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Abstract

Large multimodal models (LMMs) typically process visual
inputs with uniform resolution across the entire field of
view, leading to inefficiencies when non-critical image re-
gions are processed as precisely as key areas. Inspired by
the human visual system’s foveated approach, we apply a
sampling method to leading architectures such as MDETR,
BLIP2, InstructBLIP, LLaVA, and ViLT, and evaluate their
performance with variable (foveated) resolution inputs. Re-
sults show that foveated sampling boosts accuracy in visual
tasks like question answering and object detection under
tight pixel budgets, improving performance by up to 2.7%
on the GQA dataset, 2.1% on SEED-Bench, and 2.0% on
VQAv2 compared to uniform sampling. Furthermore, we
show that indiscriminate resolution increases yield dimin-
ishing returns, with models achieving up to 80% of their
full capability using just 3% of the pixels, even on com-
plex tasks. Foveated sampling prompts more human-like
processing within models, such as neuronal selectivity and
globally acting self-attention in vision transformers. This
paper provides a foundational analysis of foveated sam-
pling’s impact on existing models, suggesting that more ef-
ficient architectural adaptations, mimicking human visual
processing, are a promising research venue for the com-
munity. Potential applications of our findings center low
power minimal bandwidth devices (such as UAVs and edge
devices), where compact and efficient vision is critical.

1. Introduction
The human visual system excels at processing complex
visual scenes by efficiently allocating computational re-
sources—a high-resolution focus at the center of gaze (the
fovea) and progressively lower resolution toward the pe-
riphery [26, 34, 40]. This variable resolution sampling,
known as foveation, allows humans to perceive fine de-

tails where needed while maintaining an awareness of the
broader context. This efficient representation enables per-
ception with a limited number of photoreceptors, and a lim-
ited diameter of the optic nerve (carrying information from
the retina to the brain), balancing detail and field of view
(FOV).

In contrast, current large multimodal models (LMMs) in
artificial intelligence typically process visual inputs at a uni-
form resolution across the entire FOV. This approach can
lead to inefficiencies, as models may allocate equal com-
putational resources to regions of the image that are less
critical for the task at hand. Recent methods, like dynamic
tokenization and token merging, aim to alleviate such is-
sues [5, 33]. These techniques embed the full image at the
first network layer, and then progressively prune/combine
tokens to reduce the computational load in areas of the
image that require less precision. However, such meth-
ods still embed a full-resolution image input to begin with,
which becomes a major constraint in portable systems that
cannot do computations on-board and instead send images
over a narrow communication channel. For small edge de-
vices and UAVs that utilize LPWANs (Low-Power Wide-
Area Networks) the bandwidth is small enough, e.g. 70
kbit/s [10, 36], that transmitting full-resolution images of
a wide FOV (typically in size much larger than 70kbit) be-
comes impractical for real-time visual capabilities. To the
best of our knowledge, there is no solution addressing the
challenge of computationally efficient vision over a narrow
communication channel.

Given the efficiency of the human visual system, a nat-
ural question arises: Can we improve the performance and
efficiency of LMMs by adopting a foveated sampling scheme
similar to that of human vision?
In this paper, we present the first study that exam-
ines the internal representations and performance of ex-
isting LMMs when provided with human-like variable
resolution images. By applying a biologically inspired
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(a) (b)

Figure 1. Alternative sampling schemes. (a) Variable resolution with peak sample density at the center of fixation and linearly decreasing
number of samples with eccentricity. (b) Uniform resolution with a constant density of samples. Both schemes distribute an equal
number of samples over the entire field of view (FOV) using log-polar coordinates. In this work, we address the question: which of the
two alternative (carriage) representations improves on complex visual tasks with existing DNN architectures, given that both alternatives
consist of an equal number of samples?

foveated sampling scheme to state-of-the-art LMM archi-
tectures—including MDETR [19], BLIP2 [22], Instruct-
BLIP [8], LLaVA [24], and ViLT [20]—we investigate what
representational changes emerge. Foveated sampling also
reduces effective image size, making it suitable for low
bandwidth environments, with less accuracy losses.

Our goal is to understand whether existing LMMs can pro-
cess visual information in a manner similar to the human
visual system and how this affects their performance on
complex tasks such as visual question answering (VQA)
and object detection under extreme pixel budget constraints.
Specifically, we aim to address the following questions:
1. Is foveation beneficial from an information-theoretic

perspective? Can variable resolution sampling improve
model performance when constrained by a limited num-
ber of pixels (or bandwidth)? (Section 3)
Answer: Yes, we demonstrate that variable sampling
brings gains of up to 2.7%, 2.1%, and 2.0% in accuracy
on the GQA [17], SEED-Bench [21], and VQAv2 [13]
datasets, respectively, compared to uniform sampling
under the same pixel budget. In object detection, vari-
able sampling brings gains of up to 2.2% on the COCO
dataset for vision-only models.

2. What are the diminishing returns of increasing image
resolution? How does scaling image resolution affect
model performance, and is there a point beyond which
additional pixels provide minimal benefit? (Section 4)
Answer: We find that models achieve up to 80% of their
full-resolution performance using just 3% of the pixels
on complex visual tasks, highlighting the diminishing re-
turns of increased image resolution.

3. Does foveation induce human-like representations in
LMMs? How does variable sampling affect the inter-
nal mechanisms of models, such as attention and feature
representation? (Section 5)
Answer: We discover that variable sampling induces
human-like processing strategies within models, such as
neuronal selectivity in CNNs and more globally acting
self-attention mechanisms in vision transformers, com-
mon in many LMMs.

Importantly, we note that the paper does not make computa-
tional efficiency claims by making architectural changes to
accommodate foveated images, and does not explore multi-
ple fixation points. We aim to keep architectures as they are,
using a single fixation, and provide the first comprehensive
analysis of what performance is possible from a purely in-
formation theoretic perspective. This allows us to compare
and evaluate against existing baselines, while still offering
insight into the learned representations. While this paper
does not claim gains in computational efficiency, we advo-
cate that foveated architectures are promising, particularly
in minimal bandwidth/computation scenarios. We hope fu-
ture works will explore the adaptation of LMM architec-
tures to variable-sampling grids, inspired by human vision.

2. Experimental setup
2.1. Model architectures
VQA. We utilize several state-of-the-art vision-language
models to evaluate the impact of foveation on complex vi-
sual tasks, specifically employing BLIP2 [22], ViLT [20],
LLaVa [24], MDETR [19], and InstructBLIP [8].
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plane plane ocean

What are the people sitting in front of ?
(a) (b) (c)

Figure 2. Visual question answering example. ViLT inferenced with three different images, at a 3% sampling budget. (a) baseline full
resolution, (b) variable resolution, (c) uniform resolution. The variable model yields the correct answer, as texture and fine-grained details
are critical for answering correctly.

Object detection. Most questions in VQA are related to ob-
jects, their attributes, relationships and locations. Thus, un-
derstanding the representations learned in LMMs requires
a foundational understanding of vision-only models under
foveation. For this reason, later on in this work we also
evaluate the performance of several object detectors with
the same sampling schemes. The models we utilize for ob-
ject detection are the Mask-RCNN [16] and DETR [6].

2.2. Information-matched images
Our first claim is that foveation is beneficial from an
information-theoretic perspective. To establish this claim,
we introduce the concept of information-matched images.
These are pairs of images that contain an identical number
of samples (pixels) but differ in how these samples are dis-
tributed across the image (Figure 1).

Formally, let I ∈ RW×H×3 be an image from any
dataset, where W and H are the width and height of the im-
age, respectively, and 3 corresponds to the RGB color chan-
nels. We define a sampling map S : [W ] × [H] → {0, 1},
where S(x, y) = 1 indicates that the pixel at position (x, y)
is sampled, and S(x, y) = 0 otherwise. The total number
of samples is given by N =

∑W
x=1

∑H
y=1 S(x, y).

To create information-matched images, we generate two
sampling maps, Svar and Suni, corresponding to variable
(foveated) and uniform sampling schemes, respectively.
These sampling maps can be visualized as dim-white dots
overlaid on the original image in Figure 1. They have the
same total number of samples N :

N =
∑W

x=1

∑H
y=1 Svar(x, y) =

∑W
x=1

∑H
y=1 Suni(x, y).

For each sampling map, we extract the sampled pixels from
the original image:

Isampled(x, y) =

{
I(x, y), if S(x, y) = 1,

0, otherwise.
(1)

Since the sampled pixels do not cover the entire image, and
we aim to preserve architectures as they are, we apply an in-
terpolation function to reconstruct the image at the original
spatial dimensions. Let I denote the interpolation operator
(e.g., bilinear interpolation). The final image is (Figure 2):

Î = I(Isampled). (2)

By selecting N s.t. N
W×H = 0.03, for example, we force a

3% sampling density and so on for 10% etc. Ensuring that
both sampling schemes use the same number of samples
N and images of the same dimensions, we create pairs
of images that are information-matched. This allows us
to fairly compare the impact of variable versus uniform
sampling on model performance. The specific functions
we use, Svar, and Suni, are not critical to our results and we
refer the reader to the Supplementary ”Sampling scheme”
section for specific implementation. In this paper, Svar
follows models of the human visual system by Wilson and
Bergen [44] and Poggio et al. [30], Suni picks samples
uniformly in a log-polar grid, and Sbaseline, naturally, picks
all pixels in the image.

Fixation point. For technical simplicity we arbitrarily
picked the center of the image as the location with high-
est sample density in Svar; as we do not evaluate multiple
fixations in our models, picking the middle is intuitively the
easiest choice for a single fixation. We dedicate Section 3.2
to demonstrating that the fixation point location is arbitrary
and not critical to our claims.

2.3. Training paradigm
VQA. We abstained from training most LMMs due to
size constraints. Namely, models BLIP2 [22], ViLT [20],
LLaVa [24] and InstructBLIP [8] were only evaluated
on the datasets discussed bellow using original pretrained
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checkpoints. For example, BLIP2 was tested on versions
of GQA [17], VQAv2 [13] and SEEDBench [21] that con-
sisted of images with variable sampling (Figure 2b), or uni-
form sampling (Figure 2c), both never seen during training.
Similarly for ViLT, LLaVa and InstructBLIP.
However, since we make claims about learned represen-
tations, we did fully train the DETR [6] object detection
model using a 3% sampling density. This model is used
in an LMM, as MDETR [19], and is the entire visual
backbone of that LMM. An additional BERT-based trans-
former for language and the visual embeddings are fused
in a transformer encoder-decoder (see Supplementary ”Ar-
chitectures” section for details). We trained DETR from
scratch, including the backbone (ResNet101 [15]) which we
also pretrained. Our training consisted of pre-processing
the necessary datasets (ImageNet, COCO, GQA) with the
sampling filters at the 3% density, then training the back-
bone, then the full DETR model, and then fine-tuning the
MDETR on GQA. For hyperparameters, we followed the
ResNet101, DETR and MDETR authors, using the hyper-
parameters in the original papers. As such, we have three
DETR and MDETR models, one for each input paradigm
(baseline, variable at 3%, uniform at 3%).
Object detection. We trained both DETR and MaskR-
CNN [16] from scratch, as described in the above para-
graph, including their backbones using original parameters.

3. Foveation improves performance
It is clear that providing input images of worse resolution
will negatively impact performance, regardless of whether
that resolution is distributed in a foveal, i.e. variable, fash-
ion (Figure 1a) or a uniform one (Figure 1b). Having es-
tablished the concept of information-matched images (Sec-
tion 2.2), we investigate how the distribution of information
alone affects performance. We show that a foveal distribu-
tion benefits visual tasks more compared to a uniform one.
Uniform sampling as a baseline. We felt it natural to use
uniform sampling as a baseline to compare with for two
reasons: (1) uniform sampling is the same as downscaling
an image in the most trivial sense. This is the most com-
mon practice for making images more compact. We think a

Table 1. Performance on visual question answering using im-
ages of 3% sample density.

Model Dataset Uniform Variable Full

ViLT [20] VQAv2 [13] 62.9 64.9 81.1
MDETR [19] GQA [17] 44.1 46.8 61.7
BLIP2 [22] GQA 40.7 42.3 44.0
BLIP2 VQAv2 56.2 57.9 63.1
InstructBLIP [8] VQAv2 66.5 66.4 73.5
LLaVa-v1.5 [24] VQAv2 65.1 65.9 73.1

comparison here will be most useful to the community. (2)
Only uniform sampling allows fair comparison with present
methods (which use uniform high-resolution images), given
that we need to maintain information-matching.

3.1. With a 3% sampling density
VQA. We evaluated several pretrained large multimodal
models (LMMs) on the VQA task under the three sam-
pling schemes: baseline (full resolution), variable sampling
(foveation), and uniform sampling, all at a 3% sampling
density (that is N

W×H = 0.03, Section 2.2). Visual question
answering (VQA) is a fundamental visual task and requires
both the perception of subtle cues and fine details related to
object relations, interactions, and causality in a scene.
Using the ViLT model on the VQAv2 dataset, we observed
that despite the drastic reduction in pixel count, the model
achieved approximately 80% of its full-resolution perfor-
mance. Specifically, the mean accuracy on the validation
split was 81.1% for the baseline, 64.9% for the variable
sampling, and 62.9% for the uniform sampling (Mvar =
64.9±19.8%, Muni = 62.9±19.9%). Similarly, the LLaVA
model evaluated on the VQAv2 test-dev set achieved a to-
tal accuracy of 65.9% with variable sampling, compared to
65.1% with uniform sampling and 73.1% at full resolution.
We also tested the MDETR model on the GQA dataset.
At a 3% sampling density, the model achieved 46.8% ac-
curacy with variable sampling, outperforming the uniform
sampling result of 44.1% (t[4] = 2.32, p = 0.04). This
represents 77% of the full-resolution performance (61.7%
accuracy). Table 1 reflects those results.
On BLIP2 [22]. Using the SEEDBench [21] dataset on
BLIP2 [22], variable sampling outperformed uniform sam-
pling by 2.1%, achieving 48.6% vs. 46.5% total accuracy
(t[14232] = −6.00, p < 1 × 10−6), Figure 3. Notably,

Instance Location

Instance Counting

Instance Interaction

Visual Reasoning Text Recognition

Total Accuracy

56.054.8

41.0

44.3

38.1

49.3

48.0

54.6

50.7

48.5

54.6

50.5

39.6

42.4

41.6

40.0

35.8

36.8

25.9

24.7

22.4

49.4
48.6

46.5

Full-resolution
Variable
Uniform

49.5

49.0

58.9
46.8

42.0
Scene Understanding

Instance Identity

Spatial Relations

Instance Attributes

Figure 3. BLIP2 [22] evaluation on SEED-Bench [21], 3%.
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in some question types such as ”Instance Identity,” BLIP2
with variable sampling at 3% density even surpassed the
full-resolution baseline. That is, BLIP2 using images con-
taining 3% of the information performs better than BLIP2
using images containing 100% of the information. This
result is not a mistake and is also reflected in Figure 5b,
where BLIP2 performs better than its baseline on GQA with
30% of samples. We find those results as much exciting as
puzzling. They were a surprising finding and, while not
the focus of this paper, we hope to explore them in future
works. We hypothesize that the selective blur in the variable
scheme serves as an ”attention direction” mechanism at the
input level, which was perhaps not learned sufficiently well
during training (hence why the model can benefit from this
modality).

3.2. Fixation point bias
Ablation. The datasets under review, GQA, VQAv2, and
SEED-Bench, are largely web-scraped and it is natural that
they occasionally concentrate on objects positioned at the
center of the image, directly aligning with our fixation. At
this juncture, the reader might be tempted to accredit the
benefits of variable sampling to merely coincide with the
pre-existing photographer bias in the datasets. We demon-
strate that this is not the case and provide an ablation with
fixations positioned close to each corner (see Table 2). The
same evaluation is available for other LMMs in the Supple-
mentary ”VQA” section. As a secondary control, we also
show that the underlying object detection models are almost
fixation point agnostic (see below).
Object detection. As an additional control for fixation
point bias, and as a gateway to explore the results achieved
on the complex VQA task, we evaluated the behavior of sev-
eral models on the underlying task of object detection [23],
showing that detection performance is mostly agnostic to
fixation point location. For this task, we utilized the
DETR (also used for VQA with modulation, as MDETR)
and Mask-RCNN architectures on the COCO [23] dataset.
COCO is most commonly used for object detection, al-

Table 2. 3% density with corner fixations MDETR [19] on
GQA [17]. Uniform refers to uniform sampling, and BL, BR, TL,
and TR represent variable sampling with fixations shifted from the
center to the bottom-left, bottom-right, etc. directions respectively.
Each fixation is 100 pixels away from the center diagonally.

Metric Uniform BL BR TL TR

Total 44.1 45.2 45.4 45.0 45.5
Attr 57.6 56.1 57.0 56.3 58.1
Cat 61.3 64.6 64.4 63.2 62.9
Global 93.3 94.4 94.4 94.0 93.9
Obj 89.9 90.5 90.7 90.3 90.7
Rel 34.2 36.1 35.9 35.8 36.0

though it recently saw many uses in large-scale pre-training
of LMMs due to its semantic richness (annotations have
object location, size, mask, caption etc.). Indeed, all of
our LMMs (MDETR, BLIP2, InstructBLIP, LLaVA, ViLT)
were trained on COCO in various modalities, which is im-
portant for our connection to VQA. In this section, we con-
sider the task of object detection, which, due to being se-
mantically richer than VQA, allows us to measure the de-
gree to which a photographer bias artificially benefits the
variable model. The following are two experiments (1), (2)
that demonstrate a variable model outperforms a uniform
one irrespective of fixation location.
Creating annotation bins (1). Consider the COCO vali-
dation set V = I1, I2, . . . , I5,000, where Ii ∈ ZWi×Hi×3

corresponds to the i-th image in the set. There are 5000
images in the COCO validation split, each in RGB format
(hence the 3-dimensional domain of Ii). Define a square of
size D ×D (D < Wi, D < Hi for all i). For instance, D
could be 200, since even the smallest images in COCO are
larger. Center this square on each validation image, call-
ing the area inside it the high-resolution area (HRA). For
each ground truth annotation, compute P

A , the fraction of its
pixel mask area inside the HRA (Figure 4a). This metric,
the high-resolution inclusion degree (or inclusion degree),
measures how much of the annotation is within the HRA.
The inclusion degree varies with D. For example, an ob-
ject might have an inclusion degree of 0.5 for a 200 × 200

p
A

(a)

y = 0.28x

y = 0.14x

y = 1.2x
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(b)

Figure 4. Bin Experiment. (a) High-resolution-area (HRA) = p
A

.
A is the total object area. (b) Average Recall (AR, IoU=0.50:0.95)
vs HRA.
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HRA, but 0.3 for a 150 × 150 HRA. We tested HRA sizes
from 100 × 100 to 250 × 250 in 10-pixel increments, with
consistent results across sizes.
Annotations are then binned by inclusion degree. The set
G0.0−0.1 contains annotations with inclusion degrees be-
tween 0.0 and 0.1, G0.1−0.2 includes those between 0.1 and
0.2, and so on, forming ten bins: G0.0−0.1, G0.1−0.2, ...,
G0.9−1.0. Their union covers the entire validation set. Fig-
ure 4b shows model Average Recall (AR) across these bins,
revealing that variable sampling prevails as soon as 10%-
20% of the object area is inside the HRA (x = 0.1). Uni-
form sampling prevails where very little to no part of an
object is close to the fixation point (x = 0). The conclusion
is that, put bluntly, a fixation point placed imperfectly will
almost always be better than uniformly sampling the image.
Counting samples (2). As an additional control, we con-
structed an annotation set containing only objects encom-
passed by an identical sample count, varying only in its dis-
tribution pattern: variable or uniform (see Figure 1). The
results show a similar performance gap of ∼2.0% in favor
of the variable model (See Supplementary ”Object detec-
tion” section).

4. Diminishing returns of image resolution
We now refer the reader to Figure 5. We interestingly note
the pattern of diminishing returns that appears prevalently
with the scaling of resolution. The benefit exhibited by
the variable sampling at the 3% sampling density (Sec-
tion 3.1) is evident throughout the entire range of densi-
ties. The benefit of variable sampling is larger for lower
sampling densities. We attribute this to texture and fine-
grained detail. At the 3% density, texture and fine-grained
detail are perfectly visible at the center of fixation with vari-
able sampling, while not at all visible in the uniform sam-
pling paradigm. The more we increase the sample den-
sity, the more this competitive edge of the variable sam-
pling approach disappears, as the uniform grid begins to
capture finer and finer details. We conclude that texture and
fine-grained details are crucial for visual tasks, as already
shown in literature [32, 41].

5. Human-like representations
We now investigate the internal representations of the mod-
els to understand the behavior observed in earlier experi-
ments. Specifically, we explore differences in learned rep-
resentations between the two sampling schemes, focusing
on filter kernels, neuronal activations, and their impact on
transformer self-attention. (1) Our analysis uses MDETR,
which is the only model we trained, but a vision transformer
module is common in MDETR, ViLT, BLIP2, InstructBLIP,
and LLaVa (granted, in different scales). (2) Aside from
this architectural similarity, the aforementioned models all

show a quantitatively similar to MDETR (Figure 5) pattern
in performance: all densities show an improvement with
variable sampling, and all models converge to a baseline
performance at a logarithmic rate. For these two reasons,
we consider the representations of the vision transformer in
MDETR as sufficiently representative for our discussion of
”what happens in vision transformers as a consequence of
foveation?”.
I. Foveation induces more globally-acting attention in vi-
sion transformers. In transformer models like MDETR,
self-attention allows each token (representing an image
patch) to attend to other tokens, integrating information
across the image. We hypothesize that variable sampling
encourages the model to attend more globally, effectively
combining high-resolution details from the center with con-
textual information from the periphery.
Formally, we follow [28] and define the attention distance
di for each token i as the average spatial distance to all other
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Figure 5. Evaluation of sample density on models’ perfor-
mance. Performance of several models on the VQAv2 [13] and
GQA [17] datasets.
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Figure 6. Interpretability (a, b, c) Example visualizations of the highest self-attention layer of the DETR transformer model for several
tokens located at the periphery. The red dots indicate the tokens’ spatial locations. The corresponding attention maps are presented to the
left or right of the image (closest to the associated red dot): (a) baseline-full, (b) variable and (c) uniform sampling schemes. (d, e, f)
Kernel filters of the first convolutional layer for full, variable and uniform resolutions, respectively. (g, h) Neuronal activation maps for
intermediate layers on high (blue) and low-resolution (orange) crops, showing differences in the feature maps. (i, j) Attention distance
charts for query tokens located at the central high-resolution area (i) and at the peripheral lower-resolution areas (j), showing large distances
in attention spread, see text.

tokens, weighted by the attention weights. Mathematically,
let Aij denote the attention weight from token i to token j,
and pi = (xi, yi) be the spatial position of token i. Then:

di =

N∑
j=1

Aij · ∥pi − pj∥, d̄ =
1

N

N∑
i=1

di. (3)

where N is the total number of tokens, and ∥pi − pj∥ is the
Euclidean distance between tokens i and j. A larger di in-
dicates that token i attends to more distant tokens, implying
a more global attention mechanism. The attention distance
d̄ is averaged across tokens and images for each layer of the
transformer’s encoder during inference on the COCO vali-
dation set using the trained MDETR model.

This computation is performed separately for models
trained with variable sampling and uniform sampling. Fig-
ure 6(i,j) illustrates how d̄ varies across transformer layers.
(i) considers only tokens located within the central 10%
of the image, coinciding with our fixation point and cor-
responding to the highest acuity regions, analogous to the
densely packed ganglion cells in the human fovea [43]. In
contrast, (j) shows the same metric, but for tokens located
within the outermost 5% of the image, analogous to the pe-
ripheral regions of the human retina, where ganglion cells’
density is significantly lower and their receptive fields are
much wider, leading to reduced visual acuity and a greater

reliance on broader contextual information [4].
Our results show that models trained with variable sam-

pling exhibit significantly larger d̄ across several layers
compared to those trained with uniform sampling, as il-
lustrated in Figure 6(i,j), layers 2 and 3. This quantitative
measure also aligns with the qualitative visualization of at-
tention maps we see in Figure 6(a,b,c). The red tokens seem
to attend more globally in the model trained with variable
images (b), compared to the one trained with uniform im-
ages (a,c). There is an evident beneficial information-flow
from the periphery to the center and vice-versa, similar to
the human visual cortex [38].
II. Single model generalizes to detect multi-resolution-
spanning objects by allowing resolution-specialization in
CNNs. The convolutional kernels in CNN-based models
are commonly applied uniformly across the entire image.
It is therefore not clear if and how CNNs adapt when pre-
sented with multiple resolutions within the same object in-
stance (as we have in for example Figure 1a). We have
demonstrated improved performance of the variable sam-
pling approach, and looking-under-the-hood we now pose
the question: what internal adaptations occur in CNN back-
bone models to facilitate beneficial information-flow from
low to high-resolution parts of a single object. We hypoth-
esized that the variable resolution trained models learned
a mixed resolution representation, where some neurons
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specialize on low-resolutions and other neurons on high-
resolutions. Whether this occurs is not a trivial question,
since it is entirely possible that the neurons of the net-
work have learned the average resolution in our training
set only: producing high dot-products (activations) for mid-
resolution occupying object segments and low everywhere
else. Formally, our hypothesis becomes:

H0 : P0 = P1 vs. H1 : P0 ̸= P1, (4)

where P0, P1 represent the distributions of neuronal acti-
vations when the backbone network (ResNet101, variable
trained) is inferenced with crops from central (primarily
high-resolution) locations, P0, and crops from peripheral
(primarily low-resolution) locations, P1. Due to P0,P1’s
high dimensionality, we employed a classification-based
approach, rejecting H0 at α = 0.01 (see Supplementary
”Human-like representations” section).
We now refer the reader to Figure 6(g,h). The histograms
show the maximal neuronal activation values in several fil-
ters from the deep layers of the ResNet101, backbone for
our main detection models (MaskRCNN and DETR) and
MDETR LMM. We observe that while some filters seem
universal (Figure 6g) w.r.t. the resolution of crops, other fil-
ters (Figure 6h) exhibit selectivity, firing actively from high-
resolution crops only. This indeed suggests that the network
exhibits neuronal selectivity based on resolution, similar to
the human brain [27, 35].

6. Related work
Prior computational work explored the contribution of mul-
tiple resolutions to model robustness and improved perfor-
mance [1, 12]. Some works studied aspects of non-uniform
sampling in the visual FOV, including foveal schemes,
where samples are distributed densely around a fixation
point in the FOV and more sparsely in the periphery
[2, 25, 29], but proposing new architectures rather than uti-
lizing existing ones. Early studies, developed models of the
human visual system to evaluate the capabilities and limi-
tations of human peripheral vision, but did not address the
implications of these models on artificial systems [3, 11].
Followup studies evaluated the impact of these foveated
texture-based input representations on artificial vision sys-
tems including DNNs, showing that peripheral texture en-
coding leads to representations with greater generalization,
sensitivity to high-spatial frequency and robustness to oc-
clusion [9, 14]. A neuro-computational study suggested that
the advantage of peripheral over central vision is due to in-
trinsic usefulness of features carried by peripheral vision,
generating a greater spreading transform in the representa-
tional space [42]. The model showed that the two pathways
correlate with their neural substrates, LOC and PPA in the
brain, but applied to scene classification, the model provides
limited insight, as the task can be often performed well at

extremely poor resolutions [39]. Another study suggested
that blurry peripheral vision may have evolved to optimize
object recognition [31]. Applying DNNs to foveated images
around objects of interest, the study showed that DNNs’
performance peaked at the human blur decay setting, also
benefiting from reduced false detections in the blurry pe-
riphery. Other studies investigated the effects of cortical
magnification, a brain mechanism that allocates more pro-
cessing units to the densely sampled area of the foveal im-
age [7, 18]. These methods use foveated videos to fit models
into embedded systems, achieving a 4× speed-up in frame
rate, but showing only a small decrease in recall within the
restricted foveal region.

A key limitation of these studies is the absence of
a robust comparison with large vision models used on
large-scale, complex, datasets such as GQA [17], SEED-
Bench [21], and VQAv2 [13]. Furthermore, these stud-
ies lack a comparison with prevalent architectures such
MDETR [19], BLIP2 [22], InstructBLIP [8], LLaVA [24],
and ViLT [20]. Lastly, none of the studies provided a sys-
tematic analysis on VQA model performance based on im-
age resolution, nor explored the representations that emerge
in existing architectures as a consequence of foveation.

7. Conclusions
Growing computational demands are a pain point in the
field [37, 46]. We show that efficiency is possible from
an information-theoretical perspective. Leading LMMs
achieve 80% of their performance with only 3% of the pix-
els in an image, and almost maximal performance with
50%. We present the case that instead of indiscriminately
upscaling images to higher resolutions, the community can
benefit from exploring architectural adaptations that utilize
a non-uniform, biologically-inspired, image representation.

In VQA, we demonstrate that LMMs benefit from
variable sampling on multiple datasets — VQAv2 [13],
GQA [17], and SEEDBench [21] — compared to uniform
sampling. This is an outstanding finding, mainly from two
perspectives. First, by considering the fact that we arbi-
trarily chose the highest resolution area location of the im-
age (achieving consistent results on central and corner fix-
ations), while the cues required to answer the questions
can be anywhere in the scene. Second, the improvement is
achieved with a single fixation, without any scanning across
the FOV. Humans usually need a few fixations to complete
most visual tasks [45], also simpler AI models [2]. Mul-
tiple fixations with foveation have potential to drastically
improve performance and we hope to explore that in the fu-
ture. We also reveal human-like, global, self-attention in
the transformer, and resolution specialization. The results
show the potential of the biologically inspired image repre-
sentation in future LMM systems, particularly when grow-
ing computational demands are a pain point in the field.
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