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Abstract

Commonsense inference poses a unique chal-001
lenge to reason and generate the physical, so-002
cial, and causal conditions of a given event. Ex-003
isting approaches to commonsense inference004
utilize commonsense transformers, which are005
large-scale language models that learn com-006
monsense knowledge graphs. However, they007
suffer from a lack of coverage and expressive008
diversity of the graphs, resulting in a degrada-009
tion of the representation quality. In this paper,010
we focus on addressing missing relations in011
commonsense knowledge graphs, and propose012
a novel contrastive learning framework called013
SOLAR1. Our framework contrasts sets of se-014
mantically similar and dissimilar events, learn-015
ing richer inferential knowledge compared to016
existing approaches. Empirical results demon-017
strate the efficacy of SOLAR in commonsense018
inference of diverse commonsense knowledge019
graphs. Specifically, SOLAR outperforms the020
state-of-the-art commonsense transformer on021
commonsense inference with ConceptNet by022
1.84% on average among 8 automatic evalu-023
ation metrics. In-depth analysis of SOLAR024
sheds light on the effects of the missing rela-025
tions utilized in learning commonsense knowl-026
edge graphs.027

1 Introduction028

Commonsense inference, reasoning of unobserved029

conditions from an observed event, is an important030

but challenging task in natural language processing031

(NLP) (Rashkin et al., 2018; Bosselut et al., 2019;032

Yuan et al., 2020; Hwang et al., 2021). This is easy033

for humans, but still out of the reach of current034

artificial intelligence systems. Commonsense in-035

ference aims to generate textual descriptions of the036

inference results, which is more in line with the037

1Code available at https://anonymous.
4open.science/r/solar-commonsense_
inference-37E7

Figure 1: Illustration of missing relations of semanti-
cally similar events in commonsense KGs.

process of humans reasoning based on their knowl- 038

edge. For a given event “X walks into a hospital”, 039

the causal conditions (e.g., what to do before and 040

after the event), physical conditions (e.g., capabil- 041

ity and location of entities), and social conditions 042

(the intention and reaction of X) of the event are to 043

be inferred. 044

Recent studies on commonsense inference have 045

adopted commonsense transformers (Bosselut 046

et al., 2019), which are large-scale language models 047

trained on commonsense knowledge graphs (KGs) 048

like ATOMIC (Sap et al., 2019) and ConceptNet 049

(Speer et al., 2017). Such models are grounded on 050

the hypothesis that language models can memorize 051

facts in their parameters during training (Petroni 052

et al., 2019; Roberts et al., 2020). Despite these ef- 053

forts, commonsense transformer models still suffer 054

from two main obstacles inherent in commonsense 055

KGs: (1) lack of coverage and (2) expressive diver- 056

sity of the graphs. First, commonsense KGs lack 057

the coverage required to be applicable for diverse 058
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situations in the real world (Li et al., 2016; Saito059

et al., 2018). In ATOMIC, even with the possibility060

of far more commonsense properties being rele-061

vant, any single event has only 2.2 commonsense062

properties directly related on average. Second, with063

the non-canonical and free-form text representation064

for the nodes in commonsense KGs, semantically065

identical or similar expressions of events are rep-066

resented as distinct nodes (Malaviya et al., 2020).067

For example, “PersonX is fond of dogs” and “Per-068

sonX likes dogs” are semantically identical, but069

represented as distinct nodes. The expressive diver-070

sity makes commonsense KGs substantially sparser071

than conventional KGs. Owing to the lack of cov-072

erage and expressive diversity, significant amount073

of relations are missing in commonsense KGs.074

In this study, we focus on learning from missing075

relations in commonsense KGs for commonsense076

inference. Our key observation is that semantically077

identical or similar events can have the same rela-078

tions as shown in Figure 1. For example, “PersonX079

likes dogs” and “PersonX loves animals” are se-080

mantically similar to “PersonX loves dogs”, and081

the inference that “PersonX wants to adopt one”082

can be drawn from any of those events. Model-083

ing such missing relations helps the model learn084

richer representations from commonsense KGs.085

Current approaches for alleviating the sparsity of086

commonsense KGs, such as automatic common-087

sense KG completion (Li et al., 2016; Saito et al.,088

2018; Malaviya et al., 2020), do not effectively ad-089

dress missing relations, because they consider only090

existing relations as valid. Therefore, this problem091

remains unexplored.092

We propose a novel learning framework of093

commonsense transformers, called Self-supervised094

cOntrastive LeArning with missing Relations (SO-095

LAR), to address the aforementioned problem. Our096

framework trains large-scale language models to097

learn both existing and missing relations with self-098

supervised contrastive learning. Specifically, we099

construct sets of examples including semantically100

similar events that can share relations based on101

the similarity of language representations. Each102

set contains semantically similar events within it,103

while events from other sets are semantically dis-104

similar. We then contrast each set of examples with105

the other sets. This allows the model to identify106

the interrelationship between semantically similar107

events and their relations, leading to a better un-108

derstanding of missing relations in commonsense109

KGs. 110

We evaluate our framework for commonsense 111

inference on three commonsense KGs: ConceptNet 112

(Speer et al., 2017), ATOMIC (Sap et al., 2019), 113

and ATOMIC20
20 (Hwang et al., 2021). Empirical 114

results show that SOLAR outperforms the state- 115

of-the-art commonsense transformers on common- 116

sense inference. In particular, for ConceptNet, SO- 117

LAR with BART-large (Lewis et al., 2020) outper- 118

forms COMET (Hwang et al., 2021) with BART- 119

large by 1.84% on average among 8 automatic eval- 120

uation metrics. In addition, we observe that SO- 121

LAR with BART-base produces comparable results 122

to COMET with BART-large, which validates that 123

our framework is superior to existing approaches 124

in terms of both effectiveness and efficiency. Our 125

main contributions are as follows: 126

• We present a novel contrastive learning frame- 127

work for commonsense transformers, called 128

SOLAR, that learns from both existing and 129

missing relations in commonsense KGs. 130

• We develop a principled scheme for construct- 131

ing positive and negative sets of examples 132

with commonsense KGs based on similarities 133

of events in language representations. 134

• We verify that SOLAR establishes new state- 135

of-the-art results in commonsense inference 136

across diverse commonsense KGs. 137

2 Related Work 138

2.1 Commonsense Inference 139

In NLP domain, several studies have proposed 140

commonsense inference models that utilize com- 141

monsense KGs. Rashkin et al. (2018) proposed 142

Event2Mind, a commonsense KG that involves a 143

textual description of a person’s response or in- 144

tention of daily events. Sap et al. (2019) pro- 145

posed ATOMIC knowledge graph as an extension 146

of Event2Mind with more relations and tuples. 147

Both studies trained on the GRU model based on 148

their proposed graph to learn commonsense infer- 149

ence. Moreover, recent studies have shown that pre- 150

trained language models store various types of fact 151

knowledge in their latent parameters (Petroni et al., 152

2019; Roberts et al., 2020). Bosselut et al. (2019) 153

revealed that language models can directly express 154

commonsense knowledge by training them on com- 155

monsense KGs. Hwang et al. (2021) showed that 156
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Figure 2: Illustration of contrastive learning of commonsense tuples. (a) Based on adversarially sampled root
subjects, semantically similar subjects are sampled. (b) Subjects and relation-object pairs connected to them are
projected to separate hidden representations through a generative language model and a projection layer. (c) Hidden
representations obtained from the same root subject are considered as positive pairs, and those obtained from other
root subjects are considered as negative pairs for contrastive learning.

KGs must be designed to contain knowledge that157

is not already expressible by language models.158

Gabriel et al. (2021) focused on discourse-level159

commonsense inference, and Yuan et al. (2020)160

proposed a language model architecture for logi-161

cally consistent commonsense reasoning. Previous162

studies have proposed training language models163

on existing tuples in commonsense KGs for com-164

monsense inference. In our work, we focus on165

addressing the missing relations of commonsense166

KGs for better commonsense inference.167

2.2 Contrastive Learning168

Contrastive learning has shown promising perfor-169

mances in computer vision (Henaff, 2020; He et al.,170

2020). SimCLR (Chen et al., 2020b) introduced a171

simple but powerful contrastive learning approach172

and showed a competitive performance with super-173

vised learning approaches. Contrastive learning is174

also widely used in natural language processing,175

where a model obtains unsupervised representa-176

tions by learning to predict positive or negative177

pairs. Mikolov et al. (2013) proposed an efficient178

method for learning word representations by classi-179

fying whether given words appear in the same con-180

text or not. Furthermore, contrastive learning has181

been adopted to improve the representations of pre-182

trained language models. Reimers and Gurevych183

(2019); Zhang et al. (2020b); Yan et al. (2021) intro-184

duced contrastive learning frameworks for enhanc-185

ing the sentence representations. Lee et al. (2020) 186

proposed a contrastive learning method to miti- 187

gate the exposure bias problem. Inspired by these 188

studies, we propose a novel contrastive learning 189

framework for commonsense representation learn- 190

ing with commonsense KGs. With our proposed 191

framework, the model learns inferential knowledge 192

from both existing and missing relations. 193

3 Methodology 194

In this section, we describe the model architecture 195

and training procedure of the proposed framework. 196

3.1 Notation 197

We define G = (V, E) as the commonsense knowl- 198

edge graph that consists of a set of nodes V and 199

a set of edges E. Following the notation from 200

COMET (Bosselut et al., 2019), we denote each 201

knowledge tuple from the knowledge graph as 202

{s, r, o}, where s is the phrase subject, r is the 203

relation, and o is the phrase object of the tuple. 204

Here, s and o are natural language sequences, and 205

r is a single special token (e.g., <xIntent>). Note 206

that s, o ∈ V and {s, r, o} ∈ E. We define S as 207

the set of all existing subjects from the knowledge 208

graph, and it follows that S ⊂ V . Finally, we de- 209

note the generative language model to be trained as 210

f(·) and a projection layer at the top of the model 211

as g(·). 212
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Algorithm 1 Set Construction Algorithm.

Input: root subjects Sroot, number of root sub-
jects N , edges E, set size 2m, threshold δ,
BERTScore function b(·, ·), base model f(·),
projection layer g(·)
for si ∈ Sroot do

Initialize Gi as ∅
for j ∈ {1, ...,m} do

if j = 1 then
sij ← si

else
repeat ▷ Sample similar subject

sij ← sample(S)
until b(f(sij), f(si)) > δ

end if
get tuple {sij , rij , oij} ∈ E containing sij
zi2j−1 ← g(f(sij))

zi2j ← g(f(rij ⊕ oij))

Gi ← Gi ∪ {zi2j−1, z
i
2j}

end for
end for
return G1, G2, ..., GN

3.2 Commonsense Representation Learning213

To improve commonsense representations of the214

language model prior to learning commonsense215

inference, we first proceed with commonsense rep-216

resentation learning through contrastive learning217

of commonsense tuples and commonsense recon-218

struction.219

Contrastive learning of commonsense tuples.220

Inspired by our key observation that semantically221

identical or similar events can have same relations,222

we propose a novel commonsense representation223

learning method based on contrastive learning.224

The overall procedure of the proposed method225

is depicted in Figure 2. First, we obtain a set of N226

root subjects Sroot = {s1, s2, ..., sN} through ad-227

versarial sampling on S. The adversarial sampling228

procedure is designed such that pairwise semantic229

similarity of subjects in Sroot lies between mini-230

mum similarity α and maximum similarity β. Here,231

we use BERTScore (Zhang et al., 2020a) between232

phrase subjects as the semantic similarity metric.233

We then obtain positive and negative pairs by234

constructing N sets G1, G2, ..., GN containing hid-235

den representations, where each Gi corresponds236

to a root subject si ∈ Sroot. For an arbitrary237

element si ∈ Sroot, we first sample m tuples238

{sj , rj , oj} (j = 1, 2, ...,m) from E that contain 239

subjects sj semantically similar to si. Each sj 240

and rj ⊕ oj is projected to hidden representations 241

zi2j−1 = g(f(sj)) and zi2j = g(f(rj ⊕ oj)), and 242

added to Gi. Here, ⊕ denotes concatenation of 243

two sequences. Repeating for m times, the con- 244

structed set Gi contains 2m hidden representations 245

derived from subjects that are semantically similar 246

to the root subject si, and the relation-object pairs 247

connected to them. Algorithm 1 summarizes the 248

construction procedure. 249

We consider samples from the same set as posi- 250

tive pairs, and those from different sets are negative 251

pairs in contrastive learning. We use NT-Logistic 252

(the normalized temperature-scaled logistic) objec- 253

tive function (Chen et al., 2020b) as our training 254

objective to maximize the agreement between posi- 255

tive pairs while minimizing the agreement between 256

negative pairs. The formal expression of our objec- 257

tive function is given by the following equations: 258

lposi = −
∑2m

p,q=1 log σ(z
i
p
T
ziq/τ)

2m
, (1) 259

260

lnegi = −
∑

i<j≤N

∑2m
p,q=1 log σ(−zip

T
zjq/τ)

m(N − 1)
,

(2) 261262

Lcont =
1

N

N∑
i=1

(lposi + lnegi ), (3) 263

where lposi is the loss function over positive pairs in 264

set Gi, and lnegi is the loss function over negative 265

pairs among set Gi and the other sets. In addition, τ 266

denotes the temperature parameter for temperature 267

scaling. The model is trained to minimize the final 268

objective Lcont, which is the mean of lposi and lnegi 269

for all i = 1, 2, ..., N . 270

Commonsense reconstruction. To further im- 271

prove the representation of a single tuple, we pro- 272

pose a commonsense reconstruction task inspired 273

by Lewis et al. (2020), in which the model learns 274

to reconstruct noisy tuples into their original form. 275

More specifically, we noise a commonsense tuple 276

{s, r, o} by randomly choosing one of the three 277

elements, masking the span of the chosen element, 278

and shuffling the order of the tuple. The model is 279

trained to reconstruct the original tuple from the 280

noisy tuple. This task complements the contrastive 281

learning method by training the model to better 282

understand the commonsense tuple itself. The ob- 283

jective of the commonsense reconstruction task is 284
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to minimize Lrecon computed by cross-entropy be-285

tween the decoder output and the original tuple.286

The model learns commonsense representations287

through multitask learning on the two aforemen-288

tioned tasks simultaneously. Therefore, the final289

objective function of our framework is to minimize290

the combined loss:291

Lrep = ωLcont + (1− ω)Lrecon. (4)292

3.3 Fine-tuning on Commonsense KGs293

After learning commonsense representations, we294

remove the projection head and fine-tune the model295

with commonsense KGs to learn commonsense296

inference. The model learns to generate a phrase297

object o given a concatenation of phrase subject s298

and relation r. The objective function of the task is299

as follows:300

Linfer = −
|E|∑
i=0

logPθ(oi|si, ri) (5)301

3.4 Language Model Architecture302

While SOLAR is agnostic to its generative lan-303

guage model architecture, for our experiments,304

we use BART (Lewis et al., 2020) with its pre-305

trained parameters as our base generative language306

model. BART is a transformer-based sequence-307

to-sequence language model with a bidirectional308

encoder and a left-to-right autoregressive decoder.309

For commonsense representation learning (Section310

3.2), we add a projection layer that maps the BART311

decoder output representations to a space where312

contrastive loss is applied. The projection head313

is then removed for fine-tuning on commonsense314

KGs (Section 3.3).315

4 Experiments316

In this section, we demonstrate the efficacy of our317

framework by comparing the commonsense infer-318

ence performances of SOLAR with those of the319

state-of-the-art commonsense transformers.320

4.1 Dataset321

Commonsense KGs are widely used for evaluat-322

ing the commonsense inference capability by mea-323

suring the plausibility of the generated inferences324

given unobserved events or entities. Hwang et al.325

(2021) developed an adversarial splitting method326

for dividing training, validation, and test sets that327

prevent overlapping subjects of knowledge tuples328

between the sets. We utilize the splitting method 329

to evaluate the inference capability of the model 330

for unseen events or entities. We use three com- 331

monsense KGs in our experiments: ConceptNet 332

(Speer et al., 2017), ATOMIC (Sap et al., 2019), 333

and ATOMIC20
20 (Hwang et al., 2021). 334

ConceptNet is a general commonsense knowledge 335

graph. We use a subset of the graph provided by 336

Li et al. (2016), which involves 36 relations and 337

300K tuples. The subset is divided into 265K, 5K, 338

and 30K tuples for training, validation, and testing 339

respectively. 340

ATOMIC is a social commonsense knowledge 341

graph that involves 9 relations with 877K tuples. 342

The split of ATOMIC includes 710K, 80K, and 343

87K tuples for training, validation, and testing, re- 344

spectively. 345

ATOMIC20
20 is a recently proposed large-scale com- 346

monsense knowledge graph, which involves 23 347

commonsense dimensions and contains 1.33M tu- 348

ples. It includes physical-entity, social-interaction, 349

and event-centered commonsense. ATOMIC20
20 is 350

split into 1.08M, 10K, and 15K tuples for training, 351

validation, and testing, respectively. 352

4.2 Experimental Settings 353

Baseline We use COMET (Bosselut et al., 2019), 354

the state-of-the-art commonsense transformers in 355

commonsense inference, as the baseline. We use 356

the public HuggingFace (Wolf et al., 2019) imple- 357

mentation of pre-trained BART (Lewis et al., 2020) 358

as a language model and train it using SOLAR and 359

COMET for comparison. BART-base has 6 trans- 360

former layers for encoder and decoder each with 361

a hidden size of 768, whereas BART-large has 12 362

transformer layers for encoder and decoder each 363

with a hidden size of 1024. For fine-tuning, we em- 364

pirically choose the best number of epochs, learn- 365

ing rate, and batch size among {1, 3, 5, 7, 11, 13}, 366

{1e-4, 1e-5, 1e-6}, and {16, 32, 64, 128}, respec- 367

tively, and use the Adam optimizer with β1 = 0.9, 368

β2 = 0.999. 369

Training details of SOLAR. In contrastive learn- 370

ing of commonsense tuples, we extract n ∈ 371

{4, 8, 16, 32} root subjects while maintaining the 372

similarity (%) between subjects with a minimum of 373

α ∈ {40, 50, 60} and a maximum of β ∈ {70, 80}. 374

We then sample m ∈ {8, 16, 32} semantically sim- 375

ilar subjects based on previously extracted subjects. 376

We set the temperature parameter τ to 0.1. 377

In reconstructive learning tasks, we corrupt tu- 378
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BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr BERTScore

ConceptNet COMET-base 15.60 10.26 6.88 4.84 11.79 16.61 33.41 53.18
SOLAR-base 17.12 11.55 8.10 5.79 12.90 18.25 38.91 53.86

ATOMIC COMET-base 53.03 33.97 23.13 16.90 34.05 56.07 74.63 64.57
SOLAR-base 53.59 34.51 23.89 17.82 34.42 56.60 75.24 64.78

ATOMIC20
20

COMET-base 44.99 26.95 17.44 11.77 31.20 48.33 59.48 63.11
SOLAR-base 45.42 27.62 18.15 12.47 31.59 48.84 61.12 63.27

Table 1: Evaluation results (%) of commonsense inference with base models.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr BERTScore

ConceptNet COMET-large 17.88 11.35 7.13 4.00 13.47 19.36 37.72 54.07
SOLAR-large 19.28 12.73 8.57 5.62 14.69 20.89 43.15 54.71

ATOMIC COMET-large 54.05 34.92 24.04 17.62 35.06 56.93 75.46 64.84
SOLAR-large 54.31 35.77 25.41 19.45 35.30 57.11 76.33 64.91

ATOMIC20
20

COMET-large 46.08 28.23 18.70 12.86 32.22 49.44 62.13 63.52
SOLAR-large 46.51 28.99 19.52 13.73 32.53 49.76 63.24 63.58

Table 2: Evaluation results (%) of commonsense inference with large models.

Cont. Recon. BLEU-3 CIDEr

SOLAR-base

✓ ✓ 18.27 61.15
✓ ✗ 18.02 61.02
✗ ✓ 17.89 60.90
✗ ✗ 17.43 59.48

Table 3: Ablation study of commonsense representation
learning methods on ATOMIC20

20

ples by masking the span of each tuple elements379

and randomly shuffling the order. The span length380

is drawn from a Poisson distribution (λ = 3). SO-381

LAR learns commonsense representation through382

multi-task approach, and we set the task weight as383

ω = 0.8. In addition, we optimize the model using384

the RecAdam (Chen et al., 2020a) optimizer to pre-385

vent catastrophic forgetting during commonsense386

representation learning. We set the hyperparame-387

ters of the optimizer to k = 0.001 and t0 = 1000.388

After representation learning, we set the same hy-389

perparameters as the baseline. We report the best390

results among possible hyperparameter settings.391

Metrics. To measure the commonsense inference392

capability of SOLAR, we use common evaluation393

metrics in the text generation: BLEU (Papineni394

et al., 2002), ROUGE (Lin, 2004), CIDEr (Vedan-395

tam et al., 2015) and BERTScore (Zhang et al.,396

2020a).397

4.3 Results398

Overall performance. We evaluate SOLAR and399

COMET on three commonsense KGs and report400

Figure 3: Validation loss of COMET-large and SOLAR-
large on ATOMIC20

20

the automatic evaluation results of generated in- 401

ferences. In our result tables, we denote model 402

names in form of (framework)-(BART model con- 403

figuration). For example, SOLAR and COMET 404

with BART-base are denoted by SOLAR-base and 405

COMET-base, respectively. 406

Table 1 shows that SOLAR-base outperforms 407

COMET-base for all KGs. By averaging over all 408

metrics, SOLAR-base improves the performance 409

of COMET-base on ConceptNet, ATOMIC, and 410

ATOMIC20
20 by 1.74%, 0.57%, and 0.65%, respec- 411

tively. Experiments on large model configurations 412

establish the new state-of-the-art results on com- 413

monsense inference with KGs. Table 2 shows that 414

SOLAR-large outperforms COMET-large, the pre- 415

vious state-of-the-art, for all KGs and evaluation 416
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Subject Relation Ground truth COMET SOLAR

PersonX is
always busy

xReact exhausted busy tired

sugar cube ObjectUse eat as food mix with sugar swetten coffee

PersonX gives
PersonY a cup

HinderedBy
PersonY is
not thirsty

PersonX is allergic
to water

PersonX doesn’t
have a cup

PersonX likes
the movie

HinderedBy
They were too
busy texting

PersonX is allergic
to the movie

The movie is
too boring

Table 4: Examples of commonsense inference from COMET and SOLAR in ATOMIC20
20.

metrics. We observe 1.84%, 0.70%, and 0.58%417

average performance improvement on Concept-418

Net, ATOMIC, and ATOMIC20
20 respectively. Fur-419

thermore, SOLAR-base performs comparably to420

COMET-large on ATOMIC and ATOMIC20
20, and421

performs better on ConceptNet, despite using only422

one-third of parameters. This shows the parameter-423

efficiency of our approach compared to COMET.424

Analysis on commonsense inference. We pro-425

vide further analysis on commonsense inference426

results of SOLAR and COMET. Figure 3 shows427

the validation loss curve for COMET-large and428

SOLAR-large. It is clearly observed that SOLAR429

gives smaller loss than COMET on validation sets,430

which indicates that SOLAR generalizes common-431

sense better than COMET. In addition, Table 4432

shows examples of commonsense inference results433

by COMET and SOLAR. It can be observed that434

SOLAR generates plausible inferences with novel435

expressions, whereas COMET extracts words from436

the subject phrase to generate inferences, leading437

to trivial or wrong results. Another observation438

is that COMET is vulnerable to the annotation439

bias in KGs. For example, in ATOMIC20
20, the440

word “allergic” frequently appears with relation441

“HinderedBy”, and COMET is biased to generate442

wrong inferences like “allergic to the moive”. In443

contrast, SOLAR makes better inference results444

without such bias.445

Ablation study. We conduct an ablation study to446

measure the effectiveness of each component of our447

proposed framework. Table 3 shows that learning448

on both tasks performs better than learning on only449

one of the two tasks. We observe that contrastive450

learning of commonsense tuples is the key to our451

performance improvement that SOLAR achieves,452

and the reconstruction task also plays a role in the453

Figure 4: Acceptance and overlap rates of gener-
ated missing relations. Similarity is measured by
BERTScore.

framework. 454

Acceptance of missing relations. We conduct a 455

qualitative analysis of missing relations generated 456

through our approach. Table 5 shows examples of 457

tuple pairs and their similarity values measured by 458

BERTScore. In the first row, “PersonX throws a 459

huge party” and “PersonX throws a big party” are 460

semantically similar, and each relation-object can 461

be shared with the subject of the other (e.g., Per- 462

sonX throws a huge party - oEffect - smile ). In con- 463

trast, as in the last example, tuple pairs with a low 464

similarity between subjects cannot share relation- 465

object with one another. From these examples, we 466

observe that tuple pairs with higher similarity be- 467

tween subjects generate more plausible tuples when 468

their relation-object pair are shared, consistent with 469

our intuition. 470

We further provide a quantitative analysis by 471

measuring the acceptance rate of missing relations 472

generated through our approach and comparing it 473

with the overlap rate. Overlap rate is the proba- 474

bility of a missing relation already existing in the 475

7



Similarity (%) Subject Relation – object Plausible

95.8 PersonX throws a huge party oReact-important
✓PersonX throws a big party oEffect-smile

95.3 handgun AtLocation-army
✓pistol AtLocation-pants

90.3 protective clothing ObjectUse-keep them safe
✓safety gear ObjectUse-protect from injury

87.0 trash bags ObjectUse-put things in
✓trashbins ObjectUse-get rid of garbage

82.0 PersonX takes PersonY to see a doctor oEffect–get checked by doctor
✗PersonX takes PersonY to the vet xWant-get dog checked

70.1 PersonX hugs PersonY back oReact-loved and needed
✗PersonX screams at PersonY oEffect-sweats in terror

Table 5: Qualitative analysis on examples of similarity-based tuple extraction from ATOMIC20
20. Similarity is

measured by BERTScore between the subjects of tuples. Humans evaluate whether the tuples are plausible after the
relation-objects are replaced by that of each other.

Method BLEU-3 CIDEr BERTScore

Baseline 17.44 59.48 63.11
Fine-tuning 17.38 59.11 63.08
Contrastive Learning 18.15 61.12 63.27

Table 6: Evaluation results of methods for learning from
missing relations.

graph. To measure the acceptance rate of missing476

relations, we randomly sample 20 missing relations477

per similarity interval (total 120 samples) and ask478

human annotators to determine their plausibility.479

Three workers annotated each missing relation as480

accept if it is plausible or reject otherwise, and we481

used majority voting as the final annotation. Figure482

4 shows the acceptance rate of the missing relations483

regarding semantic similarity of subjects. It shows484

that the acceptance rate of missing relation is pro-485

portional to the similarity, and if the tuples have486

a similarity of greater than 90%, then 90% of the487

missing tuples are then valid. In contrast, when the488

similarity dropped below 85%, the acceptance rate489

decreased drastically. The blue line in Figure 4 rep-490

resents the overlap rate according to the similarity.491

For tuple pairs of high similarity exceeding 90%,492

the overlap rate is significantly lower (< 20%) than493

the acceptance rate, which shows that novel miss-494

ing relations can be effectively identified through495

our method.496

Methods for learning from missing relations.497

We investigate the effectiveness of our method498

for learning from missing relations. We com-499

pare our contrastive learning method with a fine-500

tuning method where missing relations are directly501

added to a commonsense KG and subsequently 502

learned. We use missing relations generated on 503

subjects with exceeding 90% similarity. Table 504

6 shows that our proposed contrastive learning 505

method shows best performance, while fine-tuning 506

method is worse than the baseline. We speculate 507

that direct fine-tuning is vulnerable to unacceptable 508

relations, while our proposed contrastive learning 509

framework is robust to them. These results indicate 510

that directly learning from missing tuples harm the 511

commonsense inference capability of the model. 512

We speculate that our approach can handle noise or 513

incorrect missing relations by implicitly learning 514

from missing relations. 515

5 Conclusion 516

We have presented a novel contrastive learning 517

framework of commonsense transformers, called 518

SOLAR, to effectively learn from missing relations 519

in commonsense KGs. Moreover, we have devel- 520

oped a new construction scheme for positive and 521

negative sets of examples based on similarities in 522

language model representations. By utilizing our 523

carefully designed methods, SOLAR effectively 524

learns both existing and missing relations of events, 525

alleviating the difficulties in learning commonsense 526

KGs. Our empirical evaluations of diverse com- 527

monsense KGs demonstrate the efficacy of SOLAR 528

in commonsense inference. In particular, SOLAR 529

consistently outperforms the state-of-the-art com- 530

monsense transformers across all the evaluation 531

metrics and commonsense KGs. 532
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