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BlockDFL: A Blockchain-based Fully Decentralized Peer-to-Peer
Federated Learning Framework

Anonymous Author(s)

ABSTRACT
Federated learning (FL) enables collaborative training of machine
learning models without sharing training data. Traditional FL heav-
ily relies on a trusted centralized server. Although decentralized
FL eliminates the central dependence, it may worsen the other
inherit problems faced by FL such as poisoning attacks and data
representation leakage due to insufficient restrictions on the be-
havior of participants, and heavy communication cost, especially
in fully decentralized scenarios, i.e., peer-to-peer (P2P) settings.
In this paper, we propose a blockchain-based fully decentralized
P2P framework for FL, called BlockDFL. It takes blockchain as the
foundation, leveraging the proposed PBFT-based voting mechanism
and two-layer scoring mechanism to coordinate FL among peer par-
ticipants without mutual trust, while effectively defending against
poisoning attacks. Gradient compression is introduced to lowering
communication cost and prevent data from being reconstructed
from transmitted model updates. Extensive experiments conducted
on two real-world datasets exhibit that BlockDFL obtains competi-
tive accuracy compared to centralized FL and can defend poisoning
attacks while achieving efficiency and scalability. Especially when
the proportion of malicious participants is as high as 40%, BlockDFL
can still preserve the accuracy of FL, outperforming existing fully
decentralized P2P FL frameworks based on blockchain.
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1 INTRODUCTION
Federated learning (FL) [24] enables multiple mobile and Web-of-
Things devices to jointly train a machine learning model while
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keeping the data on their own devices [31]. It can contribute to
a series of web applications such as web tracking based on FL
[36]. However, traditional FL heavily relies on a trusted centralized
server, where the bandwidth limitations caused by long-distance
transmission restricts the application of FL in large-scale and highly
complex problems. The central dependence can be solved by de-
centralized FL [6, 14, 15, 44]. However, the primary challenge faced
by decentralized FL is the trust between participants, especially in
collaboration across business organizations. In a scenario without
mutual trust, a global model may not be trustworthy, and the contri-
bution of different participants is hard to authoritatively quantified.

Blockchain, a distributed ledger originated from decentralized
currency systems, offers distributed trust that enables cooperation
among participants without mutual trust by forcing the participants
to behave honestly [17, 34, 44]. It can also record stake for mone-
tary reward to motivate honest behaviors [47], since decentralized
systems relieve the burden of maintaining centralized servers for
the operators. These characteristics make blockchain an promising
basis for designing a decentralized trustworthy FL framework.

Unfortunately, decentralization also exacerbates the inherent
issues of FL such as 1) vulnerability to poisoning attacks; 2) rela-
tively insufficient privacy protection because the private training
data can be reconstructed from intermediate model updates by
model inversion attack [12, 28, 48]; and 3) inefficiency caused by
heavy communication cost for transmitting model updates. Exist-
ing blockchain-based FL frameworks usually integrate additional
protection mechanisms to partially solve the privacy and security
issues [1]. For example, protecting the privacy by differential pri-
vacy (DP) [19, 26, 45, 46], homomorphic encryption [2, 34] and
secure aggregation [23, 26], and ensuring the security by Krum [3],
threshold-based testing [39] and auditing [2]. However, existing
frameworks still have some limitations on technical selections. For
privacy, although DP provides provable protection [33], it lowers
model accuracy. Homomorphic encryption and secure aggregation
bring tremendous computation and communication cost, lower-
ing the efficiency. For security, existing approaches mainly apply
Krum on local updates [26, 32, 45], ignoring that global updates
may also be poisoned. Besides, Krum performs not well when fac-
ing not identically and independently distributed (non-IID) data.
Threshold-based testing relies on manual thresholds that are not
easily to be determined. Auditing provides only traceability but
no defenses. Moreover, existing solutions often neglect efficiency
optimization. Some of them rely on mining for consensus that fur-
ther deteriorates the efficiency [5, 17, 32] due to a large number of
hash calculations. Additionally, some of existing frameworks are
not fully decentralized [6, 14, 16, 20, 29, 37, 45], i.e., relying on a
global trust authority or trusted servers [26]. Thus, there needs a
fully decentralized peer-to-peer (P2P) solution with high efficiency
that protects FL systems from being poisoned and the training data
from being reconstructed.
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To address these issues, we propose BlockDFL, a fully decen-
tralized P2P FL framework based on blockchain that protects
the privacy in terms of data representation and security in terms
of poisoning attacks while achieving high efficiency. To effectively
filter out poisoned updates even in non-IID setting, we propose a
two-layer scoring mechanism, where local updates are filtered ac-
cording to the stake and scored by median-based testing, and global
updates are scored by Krum. To uniquely select a global update in
each round without forking, we design an efficient voting mecha-
nism based on the Practical Byzantine Fault Tolerance (PBFT) [4]
algorithm. The two mechanisms work jointly to defend poisoning
attacks. Gradient compression is introduced to protect the training
data from being reconstructed and further reduce communication
cost. The main contributions of this paper are threefold:
• We propose BlockDFL, an efficient decentralized P2P FL frame-
work with blockchain as the foundation, which provides security
and privacy protections for FL while achieving high efficiency.
• To reach the consensus on one suitable global update in each
round of FL, we propose a PBFT-based voting mechanism, which
never forks. It works together with the proposed two-layer scoring
mechanism to fulfill poisoning-resistance.
• We implement a prototype of BlockDFL and conduct extensive
experiments on two real-world datasets, showing that BlockDFL
achieves good efficiency and scalability and can resist poisoning
attacks when there are up to 40% malicious participants for both
IID and non-IID data. We also experimentally demonstrate that
there exists appropriate sparsity that protects data representation
privacy without harming the accuracy and security of BlockDFL.

2 PRELIMINARIES
2.1 Poisoning Attack
FL suffers the risk of poisoning attacks. Malicious participants can
upload poisoned models to negatively impact the convergence of FL
[22], such as wrongly labeling the training data within one certain
class and training the local model on the tampered datasets, causing
the global model unable to distinguish the data of this class.

There are many defenses suitable for a centralized system [3, 22,
38]. For example, Krum [3] regards the model updates significantly
differ from others as poisoned ones. However, in a P2P systemwhere
there is no mutual trust among participants, it is hard to decide
which participant should be responsible for detecting poisoned
model updates, and participant may distrust the judgments from
the others. BlockDFL solves these problems by a two-layer scoring
mechanism, i.e., in each round, the local updates are scored through
local inference by several other participants (aggregators in Section
3) to form up several global updates, then these global updates are
scored through Krum by another group of participants (verifiers in
Section 3) to finally select one global update.

2.2 Data Representation Leakage
Existing studies show that the model updates shared by participants
in FL still contain some information of training data useful for data
reconstruction through model inversion attack [12, 28, 43, 48]. If
the model updates are leaked, attackers can reconstruct the private
training datasets [26, 34]. Thus, FL needs further privacy protection
since there is no protection for model updates in vanilla FL [24],

especially in decentralized systems since the model updates are
transmitted among ordinary participants which may be malicious.

Such kind of risk can be defended by gradient compression that
only transmits elements with large absolute values inmodel updates
[48]. Attackers cannot reconstruct data from sufficiently sparse up-
dates [27, 28]. Intuitively, excessive compressionmay bring negative
impact on Krum since it filters out model updates heavily differ
from the direction of the majority of updates. But we experimen-
tally find that many of the indexes of the transmitted elements with
the largest absolute value in different updates may still overlap,
enabling to spatially distinguish the normal andmalicious model up-
dates with sparsification introduced. Besides, it may even improve
the accuracy of Krum since it helps to focus only on important
parameters, which may reduce the negative impact of unimportant
parameters on the element-wise distance calculation. More details
about this are available in Appendix A.1.

BlockDFL drops over 90% and 85% elements with lower absolute
value in model updates before transmission respectively on two
datasets so that model inversion attacks represented by the Deep
Leakage from Gradients (DLG) attack [48] cannot obtain any useful
information as experimentally demonstrated in Appendix A.2.

3 BLOCKDFL OVERVIEW
BlockDFL is designed for decentralized P2P FL with the following
goals: 1) to prevent the global model from being jeopardized by
poisoning attacks, 2) to prevent the private training data from being
revealed, and 3) to conduct FL efficiently. As shown in Fig. 1, there
are four processes in it during each communication round: 1) Role
Selection, 2) Local Training, 3) Aggregation and 4) Verification and
Consensus, some of which contain more than one steps.

It is assumed that participants can obtain the public key for
verifying digital signatures of the others and send information
through broadcasting. The stake recorded on the blockchain can
be tied to monetary reward from mobile operators or AI service
providers, since a decentralized FL system relieves them of the
heavy burden of setting up and maintaining a centralized server.
Thus, as in [13, 26], it is reasonable to assume that participants
holding large amounts of the stake tend to perform obligations
honestly, because they can benefit more from the monetary reward.

Participants are granted with three different roles, i.e., Update
Provider, Aggregator and Verifier. The update provider is for train-
ing a model based on its private training data and sharing its local
update to aggregators. It works independently. The aggregator is
responsible for collecting local updates and selecting a certain num-
ber of them for aggregating global update. It works independently,
too. The verifiers preside over electing a suitable global update
together and packaging it with the digital signatures created by
the verifiers’ private keys and the identity of its aggregator and
update providers into a block newly added to the blockchain. They
score global update independently, and select one global update
collaboratively. The independent and cooperative steps are marked
with different colors in Fig. 1. In BlockDFL, adding a block means
that all participants have conducted a round of communications
(equivalent to executing the FedAVG algorithm [24] once in FL).
If the block is not empty, all participants will update their model
according to the global update contained in the newly added block.
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Figure 1: The detailed processes of BlockDFL in one round of communication, from ➀ to ➃.

At the start of each communication round, each participant is
randomly assigned with a role based on the hash of the last block
as in [26] (process ➀). Then, update providers train local models
with a stochastic gradient descent (SGD) algorithm on their own
training set and sparse the local updates by gradient compression
before broadcasting them to aggregators (process ➁). Each aggre-
gator continues to receive local updates until a certain number of
local updates are obtained, and then starts the aggregation indepen-
dently (process ➂). An aggregator first samples a certain number of
local updates from the received ones according to the stake of the
corresponding providers. Then, it scores the sampled local updates
and selects some of them to aggregate a global update which is
then broadcasted to verifiers. When verifiers receive enough global
updates (e.g., the global updates from the super majority of aggrega-
tors), the verification starts (process ➃). Each verifier independently
scores the global updates and votes for them based on the scores,
so as to select one approved global update. Finally, the approved
global update with its relative information is wrapped in a new
block that is then broadcasted to all participants.

Each non-empty block contains five components: 1) the hash of
the previous block; 2) the approved global update and the identi-
ties of the corresponding aggregator and update providers; 3) the
signed votes from verifiers; 4) the stake increment of relevant par-
ticipants; and 5) the identity of the creator with its digital signature
of this block. BlockDFL introduces blockchain to: 1) consistently
and randomly assign roles through the hash of the last block [41];
2) synchronize global updates through newly-added blocks; and 3)
distinguish contributions through the stake [42]. Participants with
honest behaviors will continue to accumulate stake, making mali-
cious participants less and less influential to the entire FL system.

4 DETAILED PROCESSES OF BLOCKDFL
4.1 Role Selection
At the start of role selection in BlockDFL, the hash value of last block
ℎ−1 is mapped to a hash ring where each participant is assigned
a space proportional to its stake as in [26]. The participant whose
portion corresponds to ℎ−1 is selected as the first aggregator. Then,
the hash value is repeatedly re-hashed to select other aggregators.
When a certain number of aggregators are selected, it turns to select
verifiers in the same way. When all aggregators and verifiers are

selected, the rest participants become update providers. It ensures
that participants with more stakes are more likely to be selected as
important roles, i.e., aggregators and verifiers. The set of verifiers,
aggregators and update providers are represented by V , A and
U, respectively. The number of verifiers |V| and the number of
aggregators |A| are both hyper-parameters set before BlockDFL
starts. As illustrated in Section 5.3, the efficiency of BlockDFL is
mainly related to the number of aggregators and verifiers. Thus,
|V| and |A| are recommended to be much smaller than |U|.

In BlockDFL, roles are reassigned at the start of each round to
give each participant the opportunity to contribute its local update
to an FL system and defend bribery attack.

4.2 Local Training
In round 𝑡 , update provider 𝑢𝑖 performs local training based on the
model parameters of the previous round w𝑖 (𝑡 − 1) on its private
training data with the SGD algorithm as:

w − 𝜂
1
𝑏
∇L(x,w) → w (1)

where 𝑥 is a mini-batch with 𝑏 samples of the training set X of 𝑢𝑖 ,
L is the loss function and 𝜂 is the learning rate (step 2-1 in Fig.
1). Let w𝑖 (𝑡) be the model parameters after several epochs of local
training. The local update d𝑖 is obtained as:

d𝑖 = w𝑖 (𝑡) −w𝑖 (𝑡 − 1) (2)

To protect the representation privacy of local data and reduce
the communication cost, we apply top-k sparsification to the local
updates as in [7]. Let 𝑠 be the sparse ratio, i.e., the percentage of zero
elements in the sparsed local update d𝑖 , the update provider only
transmits the (1 − 𝑠) |d𝑖 | elements of d𝑖 with the largest absolute
value (step 2-2 in Fig. 1). To avoid the loss of accuracy, the rest
elements are kept locally and accumulated to the next local training
of the participant as in [21]. The sparse local update is digitally
signed and broadcasted to aggregators (step 2-3 in Fig. 1).

4.3 Aggregation
When an aggregator has collected a certain number of local up-
dates, the aggregation starts where each aggregator performs the
same process independently. Let D denote the set of local updates
received by an aggregator and 𝑐 be the number of local updates

3
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that a global update must contain. There are two sampling steps in
aggregation. The first step is to discard most of the model updates
based on the corresponding stake for relieving the computation
cost of later testing. In this step, the aggregator samples 3 × 𝑐 local
updates from D, where the probability of each local update to be
selected is proportional to the stake of its update provider (step 3-1
in Fig. 1). The sampled local updates constitute a set D𝑆 . To make
more honest participants have the opportunity to share their local
updates, the stake can be log-scaled here.

The second step conducts themedian-based testing to select high-
quality un-poisoned local updates for aggregation. Each aggregator
updates the global model in last round with local updates in D𝑆

one by one and performs inference on a subset randomly sampled
from its own training set (step 3-2 in Fig. 1). Then, local updates in
D𝑆 are ranked in descending order according to their accuracy of
inference. Let DM𝑆 denote the local updates before the median of
sorted D𝑆 , the local updates for aggregation are randomly selected
from DM𝑆 and constitute a set D𝐴 (|D𝐴 | = 𝑐). The probability 𝑝𝑖
of each local update d𝑖 in ranked DM𝑆 to be selected is:

𝑝𝑖 =
exp(𝑞(d𝑖 ))∑

d𝑗 ∈DM𝑆 exp(𝑞(d𝑗 ))
(3)

where 𝑞(d𝑖 ) is the inference accuracy of local update d𝑖 on the
subset of the training set held by the aggregator. Local updates in
D𝐴 are aggregated to a global update 𝐺 as:

𝐺 =
1

|D𝐴 |

∑︁
d∈D𝐴

d (4)

(step 3-3 in Fig. 1). The aggregated global update𝐺 is then digitally
signed and broadcasted to verifiers to compete for being packaged
on the blockchain (step 3-4 in Fig. 1).

There are two reasons for adopting median-based testing in
stead of Krum to select local updates: 1) The complexity of Krum is
O(𝑛2) where𝑛 is the number of model updates to be evaluated, thus,
Krum may not be appropriate to score a large number of model
updates such as verifying local updates [26], where 𝑛 is relatively
large; and 2) Krum suffers from the non-IIDness of training data,
since non-IID data enlarge the distance between local updates. The
non-IIDness has a relatively small impact on testing, as the local
models trained on non-IID datasets do not lead to the inability to
distinguish between specific two categories of data as poisoned
models do. The experiments in Section 5.2 also confirm this.

The stake filter makes most of the local updates to be tested
come from honest participants, so that the model updates before the
median are un-poisoned. Median-based testing determines whether
a local update is poisoned by comparing its score with that of the
others, instead of relying on a manual threshold [40] or a baseline
validation model which may be hard to obtain in real world to judge
whether an update is malicious. Therefore, this process is reliable
and applicable.

4.4 Verification and Consensus
In order to uniquely elect one suitable global update in each round,
we simplify PBFT [4] for decentralized FL and design a voting-based
verification mechanism based on the simplified PBFT, which has
the following advantages: 1) It has high efficiency since the verifiers

are a small group of randomly selected participants; 2) It can deal
with malicious participants and the disconnection problem, even
for the leader of PBFT; and 3) It never forks.

The first selected verifier is the leader of verifiers to initiate the
verification of global updates one by one in the order it determines.
There are three stages in the proposed voting mechanism that
each global update needs to go through, i.e., pre-prepare, prepare
and commit. Let G be the set of candidate global updates in this
communication round. Assuming that 𝐺𝑖 ∈ G is the first selected
global update to be verified. In the verification of𝐺𝑖 , the leader first
sends a pre-prepare message with the digital signature of 𝐺𝑖 to the
other verifiers. When a verifier receives the pre-prepare message,
it broadcasts a prepare message with the digital signature of 𝐺𝑖

to all verifiers. When a verifier receives more than 2
3 |V| prepare

messages, it starts the commit stage. In commit, the verifier scores
each𝐺𝑖 by Krum [3], where a lower score indicates a higher quality.
Let 𝑓 be the percentage of malicious participants and G𝑐

𝑖
⊆ G

denote the (1 − 𝑓 ) |G| − 2 global updates closest to𝐺𝑖 , Krum scores
𝐺𝑖 by calculating the distance of 𝐺𝑖 to global updates in G𝑐

𝑖
, as:

Krum(𝐺𝑖 ,G) =
∑︁

𝐺 𝑗 ∈G𝑐
𝑖



𝐺𝑖 −𝐺 𝑗



2 (5)

The score of the other global updates in G is calculated as in step
4-1 in Fig. 1. Then each verifier sends a signed commit message to
the leader containing the vote to𝐺𝑖 . Only the score of𝐺𝑖 surpasses
that of 2/3 global updates can 𝐺𝑖 be voted affirmatively, as:{

1 if
∑
𝐺 𝑗 ∈G\𝐺𝑖

IKrum(𝐺𝑖 ,G)<Krum(𝐺 𝑗 ,G) ≥ 2
3 |G|

0 else
(6)

where 1 and 0 means the affirmative and negative vote, respectively.
I is 1 when the condition is met and otherwise 0.

If the leader has received more than 2
3 |V| commit messages

with the affirmative vote, the verification ends and 𝐺𝑖 becomes the
approved global update of this communication round (step 4-2 in
Fig. 1). Then the leader builds a block containing: 1) the elements
of 𝐺𝑖 , 2) the identity of the aggregator and update providers of
𝐺𝑖 and 3) the identity of the verifiers who vote for support. The
block is signed by the leader and broadcasted to all participants
(step 4-3 in Fig. 1). The participants listed in 2) and 3) are equally
awarded with stake. However, if the number of commit messages
with the negative vote the leader received has exceeded 1

3 |V|, the
verification of 𝐺𝑖 is finished and the leader starts the verification
of another global update 𝐺 𝑗 . Note that in the verification of the
subsequent global updates, the score of them obtained during the
verification of the first global update can be directly used. If all
global updates in G are verified but no one is approved, the leader
broadcasts an empty block. When a participant receives a block, it
updates the local model if the block contains an approved global
update. Then, the next communication round starts.

Note that the ability of the leader to behave maliciously is limited,
since the leader can broadcast a global update only if the affirmative
votes of more than 2/3 verifiers are acquired. If this condition is not
met, it can only choose to verify the next global update or finish the
current round of communications. Thus, if the leader is malicious,
what it can do to harm the system is to deny the votes of other
verifiers and broadcast an empty block to delay the iteration of FL.
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Table 1: Default settings of experiments.

Parameter name Value

# of aggregators & verifiers 8 & 7
Initial stake & stake increment Uniformly 10 & 5
𝑐 of global updates 5
# of epochs in local training 5

Sparsity 𝑠 in MNIST [90%, 92.5%, 95%, 97.5%]
changes every 50 rounds

Sparsity 𝑠 in CIFAR-10 [85%, 87.5%, 90%, 92.5%, 95%]
changes every 60 rounds

We apply Krum in verification instead of aggregation due to: 1) Its
result is consistent on the same updates, facilitating the consensus
on the voting result. 2) Its complexity is O(𝑛2) with 𝑛 updates
to be scored, and 𝑛 is usually larger in aggregation than that in
verification of BlockDFL. Intuitively, Krum is negatively affected by
the sparseness of model updates since it calculates distance between
them element-wisely. But we observe that many of the indexes of
the (1 − 𝑠) |d𝑖 | elements with the largest absolute value in different
updates may overlap, enabling to spatially distinguish the sparsed
normal and poisoned updates. More details are in Section A.1.

5 EVALUATIONS
5.1 Experimental Setup
We implement BlockDFL with Python 3.8 and PyTorch 1.10 to eval-
uate its accuracy, poisoning-tolerance, efficiency and scalability.
The experiments demonstrate: 1) BlockDFL has a comparative accu-
racy compared with vanilla FL and can effectively resist poisoning
attacks, 2) the reason that BlockDFL can resist poisoning attacks
and 3) BlockDFL works efficiently and possesses good scalability.

5.1.1 Dataset, Model and Platform. We select two widely-used
real-world datasets, i.e., MNIST [8] and CIFAR-10 [18] to evaluate
BlockDFL. For MNIST, we build a convolutional neural network
with 1,662,752 parameters as in [24]. For CIFAR-10, we build a CI-
FARNET with 1,149,770 parameters1. In local training, these models
are trained by SGD with learning rate at 0.01, which decays by 0.99
after each round. The other parameter settings are as listed in Table
1 unless stated otherwise. As shown in Table 1, all participants start
with 10 stake, and if they are awarded with stake, the quantified
value of the stake obtained is 5. The sparsity of local updates is
averaged to 93.75% on MNIST and 90% on CIFAR-10.

We run 50 participants on a Windows10 platform with an AMD
Ryzen 5800 3.40GHz CPU, an NVIDIA RTX 3070 GPU. The training
set is randomly distributed to participants (IID setting) or sampled
in Dirichlet distribution with 𝛼 = 1.0 to build practical non-IID
subsets distributed to participants as in [25]. The test set is used to
evaluate global model accuracy. Each participant randomly selects
20% samples from its training set to score local update (Section 4.3).

5.1.2 Malicious Participants. Malicious update providers poison
local updates by label-flipping attack as [22, 26]. They label number

164C3x2-MaxPool2-Drop0.1-128C3x2-AvgPool2-256C3x2-AvgPool8-Drop0.5-256-10

1 as 7 in MNIST, and cat as dog and deer as horse in CIFAR-10,
then perform local training on the poisoned training set.

To better evaluate the robustness of BlockDFL, we introduce
more challenges by further granting other roles the ability to fa-
cilitate poisoning attacks instead of only update provider as [26].
For example, a malicious aggregator aggregates 𝑐 of the received
local updates with the lowest accuracy. The 𝑐 local updates from
the update providers with the lowest stake are not directly selected
because such behavior can be easily detected, thus exposing the
malicious participants. A malicious verifier will vote contrarily to
an honest one, aiming at a wrong consensus result.

5.2 Accuracy and Poisoning Tolerance
5.2.1 Evaluation. We evaluate the accuracy of BlockDFL by com-
paring it with the vanilla FL [24] (relies on a trusted centralized
server) and Biscotti [26] without DP and with the power of DP set
to the lowest value as in [26]. The reason for implementing Biscotti
is that it bears similarities to our work, and from our investigation
in Section 5.4, it is a decentralized P2P FL frameworks based on
blockchain that exhibits robust resistance against poisoning attacks
and has gained widespread recognition in recent years. Compar-
isons with more existing frameworks are presented in Section 5.4.
Model updates in vanilla FL and Biscotti are transmitted without
sparsification. The relevant FL settings of Biscotti are the same as
those of BlockDFL. Note that the goal of BlockDFL is not to surpass
vanilla FL in accuracy, but to obtain the accuracy as close as possible
to vanilla FL in a fully decentralized system, while preventing the
FL system from being jeopardized by malicious participants.

We iterate BlockDFL, vanilla FL and Biscotti for 200 rounds
of communication on MNIST and 300 rounds on CIFAR-10 and
subject both of them to poisoning attacks with the proportions of
malicious participants ranged in [0%, 60%]. We run them for five
times for each proportion of malicious participants. The average test
accuracy is calculated by averaging the inference accuracy by the
global model on the whole test set in the last 20% rounds of these
runs, i.e., the last 40 rounds for MNIST and 60 rounds for CIFAR-10.
Fig. 2 presents the average test accuracy with the corresponding
standard deviation of these approaches. When there is no malicious
participant on IID datasets, BlockDFL achieves the average accuracy
of 99.29% on MNIST while vanilla FL is 99.28%, and achieves the
average accuracy of 87.41% on CIFAR-10 while vanilla FL is 87.84%.
On non-IID datasets, BlockDFL is slightly inferior to vanilla FL with
a very small gap. Thus, BlockDFL can achieve comparable accuracy
compared with vanilla FL, which is a centralized scheme.

When facing malicious participants (≤ 40%), BlockDFL keeps
relatively steady average test accuracy on both datasets and with
both IID and non-IID settings, while vanilla FL is severely jeopar-
dized. The average accuracy gap between BlockDFL and vanilla FL
increases with more malicious participants. Moreover, BlockDFL
converges much more stably than that of vanilla FL when facing
malicious participants, showing very low standard deviation of the
last 20% rounds. As for Biscotti, on the simple MNIST dataset, it
can defend poisoning attacks with 30% participant are malicious,
however, on complex CIFAR-10 dataset, this ratio is less than 20%.
Besides, DP can cause a severe drop in accuracy on complex CIFAR-
10 dataset, although the power of DP is set to the lowest value as
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Figure 2: Average test accuracy and the corresponding standard deviation of approaches in the last 20% rounds.

(a) MNIST (IID) (b) MNIST (non-IID) (c) CIFAR-10 (IID) (d) CIFAR-10 (non-IID)

Figure 3: Successful attack ratio in approaches with different percentage of malicious participants.

in [26]. Note that on CIFAR-10, a relatively complex dataset than
MNIST, the average test accuracy of BlockDFL slightly decreases
with the increasing ratio of malicious participants, although it is still
significantly better than that of vanilla FL. The same phenomenon
also appears in [22], because when the system can defend against
poisoning attacks, the training data held by malicious participants
are excluded. Thus, as the ratio of malicious participants increases,
the amount of data contributed to the global model decreases.

Figure 3 illustrates the ability of these frameworks to resist poi-
soning attacks, where successful attack ratio (SAR) means the per-
centage of global updates containing at least one poisoned local
updates in the last 20% rounds. As illustrated, the SAR of BlockDFL
is almost 0% when the ratio of malicious participants is no more
than 40% on MNIST and IID CIFAR-10. On non-IID CIFAR-10, the
SAR of BlockDFL is a little bit higher, but the model accuracy is not
significantly jeopardized because such a small number of malicious
model updates can hardly cause significant negative impact. For Bis-
cotti and vanilla FL, it is more likely to occur that the global updates
of vanilla FL contain one or more poisoned local updates. From
the above, we conclude that BlockDFL is able to defend poisoning
attacks when there are up to 40% malicious participants.

To present the convergence of BlockDFL, we select 6 runs in
IID setting, each of which corresponds to a different dataset and
different ratio of malicious participants, and plot the test accuracy
after each round of communication in Fig. 4. As shown in Fig. 4(a)
and 4(d), the convergence speed of BlockDFL is very close to un-
poisoned vanilla FL, indicating that BlockDFL does not require more
communication rounds than vanilla FL. It can be observed that in
Fig. 4(b), 4(c), 4(e) and 4(f), when there exist malicious participants,
BlockDFL gradually becomes immune to poisoning attacks and
converges to a level close to the un-poisoned FL, while the poisoned
FL diverges seriously. When there are fewer malicious participants,
BlockDFL become immunes to poisoning attacks faster.

Limited by space, more discussions and illustrations on the ef-
fectiveness of BlockDFL are available in Appendix B

5.3 Time Consumption and Scalability
To show the efficiency and scalability of BlockDFL, we run it on
MNIST with variant numbers of participants ranged in [20, 60] and
record the time consumption of aggregation and verification. Since
scoring local updates and scoring global updates are important steps
of aggregation and verification, respectively, we also record the
time consumption of the two steps. We fix the numbers of verifiers
and aggregators to 4, 𝑐 of global updates to 3 and scale the number
of participants. Since the training set on each participant is equally
divided from the original dataset, the number of participants affects
the number of samples in the data set for scoring local update on
each participant, thus affecting the time taken for scoring local
updates in aggregation. To eliminate this impact, we fix the number
of the samples on each participant for scoring local updates to 150.

Fig. 5(a) presents the time spent by each process and step with
a varying number of participants. We can find that the time spent
by aggregation mainly lies in scoring local updates, while scoring
global updates takes much less time than verification, meaning that
the time of verification is mainly spent by voting cooperatively.
With the changes of the number of participants, the time spent by
each process keeps steady, implying a good scalability of BlockDFL.

BlockDFL achieves better efficiency than Biscotti [26], which
is a relatively comprehensive framework. Biscotti is evaluated on
MNIST with a model containing only 7,850 parameters, and it takes
over 30 seconds for aggregation and verification when there are 40
participants as reported in [26]. While our BlockDFL is evaluated
with a model containing 1,662,752 parameters on MNIST, and takes
less than 3 seconds totally for aggregation and verification, which is
very short compared with that of Biscotti. Attributed by 1) the fast
consensus in a small group of randomly selected participants and 2)
the mechanism that makes the aggregators themselves responsible
for aggregation and thus removes the dependency on homomorphic
commitment and secret sharing for anti-poisoning, the efficiency
of BlockDFL significantly outperforms Biscotti. The latter heavily
relies on homomorphic commitment and secret sharing to ensure
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Figure 4: Convergence of the global model test accuracy obtained by vanilla FL and BlockDFL.

(a) Participants (b) Verifiers and aggregators

Figure 5: Time consumption of processes in BlockDFL with
varying number of participants, aggregators and verifiers.

the aggregation not compromised by malicious participants. Thus,
BlockDFL obtains excellent efficiency and scalability.

To clarify how the numbers of aggregators and verifiers affect
the efficiency of BlockDFL, we run BlockDFL with different num-
bers of aggregators and verifiers. As shown in Fig. 5(b), the time
consumption of verification together with scoring global updates
are mainly related to the number of aggregators. When the num-
ber of aggregators grows, both of them increase, since the global
updates that need to be scored and the average number of votes
required to select the final global update also increase. But they
are less affected by the number of verifiers. As for aggregation, it
almost keeps steady with different numbers of aggregators and
verifiers, since the aggregators work independently.

5.4 Multi-dimensional Qualitative Comparisons
Since BlockDFL is designed for decentralized P2P FL, we investi-
gate some existing blockchain-based decentralized FL frameworks
without the reliance on a global trust authority or trusted servers,

i.e., FL frameworks for the fully decentralized P2P setting, and
compare them in six dimensions in Table 2: 1) Privacy: The privacy
protection on the basis of FL. 2) Anti-Poisoning: Ways to defend
poisoning attacks. 3) Poisoning Tolerance: The percentage of
malicious participants the framework can tolerate. 4) Efficiency
Optimization: Ways to optimize efficiency. 5) Consensus & Fork-
preventing: The consensus and whether it can prevent forking
problems of blockchain. 6) Dataset: The datasets utilized for evalu-
ation, together with the data distribution among participants.

As shown, different P2P frameworks introduce different mech-
anisms to partially solve the problems faced by FL, i.e., security,
efficiency and privacy. However, they do not address these issues
uniformly, e.g., address poisoning attacks but ignore privacy pro-
tection or protect the privacy but fail to prevent poisoning attacks.
Particularly, they often neglect to optimize the system efficiency.

As for the ability of poisoning tolerance, existing frameworks
can only defend against poisoning attacks when the proportion of
malicious participants is less than or equal to 30%, while BlockDFL
can effectively defend poisoning attacks when 40% of the partici-
pants are malicious. Moreover, the evaluations of existing frame-
works need to be further improved, i.e., 1) most of the existing
frameworks are only evaluated on a simple dataset, i.e., MNIST
(Wisconsin breast cancer is even simpler, and Credit Card is also so
simple that a logistic regression model can handle it [26]), while
BlockDFL is evaluated on both MNIST and a relatively complex
dataset, i.e., CIFAR-10; and 2) existing frameworks are only evalu-
ated with the data among participants are IID, ignoring the nature
of non-IID data in FL, while BlockDFL is evaluated on both IID
and non-IID data. These enhance the persuasiveness of evaluation
results for BlockDFL. From these comparisons, BlockDFL outper-
forms all the existing fully decentralized P2P FL frameworks in
terms of poisoning tolerance.
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Table 2: Multi-dimensional Comparisons of Existing Decentralized P2P Federated Learning Frameworks based on Blockchain

Approach Privacy Anti-Poisoning Claimed Maximal
Poisoning Tolerance

Efficiency
Optimization

Consensus &
Fork-preventing Dataset

LearningChain [5] DP 𝑙-Nearest
Aggregation 10% Malicious #

PoW
#

Synthetic & Wisconsin breast
cancer [10] & MNIST (all IID)

BlockFL [17] DP # # #
PoW
#

Unspecified

BEMA [32] #
Krum + Multiparty
Multiclass Margin 20% Malicious #

PoW
#

MNIST (IID)

DeepChain [34] Homomorphic
Encryption

#
Auditing

0%
Only Traceability #

Algorand
✓

MNIST (IID)

Biscotti [26] DP + Secure
Aggregation Krum 30% Malicious #

PoF
#

MNIST &
Credit Card [10] (all IID)

BlockDFL
(ours)

Gradient
Compression

Median-based
Testing + Krum 40% Malicious

PBFT in a
small group

PBFT-based Voting
✓

MNIST & CIFAR-10
(IID and non-IID)

6 RELATEDWORK
In recent years, there are many studies about blockchain-based FL.
Some of them are inapplicable in fully decentralized P2P contexts
due to 1) relying on a global trust authority or trusted servers
[14, 20, 37, 45], or 2) relying on a group of pre-set miners or special
nodeswith higher authority to run the consensus [6, 9, 16, 29] where
the powers of participants are not equal. These frameworks may
still face high latency due to long-distance transmission, because the
pre-set nodes may not be geographically close to the participants.

There are also some studies focus on fully decentralized P2P
FL based on blockchain, and some of them integrate additional
protections for solving the privacy and security concerns. To pro-
vide better privacy protection, existing frameworks add DP noise
with certain power on local models [26], or leverage homomorphic
encryption [2, 34] and secure aggregation [23, 26] to prevent the
model update of a specific participant from being intercepted by
attackers. To filter out poisoned model updates, existing frame-
works conduct Krum [26] or 𝑙-nearest aggregation [5] on received
local updates before aggregation, or discard model updates with
accuracy lowering than a pre-defined accuracy threshold [39], or
leverage auditing to track the history of behaviors [2].

These frameworks perform well in different scenarios. However,
in a fully decentralized scenario without mutual trust, existing
frameworks still need to be further improved. First, some of them
only solve part of the problems of FL, i.e., addressing poisoning
attacks but ignoring the privacy protection [32, 34, 39] and pro-
tecting the privacy but failing to prevent poisoning attacks [2, 23].
Second, some of the technical selections bring negative impact on
FL, e.g., although DP is able to protect privacy with the guarantees
of mathematical proof from the perspective of data reconstruction
and membership inference, etc., it imposes a significant loss of
accuracy for protecting complicated models [33]. Homomorphic
encryption brings too much computation overhead, making it un-
suitable for models with relatively large numbers of parameters.
Secure aggregation brings heavy overhead of computation and
communication, which limits the efficiency and scalability of FL
frameworks based on it. Finally, the resistance to poisoning attacks

of existing frameworks could be enhanced. As presented in Table 2,
existing frameworks can only tolerant up to 30% malicious clients
for IID data, while BlockDFL can defend against poison attacks
when there are 40% malicious clients for both IID and non-IID data.

In addition to poisoning resistance, BlockDFL is also efficient
since: 1) the verification of local updates is fast since the stake-
based filtering mechanism drops many local updates, 2) the PBFT-
based voting for global update election works efficiently since the
verifier committee is composed of only a small group of participants
and 3) the communication cost of transmitting model updates is
further lowered by gradient compression. It is worth noting that the
proposed voting mechanism for the consensus on global updates
does not need to perform meaningless hash calculations like proof-
of-working (PoW) consensus and never forks as in [5, 6, 17, 26, 32].

7 CONCLUSIONS
In this paper, we propose BlockDFL, an efficient fully decentralized
P2P FL framework, which leverages blockchain to force partici-
pants to behave correctly. To efficiently reach the consensus on the
appropriate global update, we propose a PBFT-based voting mech-
anism conducted among a small group of participants randomly
selected in each round. To utilize high-quality model updates, we
propose a two-layer scoring mechanism that measures local and
global updates by median-based testing and Krum, respectively.
The combination of the two mechanisms helps BlockDFL uniquely
select a high-quality global update in each round, while preventing
the FL system from being poisoned. To protect the privacy of data
in terms of data representation, we introduce gradient compression,
and experimentally demonstrate that gradient compression can
be integrated into BlockDFL without affecting the effectiveness of
Krum and the accuracy of a global model, while protecting privacy
and reducing communication overhead. Experiments conducted on
two widely-used real-world datasets demonstrate that BlockDFL
can defend the poisoning attacks and achieve both high efficiency
and scalability. Specially, when 40% of the participants are mali-
cious, BlockDFL can defend poisoning attacks, which outperforms
existing fully decentralized FL frameworks based on blockchain.
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A SUPPLEMENTARY EXPERIMENTS
A.1 Distance between Sparsed Model Updates
As introduced in Section 4.4, we observe that when the gradient
compression is introduced, some of the indexes of the transmitted
elements with the largest absolute value in different updates still
overlap, enabling to spatially distinguish the normal model updates
and the poisoned ones.

We randomly split MNIST into 50 subsets with the same number
of data samples (IID settings) and poison 15 of them by label-flipping
attack as introduced in Section 5.1, in order to simulate the situation
that there are 30% malicious participants in a FL system. We train
50 CNN with 1,662,752 parameters introduced in Section 5.1 for 5
epochs, where each CNN is trained on one of the subsets. Then,
we visualize the 50 model updates by t-SNE [30] in Fig. 6(a), where
a blue dot indicates a poisoned update and a red dot indicates a
normal update. We can observe that the 50 original updates form
two clusters that one cluster is composed of normal updates and
the other cluster is composed of poisoned ones.

We then sparse the 50 original model updates to 90% sparsity
and visualize them by t-SNE in Fig. 6(b). As shown, the sparse up-
dates can still form two clusters with clear boundaries according
to whether they are poisoned. Note that there are some poisoned
updates mixed with normal updates in Fig. 6(a), while that does
not exist in Fig. 6(b). Because there are a huge number of parame-
ters in each model, and some unimportant parameters may have a
negative impact on distinguishing whether the model is poisoned
or not. Sparsification helps to focus only on the most important
parameters, which may reduce the negative impact of unimportant
parameters on the distance calculation. It may help to improve the
effectiveness of Krum, as discussed in Section 2.1 and experimen-
tally demonstrated in Section 5.2. Therefore, we can conclude that
Krum and gradient compression can be simultaneously integrated
in a framework without affecting each other.

A.2 Gradient Compression versus Data
Reconstruction

Gradient compression believes that the contribution of elements in
the gradient to the model accuracy is different. Elements with larger
absolute values usually contribute more to the model accuracy. In
distributed machine learning (DML), it can reduce communication
overhead by only transmitting the elements with relatively large
absolute values. Model updates in FL are similar to gradients in
DML, so gradient compression can be applied to FL directly.

Although gradient compression is not proposed for privacy pro-
tection, it can effectively prevent training data from being recon-
structed from gradients [27, 28, 48]. Taking one of the famous model
inversion attacks, Deep Leakage from Gradients (DLG) [48], as an
example, gradient compression destroys the optimization objectives
of DLG attack by discarding many details of the model updates,
making it hard for DLG attack to obtain enough information for
reconstructing the training data from sparse gradients.

In [48], a series of experiments are conducted to evaluate the per-
formance of DLG attack under different degree of gradient sparsity
(ranged in [1%, 70%]), drawing a conclusion that DLG can tolerant
up to 20% sparsity of gradients. When the sparsity exceeds this

(a) Without sparsification (b) With the sparsity of 90%

Figure 6: 2-dimensional visualization of model updates on
MNIST, where each point represents a model update.

threshold, reconstructed images are almost not visually recogniz-
able. We also conduct DLG attack to the model in [48] on CIFAR-10
and MNIST with different sparsity of model updates, respectively,
to demonstrate this. For each image, we iterate DLG model for 300
rounds and record the result with the lowest Mean Squared Error
(MSE) between the reconstructed image and the original one. Fig.
7 presents the lowest MSE and the corresponding reconstructed
images with different sparsity, where the first and next row show
the results on an image of CIFAR-10 and MNIST, respectively. It
is observed that as the sparsity gets higher, the visibility of the
reconstructed images by DLG attack gets worse. The results are
consistent as reported in [48]: when the sparsity exceeds 20%, the
reconstructed images are hard to be visually recognized.

However, it cannot fully guarantee that the information will not
be leaked if the reconstructed images are only visually unrecogniz-
able. To better illustrate the effectiveness of gradient compression
to defense DLG attack, randomly generated images are also intro-
duced as a reference. As shown, for CIFAR-10, when the sparsity
exceeds 70%, the MSE of reconstructed image is similar to the ran-
domly generated one, and the corresponding threshold is about
90% for MNIST. Thus, we conclude that gradient compression can
effectively defense the DLG attack with the ratio of sparsity over
70% for CIFAR-10 and 90% for MNIST.

In our experiments of BlockDFL, the sparsity of model updates is
more than 85% for CIFAR-10 (averaged to 90%) and more than 90%
for MNIST (averaged to 93.75%) to ensure the representation pri-
vacy of local training data. Generally, on the same dataset, the more
parameters a model has, the greater sparsity can be employed. Be-
cause deep learning models are usually over-parameterized, which
has also been empirically validated through various studies on
model quantization [11, 35].

B DISCUSSIONS ON THE EFFECTIVENESS OF
BLOCKDFL

In this section, we provide some discussions on the reasons that
BlockDFL is effective to defend against poisoning attacks.

Generally, PBFT can tolerate 𝑓 malicious participants when there
are (3𝑓 + 1) participants. However, as shown in Fig. 2, we experi-
mentally demonstrate that BlockDFL can tolerant 40% malicious
participants. Such enhancement origins from the accumulation of
stake held by honest participants. As described in Section 4.4, the
voting mechanism can produce a non-empty block only if the super
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Figure 7: MSE of images reconstructed by DLG attack [48] with different ratio of sparsity 𝑠 on CIFAR-10 and MNIST.

(a) on MNIST (b) on CIFAR-10

Figure 8: Changes in proportion of stake held by malicious
participants as the rounds go on.

Figure 9: Percentage of empty blocks in BlockDFL.

majority of verifiers (over 2/3) are honest or the super majority
of verifiers are malicious. When a non-empty block is created, all

the verifiers who have voted positively obtain stake. The situation
that over 2/3 verifiers are honest is more likely to occur than the
situation that over 2/3 verifiers are malicious when the number of
honest participants is larger than that of malicious ones. Thus, the
proportion of stake held by honest participants gradually increases
as blocks continue to be generated, making the situation that 2/3
verifiers are honest more and more likely to occur. Fig. 8 present the
proportion of stake held by malicious participants decreases as the
FL rounds on IID MNIST and CIFAR-10. As shown in Fig. 8, when
there are no more than 40% malicious participants, the proportion
of stake held by malicious participants decreases as the rounds go
on, meaning that malicious participants are increasingly unlikely
to be elected as aggregators or verifiers, and thus less likely for a
successful poisoning attack to occur. More specifically, the fewer
malicious participants, the more stably the proportion of malicious
stake declines. Note that the stake can also helps to arbitrating
the benefits of participants [47]. Fig. 9 shows the percentage of
empty blocks. An empty block means that neither honest nor ma-
licious participants occupy more than 2/3 among verifiers in the
corresponding round, resulting in a failed consensus of voting. The
percentage of empty blocks rises with the increase of malicious
participants, meaning that when there are more malicious partici-
pants, it is more difficult to reach a consensus due to the conflicts
between honest and malicious participants.
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