
Studies on a Bayesian Optimization Based Approach to

Tune Hyperparameters of Matheuristics

Sophie Hildebrandt1,2[0000-0001-9606-3695], Sina Nunes2[0009-0000-8357-7435], Meik Franke1[0000-

0002-0382-0480] and Guido Sand2[0009-0005-3162-4726]

1 University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
2 University of Applied Science Pforzheim, Tiefenbronner Str. 65, 75175 Pforzheim, Germany

sophie.hildebrandt@hs-pforzheim.de

Abstract: Mixed-integer programming can handle optimization problems with

complex constraints, but its computational cost often suffers from the combina-

torial complexity of the problem. Decomposition-based matheuristics address

this issue by splitting large-scale mixed-integer programs (MIPs) into smaller

subproblems. Matheuristics typically exhibit hyperparameters that may affect

their performance. An analysis of related work reveals that the optimization po-

tential of hyperparameters is often left unexploited, leading to both inferior MIP-

solutions and unnecessarily high computational costs.

This paper studies a novel algorithmic approach to tune hyperparameters of

matheuristics by Bayesian optimization. Fundamental properties of the algorith-

mic approach are examined by computational experiments with small- and large-

scale instances of the use case. The results exhibit two natural and competing

objectives of the tuning problem: optimizing the MIP-objective and the compu-

tational cost. While the two objectives can be optimized separately for small-

scale instances, they need to be handled jointly for large-scale instances.

In future research the multi-objective aspect of the hyperparameter tuning

problem will be examined more deeply, and the single-instance approach will be

extended to multiple instances.

Keywords: Mixed-integer programming, matheuristics, hyperparameter tuning,

Bayesian optimization.

1 Introduction

Mixed-integer programs (MIPs) can be applied to solve real-world optimization prob-

lems with complex constraints like scheduling, routing or packing. An MIP comprises

four components: Firstly, the degrees of freedom which are reflected by integer- or real-

valued variables and whose values are determined during the solution process. Sec-

ondly, the algebraic objective function defines how the objective value, that should be

minimized or maximized, depends on the variables. Thirdly, the algebraic equality and

inequality constraints which restrict the feasible values of the variables. Fourthly, the

2 S. Hildebrandt et al.

parameters which define instances of the MIP. Several general-purpose solvers for

MIPs exist: CPLEX1, Gurobi2 and XPRESS3 are among the most prominent ones.

Lots of real-world optimization problems are NP-complete such that the solution of

large-scale instances is prohibited by the exploding computational cost. Heuristic de-

composition schemes aim at reducing the computational cost while losing only a little

optimization potential of the MIP. They split a large-scale monolithic MIP into a pol-

ylithic MIP comprising several smaller sub-MIPs. However, while solutions of mono-

lithic MIPs provide optimality certificates (proof of optimality or a conservative opti-

mality gap), solutions of polylithic MIPs, that are based on heuristic decomposition

schemes, do not. Heuristic decomposition-schemes for MIPs are called matheuristics

and typically comprise hyperparameters which steer the decomposition process.

The hyperparameters may affect the performance of matheuristics (see e.g. [1]) such

that they should be optimized. However, their optimization potential is often left unex-

ploited, leading to both inferior MIP-solutions and unnecessarily high computational

costs. In contrast to the underlying MIP, the hyperparameter tuning is a black-box op-

timization problem for which no algebraic formulation is known. The authors propose

to optimize the hyperparameters of matheuristics using Bayesian optimization (BO). In

this paper such an approach is studied based on a particular use case.

The remainder of the paper is structured as follows: In section 2, related work on

hyperparameter tuning of matheuristics and the motivation for choosing BO is dis-

cussed. In section 3, the BO-based approach for tuning matheuristics detailing the al-

gorithmic framework is presented. In section 4, the MIP-problem and the decomposi-

tion-based matheuristic used as case study are described along with the considered hy-

perparameters. In section 5 computational experiments with small-scale MIP-instances

and two separate objectives of the tuning problem are studied. In section 6 computa-

tional experiments for large-scale MIP-instances are studied, whereby in contrast to

section 5 the two objectives are handled jointly. In section 7, the conclusions from the

studies are summarized and future research directions are outlined.

2 Related Work

Hyperparameter tuning and algorithm selection is widely and successfully applied to

various machine learning models, including neural networks, support vector machines,

decision trees and random forests as well as gradient boosting machines. Numerous

studies have demonstrated that proper hyperparameter tuning can enhance machine

learning model accuracy, generalization and performance, as well as prevent overfitting

(see e.g. [2]).

Common techniques for hyperparameter tuning for machine learning models include

grid search and random search, as well as population-based optimization methods such

as evolutionary algorithms. More recent approaches such as successive halving,

1 https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
2 https://www.gurobi.com/
3 https://www.fico.com/en/products/fico-xpress-optimization

 Bayesian Optimization Based Approach to Tune Matheuristics 3

hyperband, and BO have gained traction for their ability to allocate computational re-

sources more efficiently (see e.g. [3]).

Beyond traditional machine learning models, hyperparameter tuning and algorithm

selection techniques have also been applied to mathematical programming. At a high

level, learning-based approaches can assist in selecting among different algorithmic

strategies: For instance, Degroote et al. [4] used machine learning to choose between

two tabu search variants and mixed-integer programming for solving the generalized

assignment problem. Once an algorithmic strategy is chosen, further decisions arise,

for example, whether to apply decomposition schemes or not. Mitrai and Daoutidis [5]

demonstrated how machine learning can support this decision, and in a subsequent

work, they proposed a hyperparameter tuning framework specifically for Benders de-

composition, a general and exact method for solving MIPs [6]. The sub-MIPs resulting

from the decomposition can be solved using standard MIP solvers. Extensive research

has explored tuning strategies for standard MIP solvers (e.g. [7, 8]). Going even deeper

into solver internals, machine learning has also been leveraged to guide key compo-

nents of branch-and-bound algorithms, such as selecting branching variables, nodes, or

cutting planes, as surveyed comprehensively by Bengio et al. [9].

While hyperparameter tuning is well-established for machine learning models and

metaheuristics and is also applied to rigorous mathematical programming in various

ways, there is no research on its use in matheuristics known. A key challenge in

matheuristic tuning is the high computational cost associated with evaluating each hy-

perparameter configuration, as it involves solving one or more MIPs. Consequently,

exhaustive methods such as grid search, random search, or even population-based ap-

proaches like evolutionary algorithms or particle swarm optimization often become im-

practical due to their high evaluation budgets and low sample efficiency [3]. To address

this issue, more efficient techniques such as successive halving, hyperband, and BO

have been proposed [3]. Both bandit-based methods like successive halving and hyper-

band and BO-based methods are promising approaches for the hyperparameter tuning

of matheuristics. In this work, BO is applied to tune the hyperparameters of matheuris-

tics.

4 S. Hildebrandt et al.

3 Proposed Approach

A novel approach based on BO is proposed for the hyperparameter tuning of

matheuristics. Fig. 1 visualizes the building blocks of the algorithmic architecture and

the information exchanged between them. On the one hand, BO is a well-established

method for hyperparameter tuning, particularly for expensive-to-evaluate objective

functions. On the other hand, the use of matheuristics that decompose a monolithic MIP

into a polylithic MIP, and the tuning of standard MIP solvers have both been widely

studied. To the knowledge of the authors, studies on a BO-based approach to tune hy-

perparameters of matheuristics are not described in literature yet.

 Fig. 1. Algorithmic architecture for the hyperparameter tuning of matheuristics

In each iteration, the BO proposes new hyperparameter values for both the matheuristic

and the MIP standard solver. With the decomposition scheme of the parameterized

matheuristic and the model formulation of the monolithic MIP a polylithic MIP is gen-

erated. The polylithic MIP consists of several smaller sub-MIPs which are solved by a

MIP standard solver. The MIP standard solver computes a solution for the sub-MIP

using the solver hyperparameters given. The objective value of the sub-MIP and the

computational cost for solving the sub-MIP are returned to the matheuristic. After all

sub-MIPs are solved, the matheuristic returns the objective value of the polylithic MIP

solution and the total computational cost used to solve the polylithic MIP to the BO.

The BO updates the surrogate model and calculates new promising hyperparameter

values using an acquisition function. This is done until a termination criterion for the

BO, such as the number of iterations, a time limit or the number of retries to propose

new hyperparameter values is met.

The algorithm shown in Fig. 1 is implemented using the python package SMAC34

for the BO (with a gaussian process as surrogate model and the expected improvement

4 https://github.com/automl/SMAC3

 Bayesian Optimization Based Approach to Tune Matheuristics 5

as acquisition function), the python package Pyomo5 is used to implement the MIP and

CPLEX6 is used as MIP standard solver.

4 Case Study

4.1 Hoist Scheduling Problem

The BO-based approach is studied using a single hoist scheduling problem (HSP) de-

scribed by Aguirre et al. [1] as a use case. HSPs appear in the production scheduling of

electroplating plants, see Fig. 2.

Fig. 2. Schematic visualization of an electroplating plant [10]

These plants consist of different tanks which are arranged in one line and contain dif-

ferent liquids. The products are filled into perforated barrels and immersed in the liquids

for a limited time (see Fig. 2 for the lower and upper processing time limits). The prod-

ucts are processed in specific sequences of steps defined by recipes. Several products

can be processed simultaneously according to different recipes. The barrels are trans-

ported between the tanks by a single hoist with finite speed.

The objective of the scheduling problem is to create a hoist schedule with minimum

makespan (i.e. time to process all products), specifying which product is processed at

which time for how long in which tank. [10]

4.2 Mixed-Integer Program

The HSP can be formulated as an MIP. The main variables of the MIP are the starting

and the finishing times of each processing step of each product. The values of the var-

iables must meet constraints such as:

5 https://www.pyomo.org/
6 https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

6 S. Hildebrandt et al.

• The start time plus the processing time equals the finishing time.

• The processing time must not exceed the minimum and the maximum al-

lowed processing time.

• A processing step can only be started if the previous processing step and

the transportation of the barrel to the subsequent tank are finished.

• At most one barrel can be processed within a tank at a time.

• The hoist can only carry one barrel at a time.

• The hoist arrives empty and in time at the tanks to pick up a barrel.

Further details on the formulation of the MIP can be found in the paper by Aguirre et

al. [1].

4.3 Matheuristic

The monolithic MIP from above cannot be solved in reasonable times for large-scale

instances. Therefore Aguirre et al. [1] developed a matheuristic which decomposes the

monolithic MIP into a polylithic MIP with smaller sub-MIPs. The matheuristic com-

prises two steps: A construction step to create an initial schedule and an improvement

step to improve the initial schedule.

The matheuristic can be explained using a window which is shifted over the product

sequence (see Fig. 3).

Fig. 3. Schematic visualization of the first two iterations of the construction step

In this example, the construction step starts with the initial product sequence

1, 2, 3, … 7. In the first iteration, a window of width NSJ (number of scheduled jobs)

starts at the first product. All products within the window are scheduled by solving a

sub-MIP, while the products to the right of the window are not considered. Afterwards,

the window is shifted by NFJ (number of fixed jobs) products to the right. In the second

iteration the products within and to the left of the window are scheduled by solving a

sub-MIP. Again, the products to the right of the window are not considered. While the

products within the window can be scheduled freely, the sequence of products to the

left of the window are fixed to the result of iteration 1. This procedure is repeated until

an initial schedule for all products is constructed.

The improvement step starts with the schedule from the construction step. A window

of width NRJ (number of rescheduled jobs) is shifted over the product sequence. In

each iteration a sub-MIP is solved considering all products. While the products within

the window can be freely rescheduled, the sequences of the products outside the win-

dow remain fixed. In each iteration the schedule can either be improved or not (but it

cannot deteriorate). In the first case the new product sequence is kept, and the window

 Bayesian Optimization Based Approach to Tune Matheuristics 7

is shifted back to the beginning of the sequence. In the second case the window is

shifted by one product to the right. Fig. 4 visualizes these two cases.

Fig. 4. Schematic visualization of the first three iterations of the improvement step

In iteration 1 the products 5, 2 and 1 can be rearranged during the optimization while

the sequence of the other products is fixed, but the schedule is not changed (case 2).

Therefor the window is shifted one product to the right. In iteration 2 the products 2, 1

and 3 are rescheduled leading to an improved schedule. Therefore, the window is

shifted back to the beginning of the sequence. In iteration 3 the products 5, 3 and 2 can

be rearranged. This procedure is repeated until the window is shifted completely over

the product sequence with no improvement.

This matheuristic comprises at least four hyperparameters (of which only number 2

and 4 were considered in [1]):

1. The initial product sequence for the construction step,

2. the window width NSJ in the construction step,

3. the step size of the window NFJ in the construction step, and

4. the window width NRJ in the improvement step.

Additionally, the accepted optimality gap of the sub-MIP (“MIPgap”) is considered as

a hyperparameter of the MIP standard solver (see Fig. 1). The optimality gap is the

difference between the makespan of the best feasible solution found so far and a con-

servative lower bound for the makespan. The hyperparameter MIPgap7 is used as a

termination criterion for the sub-MIPs. A MIPgap of 0 % means that the sub-MIPs must

be solved to proven optimality. A MIPgap of 100 % means that the first feasible solu-

tion found by the MIP standard solver is used.

The hyperparameters NSJ, NRJ and NFJ are integer valued. The initial product se-

quence is a categorical and the MIPgap is a continuous hyperparameter.

5 Computational Experiments with Small-Scale MIP-Instances

The aim of the matheuristic tuning is to find hyperparameter values that lead to a good

objective value of the MIP at reasonable computational cost. So, there are two natural

objectives: The objective of the MIP, for example minimize the makespan, and the

minimization of the computational cost, often measured as the CPU-time used on a

given hardware. Intuitively, these two objectives are competing: If the MIP is decom-

posed into many sub-MIPs, the CPU-time is expected to decrease while the makespan

7 https://support.gurobi.com/hc/en-us/articles/8265539575953-What-is-the-MIPGap

8 S. Hildebrandt et al.

is expected to increase. In this paper, the two objectives are analyzed separately to un-

derstand how they vary with the hyperparameters, how the BO behaves and how the

MIP-solutions differ for both objectives.

For small-scale MIP-instances the full matheuristic scheme can be applied and the

sub-MIPs can be solved to proven optimality with reasonable computational cost for

any hyperparameter values. In small discrete or discretized hyperparameter spaces a

full grid search can be completed in reasonable computational time and locate all glob-

ally optimal hyperparameter values.

To limit the size of the hyperparameter space, a full grid search is conducted with

only the two hyperparameters NSJ and NRJ while the remaining hyperparameters are

fixed to specific values. The behavior of the BO is studied in two- and four-dimensional

hyperparameter-spaces for the two objectives, makespan and CPU-time, separately. In

the four-dimensional space the hyperparameters NSJ, NRJ, NFJ and MIPgap are tuned.

The BO in the two-dimensional space is evaluated based on the globally optimal solu-

tions known from the grid search. In the four-dimensional space full grid search be-

comes impractical due to its size and the continuous nature of the hyperparameter MIP-

gap.

All computational experiments were performed on a machine with an Intel Xeon E5-

2630 v4 CPU running at 2.20 GHz.

5.1 Grid Search

Four small-scale MIP-instances are studied. They comprise a small number of products

(6) and the monolithic MIPs can be solved in less than 3 hours CPU-time to proven

optimality. Instance s1 is taken from Aguirre et al. [1] while instances s2, s3 and s4 are

newly created. In Table 1 the main parameters of the small-scale instances are listed.

Table 1. Main parameters of the small-scale instances

Instance
Number of

products

Number of

stages

Number of

recipes

Number of

tanks

s1 6 4-8 3 36

s2 6 4-6 3 7

s3 6 6 2 5

s4 6 6 1 5

For the grid search the hyperparameters NSJ and NRJ are varied while NFJ is fixed

to 1, MIPgap is fixed to 0 % and initial product sequence is either ordered or unordered.

NSJ and NRJ are integer in nature and bounded between 1 to 6 such that 36 solutions

exist. For smaller values of NSJ and NRJ, the MIP is decomposed stronger into more

and smaller sub-MIPs. For larger values of NSJ and NRJ, fewer and larger sub-MIPs

need to be solved. The largest possible value for NSJ and NRJ is the number of products

(here: 6). For this value the monolithic MIPs are actually not decomposed, such that the

monolithic MIP is considered as the (one) sub-MIP in the construction or the improve-

ment step, respectively.

 Bayesian Optimization Based Approach to Tune Matheuristics 9

Fig. 5 shows for the representative instance s2 the results of the grid search for the

two objectives, makespan and CPU-time, in the NSJ-NRJ-space. (Note that the integer-

values are interpolated for a better visualization.) Two initial product sequences are

studied: an ordered and an unordered one. In the ordered sequence the products with

the same recipe are next to each other, while they are alternated in the unordered se-

quence.

Fig. 5. Results of the grid search for small-scale instance s2 with ordered (top) and unordered

(bottom) initial product sequence

As expected, the plots show that the two objectives are competing: A strong decompo-

sition leads to a large makespan and to a small CPU-time and vice versa. The makespan

exhibits a weak optimum with a lot of optimal solutions. In contrast, the CPU-time is

neither monotonically increasing with NSJ nor with NRJ but exhibits local optima: For

instance, a decomposition into two sub-MIPs in the improvement step (𝑁𝑅𝐽 = 5) leads

to a larger CPU-time than solving one monolithic MIP (𝑁𝑅𝐽 = 6). The CPU-time is

more sensitive to changes in NRJ than to changes in NSJ. This is because the number

of iterations in the improvement step (controlled by NRJ) can be higher than the itera-

tions in the construction step (controlled by NSJ), as the window can be reset to the

beginning during the improvement step while the window is only shifted forward dur-

ing the construction step.

a b

c d

10 S. Hildebrandt et al.

A comparison of Fig. 5a and Fig. 5c shows that the initial product sequence has a

significant impact on the set of optimal hyperparameter values for the makespan objec-

tive. With an unordered initial product sequence (Fig. 5c) only one of the window sizes

(in the construction or the improvement step) needs only to be greater than 1 (𝑁𝑆𝐽 > 1

or 𝑁𝑅𝐽 > 1) to achieve the optimal makespan. An ordered product sequence can result

in sub-MIPs only comprising products with the same recipe, leading to sub-MIPs with

little optimization potential. . If the initial product sequence is ordered (Fig. 5a) larger

time windows are necessary to achieve the optimal makespan.

5.2 Bayesian Optimization

Fig. 6 shows the behavior of the BO in terms of the sequence of its incumbent solutions

for instance s2 based on Fig. 5a and b.

Fig. 6. Behavior of the BO in terms of its incumbent solutions (red lines) for instance s2

The BO is initialized with a single point8 corresponding to the worst hyperparameter

values for both objectives: 𝑁𝑆𝐽 = 𝑁𝑅𝐽 = 1 for the makespan and 𝑁𝑆𝐽 = 2 and 𝑁𝑅𝐽 =
5 for the CPU-time. The optimal hyperparameter values are found after the first incum-

bent solution for the makespan and after the fifth incumbent solution for the CPU-time.

To study the behavior of the BO in a higher-dimensional space, NFJ and MIPgap

are considered as variable hyperparameters in addition to NSJ and NRJ. Fig. 7 and

Fig. 8 show how the incumbents of the objective values evolve over the iterations of

the BO. The minimum, the maximum and the mean value over all four instances for

8 https://automl.github.io/SMAC3/v2.1.0/api/smac.initial_design.html

start end

start

end

 Bayesian Optimization Based Approach to Tune Matheuristics 11

each iteration are displayed. To make the values of the different instances comparable,

they are normalized between 0 and 1.

Fig. 7. BO convergence of the CPU-time in the 4D hyperparameter space

As can be seen in Fig. 7, the CPU-time improves mainly in the first 27 iterations. Af-

terwards it takes more effort – up to 68 iterations – until a better solution is found.

Fig. 8. BO convergence of the makespan in the 4D hyperparameter space

As can be seen in Fig. 8 the makespan improves only in the first 9 iterations. Afterwards

no better hyperparameter values can be found.

Table 2 shows the best found hyperparameter values for the two objectives. “

 ” not necessarily optimal and that other

hyperparameter values with the same objective values may exist.

Table 2. Best found hyperparameter values for both objectives

 Minimizing makespan Minimizing CPU-time

Instance NSJ NRJ NFJ MIPgap NSJ NRJ NFJ MIPgap

 % %

 % %

 % %

 % %

The best found hyperparameter values depend on both, the instances and the objective.

The dependency on the objectives was intuitively expected, since makespan and CPU-

time are competing. The dependency on the instance gives reason to assume that there

is no one set of hyperparameters that is optimal for all instances.

Minimizing the CPU-time pushes several hyperparameters of the matheuristic (NSJ,

NRJ and NFJ) to their boundaries. This is an intuitive result since the CPU-times are

12 S. Hildebrandt et al.

relatively small if either the monolithic MIP is solved (𝑁𝑆𝐽 = 6, 𝑁𝑅𝐽 = 6, 𝑁𝐹𝐽 =
𝑎𝑛𝑦) or the MIP is decomposed as strong as possible (𝑁𝑆𝐽 = 1, 𝑁𝑅𝐽 = 1, 𝑁𝐹𝐽 = 1).

In contrast, minimizing the makespan leads to several hyperparameters that are not at

their boundaries. This can be explained by the weak optimum which was shown in

Fig. 5.

The hyperparameter of the solver (MIPgap) is near 0 % if the makespan is minimized

and close to 100% if the CPU-time is minimized. These results are also intuitive: Larger

optimality gaps leave optimization potential unexplored and lead to solutions of the

sub-MIPs with longer makespan, while smaller optimality gaps lead to longer CPU-

times for the MIP-solver.

6 Computational Experiments with Large-Scale MIP-Instances

For large-scale MIP-instances the full matheuristic scheme cannot be applied or some

sub-MIPs cannot be solved to proven optimality with reasonable computational cost for

some hyperparameter values. To deal with this property a computational time limit as

an additional termination criterion for the matheuristic is introduced. Consequently,

three types of terminations are possible:

1. The computational time limit is not reached, and the matheuristic scheme is fin-

ished regularly like for the small-scale instances (construction and improvement

steps are executed as described in Section 4.3).

2. The computational time limit is reached during the improvement step, such that

the matheuristic scheme cannot be finished regularly. Nevertheless, a feasible

schedule results from the construction step.

3. The computational time limit is reached during the construction step, such that

the matheuristic scheme cannot be finished regularly. An infeasible schedule

results (unless it terminates in the last iteration after a feasible solution of the

sub-MIP was found).

If an infeasible schedule results such that no makespan can be calculated for termina-

tion-type 3, the following infeasible solution value is returned to the BO instead of the

makespan value:

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 = (1 +
#𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

#𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
) ⋅ 𝑏𝑖𝑔𝑀

The degree of infeasibility is reflected by the ratio between the number of unscheduled

products and the total number of products. For instance, hyperparameter values leading

to only one unscheduled product out of ten are considered better than hyperparameter

values that lead to nine unscheduled products out of ten. The value of bigM is an upper

bound to the makespan, such that the infeasible solution value is always greater than

the makespan of a feasible solution.

To study this approach, a grid search was performed in analogy to section 5.1. Ta-

ble 3 shows the main parameters of the four large-scale instances studied. In

 Bayesian Optimization Based Approach to Tune Matheuristics 13

comparison to the small-scale instances, the number of products increased from six to

ten while the other parameters are adapted accordingly. Some rules are applied to en-

sure that the MIP-instances are feasible.

Table 3. Main parameters of the large-scale instances

Instance Number of

products

Number of

stages

Number of

recipes

Number of

tanks

According to some pre-studies the computational time limit was set to 700 CPU-s such

that the matheuristic terminates for most of the hyperparameter values during the im-

provement step (termination-type 2). Fig. 9 shows the results of the grid search for the

two objectives, makespan (left) and the CPU-time (right), in the NSJ-NRJ-space for the

representative instances l2 (top) and l3 (bottom).

Fig. 9. Results of the grid search for large-scale instances l2 (top) and l3 (bottom)

Only solutions with small values of NSJ and NRJ belong to termination type 1 with

CPU-times less than the time limit (700s). The other solutions are of termination-types

2 or 3 with the CPU-time being equal to the time limit; the additional CPU-time needed

to complete the matheuristic scheme is not reflected.

14 S. Hildebrandt et al.

Since for most solutions the improvement phase is not completed (termination-types

2 or 3) the makespan (or the corresponding infeasible solution value) does not depend

on NRJ. In contrast to the makespan (compare the small-scale instances in Fig. 5), the

infeasible solution value does not decrease with NSJ. For instance l2 makespan values

can be calculated for NSJ-values up to 3; for NSJ-values from 4 to 10 the infeasible

solution value is significantly larger than the makespan, depending on the number of

unscheduled products. For instance l3 an infeasible solution value is calculated for NSJ-

values from 6 to 9, while for NSJ-values up to 5 and – in particular – for 10 a makespan

can be calculated.

Comparing the results of the grid search for the large-scale instances (Fig. 9) with

those of the small-scale instances (Fig. 5) exhibits the following:

• The CPU-time increases with the values of the hyperparameters NSJ and NRJ for

small-scale as well as for large-scale instances. The main difference is that the values

of the CPU-time are cut off at the given time limit for large-scale instances.

• In contrast to the CPU-time, the makespan behaves differently due to the infeasible

solution value for the large-scale instances. The infeasible solution value reflects that

for large-scale instances the makespan cannot be treated independently from the

computational cost anymore.

The approach described in this section was motivated by the unreasonable computa-

tional cost for some hyperparameter values. However, it can also be considered as a

way to deal with multiple objectives of an optimization problem, namely constraining

one objective (here: computational cost) while optimizing the other (here: MIP-

objective).

7 Conclusions and Future Research Directions

Decomposition of large-scale mixed-integer programs (MIPs) into a series of smaller

sub-MIPs using matheuristic schemes is a common approach to deal with high compu-

tational cost. Matheuristics comprise hyperparameters which steer the decomposition

and affect their performance. The tuning of hyperparameters of matheuristics is a black-

box optimization problem with an expensive to evaluate objective function; Bayesian

optimization is a well-established method for these types of problems. An analysis of

related work revealed that hyperparameter tuning of matheuristics by Bayesian optimi-

zation has not been studied yet.

A novel algorithmic architecture combining Bayesian optimization, matheuristic,

MIP-formulation and MIP standard solver was proposed and applied to hoist schedul-

ing as a case study. The matheuristic comprises four hyperparameters in addition to one

hyperparameter of the MIP standard solver. Computational experiments with small-

and large-scale MIP-instances expose fundamental properties of the algorithmic ap-

proach: The hyperparameter optimization problem exhibits two natural and competing

objectives: optimizing the MIP-objective and the computational cost. For small-scale

instances, Bayesian optimization converges to optimal hyperparameters for each

 Bayesian Optimization Based Approach to Tune Matheuristics 15

objective separately. For large-scale instances the two objectives need to be handled

jointly; an approach was presented that constrains the computational-cost-objective and

augments the MIP-objective appropriately. Future work aims at validating the findings

on the algorithmic approach by extending computational experiments to grid search and

Bayesian optimization in the full (5-dimensional) hyperparameter space.

Moreover, future research will aim at two directions: Firstly, the multi-objective as-

pect of the hyperparameter tuning problem will be examined more deeply. The current

approach will be used to approximate the Pareto-set of solutions by varying the com-

 T w w “ -sensitive Bayesian

 ” Cost-sensitive BO determines whether a hyperparameter con-

figuration is promising enough to justify a higher CPU-time, leading to a resource-

efficient search process.

Secondly, the current single-MIP-instance approach will be extended to a multi-

MIP-instance approach. Instead of considering one instance at a time multiple instances

will be considered in two ways:

1. Hyperparameter values will be optimized on average for multiple instances.

2. The previously solved single instances will be used to predict hyperparameter

values for the next instance.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to

the content of this article.

References

1. Aguirre, A.M., Méndez, C.A., Gutierrez, G., De Prada, C.: An improvement-based MILP

optimization approach to complex AWS scheduling. In: Computers & Chemical Engineer-

ing. 47, 217–226 (2012). https://doi.org/10.1016/j.compchemeng.2012.06.036.

2. Ilemobayo, J.A. et al.: Hyperparameter Tuning in Machine Learning: A Comprehensive Re-

view. In: Journal of Engineering Research and Reports. 26, 388–395 (2024).

https://doi.org/10.9734/jerr/2024/v26i61188.

3. Bischl, B. et al.: Hyperparameter optimization: Foundations, algorithms, best practices, and

open challenges. In: WIREs Data Mining and Knowledge Discovery. 13, e1484 (2023).

https://doi.org/10.1002/widm.1484.

4. Degroote, H., González-Velarde, J.L., De Causmaecker, P.: Applying Algorithm Selection

– a Case Study for the Generalised Assignment Problem. In: Electronic Notes in Discrete

Mathematics. 69, 205–212 (2018). https://doi.org/10.1016/j.endm.2018.07.027.

5. Mitrai, I., Daoutidis, P.: Taking the human out of decomposition-based optimization via

artificial intelligence, Part I: Learning when to decompose. In: Computers & Chemical En-

gineering. 186, 108688 (2024). https://doi.org/10.1016/j.compchemeng.2024.108688.

6. Mitrai, I., Daoutidis, P.: Taking the human out of decomposition-based optimization via

artificial intelligence, Part II: Learning to initialize. In: Computers & Chemical Engineering.

186, 108686 (2024). https://doi.org/10.1016/j.compchemeng.2024.108686.

7. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer pro-

gramming solvers. In: Proceedings of the 7th international conference on Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.

https://doi.org/10.9734/jerr/2024/v26i61188
https://doi.org/10.1002/widm.1484
https://doi.org/10.1016/j.endm.2018.07.027
https://doi.org/10.1016/j.compchemeng.2024.108688
https://doi.org/10.1016/j.compchemeng.2024.108686

16 S. Hildebrandt et al.

pp. 186–202. Springer-Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-

642-13520-0_23.

8. Himmich, I., et al.: MPILS: An Automatic Tuner for MILP Solvers. In: Computers & Op-

erations Research. 159, 106344 (2023). https://doi.org/10.1016/j.cor.2023.106344.

9. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: A

 g ’ In: European Journal of Operational Research. 290, 405–

421 (2021). https://doi.org/10.1016/j.ejor.2020.07.063.

10. Sand, G., Hildebrandt, S., Nunes, S., Chung-On, Y., Franke, M.: Tune Decomposition

Schemes for Large-Scale Mixed-Integer Programs by Bayesian Optimization. In: Systems

& Control Transactions. 4 (2025) (to be published)

https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1016/j.cor.2023.106344
https://doi.org/10.1016/j.ejor.2020.07.063

