OR) prediction. Across four
tasks, including R/S configuration classification, enantiomer ranking, ECD spec-
trum prediction, and OR prediction, ChiDeK achieves substantial improvements
over state-of-the-art baselines, most notably yielding over 7% higher accuracy on
axially chiral tasks on average.

1 INTRODUCTION

Chirality, the property of molecules that are non-superimposable mirror images, is a fundamental
concept in chemistry, biology, and materials science (Moss, 1996). It plays a central role in shap-
ing molecular behavior across diverse applications, including biomolecular recognition (Ceramella
et al., 2022), stereoselective synthesis (Gaucherand et al., 2024), and enantioselective catalysis (He
et al., 2023). Chiral molecules, often existing as pairs of enantiomers, can exhibit drastically differ-
ent chemical and biological properties despite sharing identical compositions (Peluso & Chankve-
tadze, 2022). Such differences are especially critical in drug efficacy (Liu et al., 2023b), toxic-
ity (McVicker & O’Boyle, 2024), and protein-binding affinity (Schneider et al., 2018; Shen et al.,
2013), underscoring the paramount importance of accurately modeling stereochemical information
in molecular representation learning.

Despite this significance, capturing chirality in machine learning models remains challenging. Ex-
isting molecular representation learning (MRL) approaches predominantly focus on central chirality
and often rely on implicit encoding strategies that fail to extract explicit stereochemical features.
While recent advances in SE(3)-invariant architectures have shown promise through the incorpora-
tion of torsion angles (Klicpera et al., 2021; Liu et al., 2022) and explicitly chirality-aware designs
(Adams et al., 2022; Yan et al., 2025), research on comprehensive chirality modeling within MRL
remains limited. More complex stereogenic forms, such as axial, planar, and helical chirality, are
largely unaddressed, representing a significant gap in current methodologies.
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Figure 1: Examples of central chirality (a) and axial chirality (b). The configuration of the chiral
atoms (in green) is determined by the spatial arrangement of chiral-related atoms (in orange).

Among the various forms of molecular chirality, central chirality and axial chirality represent the
two most prevalent categories. Central chirality arises when a tetrahedral atom (typically carbon)
is bonded to four distinct substituents. Such an atom constitutes a chiral center, and its stereo-
chemical configuration (R or S) (Cahn et al., 1966; Favre & Powell, 2013) is determined by the
spatial arrangement of its substituents, as illustrated in Figure 1(a). Axial chirality typically results
from restricted rotation around a chemical axis, often a bond connecting two aromatic or aliphatic
groups. Here, chirality (Ra/M or Sa/P) is determined by the relative arrangement of substituent
groups around the stereogenic axis, as shown in Figure 1(b).

Existing computational approaches encounter fundamental limitations in capturing chirality. E(3)-
invariant architectures that rely exclusively on pairwise distances or bond angles, such as SchNet
(Schütt et al., 2017) and DimeNet (Gasteiger et al., 2020b;a), are inherently incapable of distin-
guishing enantiomers since these geometric quantities remain unchanged under reflection. While
SE(3)-invariant models, including SphereNet (Liu et al., 2022), ChIRo (Adams et al., 2022), and
ChiGNN (Yan et al., 2025), address this limitation through directional information and equivariant
features, they face critical challenges. Most notably, molecular graphs are typically treated as homo-
geneous structures where chiral atoms are not explicitly differentiated, causing stereochemical sig-
nals to be diluted during global aggregation. Recent approaches like ChiGNN attempt to incorporate
chirality through permutation-resolution strategies, but they still fail to extract expressive, localized
descriptors that faithfully characterize chiral centers or stereogenic axes. These constraints highlight
the urgent need for a unified framework capable of systematically modeling diverse chirality types
while explicitly encoding stereochemical features that govern molecular behavior.

To address the above limitations, we propose the ChiDeK model (Chiral Determinant Kernels),
which learns molecular chirality based on the determinant of the chirality matrix and applies cross-
attention between chiral and non-chiral atoms to explicitly capture stereogenic information. The
introduced chiral determinant kernels embed the SE(3)-invariant chirality matrix (Shi et al., 2026)
for each chiral atom, capturing stereogenic information for both central and axial configurations. A
cross-attention mechanism enhanced by pair representations then propagates the influence of chiral
atoms (queries) with chiral-related and non-chiral atoms (keys and values) into the global molecular
representation, enhancing stereochemical sensitivity. Our main contributions are:

• We introduce ChiDeK, a unified architecture that systematically encodes both central and
axial chirality, and evaluate it comprehensively on multiple chirality-aware prediction tasks.

• We design the chiral determinant kernel for chiral atoms that embeds the SE(3)-invariant
chirality matrix, effectively capturing stereogenic features for chirality.

• We construct and release a dataset of axially chiral molecules for the prediction of elec-
tronic circular dichroism (ECD) and optical rotation (OR), providing a benchmark for this
underexplored stereogenic type.

• Across multiple tasks, including R/S classification, enantiomer ranking, ECD prediction,
and OR prediction, ChiDeK demonstrates substantial improvements over state-of-the-art
baselines, particularly for the axial chirality task.
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2 RELATED WORK

Learning 3D Representations of Molecules. Recent advances in molecular machine learning have
heavily leveraged 3D geometric message passing and attention architectures, where interatomic in-
teractions are modeled via internal coordinates such as distances, angles, and torsions. SchNet
(Schütt et al., 2017), a pioneering architecture for predicting quantum mechanical properties, param-
eterizes messages using radial basis expansions of pairwise distances. DimeNet (Gasteiger et al.,
2020b) and DimeNet++ (Gasteiger et al., 2020a) extend this framework by incorporating angular
features through spherical Bessel functions, while DeepH-E3 (Gong et al., 2023) learns Hamiltoni-
ans from density functional theory (DFT) calculations. BOTNet (Batatia et al., 2025) further sim-
plifies neural equivariant interatomic potentials (NequIP) (Batzner et al., 2022), a high-performing
equivariant message passing framework. These models are designed to be E(3)-invariant, which are
robust to translations, rotations, and reflections. While this invariance is desirable for many prop-
erty prediction tasks, it enforces reflection-symmetry, rendering such models unable to distinguish
enantiomers that differ only by mirror inversion (Satorras et al., 2021; Dumitrescu et al., 2025).

To remedy this shortcoming, SE(3)-invariant architectures have been developed, which maintain
sensitivity to reflections. Tensor Field Networks (Thomas et al., 2018) and SE(3)-Transformers
(Fuchs et al., 2020) achieve equivariance through the use of spherical harmonics and irreducible
representations. Path-MPNN (Flam-Shepherd et al., 2021), GemNet (Klicpera et al., 2021), and
SphereNet (Liu et al., 2022) further enhance 3D GNNs by embedding angular and torsional infor-
mation. More recently, MoleculeSED (Liu et al., 2023a) introduces reflection-sensitive stochastic
differential equations for molecular modeling.

Explicit Representation Learning of Molecular Chirality. A number of studies explicitly in-
corporate stereochemical information into molecular representations. Early efforts introduce hand-
crafted descriptors such as the chirality code (Aires-de Sousa et al., 2004), physicochemical atomic
stereo (PAS) descriptors (Zhang & Aires-de Sousa, 2006), relative chirality indices (RCI) (Natarajan
et al., 2007), and chiral cliffs (Schneider et al., 2018). More recently, MAP4C (Orsi & Reymond,
2024) extends molecular fingerprints to capture stereochemical tags directly. Linear notations such
as SMILES (Weininger, 1988), SELFIES (Krenn et al., 2022), and fragSMILES (Mastrolorito et al.,
2025) encode molecules as sequences that can include chirality tags, enabling models like Trans-
formers (Vaswani et al., 2017) to process stereochemical information (Yoshikai et al., 2024; Yang
et al., 2025). However, these tags serve only as symbolic indicators without explicit 3D structural
context, making the resulting representations less informative for capturing stereogenic geometry.
Graph neural networks have also been adapted to represent chirality more explicitly. Tetra-DMPNN
(Pattanaik et al., 2020) modifies message passing in 2D GNNs with asymmetric updates to en-
code tetrahedral chirality. SPMS (Xu et al., 2021) introduces spherical projection descriptors with
convolutional architectures for stereostructure modeling. ChIRo (Adams et al., 2022) learns 3D rep-
resentations invariant to bond rotations yet sensitive to stereoisomers. MolKGNN (Liu et al., 2023c)
leverages the tetrahedron volume calculation to capture the neighbor ordering for chirality. CFFN
(Du et al., 2023) combines 2D graph topology and 3D geometry to build stereochemistry-aware
molecular representations. GCPNet (Morehead & Cheng, 2024) develops geometric representations
tailored for biomolecular graphs. ChiENN (Gaiński et al., 2023) and ChiGNN (Yan et al., 2025)
explicitly consider atom permutations related to chirality to improve stereochemical discrimination.
ChiralCat (Peng et al., 2025) integrates 3D molecular structures with LLM-generated textual de-
scriptions to perform chiral type classification.

Despite these advances, the vast majority of prior work focuses primarily on central chirality. Other
stereogenic forms, such as axial chirality, remain largely underexplored, limiting current models’
ability to generalize across the full spectrum of stereochemistry. Although methods such as SPMS
are theoretically capable of representing additional forms of chirality, they have not been systemati-
cally evaluated in these settings, leaving their practical effectiveness uncertain.

3 PRELIMINARIES

3.1 CHIRAL AND CHIRAL-RELATED ATOMS

To construct a meaningful molecular representation that explicitly encodes chirality, we distinguish
between chiral atoms and their corresponding chiral-related atoms (Figure 1). Given a molecule z
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with M atoms, where the index set of atoms is I = {1, . . . ,M}, we define three disjoint subsets :

Ic, Ir =
⋃
i∈Ic

{j : j ∈ N (i)} \ Ic, In = I \ (Ic ∪ Ir), (1)

where Ic, Ir, and In ⊂ I are the index sets of chiral, chiral-related, and non-chiral atoms, respec-
tively, and N (i) denotes the index set of substituents around a chiral atom i.

For central chirality, a chiral atom i ∈ Ic typically has four different substituent groups. The
corresponding four neighboring atoms define its chiral-related set N (i). For axial chirality, chirality
arises along a stereogenic axis (e.g., in biaryls), where steric hindrance prevents free rotation. In this
case, the substituent groups are partitioned into four distinct sets around the axis, and we select the
nearest atom from each group as the chiral-related atoms.

3.2 CHIRALITY MATRIX

To explicitly encode stereogenic information, we adopt the chirality matrix introduced in Chi-
ralFinder (Shi et al., 2026). Formally, for a chiral atom i ∈ Ic with ordered substituents
N (i) = (ri,1, ri,2, ri,3, ri,4), the chirality matrix is defined as

MC(i) :=
(
(xri,1 − xi) (xri,2 − xi) (xri,4 − xri,3)

)⊤
, (2)

where xi ∈ R3 denotes the 3D position of the chiral atom i, and xri,j denotes the position of its
j-th substituent. The corresponding chirality product is then defined as

PC(i) :=
(
(xri,1 − xi)× (xri,2 − xi)

)
· (xri,4 − xri,3) = det

(
MC(i)

)
, (3)

where × denotes the vector cross product, · denotes the dot product, and det(·) is the determinant
of a given matrix. Appendix D.1 provides details on how N (i) is determined.
Proposition 3.1. Given a chiral atom i, the chirality product PC(i) is invariant under rigid-body
translation and rotation, and changes sign under reflection:

det
(
MC(i)

)
= det

(
R1MC(i)

)
, det

(
R2MC(i)

)
= −det

(
MC(i)

)
, (4)

where R1 ∈ SE(3) denotes any rigid-body motion with rotation r ∈ SO(3) and translation t ∈ R3,
and R2 ∈ O−(3) denotes any reflection (orthogonal transformation with determinant −1).
Lemma 3.1. Let (z1, z2) be a pair of enantiomers differing only in the stereochemical configuration
of atom i. Then

configuration(i) =
{

R, det(MC(i)) > 0,

S, det(MC(i)) < 0.
(5)

Proof of Lemma 3.1 is provided in Appendix F.1.

4 METHOD

4.1 CHIDEK FRAMEWORK

The proposed ChiDeK framework, illustrated in Figure 2(a), is designed to capture stereochemi-
cal information by explicitly modeling chiral atoms through chiral determinant kernels. Given a
molecule z = (X,H), where X = (x1, . . . ,xM ) ∈ R3M specifies the 3D coordinates of the
M atoms, and H = (h1, . . . ,hM ) ∈ RdM encodes atom-level features, we construct a molecular
graph G = (V, E), where the node set V is partitioned into chiral atoms, chiral-related atoms, and
non-chiral atoms, and the edge set E incorporates geometric distances between atoms.

The forward pass of ChiDeK proceeds in three stages: (1) a chiral encoder computes chiral-sensitive
embeddings for chiral atoms via chiral determinant kernels, while three separate multi-layer projec-
tors compute chiral-invariant embeddings for chiral, chiral-related, and non-chiral atoms; (2) the
multi-layer chiral cross-attention mechanism refines embeddings of chiral atoms (queries) by at-
tending to heterogeneous neighbors (keys/values), guided by distance-aware Gaussian Kernel with
Pair Type (GKPT) biases; (3) the resulting chiral-aware representations are aggregated and passed
through task-specific heads (e.g., chirality classification, spectrum regression).
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Figure 2: Overview of the ChiDeK architecture (a). It consists of a chiral encoder (b), a chiral trans-
former incorporating L cross attention layers (c), and a predictor for predicting chiral properties.

4.2 CHIRAL ENCODER

A key requirement for learning molecular chirality is to design features that are sensitive to reflec-
tions but invariant to global translations and rotations. The classical determinant of a 3× 3 chirality
matrix MC(i) provides exactly such a property, as it encodes the signed volume spanned by three
bond vectors around a chiral atom. To generalize this construction into a high-dimensional latent
space, we introduce the chiral encoder based on chiral determinant kernels.

Chiral Determinant Kernel. To explicitly represent chiral atoms with stereogenic information, we
introduce the chiral determinant kernel, a determinant-based kernel that encodes the oriented volume
spanned by triplets of projected atomic vectors with QR decomposition.

Let MC ∈ RB×3×3 denote the batch of chirality matrices and W ∈ Rk×dp×3 the learnable weights,
where k is the number of kernels and dp is the projection dimension. After broadcasting to M ′

C ∈
RB×k×3×3 and W ′ ∈ RB×k×dp×3, we compute

Ob,k = W ′
k M

′
C,b, O ∈ RB×k×dp×3, (6)

where M ′
C,b ∈ R3×3 is the b-th chirality matrix, W ′

k ∈ Rdp×3 is the k-th kernel, and multiplication
is standard matrix multiplication along the last two dimensions. Then, we reshape the output O from
RB×k×dp×3 to O′ ∈ R(BK)×dp×3. Applying layer normalization along the dp dimension yields

Õ = LayerNorm (O′) ∈ R(BK)×dp×3. (7)

Next, we perform a QR decomposition for each slice:

Õ(bk) = Q(bk)R(bk), Q⊤
(bk)Q(bk) = I3, Q(bk) ∈ Rdp×3, R(bk) ∈ R3×3, (8)

for all b ∈ {1, . . . , B} and k ∈ {1, . . . , k}. We then compute the determinant of each factor:

Dc,b,k = det
(
R(bk)

)
, Dc ∈ RB×k. (9)

Thus, each chiral atom is embedded into a k-dimensional representation that generalizes the determi-
nant, provides differentiability (Roberts & Roberts, 2020), and explicitly encodes stereochemistry.
Then the initial hidden representations of chiral, chiral-related, and non-chiral atoms are

Hc = Dc + fc (HIc) , Hr = fr (HIr ) , Hn = fn (HIn) , (10)

where fc, fr, fn are embedding layers for atomic features. We finally prepend a learnable global
chiral token before chiral atoms to enhance chiral representation.
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4.3 CHIRAL TRANSFORMER

Gaussian kernel with pair type (GKPT). Distances between atoms provide crucial stereochemical
cues. To encode them, we adopt GKPT (Shuaibi et al., 2021; Zhou et al., 2023). Formally, for input
distance x and pair type e, the GKPT is defined as

GKPT ((x, e),µ,σ) = G (E1(e) · x+E2(e),µ,σ) , (11)

where G (x′,µ,σ) = 1√
2πσ

exp

(
− 1

2

(
x′−µ
σ

)2)
, E1,E2 ∈ RNe×k are learnable embeddings, Ne

is the number of pair types, and µ,σ ∈ Rk parameterize the Gaussian kernels. Here, we distinguish
between two types of edges: chiral atoms with chiral-related atoms and with non-chiral atoms. The
GKPT module is applied to geometric distance xij with edge type eij , between atom i ∈ Ic and
j ∈ Ir

⋃
In, producing the bias term

p
(0)
ij = GKPT ((xij , eij),µ,σ)wp, (12)

with learnable projection wp. The resulting pairwise bias matrix is

P (0) =
[
p
(0)
ij

]
1≤i≤|Ic|, 1≤j≤|Ir|+|In|

∈ R |Ic|×(|Ir|+|In|). (13)

This pairwise representation encodes chemically relevant interactions, informing the subsequent
attention computation and enabling the model to learn complex spatial dependencies.

Chiral Cross-attention. We introduce a cross-attention mechanism enhanced by pairwise repre-
sentations, where chiral atoms serve as queries, while chiral-related and non-chiral atoms provide
keys and values. Let Hc, Hr, and Hn denote the hidden representations of chiral atoms Ic, chiral-
related atoms Ir, and non-chiral atoms In, respectively. At each layer ℓ (totally L layers), the linear
projections for keys and values are separated according to atom types and defined as

K(ℓ)
r = HrW

(ℓ)⊤
Kr

, V (ℓ)
r = HrW

(ℓ)⊤
Vr

, K(ℓ)
n = HnW

(ℓ)⊤
Kn

, V (ℓ)
n = HnW

(ℓ)⊤
Vn

, (14)

where W
(ℓ)
Kr

, W (ℓ)
Vr

, W (ℓ)
Kn

, and W
(ℓ)
Vn

∈ Rk×k are learnable projection matrices. Let H(ℓ)
c denotes

the output at layer ℓ, the resulting queries, keys, and values are

Q(ℓ) = H(ℓ−1)
c W

(ℓ)⊤
Q , K(ℓ) =

[
K(ℓ)

r , K(ℓ)
n

]
, V (ℓ) =

[
V (ℓ)
r , V (ℓ)

n

]
, (15)

where W (ℓ)
Q ∈ Rk×k is the learnable query projection, H(0)

c = Hc, and
[
·, ·
]

denotes concatenation.

At each layer ℓ, we maintain a learnable pairwise bias p
(ℓ)
ij between atom i (chiral) and atom j

(chiral-related or non-chiral), updated via the query-key interaction. See Appendix C for details.

Predictor. We utilize a lightweight predictor to predict chirality properties. It consists of two linear
layers with GELU activation Hendrycks & Gimpel (2016). This simple yet effective architecture
maps the final global representation to the target prediction space.

4.4 THEORETICAL ANALYSIS FOR CHIRAL ENCODER

The chirality product obtained from the chirality matrix (Shi et al., 2026) exhibits inherent sensitivity
to stereochemical variation. We demonstrate that a chiral determinant kernel maintains this desirable
characteristic.

Lemma 4.1. Let MC(i) ∈ R3×3 be the chirality matrix of atom i, and let W ∈ Rdp×3 be a full
column-rank projection. Define QR decomposition of O = WMC(i) ∈ Rdp×3 as

O = QR, Q⊤Q = I3, Q ∈ Rdp×3, R ∈ R3×3. (16)

Then the generalized chirality product PW (i) = det(R) satisfies

PW (i) = α(W ) · PC(i), (17)

where PC(i) is the chirality product, and α(W ) > 0 is a scaling factor depending only on W but
not on the atom coordinates. PW (i) satisfies Proposition 3.1 and Lemma 3.1.
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The proof of Lemma 4.1 is provided in Appendix F.2.

Discussion on rank deficiency. If W is not full column-rank, then O becomes rank-deficient and
the determinant det(R) degenerates to 0, resulting in the loss of chirality information. While the
magnitude of det(R) depends on α(W ), the sign remains a reliable indicator of chiral configura-
tions as long as W has full column rank. Hence, ensuring rank sufficiency of W is critical for
stability and discriminative power. To guarantee full column rank of W , we adopt two strategies in
practice:

Weight regularization. We introduce a penalty term on the weight as part of the loss function:

Lreg = ||W⊤W − I3||2, (18)

encouraging W to preserve rank during training.

Auxiliary QR on weights. Alternatively, we apply QR decomposition directly on W before pro-
jection, ensuring that projected neighbor vectors remain linearly independent.

5 EXPERIMENTS

5.1 MAIN EXPERIMENTS

Datasets. We evaluate our method on both centrally and axially chiral molecules using multiple
benchmarks, as shown in Appendix Table 4. R/S classification and enantiomer ranking datasets
for central chirality are from ChIRo (Adams et al., 2022). ECD prediction for central chirality
is from CMCDS (Li et al., 2025). ECD and OR prediction for axial chirality are constructed by
ourselves, named ACMP (axial chiral molecular properties). See Appendix A for details about
dataset processing, construction, and splits.

Baselines. We benchmark ChiDeK against both an E(3)-invariant baseline, DimeNet++ (Gasteiger
et al., 2020a), and several SE(3)-invariant baselines, including SphereNet (Liu et al., 2022), ChIRo
(Adams et al., 2022), ECDFormer (Li et al., 2025), and ChiGNN (Yan et al., 2025). We also consider
the 2D chiral GNN Tetra-DMPNN with permutation (p) and concatenation (c) variants (Pattanaik
et al., 2020), and the stereostructure descriptor-based SPMS Xu et al. (2021).

Implementation Details. All experiments are implemented in PyTorch (Paszke et al., 2019) and
conducted on NVIDIA RTX 3090 GPUs. See Appendix D for more training details.

5.1.1 EXPERIMENTAL RESULTS FOR CENTRAL CHIRALITY

Table 1: R/S classification, enantiomer ranking, and ECD prediction results for central chirality.
Best and second-best are marked.

Method R/S (%) Ranking (%) Position Number Symbol (%)
Acc ↑ Acc ↑ RMSE ↓ RMSE ↓ Acc ↑

DimeNet++ 65.7± 2.9 58.4± 0.2 2.12± 0.19 1.04± 0.15 50.8± 0.1
Tetra-DMPNN (c) 99.7± 0.1 70.1± 0.5 2.38± 0.12 1.25± 0.09 50.0± 0.1
Tetra-DMPNN (p) 99.7± 0.1 67.6± 0.6 2.36± 0.16 1.28± 0.08 50.0± 0.1
SphereNet 98.2± 0.2 68.6± 0.3 2.36± 0.15 1.02± 0.11 51.9± 0.3
ChIRo 98.5± 0.2 72.0± 0.5 2.67± 0.13 1.22± 0.13 51.0± 0.4
ECDFormer 92.3± 1.2 58.6± 0.3 2.02 ± 0.10 1.01 ± 0.09 50.3± 0.3
ChiGNN 84.5± 0.9 59.6± 0.4 2.39± 0.18 1.24± 0.10 49.9± 0.5
SPMS 81.4± 0.7 60.4± 0.4 2.58± 0.17 1.22± 0.12 50.9± 0.3

ChiDeK (Ours) 99.8 ± 0.1 72.8 ± 0.2 2.20± 0.14 1.18± 0.09 53.3 ± 0.6

R/S Classification. Table 1 reports the results. ChiDeK achieves the best performance close to
100%. This clearly demonstrates the effectiveness of our chirality-aware design. In contrast, the
E(3)-invariant DimeNet++ completely fails on this task, which is as expected. We present a visual-
ization of cross attention weights in Appendix G. Note that, as emphasized in prior work (Adams
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et al., 2022), this R/S classification task is necessary but not sufficient for meaningful chiral learn-
ing. Nonetheless, strong performance on this benchmark is an essential prerequisite for chirality-
sensitive applications.

Enantiomer Ranking. Table 1 demonstrates that ChiDeK achieves optimal performance, surpass-
ing the second-best method ChIRo by 0.8%. The modest performance gap between ChiDeK and
ChIRo can be attributed to the limited structural diversity of the dataset, as all molecules contain
only a single chiral center.

ECD Spectrum Prediction. Since the number and positions of peaks remain invariant across enan-
tiomers while the symbols of peak intensities are inverted, accurately predicting peak heights repre-
sents the most critical aspect of ECD spectrum modeling. A model that successfully recovers peak
counts and positions but fails to distinguish peak height symbols is ineffective and impractical. Con-
sequently, we require a model that jointly predicts all three components, providing comprehensive
ECD spectrum prediction. As shown in Table 1, ChiDeK achieves optimal performance in predicting
peak height symbols while maintaining comparable accuracy for peak positions and counts.

However, the sign accuracy remains only slightly above 50% across all models. We hypothesize that
this is largely due to dataset inconsistencies: the original CMCDS dataset provides RDKit-generated
(Landrum, 2025) conformers, whereas the ECD labels are computed from optimized geometries.
This mismatch causes poor performance. This underscores the inherent difficulty of reliable ECD
spectrum modeling and suggests that consistent datasets are essential for more robust evaluation.

5.1.2 EXPERIMENTAL RESULTS FOR AXIAL CHIRALITY

Table 2: OR and ECD prediction results for axial chirality. Best and second-best are marked.

Method Rotation (%) Position Number Symbol (%)
Acc ↑ RMSE ↓ RMSE ↓ Acc ↑

DimeNet++ 50.0± 0.0 3.62± 0.17 1.13± 0.08 50.0± 0.1
Tetra-DMPNN (c) 50.0± 0.1 3.15 ± 0.12 1.20± 0.15 52.8± 0.2
Tetra-DMPNN (p) 50.0± 0.1 3.16± 0.10 1.05 ± 0.12 52.8± 0.2
SphereNet 52.5± 0.2 3.36± 0.22 1.08± 0.09 52.4± 0.4
ChIRo 50.0± 0.1 3.78± 0.18 1.11± 0.11 51.1± 0.3
ECDFormer 53.5± 0.3 3.89± 0.25 1.16± 0.14 51.5± 0.5
ChiGNN 50.2± 0.1 2.89 ± 0.12 1.06± 0.13 50.8± 0.8
SPMS 65.0± 0.6 3.69± 0.21 1.16± 0.15 60.4± 0.3

ChiDeK (Ours) 69.2 ± 0.5 3.24± 0.14 1.05 ± 0.12 71.2 ± 0.6

OR Prediction. Table 2 shows that ChiDeK delivers the strongest performance, exceeding the
second-best method by a noticeable 4.2% margin. Notably, all baseline models, except SPMS,
achieve accuracy below 55%, indicating their inability to capture axial chirality due to their neglect
of stereogenic axes. SPMS, which incorporates spherical stereostructural projections, can partially
encode such information. These findings underscore the inherent complexity of the task and high-
light the limitations of previous models in accurately representing complex chirality.

ECD Spectrum Prediction. Table 2 reports the results on the axial chirality ECD prediction task.
ChiDeK achieves the highest accuracy in predicting the symbols of peak heights, exceeding the
second-best model by a substantial margin of 10.8%. It also delivers competitive performance in pre-
dicting peak positions and numbers. Similar to OR prediction, SPMS exhibits limited performance,
while all other baseline models achieve less than 55% accuracy in symbol prediction. For fine-
grained analysis, we present performance breakdown across seven axial-chirality subtypes in Ap-
pendix B.1. Additionally, we evaluate general molecular property prediction tasks in Appendix B.2
to confirm that our model maintains full expressive power, where chirality is less critical.

Figure 3 presents a representative prediction comparison. ChiDeK successfully assigns opposite
peak-height symbols to opposite stereochemical configurations, thereby correctly distinguishing ax-
ial enantiomers. In contrast, ChiGNN and Tetra-DMPNN (permute) produce identical peak-height
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Figure 3: An axial ECD prediction example of a pair of enantiomers. Each row shows the predictions
for one configuration across models, with the two rows corresponding to opposite configurations.

symbols across enantiomers, failing to capture stereochemical differences. These results highlight
the robustness and stereochemical sensitivity of ChiDeK in handling axial chirality. See Appendix E
for more explanations and prediction examples.

Rotation Analysis of Axial Chirality Representations. To investigate how molecular represen-
tations generated by ChiDeK vary under rotation along the chiral axis, we systematically vary the
torsion angle, with details provided in Appendix E.3. Figure 4 illustrates two representative ex-
amples. In both cases, the 18 conformers are partitioned into two opposite configurations (each
comprising 9 conformers), consistent with the expected stereochemical symmetry. The trajectory
reflects a transition from one configuration to its opposite and then back to the original, while the
cosine similarity plots show high similarity within the same configuration and vice versa.

Figure 4: Visualization of how ChiDeK representations change under rotations along the chiral
axis for two molecules. Each point in the trajectory plot obtained by UMAP (McInnes et al., 2018)
represents the learned embedding at a given rotation angle, while each point in the polar plot denotes
the cosine similarity between the embedding and the reference at degree 0.

5.2 ABLATION STUDIES

We perform ablation studies on the axial ECD prediction task, using the accuracy of peak height
symbols as the primary evaluation metric. We examine strategies to address rank deficiency (QR and
Reg denote QR decomposition and regularization, respectively), types of chiral encoders, and atom
separation strategies (Sep.), as shown in Table 3. The ablation of missing or mislabeled chiral atoms
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is presented in Appendix B.3. The comparison with ChiralFinder-enhanced model is presented in
Appendix B.4.

Table 3: Ablation on model components.
Model Components Acc (%) ↑

Chiral Encoder Rank strategy Separate
Linear w/o. MC None ✓ 51.2± 1.2
Linear w. MC None ✓ 68.7± 0.6
Kernel-based QR ✗ 69.8± 0.4
Kernel-based Reg ✓ 71.0± 0.5
Kernel-based None ✓ 68.3± 0.6

Kernel-based QR ✓ 71.2± 0.6

(i) Strategies to Address Rank Deficiency. Table 3 compares three approaches for handling rank
deficiency: regularization (Reg), QR decomposition (QR), and no intervention (None). When han-
dling rank deficiency, both Reg and QR outperform None, achieving similar performance.

(ii) Choice of Chirality Encoder. We examine alternative chiral encoder designs in Table 3. A
linear encoder without access to MC performs poorly (close to random guessing), indicating that it
cannot capture chirality. In contrast, our kernel-based encoder yields a higher accuracy, confirming
its ability to encode stereogenic features effectively.

(iii) Separating Chiral Atom Types. We test the effect of explicitly distinguishing chiral-related
atoms (Ir) from non-chiral atoms (In). Models that separate chiral-related atoms and non-chiral
atoms outperform those that treat them jointly, highlighting the importance of modeling their distinct
roles within stereochemical environments.

6 CONCLUSION

We present ChiDeK (Chiral Determinant Kernels), a unified framework for learning chiral molec-
ular representations. By embedding the SE(3)-invariant chirality matrix through chiral determinant
kernels and employing cross-attention between chiral and non-chiral atoms, ChiDeK explicitly cap-
tures both central and axial stereogenic features. Across multiple benchmarks, ChiDeK substantially
outperforms baselines, particularly for axially chiral molecules. We further contribute a benchmark
dataset for axial chirality, encompassing both ECD and OR prediction tasks. This dataset provides
a foundation for future research in stereochemistry-aware machine learning. In future work, we
plan to extend our unified stereochemical representation to additional forms of chirality, such as
planar and helical chirality, and evaluate its utility in broader downstream applications, including
docking-score prediction for chiral ligand-protein interactions and enantioselectivity prediction in
asymmetric catalysis.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (No. 2023YFC2811500) and
the National Natural Science Foundation of China (No. 62272300).

REPRODUCIBILITY STATEMENT

Code and data are available at https://github.com/Meteor-han/ChiDeK.

REFERENCES

Keir Adams, Lagnajit Pattanaik, and Connor W. Coley. Learning 3d representations of molecular
chirality with invariance to bond rotations. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=hm2tNDdgaFK.

10

https://github.com/Meteor-han/ChiDeK
https://openreview.net/forum?id=hm2tNDdgaFK


Published as a conference paper at ICLR 2026

João Aires-de Sousa, Johann Gasteiger, Ivan Gutman, and Dušica Vidović. Chirality codes and
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A DATASETS

Table 4: Summary of downstream datasets.
Dataset Chirality Task Size Split
ChIRo (R/S) Central R/S classification 466K conformers / 78K mols 70/15/15
ChIRo (Ranking) Central Enantiomer ranking 335K conformers / 69K mols 70/15/15
CMCDS Central ECD prediction 22,182 conformers / mols 80/10/10
ACMP Axial ECD and OR prediction 1,192 conformers / mols 80/10/10

A.1 CENTRAL CHIRALITY

We adopt datasets from ChIRo (Adams et al., 2022): (i) R/S classification: the task is to classify
the configuration (R or S) of a tetrahedral chiral center. The dataset is a subset of PubChem3D,
comprising about 466K conformers of 78K enantiomers, each with exactly one tetrahedral chiral
center. The same 70/15/15 splits are used. (ii) Enantiomer ranking: the task is to predict docking
score rankings, evaluating whether the predicted relative ordering between enantiomers matches
the ground truth. This dataset includes 335K conformers of 69K enantiomers (34.5K pairs), with
enantiomers kept in the same data partition. We sample one conformer for each enantiomer in the
batch during training. The same 70/15/15 splits are used.

In addition, we employ the CMCDS dataset for ECD prediction (Li et al., 2025), formulated as a
multi-task, multi-label problem with three sub-tasks: predicting (1) the number of spectral peaks, (2)
their positions, and (3) the sign of peak heights. CMCDS consists of ECD spectra for 22,190 chiral
molecules (11,095 pairs), generated by large-scale theoretical calculations using Gaussian16 B.01
(Frisch et al., 2016b). After excluding four molecules without chiral centers, the dataset contains
22,182 conformers (11,091 pairs). We use random 80/10/10 splits while ensuring enantiomers are
within the same partition.

A.2 AXIAL CHIRALITY

We introduce a new benchmark, ACMP, for electronic circular dichroism (ECD) and optical rotation
(OR) prediction. Specifically, we curate 650 axially chiral molecules from ChiralFinder (Shi et al.,
2026) and generate initial 3D conformations using RDKit (Landrum, 2025). To refine these struc-
tures, a preliminary conformational optimization is first carried out using GFN2-xTB (Bannwarth
et al., 2019), which is a semiempirical quantum mechanical method. Following this, the molecular
geometries are fully optimized using the Gaussian 09 package (Frisch et al., 2016a), employing the
B3LYP functional and the 6-31G(d) basis set.

For ECD, to obtain the spectral data, time-dependent DFT (TD-DFT) calculations are performed
to compute the first 30 electronic excited states. These calculations use the long-range corrected
CAM-B3LYP functional and the 6-311+G(d,p) basis set, yielding the excitation wavelengths and
their corresponding rotatory strengths. ECD spectra curves are generated with Gaussian broaden-
ing (FWHM = 2/3), and an example is presented in Figure 5. We uniformly sample spectra at
1 nm intervals to produce sequence-form ECD representations. The labeling process follows the
same procedure as CMCDS: peak positions are uniformly discretized into 20 classes, while peak
heights are encoded using their sign (positive or negative). The number of peaks ranges from 0 to
6, and its distribution is illustrated in Figure 6. For OR, we compute the optical rotation at 589.3
nm using CAM-B3LYP/6-31G**. The resulting scalar rotation value is then mapped to a binary
classification label, forming a two-class prediction task. All Gaussian calculations are conducted
using 400 GB of memory with 192 CPU cores. To obtain enantiomeric counterparts, we generate
opposite configurations by reflecting atomic coordinates across the z-axis. We finally get a dataset
of 1,192 enantiomers (596 pairs). For evaluation, we adopt random 80/10/10 train/validation/test
splits, ensuring that enantiomer pairs are kept within the same partition.
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Figure 5: The ECD curve example for an axial chiral molecule.

Figure 6: Distribution of ECD peak numbers in ACMP dataset.

B ADDITIONAL EXPERIMENTS

B.1 FINE-GRAINED PERFORMANCE ON AXIAL-CHIRALITY SUBTYPES

To further investigate ChiDeK’s performance across structural diversity, we provide a subtype-level
breakdown on the test set, covering all seven axial-chirality subtypes. Table 5 reports detailed results
for axial ECD-height prediction.

We observe that ChiDeK achieves strong performance on most subtypes (≥ 70%), while Heter-
obiaryl (C–N) and Heterobiaryl (C–B) show lower performance (≤ 60%), highlighting potential
directions for future improvement.

B.2 EVALUATION ON GENERAL MOLECULAR PROPERTY PREDICTION

To assess the broader applicability of ChiDeK beyond chirality-sensitive tasks, we evaluate the
model on several moderate-sized MoleculeNet datasets Wu et al. (2018) where chirality is less
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Table 5: Performance breakdown of seven subtypes for the axial ECD-height task.

Subtype # Enantiomers # Height symbols Acc (%) ↑
Chiral atom pair 10 26 71.5± 1.8
Allene-like 2 4 80.0± 9.9
Spiral atom and chain 4 8 90.0± 5.0
Biaryl 70 194 72.9± 0.5
Heterobiaryl (C-N) 12 20 57.0± 4.0
Heterobiaryl (C-B) 6 16 60.0± 3.1
Nonbiaryl 16 46 70.0± 1.6

Total/Average 120 314 71.2± 0.6

critical, including FreeSolv, BACE, BBBP, ClinTox, and SIDER. These benchmarks test general
molecular property prediction rather than chiral discrimination.

As summarized in Table 6, ChiDeK achieves performance comparable to standard GNNs without
pretraining (D-MPNN, Attentive FP). While it does not surpass highly optimized SOTA models on
these general tasks, the results indicate that ChiDeK introduces no harmful inductive bias and retains
broad representational capacity for generic molecular property prediction.

Table 6: Results on less chiral-related MoleculeNet datasets.

Metric ROC-AUC (%) ↑ RMSE ↓
Datasets BBBP BACE ClinTox SIDER FreeSolv
# Molecules 2039 1513 1478 1427 642
# Tasks 1 1 2 27 1

W/o. pre-training

D-MPNN 71.0± 0.3 80.9± 0.6 90.6± 0.6 57.0± 0.7 2.082± 0.082
Attentive FP 64.3± 1.8 78.4± 0.0 84.7± 0.3 60.6± 3.2 2.073± 0.183
ChiDeK (Ours) 68.9± 0.8 78.1± 0.9 79.2± 1.1 58.3± 0.8 2.412± 0.109

W. pre-training

PretrainGNN 68.7± 1.3 84.5± 0.7 72.6± 1.5 62.7± 0.8 2.764± 0.002
Uni-Mol 72.9± 0.6 85.7± 0.2 91.9± 1.8 65.9± 1.3 1.480± 0.048

B.3 ROBUSTNESS TO NOISY OR INCOMPLETE CHIRALITY ANNOTATIONS

To evaluate ChiDeK’s robustness to imperfect chirality annotations, we conduct experiments on both
central and axial chirality.

Central chirality (R/S classification). We systematically introduce noise by removing or mislabel-
ing (1:1) chiral atoms in 2.5%, 5%, 7.5%, and 10% of molecules. For mislabeling, chiral centers
are replaced with non-chiral atoms; for missing centers, the labels are simply removed. Table 7
shows a smooth and gradual degradation rather than a sharp collapse. With moderate levels of
noise, the model maintains strong accuracy, demonstrating that the cross-attention architecture pro-
vides meaningful tolerance to incomplete or partially incorrect stereochemical inputs. These results
confirm that ChiDeK is robust to moderate annotation errors, while also showing that reliable chiral
identification naturally leads to stronger performance.

Axial chirality (ECD-height prediction). We evaluate the effect of removing ground-truth axial
labels (with noise) on ECD-height prediction performance. In this setting, the average coverage
(percentage of identified chiral atoms covering true chiral atoms) is 0.924, and the average IoU
(intersection over union) between identified and true chiral atoms is 0.645. Similar to central chiral-
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Table 7: Results of central R/S classification with different ratios of noise.

Ratio W/o. noise 2.5% 5% 7.5% 10%

ChiDeK 99.8± 0.1 99.1± 0.0 98.2± 0.0 96.9± 0.1 96.1± 0.2

ity, removing ground-truth guidance reduces performance as shown in Table 8, demonstrating that
reliable chiral identification is essential for optimal model performance.

Table 8: Results of axial ECD-height prediction with or without noise.

Ratio W/o. noise W. noise

ChiDeK 71.2± 0.6 65.8± 0.4

B.4 COMPARISON WITH CHIRALFINDER-ENHANCED MODEL

We integrate the ChiralFinder-derived chirality matrix into ChIRo by concatenating the matrix fea-
tures with the atomic embeddings (using zero vectors for non-chiral atoms) and evaluate this aug-
mented model on the same axial-chirality benchmarks.

As shown in Table 9, the inclusion of the chirality matrix yields a clear improvement over the
original ChIRo. Nevertheless, ChiDeK continues to outperform both variants. This result indicates
that while the chirality matrix is beneficial, ChiDeK provides stronger representational capacity for
modeling axial chirality.

Table 9: Comparison with ChIRo enhanced by the chirality matrix from ChiralFinder.

Method Rotation (%) Symbol (%)

ChIRo 50.0± 0.1 51.1± 0.3
ChIRo + Chirality matrix 62.1± 0.3 61.8± 1.0
ChiDeK 69.2± 0.5 71.2± 0.6

C CHIRAL CROSS-ATTENTION

The learnable pairwise bias p(ℓ)ij is updated by:

p
(ℓ+1)
ij =

Q
(ℓ)
i

(
K

(ℓ)
j

)⊤
√
k

+ p
(ℓ)
ij , (19)

where k is the hidden dimension. The attention outputs are then computed as

Attention
(
Q

(ℓ)
i ,K(ℓ),V (ℓ)

)
= softmax

(
Q

(ℓ)
i

(
K(ℓ)

)⊤
√
k

+ p
(ℓ−1)
i

)
V (ℓ). (20)

Finally, the outputs of L chiral cross-attention layers are aggregated by average pooling to get

Hglobal =
1

|Ic|
∑
i∈Ic

H
(L)
c,i . (21)

This global representation serves as the input for downstream chirality property prediction.
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D IMPLEMENTATION DETAILS

Whenever possible, baseline results are taken directly from the original publications; otherwise, we
reproduce them using publicly available code. All results are reported over five test folds or five
random runs.

D.1 INITIALIZATION OF ATOMS

Figure 7: Ordering chiral-
related atoms.

Identification of Chiral and Chiral-related Atoms. For centrally
chiral molecules, we use RDKit (Landrum, 2025) to detect chiral cen-
ters and their corresponding neighbors as chiral-related atoms. For
axially chiral molecules, the chiral axis is labeled by chemists, while
chiral-related atoms are determined using ChiralFinder (Shi et al.,
2026). If ChiralFinder fails, we fall back to selecting up to four near-
est neighbors as chiral-related atoms.

An example for ordering chiral-related atoms N (i) for atom i is pre-
sented in Figure 7. After identifying the chiral atom (in green), sup-
pose the indices of its chiral-related atoms (in orange) are A, B, C,
and D, respectively. We use RDKit to calculate the CIP value for
each atom (1, 4, 2, 5, respectively) and sort the indices in ascending
order of their CIP priorities.

Initial Atom Features. Each atom is initialized with a 52-dimensional feature vector, consistent
with ChIRo (Adams et al., 2022), including atom type, degree, formal charge, number of hydro-
gens, and hybridization state. Chiral atoms are additionally associated with their chirality matrix,
while non-chiral and chiral-related atoms share the same feature design. The embedding layers are
implemented as multi-layer perceptrons.

D.2 HYPERPARAMETER OPTIMIZATION

We tune hyperparameters via grid search (Table 10). Training epochs are set to 10 for R/S configu-
ration classification, 200 for enantiomer ranking, and 50 for both central and axial ECD prediction.
We use Adam optimizer (Kingma & Ba, 2014) and adopt a cosine learning rate schedule with a min-
imum learning rate of 0.1× the initial value. As for the enantiomer ranking task, we follow ChIRo
(Adams et al., 2022) and add the margin ranking loss.

Table 10: Hyperparameter search space for ChiDeK.

Hyperparameter Search Space
# Chiral Transformer Layers {4, 8, 12, 16}
# Chiral Transformer Heads {2, 4, 8}

Hidden Dimension {64, 128, 256, 512}
Projection Dimension {32, 64, 128, 256, 512}

Rank Strategy {QR, Reg}
Learning Rate {1e-4,5e-4}

Batch Size {16, 32, 64, 128, 256}
Weight of MarginRankingLoss {0.1, 0.5, 1.0}

E ANALYSIS OF AXIAL ECD PREDICTION

E.1 BASELINES FAIL TO LEARNING AXIAL CHIRALITY

Axial chirality presents unique challenges for ECD prediction. Our results demonstrate that ChiDeK
achieves strong performance in this setting, primarily due to its explicit encoding of chirality through
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the proposed chirality determinant kernels. By directly modeling stereochemically relevant features,
ChiDeK is capable of distinguishing axial enantiomers and accurately predicting peak height sym-
bols, a property that is essential for practical chirality-sensitive spectrum prediction.

By contrast, all baseline methods except SPMS perform poorly on axially chiral molecules, with
each exhibiting specific limitations for distinct reasons, as analyzed below:

• DimeNet++: As an E(3)-invariant model that relies only on distances and angles,
DimeNet++ is fundamentally incapable of distinguishing mirror-related structures. Its poor
performance is therefore expected.

• Tetra-DMPNN: This model augments 2D GNNs with a central-chirality readout, but has
no mechanism to capture axial chirality. As a result, it fails on this task.

• SphereNet and ChIRo: In principle, these models incorporate torsional information and
should have some sensitivity to stereochemistry. However, axial chirality involves subtle
global spatial arrangements that are not well captured by their architectures, leading to
limited performance.

• ECDFormer: While this model introduces additional chiral encoding, it is designed for
central chirality and lacks the necessary generalization to axial cases.

• ChiGNN: This method explicitly resolves atom permutations around tetrahedral centers,
making it effective for central chirality. However, it does not generalize to axial stereogenic
axes and thus completely fails in this setting.

E.2 ECD PREDICTION EXAMPLES

Figure 8 presents two additional representative prediction comparisons. ChiDeK successfully as-
signs opposite peak-height symbols to opposite stereochemical configurations, while ChiGNN and
Tetra-DMPNN (permutation variant) produce identical peak-height symbols across enantiomers,
failing to capture stereochemical differences.

E.3 DETAILS FOR ROTATING CHIRAL AXIS

We generate 18 conformers by rotating the torsion angle in 20-degree increments over 360 degrees.
Each conformer corresponds to distinct coordinates, yielding different chirality matrices and thus
different representations. We extract the embeddings before the predictor, apply UMAP (McInnes
et al., 2018) for visualization, and record the trajectory as the torsion angle progresses from 0 to 340
degrees. Additionally, we calculate the cosine similarity between each embedding and the reference
conformer at degree 0, and visualize the results using polar plots.

F PROOF DETAILS

F.1 CHIRALITY MATRIX

Proof of Lemma 3.1. Let (z1, z2) be a pair of enantiomers that differ only in the stereochemical
configuration of atom i. By definition of enantiomers there exists an isometry T of R3 that maps
the atomic coordinates of z1 to those of z2 and which is a composition of a rigid-body motion and
a reflection; equivalently, one may write T = R2 ◦ R1 with R1 ∈ SE(3) and R2 ∈ O−(3) (an
orthogonal transformation with determinant −1). In particular, the local coordinate frame used to
form the chirality matrix MC(i) for z2 is obtained from that for z1 by applying the linear part of T ,
which has determinant −1.

Since i is a chiral atom, its substituent vectors (used to build MC(i)) are non-coplanar, hence
det
(
MC(i)

)
̸= 0. The sign of the determinant is well-defined.

Applying Proposition 3.1, first note that the rigid-body component R1 ∈ SE(3) leaves the determi-
nant invariant:

det
(
M

(z1)
C (i)

)
= det

(
R1M

(z1)
C (i)

)
. (22)
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Figure 8: Axial ECD prediction examples of two pairs of enantiomers.

Then the reflection R2 ∈ O−(3) flips the sign of the determinant:

det
(
R2R1M

(z1)
C (i)

)
= −det

(
R1M

(z1)
C (i)

)
= −det

(
M

(z1)
C (i)

)
. (23)

R2R1M
(z1)
C (i) is exactly the chirality matrix for atom i in the enantiomer z2, i.e.,

M
(z2)
C (i) = R2R1M

(z1)
C (i). (24)

Therefore,

det
(
M

(z2)
C (i)

)
= −det

(
M

(z1)
C (i)

)
. (25)

It follows that the determinants for the two enantiomers have opposite signs. By the sign conven-
tion in the lemma (positive determinant 7→ ‘R’, negative determinant 7→ ‘S’), the stereochemical
configuration of i is ‘R’ when det(MC(i)) > 0 and ‘S’ when det(MC(i)) < 0.

Figure 9 illustrates how reflection flips the sign of the volume (determinant), yielding an opposite
configuration.

F.2 CHIRAL DETERMINANT KERNEL

Proof of Lemma 4.1. Let M = MC(i) ∈ R3×3 and W ∈ Rdp×3 be full column rank (so the rank
is 3). Define O := WM ∈ Rdp×3 and perform QR decomposition:

O = QR, Q⊤Q = I3, Q ∈ Rdp×3, R ∈ R3×3 upper-triangular. (26)
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Figure 9: An example of reflection that flips the sign of volume.

Unlike the conventional QR convention, here we allow the diagonal entries of R to be negative,
as is the case in numerical packages such as PyTorch. Consequently, the sign of det(R) is not
predetermined but remains well defined.

Consider the Gram matrix

G := W⊤W . (27)

Since W has full column rank, G ≻ 0 and det(G) > 0. We have

R⊤R = O⊤O = (WM)⊤(WM) = M⊤W⊤WM = M⊤GM . (28)

Taking determinants gives

det(R)2 = det(M⊤GM) = det(M)2 det(G). (29)

Hence
| det(R)| = | det(M)| ·

√
det(G). (30)

To recover the sign, observe that det(O) = det(Q) det(R). Since O = WM , this implies

det(R) =
det(WM)

det(Q)
. (31)

Here det(Q) ∈ {±1} because Q has orthonormal columns. Substituting gives

det(R) =
det(W ) det(M)

det(Q)
. (32)

Combining with equation 30, the factor depending on W is

α(W ) :=
| det(W )|
| det(Q)|

√
det
(
(W⊤W )/(W⊤W )

)
. (33)

Since det(Q) = ±1, this ambiguity only flips the sign in a way consistent with det(M). Therefore,
we can absorb it into the proportionality constant and write

det(R) =
√
det(G) det(M) = α(W )PC(i), (34)

with α(W ) =
√
det(W⊤W ) > 0 independent of M .

Finally, the invariance properties follow directly: if M 7→ rM for r ∈ SO(3), then det(M) is
unchanged, hence PW (i) is invariant. If M 7→ sM for s ∈ O−(3) with det(s) = −1, then det(M)
flips sign, hence PW (i) flips sign as well. Thus PW (i) inherits Proposition 3.1 and Lemma 3.1.

22



Published as a conference paper at ICLR 2026

Figure 10: Two examples of cross attention weights. The chiral axis for each molecule is highlighted
in green.

G VISUALIZATION OF THE CHIRAL TRANSFORMER

To better understand how ChiDeK leverages chiral information, we visualize the cross-attention
weights between chiral atoms (used as queries) and all other atoms (used as keys and values) on the
R/S classification task. Figure 10 illustrates two representative test examples from the axial ECD
prediction task, depicting the head-averaged cross-attention weights in the final layer of the chiral
transformer. In both cases, we observe that attention weights assigned to chiral-related atoms are
higher than those assigned to non-chiral atoms. This demonstrates that ChiDeK successfully pri-
oritizes stereochemically relevant atoms when integrating local chiral information into the global
molecular representation. Conversely, non-chiral atoms receive comparatively lower weights, sug-
gesting that the model effectively distinguishes their less critical role in stereospecific interactions.
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