
Under review as a conference paper at ICLR 2022

EXTRANEOUSNESS-AWARE IMITATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Visual imitation learning is an effective approach for intelligent agents to ob-
tain control policies from visual demonstration sequences. However, standard
visual imitation learning assumes expert demonstration that only contains the
task-relevant frames. While previous works propose to learn from noisy demon-
stration, it still remains challenging when there are locally consistent yet task
irrelevant subsequences in the demonstration. We term this kind of imitation
learning “imitation-learning-with-extraneousness” and introduce Extraneousness-
Aware Imitation Learning (EIL), a self-supervised approach that learns visuomo-
tor policies from third-person demonstrations where extraneous subsequences ex-
ist. EIL learns action-conditioned self-supervised frame embeddings and aligns
task-relevant frames across videos while excluding the extraneous parts. Our
method allows agents to learn from extraneousness-rich demonstrations by in-
telligently ignoring irrelevant components. Experimental results show that EIL
significantly outperforms strong baselines and approaches the level of training
from the perfect demonstration on various simulated continuous control tasks and
a “learning-from-slides” task. The project page can be found here: https:
//sites.google.com/view/iclr2022eil/home.

1 INTRODUCTION

Imitation learning (IL) enables intelligent agents to acquire various skills from demonstrations (Ar-
gall et al., 2009; Schaal et al., 1997). Recent advances also extend IL to the visual domain (Pathak
et al., 2018; Zhang et al., 2018; Young et al., 2020; Zhu et al., 2018). However, in contrast to how
humans learn from demonstrations, artificial agents usually require “clean” demonstrations that con-
tain few extraneous components. For example, when learning to cut a potato from videos, a human
can naturally ignore the demonstrators’ extraneous action of turning off a stove in halfway; but
agents will consider the irrelevant action during policy optimization and hence fail to learn with
such demonstration data. Such difference effectively prevents agents from leveraging massive un-
structured visual data which humans can utilize to learn new skills.

Popular methods of imitation learning include behavioral cloning (Bain & Sammut, 1995; Ross
et al., 2011; Pomerleau, 1991) and inverse reinforcement learning (Ng et al., 2000). Both approaches
achieve good performance when expert trajectories of observation-action pairs are available. How-
ever, when presented with real-world data, vanilla imitation methods often fail due to the insufficient
quality of demonstrations. To solve this problem, some recent literature (Tangkaratt et al., 2020a;
Brown et al., 2019; Wu et al., 2019; Tangkaratt et al., 2020b) propose methods to perform imitation
learning from noisy demonstrations. However, these methods are limited by their requirement of
additional labels or a well-trained critic function for data filtration. Some methods also make ad-
ditional assumptions about noise to leverage domain knowledge. For example, they may assume
gaussian distribution for the action noise and/or the local smoothness of state or action through-
out the demonstration trajectory. However, many of the real-life data we are interested in usually
contain extraneous subsequences, where the agent may perform locally smooth and consistent but
task-irrelevant actions. Moreover, many of these proposed methods cannot be applied to the scope
of visual imitation learning, where the observations are high-dimensional images instead of states.
How can we leverage unannotated visual demonstrations for imitation learning without being nega-
tively impacted by their extraneous sub-sequences?

In this paper, we propose an Extraneousness-Aware Imitation Learning (EIL) that enables agents
to smartly imitate from noisy videos demonstrations where extraneous segments are present. Our

1

https://sites.google.com/view/iclr2022eil/home
https://sites.google.com/view/iclr2022eil/home


Under review as a conference paper at ICLR 2022

method allows agents to identify extraneous subsequences via self-supervised learning and then
selectively imitate from task-relevant parts of the videos. Specifically, we train an action-conditioned
encoder through temporal cycle-consistency (TCC) (Dwibedi et al., 2019) to obtain embeddings of
each frame. Then, we propose an Unsupervised Voting-based Alignment algorithm (UVA) to align
the important frames across video clips so that the agent can ignore task-irrelevant frames. In our
work, we also introduce a few new tasks to benchmark imitation learning from ubiquitous imperfect
data with extraneous actions.

We evaluate our method on both simulated discrete action tasks and continuous control tasks. The
experiments demonstrate the ability of the proposed encoder to produce embedding that is useful
to both downstream tasks and extraneousness detection. We also demonstrate that our method can
automatically filter data in an unsupervised manner and enable agents to learn better policies without
additional assumptions.

Our contributions can be summarized as follows: 1) We introduce Extraneousness-Aware Imitation
Learning (EIL) that learns selectively from the task-relevant frames by leveraging action-conditioned
self-supervised embeddings. 2) We propose visual imitation learning from demonstrations with ex-
traneous segments as meaningful tasks that can be easily transferred to multi-task learning. 3) We
show the proposed method can learn to smartly ignore task-irrelevant sub-sequences in demonstra-
tion and thus outperform previous visual imitation learning baselines. 4) We propose alignment
methods for both cases in which the dataset contains either none or a few perfect demonstrations.

2 RELATED WORKS

2.1 LEARNING FROM NOISY DEMONSTRATION

Traditional imitation learning (Schaal et al., 1997; Argall et al., 2009; Ho & Ermon, 2016) includes
behavior cloning (Bain & Sammut, 1995; Pomerleau, 1991) which learns to copy the behaviors from
the demonstration and inverse reinforcement learning (Ng et al., 2000) that infers the reward function
for learning policies. However, these methods usually assume access to expert demonstrations which
are hard to obtain in practice.

Many works try to tackle the imitation learning problem when noisy demonstrations are provided.
However, through this line of research (Burchfiel et al., 2016; Wu et al., 2019; Sasaki & Yamashina,
2020; Brown et al., 2019; Tangkaratt et al., 2020b; Kaiser et al., 1995; Grollman & Billard, 2012;
Kim et al., 2013), the vast majority of work are done in the low-dimensional state space but not the
high-dimensional observations. Moreover, it is common in previous works (Sasaki & Yamashina,
2020) to assume the noise is sampled from an expert policy or a random policy with corresponding
probability. Methods designed for such noise might fail completely when the noise are locally
consistent and meaningful yet irrelevant to the task while EIL can handle it. Recently, Chen et al.
(2021) propose to learn policies from “in-the-wild” videos. while the method achieves impressive
results, they focus on dealing with diverse videos without handling the “extraneousness” explicitly.

To learn from imperfect demonstrations, offline Reinforcement Learning (Lange et al., 2012; Fu-
jimoto et al., 2019; Kumar et al., 2020; Hester et al., 2018; Gao et al., 2018) is another powerful
paradigm where agents learn from datasets instead of environment interactions. One requirement of
offline RL methods is to design reward functions, which usually involve significant human efforts.
Our algorithm does not require knowing the true reward function or design a new one as in standard
imitation learning methods. Empirically, we find it is hard to train an offline RL algorithm with the
learned embeddings as shaped rewards.

2.2 SELF-SUPERVISED LEARNING FROM VIDEO AND APPLICATION TO CONTROL

Self-supervised learning (SSL) from videos offers a way to learn visual representations with tem-
poral information for different pretext tasks from unlabeled data (Gordon et al., 2020; Pathak et al.,
2017; Srivastava et al., 2015; Mathieu et al., 2015; Jayaraman & Grauman, 2015; Agrawal et al.,
2015; Goroshin et al., 2015). Besides learning general representation, a more recent line of research
utilizes SSL for learning correspondences (Jabri et al., 2020; Wang et al., 2019; Vondrick et al.,
2018; Dwibedi et al., 2019; Hadji et al., 2021; Purushwalkam et al., 2020). Specifically, Dwibedi
et al. (2019) propose to find correspondences across time in multiple videos with the help of cycle-
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consistency (Zhou et al., 2016; Zhu et al., 2017). These methods offer a way to manipulate and
leverage real-world data that are usually unlabeled and noisy.

In recent years, SSL also promises to help with visuomotor tasks in control and robotics. For ex-
ample, Sermanet et al. (2018) learns a self-supervised temporal-consistent embedding for imitation
learning and reinforcement learning. XIRL (Zakka et al., 2021) propose to learn a self-supervised
embedding that estimates task progress for inverse reinforcement learning. Zhang et al. (2020);
Smith et al. (2019); Xiong et al. (2021) directly map the observations such as images to the target
domain. The distinction between EIL and previous work is that we tackle the problem when demon-
stration has noise such as extraneous subsequences rather than different domains such as visual
difference, embodiment differences.

3 METHOD

In this section, we describe our problem setting and introduce Extraneousness-Aware Imitation
Learning (EIL), a simple yet effective approach for learning visuomotor policies from videos that
have extraneous subsequences.

3.1 PROBLEM STATEMENT

In the problem setting, we consider an agent aiming to learn visuomotor policies from K video
demonstration sequences {Di}Ki=1 where, in the ith video, each frame j contains both observations
sij and aij . There are no constraints on the viewpoint, background, and quality. Specifically, for each
sequence in the demonstration set, there are S extraneous subsequences {Em}Sn=1 that are trying
to perform an irrelevant task or random actions. In contrast to existing works that have a strong
assumption about the noise, our setting only assumes each video contains more than 50% of task-
relevant content. This is a typical assumption when learning from imperfect data (Angluin & Laird,
1988; Natarajan et al., 2013).

The agent operates in a fixed horizon Markov decision process (MDP)M, consisting of the tuple
(S,A, p,R, T ). S is the state space (RGB images), A is the action space, p(st+1‖st, at) is the
transition dynamics and R is an unknown reward function. To successfully imitate and accomplish
a task, the agents need to reason about what are the relevant data to learn from and rule out the
noise. Under such settings, we also consider when there is one reference trajectory T or no reference
trajectory at all.

3.2 EXTRANEOUSNESS-AWARE IMITATION LEARNING (EIL)

Overview. EIL is a general framework for imitating from videos with noisy components. It takes
in a set of unannotated task demonstration sequences that may contain extraneous subsequences
and learns the correct behavior to accomplish the task. First, we explain the intuition behind our
approach. Assuming more than one demonstration sequence is given, we can match their temporal
embeddings to find the most task-relevant portions of the video. In the case where a perfect reference
trajectory (no noise) is available, we can match frames in other sequences to that of the reference
trajectory. However, in most cases, it is hard to obtain such a reference trajectory. Hence, an
unsupervised alignment algorithm is needed for the matching.

Our approach, EIL, is outlined in figure 1. In figure 1 (a), we learn a temporal representation of each
frame conditioned on both its visual observation and action by using temporal cycle consistency
loss. After obtaining the representation, as shown in figure 1 (b), we propose an unsupervised voting
method to perform video alignment when no reference sequences are available. Finally, as described
in figure 1 (c), we perform standard visual imitation learning on top of denoised data derived from
the alignment.

Action-conditioned Temporal Cycle Consistency Representation Learning. We first learn rep-
resentations that encode temporal information for aligning frames across different videos with tem-
poral cycle consistency loss. Specifically, we train an image encoder ψI and an action encoder ψA

that embed the observations and actions into corresponding features ψI(O) and ψA(a). Note that in
TCC, the observation O here actually consists of two frames: one “current frame” and one “context
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Figure 1: Extraneousness-Aware Imitation Learning. Overview figure of EIL. The overall
framework contains 3 components: (a) encodes the state action pairs into representation through
cycle-consistency loss. (b) takes in the embeddings and process them with unsupervised voting-
based alignment (UVA) algorithms. (c) performs visual imitation learning for the aligned state
action pairs. We note that (b) can be a simple filtering algorithm when reference trajectories are
available.

frame” which is a fixed number of frames ahead of the current frame, to get the temporal informa-
tion from images, but the action A is only the “current action”. Then, we concatentate ψI(O) and
ψA(a) to a multi-layer perceptron (MLP) ψE to obtain embedding that have temporal correspon-
dence between two sequences. For simplicity, we use two demonstration sequences S and T and
their computed embeddings U = {u1, u2, · · · , uN} and V = {v1, v2, · · · , vM} as an example. N
and M denotes the sequence lengths respectively.

The main goal here is to encourage cycle-consistency between the two embedding sequences. For
any ui ∈ U , we find the nearest neighbor, vj = argminv∈V ||v−ui||. Then we repeat the procedure
and find uk = argminu∈U ||vj − u|| which is the nearest neighbor for vj . When i = k, the embed-
ding ui is cycle-consistent. To optimize the cycle-consistency, we use a differentiable matching loss
described in Dwibedi et al. (2019). For the selected ui, we instead compute the soft nearest neighbor
by

ṽ =

M∑
j

αjvj ,where αj =
exp (−||ui − vj ||2)∑M
k exp (−||ui − vk||2)

(1)

Then, we compute the “cycle-back” soft nearest neighbor to ṽ similarly:

ũ =

N∑
k

βkuk,where βk =
exp (−||ṽ − uk||2)∑N
j exp (−||ṽ − uj ||2)

(2)

The predicted index î can be calculated by î =
∑M

k βkk. Since we know the true index i in our
selection time, we can minimize the `2 loss L = (i− î)2.

We note that under the EIL framework, it is possible to substitute the current embedding with alter-
natives.

Unsupervised Voting-based Frame Alignment (UVA). After obtaining the embedding for each
observation-action pair, we try to align frames and drop extraneous frames according to a frame-wise
similarity in the latent space.

To achieve this objective, we propose a voting-based frame matching algorithm that can remove the
extraneous parts from a set of sequences. A conceptual illustration is shown in figure 2. For K
demonstration sequences, we initially mark the first frame of each video as “alignment frame”. Our
algorithm can be described as below:

Election Find nearest neighbors of each “alignment frame” in each of the other K − 1 videos, that
is K(K − 1) frames found in total.
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Figure 2: Conceptual illustrations of the unsupervised voting-based alignment (UVA) algorithm.

Estimation In each video, the frame that is nearest neighbor to most other “alignment frame”s is
selected as new “alignment frame“ of that video. We average the embeddings of all newly
selected “alignment frame”s to get a virtual reference embedding.

Selection We select the nearest neighbor frames of the virtual embedding in each video as the new
“alignment frame”.

We note that the “Estimation” and the “Selection” steps are optionally added to increase the stability
of the matching process. Also, “Election” and “Selection” will only choose from frames that are
behind the current “alignment frame”, which guarantees that the aligned videos are chronologically
consistent.

In the simpler setting where we have access to a perfect reference demonstration, our algorithm
degenerates to a simple filtering algorithm that uses the reference demonstration for the frame se-
lection. This is done by picking frames in videos that are nearest neighbors to each frame of the
reference.

Visual Imitation Learning. As shown in figure 1 (c), we perform standard visual imitation learn-
ing to learn a policy π that minimizes distance between the predicted actions and the groundtruth
actions using the state-action pairs that are selected previously. Specifically, for continuous actions,
we use the `2 loss:

L = ||ai − âi||2 (3)

where ai and âi are the predicted action and groundtruth action respectively. For discrete actions,
we use cross-entropy loss instead. We use ResNet-18 as our policy network to process the image
input. As an alternative, we can also substitute the ResNet-18 with the frozen encoder trained during
representation learning.

4 EXPERIMENT

In this section, we describe the experiment setup and analyze the results. We compare our method
with strong baselines on continuous control tasks and a discrete control task, “learning-from-slides”.
We aim to understand the extraneousness-aware imitation learning problem by answering the fol-
lowing questions: 1) Does EIL as a framework help agent to imitate from visual demonstration that
contains extraneousness? 2) Can the action-conditioned self-supervised representation differentiate
extraneous components and the task relevant component in the demonstrations? 3) How does EIL
perform with different experimental settings and hyperparameters?

4.1 SETUP AND DATASET

Table 1 summarizes the continuous control tasks we use to evaluate EIL and the type of extraneous
subsequences.

We also create a realistic task “Learning-from-Slides”. In this task, we mimic how human students
learn from course slides or tutorial video demonstrations where the tutor switch between talking
and demonstrating. The training dataset is recorded slides that contain both didactic content such
as formula or bullet points as well as some visual demonstrations of an interested task, such as an
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(a) Reach (b) Push (c) Stir (d) Learning-from-Slides

Figure 3: The continuous control environments (a)(b)(c) and the “learning-from-slides” environment
(d). Reach(a) and Push(b) are goal conditioned environments where success is declared when target
object is close enough to destination. In Stir(c), success is declared if the end-effector trajectory is
similar to a target trajectory. The discrete control environment “learning-from-slides” (d) contains
slides that demonstrates how to escape a maze but also contains completely irrelevant slides.

Table 1: Different tasks used to evaluate EIL. Each task also has its specific extraneousness actions
in the imperfect demo dataset, designed to reflect deviations in real-world scenarios.

Task Task description Extraneous action in imperfect demo dataset

Reach The agent needs to move to a goal
position.

The agent deviates away from its original trajectory at a
random timestep.

Push The agent needs to push an object
to a goal position on the table.

The agent stops pushing and deviates away from the cur-
rent task at a random timestep.

Stir
The agent needs to place its gripper
inside a bowl, then rotate it around
the center of the bowl.

The agent moves the gripper outside the bowl for a goal
position. This simulates a real-world scenario where a
human fetches an object in the middle of stirring.

agent navigating in a maze. The goal for the agent is to learn from those visual demonstrations and
accomplish the interested task. The demonstrating frames are paired with actions of the demonstra-
tor agent. We assign a random action for all the non-demonstrating frames. The task visualization
can be found in figure 3.

For each task, we collect two datasets – an extraneous dataset as well as a perfect dataset. In the
perfect dataset, all the state-action pairs {si, ai}i=1···N are sampled from an expert policy πE . In
the extraneous dataset, there are one or more subsequences contain {si, ai}i=m···n that contains
n −m + 1 consecutive steps sampled from another policy πany . We note that we do not have any
constraint on the non-expert policy πany which means it can perform meaningful actions for an
irrelevant task or totally random actions. We will detail about data collection process in Appendix
A.2. In the test time, we either provide one perfect reference trajectory or no reference trajectory.

Metrics and evaluation. To evaluate all the methods, we introduce the metrics. For all goal-
conditioned continuous control tasks (reach, push, pick and place), we use both success rate as well
as minimum goal-object or gripper-object distance within time horizon as evaluation metrics. All
experiments are conducted on 5 random seeds. We average over 20 trials for each seed and report
the mean and standard deviation. For goal conditioned tasks like reach and push, we use a threshold
of 0.1 from goal position as the success criteria. In non-goal conditioned task such as stir, agent
succeeds when it tracks a designated trajectory close enough.

4.2 BASELINES

To verify the effectiveness of EIL, we implement several baselines:

Behavior Cloning We optimize a neural network policy function by minimizing the `2 or cross-
entropy loss for each state-action pair.
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Reinforcement Learning with Embedding-based Reward Shaping We train reinforcement learn-
ing agents to accomplish the task. Instead of the sparse reward of whether the goal is reached, we
use a dense reward. We first obtain a “goal embedding” by averaging over the emdeddings of each
video’s last frame. The reward is then set to be the `2 distance between the current state-action
embedding and the goal embedding. We note that this baseline has the advantage of interacting with
the environment because pure offline RL algorithms are not able to work in this setting.

Time-Contrastive Networks (TCN) (Sermanet et al., 2018) We perform imitation learning with
the representation learned by Time-Contrastive Networks. We note that TCN is originally designed
for imitation learning and reinforcement learning on synchronized multi-view video demonstrations.
In our paper, we adopt this method by mainly using the learned representation in our setup.

4.3 EXPERIMENTAL RESULTS

Table 2: Success rate of different tasks.

Task Oracle EIL (Ours) Behavior Cloning RL TCN
Reach 88% ± 3% 83% ± 3% 76% ± 4% 0.6% ± 0.6% 55% ± 6%
Push 77% ± 4% 64% ± 5% 54% ± 5% 22% ± 3% -
Stir 100% 88% ± 4% 77% ± 51% 17% ± 3% -

Learning-from-Slides 80% ± 12% 75% ± 5% 0% - -

Table 3: Average and standard deviation of minimum distances for different tasks

Task Oracle EIL (Ours) Behavior Cloning TCN
Reach 0.0638 ± 0.0446 0.0684 ± 0.0543 0.0874 ± 0.0722 0.1327 ± 0.0990
Push 0.0491 ± 0.0682 0.0786 ± 0.0865 0.1023 ± 0.0797 -
Stir 5.5282 ± 4.7377 12.78 ± 7.46 31.61 ± 50.13 -

Table 4: Success rate of different tasks without reference demonstration.

Task Oracle EIL (Ours) w/o reference Behavior Cloning RL TCN
Reach 88% 85% 76% 0.6% 55%

Stir 100% 88% 77% - -

4.3.1 EIL WITH ONE REFERENCE DEMONSTRATION

In this section, we report the performance of different methods when a single perfect demonstration
is given. Table 2 summarizes the averaged success rate and standard deviation on all the continu-
ous control tasks. As the table shows, the performance of behavior cloning degrades heavily when
extraneousness presents in training data. Reinforcement learning algorithms struggle to accomplish
the reach task because of the high-dimensional input. On the other hand, the RL baseline achieve
22% success rate on the hard push task. This is likely because the learned embedding in the push
environment is more robust thanks to the additional object. Across all the environments, our method
outperforms all the baseline methods and demonstrates its ability to learn from extraneous demon-
strations. We also find that EIL outperforms other methods in terms of minimum distance metrics
as shown in table 3. We note that for the Stir task, we count the task as successful by a metric that
shows how well the gripper is able to adhere to its prescripted trajectory.

Table 2 summarizes the average success rate on the “Learning-from-Slides” task. We find that EIL
can successfully accomplish the maze navigation task even when the slides contains extraneous
frames. Meanwhile, traditional behavior cloning agents fail to navigate and get stuck in the middle.
This experiment shows the potential of EIL to be used in learning behaviors from unlabeled data.
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(c) Stir

Figure 4: Alignment plots for continuous control tasks. The x-axis is a test-time reference frames.
The y-axis is an extraneousness-rich demonstration. We mark the extraneous part with the red
color. Each of the black dots represent a matched frame pair. We observe that our proposed method
successfully skipped extraneous part while aligning the others.

4.3.2 EIL WITH NO REFERENCE DEMONSTRATION

In this section, we evaluate the performances on the reach and stir tasks when no perfect demon-
stration is given. Table 4 summarizes the averaged success rate for EIL and baseline methods on
the two tasks. We find that after removing the perfect demonstration trajectory, the performance
drops slightly due the lack of guidance. However, the performance of EIL is still comparable to the
case where a reference trajectory is provided. Such consistency demonstrates the ability of EIL to
solve complex tasks under the situation when reference trajectories are impossible to obtain. The
experiment also suggests that it is beneficial to collect at least one good trajectory for marginally
better performance when applying EIL.

In figure 4, we visualize the alignment plots for each of the task where the x-axis represents a
test-time reference demonstration and the y-axis represents the demonstration with extraneousness
(frames colored in red). We find that the proposed algorithm can successfully ignore the extraneous
parts in the demonstrations. The border frames near the extraneous part are sometimes categorized
as the “good” demonstration. This shows EIL can potentially be further improved by adding end-
point-clipping rules if data is abundant. However, we did not add such tricks here. We also find that
the performance of the alignment are decreasing while the target task complexity increases. We note
that all the models are trained without the reference demonstration represented by x-axis. We only
include reference demonstration here for evaluation purpose.

4.4 VISUALIZED RESULTS

Demo with
Extraneousness

Demo filtered by
our method Skipped by UVA

Figure 5: Visualized result of our Unsupervised Voting-based Frame Alignment (UVA) method. The
extraneous frames in the video are successfully skipped and improves training results.

In addition, we visualize a perfect demonstration trajectory and the extracted subsequences with
EIL in figure 5. From the visualization, we find that when the robot arm deviates from the correct
trajectory, it is visually different from the reference demonstrations. More visualized results can be
found on our website.
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4.5 ABLATION STUDY

Camera settings. In visual imitation learning, the observations are images in the high-
dimensional space. The camera extrinsic parameters are therefore important for learning a
reasonable policy. In table 5, we show the results with three different camera settings.

Table 5: Ablation results on camera set-
tings. Lower is better.

Settings % Extraneous Frames Matched
default 14.81
cam3 12.12
zoom 9.68

The first camera setting is the default environment
camera angle from gym environment. The second set-
ting has the same angle as the former, but the cam-
era position is closer to the table. We call this setting
zoom. The third camera setting is the third-person view
angle that looks at the robot from a higher place. We
name this setting cam3. We find that our method per-
forms the best when the camera is zoom. While our
method works for all the camera settings, we find that
a good camera pose might further improve the perfor-
mance.

Hyperparameters for representation learning. In this section, we ablate the important hyper-
parameters for learning meaningful embeddings. Although there are many hyperparameters in the
training process, we keep most of them fixed.

In table 6, we find the learned embeddings are sensitive to “stride”, the hyperparameter that controls
the gap between the target frame and the context frames. Hence, with a larger stride usually fit for
longer horizon tasks. We find smaller stride gives better performance due to the short horizon of the
proposed tasks. For all the experiments, we use the best stride we find in the table without finetuning
for specific tasks.

Stride Minimum Distance
2 0.0414 ± 0.0237
3 0.0684 ± 0.0543
5 0.0722 ± 0.0505

Table 6: Hyperparameters in representation
learning.

Tolerance Reach Push Stir Slides
2 0.13 0.023 0.012 0.122
3 0.15 0.031 0.018 0.136
5 0.21 - 0.021 -

Table 7: Extraneous Frame Fraction for
alignment.

Hyperparameters for unsupervised voting-based alignment (UVA). We also ablate important
hyperparameters for of the alignment algorithms UVA. In table 7, we find that “tolerance” will in-
fluence the resulted virtual embedding length. In practice, we found that UVA sometimes tends to
select towards the end of videos too soon. To overcome this shortcoming, we choose from the kth

(tolerance) nearest neighbors to virtual reference, instead of one. We choose next alignment frame
with smallest frame index among them. We choose 2 as the hyperparameter which best balances
performance and chosen frames. We note there are some design choices of how to calculate the vir-
tual embedding, such as using median instead of mean, or using weighted average proportion to the
votes each frame get. However, we find these variations don’t outperform vanilla mean significantly.

5 CONCLUSION

In this paper, we try to enable an agent to learn from visual demonstrations where temporally consis-
tent yet task-irrelevant subsequences exist. We term this kind of learn problem “imitation-learning-
with-extraneousness” and propose Extraneousness-Aware Imitation Learning (EIL), a framework
that enables agents to identify extraneous sub-sequences from visual demonstrations via self-
supervised learning and learn to accomplish the demonstrated task. To facilitate our study, we also
propose continuous control tasks and a “learning from slides” task for benchmarking. We investigate
the effectiveness of EIL on the proposed benchmarks and show that EIL outperforms baselines.
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6 REPRODUCIBILITY STATEMENT

All the implementation details including hyperparameters, architecture, environment description,
data collection as well as evaluation criterion can be found at Appendix A.1. Source code can be
downloaded from the project page: https://sites.google.com/view/iclr2022eil/
home.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Hyperparameters For training the representation encoder, we summarize all the hyperparameters
in table 8. For training the imitation learning network, the hyperparameters are summarized in table
9

Table 8: Hyperparameters for Representation Learning

Hyperparameters Value
Batch Size 4
Frame Stride 3
Optimizer ADAM
Learning Rate 1e-4
Weight Decay 1e-3
Frames per second 30

Table 9: Hyperparameters for imitation learning

Hyperparameters Value
Batch Size 10
Optimizer ADAM
Learning Rate 3e-4
Weight Decay 0

Data augmentation We use data augmentation during training imitation learning. For each image,
we resize it to a 224× 224 image.

Architecture We describe the architecture of the state encoder ψI and the action encoder ψA and the
fusion encoder ψE . For ψI , we have a 4-layer fully-convolutional network to extract image features.
The first layer has filter size 7 × 7 and the rest has filter size 3 × 3. Then we stack the target frame
feature together with context frame features. Then we apply another convolutional layer with filter
size 3× 3, a 3D max pooling layer and a fully-connected layer to get the embedding. For the action
encoder ψI , we have a 3 fully connected layers to upsample the action and match the dimension
of the embedding ψA. After concatenation, the encoder ψE is consisted of another MLP with 2
fully-connected layers.

For the imitation learning policy network, we adopt the ResNet-18 (He et al., 2016) architecture.
Since we also resolve continuous control tasks, we add another two fully-connected layers after the
ResNet-18 for regressing the action.

Reinforcement Learning Baseline In this paragraph, we detail about how we shape the reward
for the reinforcement learning baselines. We adopt the existing Hindsight Experience Replay
(HER) (Andrychowicz et al., 2017) setting as our RL backbone algorithms. During training, we
have two ways to shape the rewards: 1) We compute embeddings for each current frame and the
goal frame. The reward is computed as ||embedding − embeddinggoal||2. However, this assumes
the embedding can measure the task progress very accurately. 2) when reference trajectory is given,
we can guide to RL agent to achieve an embedding from the reference trajectory that is closest to
the current frame.

A.2 DATA COLLECTION PROCESS

For collecting perfect dataset, we either train an expert policy using existing algo-
rithms (Andrychowicz et al., 2017) or manually specify the actions. For reach, push, and stir, the
action space is 3-dimensional that indicates the motion of robot gripper. For the pick and place task,
the action space is 4 dimensional where an additional dimension controls to open/close the gripper.
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For the extraneous dataset, we also sample actions from the expert policy until a random time step t.
Starting from t, the action is sampled from another policy which tries to accomplish another task T ′
that is usually reaching some random place in the working space. After finishing T ′, the robot uses
expert policy again for the main task.

14


	Introduction
	Related Works
	Learning from Noisy Demonstration
	Self-Supervised Learning from Video and Application to Control

	Method
	Problem Statement
	Extraneousness-Aware Imitation Learning (EIL)

	Experiment
	Setup and dataset
	Baselines
	Experimental Results
	EIL with one reference demonstration
	EIL with no reference demonstration

	Visualized Results
	Ablation Study

	Conclusion
	Reproducibility Statement
	Appendix
	Implementation Details
	Data collection process


