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Abstract

While Convolutional Neural Networks and Vision Trans-
formers are the go-to solutions for image classification,
their model sizes make them expensive to train and de-
ploy. Alternatively, input complexity can be reduced fol-
lowing the intuition that adjacent similar pixels contain re-
dundant information. This prior can be exploited by clus-
tering such pixels into superpixels and connecting adjacent
superpixels with edges, resulting in a sparse graph repre-
sentation on which Graph Neural Networks (GNNs) can
operate efficiently. Although previous work clearly high-
lights the computational efficiency of this approach, this
prior can be overly restrictive and, as a result, performance
is lacking compared to contemporary dense vision meth-
ods. In this work, we propose to extend this prior by in-
corporating shape information into the individual super-
pixel representations. This is achieved through a separate,
patch-level GNN. Together with enriching the previously ex-
plored appearance and pose information of superpixels and
further architectural changes, our best model, ShapeGNN,
surpasses the previous state-of-the-art in superpixel-based
image classification on CIFAR-10 by a significant margin.
We also present an optimised pipeline for efficient image-
to-graph transformation and show the viability of training
end-to-end on high-resolution images on ImageNet-1k.1

1. Introduction
The dominant trend in image classification is to use deep

Convolutional Neural Networks (CNNs) [28] or Vision
Transformers (ViTs) [30]. These approaches, while achiev-
ing remarkable performance, also come with a prohibitive
computational cost. This is largely attributable to them op-
erating on the dense input pixel grid directly, which makes
them scale unfavourably with image resolution. Moreover,
CNNs progressively build representations of larger-scale
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features, implying the need for larger depths to incorpo-
rate long-range dependencies. While ViTs do not have this
problem to the same extent due to the self-attention’s global
interaction, this mechanism is still computationally very ex-
pensive, driving the need for multiple GPUs during training
even for efficient architectures [22, 21]. Furthermore, due to
this reliance on pixel-level processing, these approaches are
not robust to changes in scale and resolution [16]. Invariant
qualities, such as invariance of object identity to rotations
of the image, are difficult to encode into the networks for
the same reason.

To overcome these limitations, we may choose to op-
erate on a structured sparse representation of the image,
the Region Adjacency Graph (RAG), using Graph Neu-
ral Networks (GNNs) [27]. This lower-dimensional im-
age representation leverages the intuition that pixel-level
information is mostly redundant in order to reduce com-
putational complexity and allows for the straightforward
construction of scale- and rotation-invariant networks in a
parameter-efficient manner. The RAG is a graph represent-
ing an image, where nodes correspond to image regions
of similar colour, superpixels, and edges encode their ad-
jacency. Since the model now operates on features aggre-
gated over sets of pixels, the RAG drastically decreases the
input dimensionality compared to the raw image. Conse-
quently, the simplicity of this representation enables a re-
duction in model complexity. Furthermore, the model is not
constrained to operating on fixed-resolution images. Lastly,
there is a great degree of flexibility with respect to which in-
formation to use and what invariants to represent in the ob-
tained model. For example, given a rotation equivariant seg-
mentation method yielding superpixels, a rotation invariant
model can be obtained simply by discarding any superpixel
positional information, or by using specific graph convolu-
tions [26]. This flexibility presents us with a choice regard-
ing the information about a superpixel we wish to include in
its graph representation, i.e. which features of a superpixel
are relevant to the image classification. Features of a super-
pixel include pose (in two-dimensional images made up of
its position, rotation, and size), appearance (its texture and
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Figure 1. Image graph construction for a given image: the segmentation of the input is computed using the Felzenszwalb algorithm (left).
For each patch, its representation is obtained by concatenating different features of its shape, appearance, and pose. Information about the
position of each patch is processed separately (center, green arrow). Finally, these feature vectors are used to construct the image graph of
the sample by connecting neighbouring patches with edges (right). This serves as the input to the model for classification.

colour information), and shape (its contour).
Previous work in this area has only focused on pose and

appearance [16, 17]. To obtain the superpixels, Simple Iter-
ative Linear Clustering (SLIC) [1] is commonly used, which
generally produces similarly-shaped patches based on their
local image regions. Thus, their homogeneous shapes of-
fer little discriminative information (see Figure 2). Given
the prior knowledge that shape information is important
for human perception [5], segmentation methods resulting
in patches with shapes more representative of the image’s
content may improve performance. For this reason, we
propose using Felzenszwalb and Huttenlocher’s method [8]
(referred to as Felzenszwalb in this paper) which results
in more globally informed superpixels with heterogeneous
shapes. We show that these shapes effectively aid model
performance. Furthermore, due to Felzenszwalb’s method
computing superpixels from the entire image instead of lo-
cal regions, the adjacency information between superpixels,
represented using edges in the graph, is intuitively more in-
formative. Similarly coloured larger regions usually relate
to the same semantic object in an image, e.g. the sky. Local
algorithms such as SLIC, however, tend to decompose such
a single semantic entity into smaller semantically equivalent
superpixels, requiring additional depth in the GNN to aggre-
gate the information of the whole object. By contrast, the
globally informed Felzenszwalb patches allow for bigger
regions being represented in a single node. Consequently,
edges between nodes might be more representative of ad-
jacent distinct components rather than just visually similar
areas of the same object.

With the incentive to incorporate superpixel shapes pro-
vided by the Felzenszwalb segmentation algorithm, a good
way to include these shapes into the image graph needs to be
determined. We propose an end-to-end trainable approach,
where each superpixel shape is represented using its con-
tour. This contour is approximated with a polygon, which
is interpreted as a graph and passed to a GNN (referred to

as local GNN) which encodes it into a shape feature. The
feature is then combined with information about appearance
and pose to construct the feature vector of a superpixel used
as input for the global GNN (see Figure 1). Hence, the local
GNN should learn shape representations that are useful for
image classification.

In summary, our contributions are as follows:

• We provide a framework for efficiently transforming
images into graphs that supports the utilisation of dif-
ferent aspects of the image superpixels, with the novel
inclusion of shape information.

• Based on this framework, we propose ShapeGNN, a
model that outperforms previous GNN and superpixel-
based image classification approaches on the CIFAR-
10 dataset by more than 7%.

• We verify the usefulness of various superpixel features
for image classification, where the added shape infor-
mation alone accounts for an improvement of 6.7% on
ImageNet-1k.

• To the best of our knowledge, we are the first to apply
a segmentation-based approach to ImageNet-1k classi-
fication, highlighting the strong efficiency gains of our
framework while obtaining promising initial results.

2. Related work
Work in this area has mainly focused on the pose and

appearance aspects of the superpixel representation, as ob-
tained by the SLIC algorithm [2, 6, 16, 17, 3]. Pose is rep-
resented using two-dimensional coordinates directly [2] or
linear projections [16], with one recent work using train-
able position embeddings [3]. We use the same coordinate
projection to Linh and Youn [16] and additionally include
superpixel size, which previous work does not employ, pre-
sumably due to the similar size of SLIC patches. To the



best of our knowledge, the orientation and shape of the su-
perpixels have not been incorporated in previous work.

The results obtained by using traditional methods of su-
perpixel segmentation are not competitive with CNNs or
Vision Transformers, with the best accuracy achieved on
CIFAR-10 [13] by IMGCN-LPE [3] being 73.09%. This
is compared to the state-of-the-art (SOTA) on CIFAR-10
being 99.5% as obtained by a ViT [7]. Unlike other
works performing GNN-based classification based on static
RAGs [2], Linh and Youn develop a GNN which interprets
an image as a point cloud. The edge connections between
nodes are formed dynamically for each graph convolution
using the K-Nearest Neighbour algorithm (KNN) between
node features. By contrast, we utilize a static RAG which
decreases the resource requirements and allows us to train
on bigger datasets like ImageNet-1k. In an attempt to pre-
vent over-smoothing, a common problem with GNNs lead-
ing to similar node features after multiple graph convolu-
tions [14, 34], Long et al. amongst others [17, 16] concate-
nate node features of previous layers to retain information
from them. As opposed to concatenations, we employ resid-
ual connections [10] using addition and show that they per-
form better in our architecture while resulting in fewer pa-
rameters due to the constant dimensionality.

An alternative approach for image classification using
GNNs was taken by Han et al. [9]. Here, no superpixels
were used, with the image instead being split into square
regions which were then passed through Multi-Layer Per-
ceptrons (MLPs) in order to obtain feature representations
of the regions’ pixels. These regions were then used as
nodes in a graph, with edges connecting adjacent regions,
and fed through a large Graph Transformer. This approach
obtained a much higher accuracy of 82% on ImageNet-1k.
However, efficiency was similar to a ViT and this method
does not solve any of the presented issues with operating on
the raw pixel level. Furthermore, due to the difference in
approaches and computational requirements of superpixel-
based and region-based GNN classification, the result of
this paper was not taken as baseline.

To further motivate the use of superpixel patches for vi-
sion tasks, there is evidence that jointly using CNNs and
GNNs do provide SOTA in problem spaces where images
have easily separable and conceptually cohesive features,
such as in the task of aerial image segmentation [6]. Fur-
thermore, using GNNs in this domain allows incorporating
additional types of information e.g. concept graphs [15].

3. Approach

3.1. Image-to-Graph transformation

SLIC superpixels The first step of the image classi-
fication pipeline is transforming the image into a graph
(referred to as Image-to-Graph transformation). This is

Figure 2. The superpixels generated with SLIC segmentation (left)
and Felzenszwalb (right), visualised with the mean colour of their
respective pixels.

achieved by using a superpixel segmentation algorithm (see
Figure 2). Most papers using GNNs for image classifi-
cations use Simple Iterative Linear Clustering (SLIC) [1].
This algorithm obtains superpixels by sampling cluster cen-
ters and corresponding areas that are overlapping. Then, it
employs a KNN algorithm variation to define the superpix-
els. It assigns pixels to the closest cluster center whose area
contains the pixels. However, this results in superpixels that
are similar in size and shape and cannot encompass larger
regions in a single superpixel. Consequently, their shapes
contain little discriminative information.

Felzenszwalb superpixels In contrast, this paper ex-
plores using a different segmentation algorithm proposed
by Felzenszwalb and Huttenlocher, hereby called Felzen-
szwalb, where superpixels attempt to minimise the internal
adjacent pixel colour difference while maximising the exter-
nal one [8]. The superpixels produced by this algorithm are
globally informed, unlike with SLIC, and can have strongly
varying shapes and sizes while the efficiency is preserved in
our implementation (see Supplementary Material for more
details). It is important to note that, while a region size
equal to the image size and requiring an independent num-
ber of superpixels could theoretically result in more global
SLIC superpixels, this goes against the assumptions made
in its original paper [1] and severely hurts the method’s ef-
ficiency. For Felzenszwalb, superpixels that have less than
min size pixels are merged, in an increasing order deter-
mined by the edge colour difference between superpixels.

Global graph creation Once a segmentation produces
a labelling that associates all pixels in an image with a
superpixel, this labelling is turned into an image graph
Gg = (Vg, Eg). Each superpixel i corresponds to a node
vi ∈ V and adjacent superpixels i and j are connected via
edges ei,j = (vi, vj) ∈ Eg . Due to this symmetry, Gg is
an undirected graph, i.e. ei,j = ej,i. We define the neigh-
bourhood Ng of node vi as Ng(i) := {j | ei,j ∈ Eg}. The
features xi that describe a superpixel i can be characterised
as belonging to three different categories: pose, appearance,
and shape. In this paper, pose is taken as the position of the



centroid of the superpixel in the image as well as its size
in pixels. Furthermore, we experiment with incorporating
the orientation of a superpixel, another aspect of its pose.
For appearance, we use the mean colour and, as a new addi-
tion, the standard deviation per channel of the pixels corre-
sponding to a superpixel. As shape information, we use the
encoded contour of the superpixel patch. More details are
given in the subsequent paragraphs. All representations are
concatenated to form xi (see Figure 1).

Shape extraction The global GNN operates on node
features xi with fixed dimension. To incorporate shape in-
formation, the contours need to be described in a fixed di-
mensionality space as well. To this end, we propose consid-
ering the contour of a superpixel k as a graph Gk = (Vk, Ek)
itself. The contours are extracted using a contour find-
ing algorithm [29] (see Figure 3b) applied to the super-
pixel segmentation labelling (see Figure 3a). First, the con-
tours of the shapes are represented using the minimum num-
ber of points required, with a line being described by its
end points and not by the pixels it spans (see Figure 3c).
Then, the contours are approximated using a polygon ap-
proximation algorithm, namely the Douglas–Peucker algo-
rithm [25], that simplifies a given polygon until an error
threshold ϵ is reached (see Figure 3d). This is done to obtain
more generalizable shapes with reduced dimensionality. An
illustration of the resulting superpixels and accompanying
polygons on an ImageNet-1k image can be seen in the Sup-
plementary Material. The vertices of the resulting polygon
are used as nodes vki ∈ Vk while the polygon’s edges de-
fine the edges eki,j

∈ Ek of the graph. Just like Gg , Gk is
also undirected. Similar to Ng , the neighbourhood Nk(i) of
node vki

is defined as Nk(i) := {j | eki,j
∈ Ek}. The node

feature xki is defined by the position of the vertex i relative
to the centroid of the superpixel.

Shape encoding The resulting graph is passed through a
GNN encoder called local GNN to obtain a fixed-size rep-
resentation of the shape of a superpixel which is then inte-
grated into Gg . This framework allows for end-to-end learn-
ing by backpropagating from the final image class predic-
tion to the input image. Other preliminary approaches for
encoding shapes, including a graph autoencoder, a densified
shape representation, and a shape curvature measure were
also implemented but subsequently discarded as they un-
derperformed compared to the current end-to-end approach
presented here. These approaches are outlined in the Sup-
plementary Material. See Figure 1 for an illustration of the
pipeline utilised in this paper. In general, the contours do
not take into account any holes in a superpixel that would
result from a superpixel being completely contained by an-
other. This relationship should be appropriately modelled
by the single edge from this inner superpixel to the outer. If
a shape is composed of only one node, that node is added
two more times and edges are created as usual. This is done

for batching purposes, which is key for efficiently loading
data, as described in the Supplementary Material. This only
occurred for very few images in both datasets.

Position information representation Besides encoding
the positions of the centroids explicitly in the node fea-
tures of the global graph using Cartesian coordinates, which
breaks the rotation invariance of the global GNN, the Eu-
clidean distances between the centroids of different patches
can also be used as edge features. This can be done for both
the local and global graph, preserving rotation invariance
while still encoding the distance between different patches.
However, in preliminary experiments, the inclusion of only
edge weights significantly underperformed position embed-
dings for the global graph and was thus discarded.

Normalisation In order for the Image-to-Graph transfor-
mation to be robust to varying image sizes while encoding
pose information, all distances, positions, and sizes are nor-
malised. The pixel count, used as size of a superpixel, is
normalised by the total number of pixels in the image. The
colour channels of the original image are all normalised to
be in the range [0, 1]. All normalisation of the coordinates
is done in polar space. The centroids of the superpixels are
converted to polar coordinates with the center of the image
taken as the pole. The radius of each centroid is normalised
by dividing it by the Euclidean norm of the dimensions of
the image img norm. For the contour graphs, the pole is
taken as the centroid of the respective superpixel. The ra-
dius of each point on the contour is divided by the maxi-
mum radius of a point on the contour. If the approximated
contour contains only a single pixel, as was only observed
when using SLIC, this step is omitted. All node features can
be normalised by the training dataset’s mean and standard
deviation of each feature dimension. This was not used due
to decreasing performance in initial experiments.

Rotation equivariance and shape rotation represen-
tation Although including the pose information of a su-
perpixel will break the rotation invariance of the obtained
model, rotation can be encoded in a more easily learnable
way by using a rotation equivariant graph convolution, such
as EGNN [26], presuming that the superpixel segmentation
method is rotation equivariant itself. This can be done both
at the local level, obtaining a shape encoding that gener-
alizes to arbitrary local rotations, and additionally at the
global level, obtaining a model that can easily handle ro-
tated images. Besides this rotationally equivariant GNN,
this paper also explores using a simpler representation of
rotation in shapes, where the point with the biggest radius is
taken as the reference point with ϕ = 0 and the other points
have their ϕ’s shifted by the corresponding angle, with this
angle added to the superpixel features. This removes orien-
tation information from the local graph, assuming that there
is only one maximum radius per shape. Although this as-
sumption might not hold, it could still provide an appropri-
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Figure 3. The process of computing the local graph Gk for a given superpixel: the segmentation labelling indicating which pixels belong to
superpixel k (visualised in black) forms the basis (Fig. 3a). Then, a contour finding algorithm identifies the pixels at the superpixel contour
(visualised in blue, Fig. 3b). Subsequently, the contour is described using the minimal number of points connected with lines (visualised
in green, Fig. 3c). Lastly, the final local graph Gk is obtained by approximating the previous result (visualised in green, Fig. 3d).

ate training signal without resorting to more complex graph
convolutions such as EGNNs.

Preprocessing hyperparameters for variable resolu-
tion datasets For ImageNet-1k, given the different resolu-
tions of the images, superpixel segmentation hyperparam-
eters that are resolution dependent need to be scaled ac-
cording to the image size. Since, on ImageNet-1k, we only
show the Felzenszwalb segmentation, only the parameter
min size, defining the minimum size of a superpixel, is
scaled by img norm. Furthermore, for the shape approxi-
mation in the ImageNet-1k case, the passed ϵ error thresh-
old is multiplied by the contour size, defined as the number
of points of the contour, such that shapes with fewer points
are not excessively approximated. These scaling heuristics
were observed in initial experiments to result in more visu-
ally meaningful superpixels across different image sizes.

3.2. Model architecture

We propose ShapeGNN, a new model architecture which
operates on the graph of the image and incorporates shape
information to derive a final class prediction. The hyperpa-
rameters used for our model and each segmentation method
were determined in preliminary experiments. Section 4.3
explores variations of this setup.

Based on the image graph, the global GNN is used to
predict the class of the corresponding sample. The contours
of each superpixel are processed by applying the local GNN
(see Figure 1). After concatenating information about the
shape, colour, and size for each superpixel, these feature
vectors are used in combination with the centroid positions
of each patch in the final, global GNN. The basic build-
ing blocks of the GNN models are InteractionBlocks and
MLPBlocks (see Figure 4). The MLPBlock is constructed
by using a linear layer, followed by LeakyReLU [20] as
activation function a, and dropout [11]. The Interaction-
Blocks feature a residual connection and consist of an Edge-
Conv layer [32] using an MLPBlock to obtain the edge fea-
tures hΘ. Equation (1) defines the EdgeConv where we use
“mean” as aggregation function □:

x′
i = □

j∈Ng(i)
hΘ(xi,xj − xi) (1)

InteractionBlock
Edge
Conv

a *

MLPBlock

linear a dropout

1..*

Figure 4. The structure of the building blocks: an InteractionBlock
consists of an EdgeConv layer followed by an activation function
a. Its output and the original input are combined using the opera-
tor ∗, which is addition by default. If the input and output dimen-
sions do not match, the input features are projected using a single
linear layer. The edge features hΘ of the EdgeConv layer are com-
puted using an MLPBlock. It consists of a linear layer followed
by a and dropout. This can be repeated multiple times. The name
“MLPBlock*” in other Figures refers to an MLPBlock where its
last linear layer is not followed by a nor dropout.

Pooling the node-wise feature vectors and passing them
through another MLPBlock yields the final output.
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Figure 5. The architecture of the local GNN: it consists of an
InteractionBlock followed by pooling and a final MLPBlock.

Local GNN The local GNN (see Figure 5) operates on
the contour graphs Gk of individual patches using Interac-
tionBlocks with a dimensionality of dl−hidden = 64. By
default, the number of InteractionBlocks is numl−blocks =
2. For pooling, we use the dot-product attention mecha-
nism [4, 31] unlike previous work which used sum [16],
mean [17], or max pooling [3]. We first multiply the matrix
Xk which contains all node features xki

as its rows with
a learnable weight vector q ∈ R1×dl−hidden . The resulting
vector is normalised by applying the softmax function so
that the sum of its components equals one. The feature vec-
tor xk for the whole graph Gk is obtained by another multi-



plication with Xk, which can be interpreted as a sum of the
node features xki weighted by their attention weights:

xk = Softmax(qXT
k )Xk (2)

The final shape representation x̃k ∈ Rdlatent with dlatent =
5 of superpixel k is obtained using an MLPBlock where the
dimensionality of the last layer is dlatent. All other layers,
if applicable, have dl−hidden nodes. The number of layers
in each of the MLPBlocks, i.e. the ones in the Interaction-
Blocks and the final one, is set to numl−layers = 2.

Global GNN
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Figure 6. The architecture of the global GNN: The node features
are processed using an InteractionBlock. If the position of the su-
perpixel centroids is used, their linear projection is added to the
resulting feature vectors. After passing them through another In-
teractionBlock, an MLPBlock is applied to each node feature in-
dependently. The node-level features are pooled and the final class
prediction is obtained by a final MLPBlock.

Global GNN The global GNN (see Figure 6) takes the
image graph Gg as input and predicts the class of the corre-
sponding image. The image graph is passed through an In-
teractionBlock with a dimensionality of dg−hidden = 300.
If position is used, the node features are modified by adding
a linear projection of the centroid positions. This is fol-
lowed by numg−blocks = 1 InteractionsBlock(s). After
that, the node features are modified by node-wise applying
an MLPBlock where the last layer contains 2 ∗ dg−hidden

nodes. The other layers, if applicable, have a dimension-
ality of dg−hidden. After pooling the node features using
attention to obtain a single feature representation, a final
MLPBlock is applied to obtain the class predictions. Its
last layer consists of nclasses nodes matching the number of
classes in the dataset. All other layers have a dimensionality
of dg−hidden. The number of layers in each MLPBLock in
the global GNN is by default numg−layers = 1.

4. Experiments
4.1. Experimental setup

We use two image datasets, CIFAR-10 [13] and
ImageNet-1k [24]. The former contains 50,000 training and
10,000 test images with a constant resolution of 32x32 pix-
els. The latter consists of 1,281,167 training and 50,000
validation images of varying resolutions and aspect ratios.

In all our experiments, we use the cross-entropy loss with
integrated Softmax as training objective and the AdamW

optimizer [19, 23] with a weight decay of 0.05. We keep
the learning rate constant at 1e−3 for the first 20 epochs
after which we use cosine annealing [18] with a minimum
learning rate of 1e−5. For this, we use the implementation
by Wightman [33]. Furthermore, we employ label smooth-
ing and a dropout of 0.1. This optimization setup is based
on Han et al. [9]. We use a batch size of 256 on CIFAR-10.
For ImageNet-1k, we used different batch sizes for the indi-
vidual runs to improve memory utilisation. The exact num-
bers are specified in the corresponding table (see Table 3).
The Image-to-Graph transformation time is not reported as
for CIFAR-10 it is under 10 seconds and for ImageNet-1k
it is under 3 hours for the entire datasets and thus negligible
compared to the training time.

For both segmentation methods, the image is blurred
with a two-dimensional Gaussian filter with border reflec-
tion with σ = 0.8 and kernel size of 5 for both dimensions
before being segmented, as recommended in [8].

The hyperparameters used for the Felzenszwalb prepro-
cessing are scale = 10, which determines the colour thresh-
old for superpixel merging, and min size = 5. The ϵ
used for the polygon approximation algorithm is 0.02 for
both superpixel segmentation algorithms. This results in al-
most pixel-perfect shapes on the CIFAR-10 dataset, which
is mostly unavoidable given the very small size of the im-
ages. For ImageNet-1k, hyperparameter scaling was used,
as described in Section 3.1. The Felzenszwalb algorithm
was the only superpixel segmentation algorithm tested due
to its superior performance, used with hyperparameters
min size = 0.12 and scale = 300, together with ϵ = 0.07.

For SLIC, we used a region size of 4, corresponding to
the desired average width and height of a superpixel, and
a compactness of 30, enforcing how square the superpixels
should be. These hyperparameters result in a similar mean
number of superpixels per image for CIFAR-10 for both al-
gorithms, 64 for SLIC versus 70 for Felzenszwalb.

For CIFAR-10, we train all models for 300 epochs while
we use 100 epochs on ImageNet-1k. This improved the
performance in preliminary runs compared to splitting the
training set into a training and validation set and employ-
ing early stopping. If not mentioned otherwise, all reported
accuracies on CIFAR-10 were achieved on the held-out test
set. For ImageNet-1k, we follow the common practice to re-
port the accuracy on the held-out validation set [21, 12, 22].

All our experiments use an NVIDIA Titan RTX GPU and
an Intel Xeon Gold 5118 CPU with 96 GB RAM.

Due to computational constraints, we only run a single
run for each setup. However, during preliminary experi-
ments, we saw that results can vary across different seeds
by less than 1%. This has to be taken into account when
interpreting the results in the next sections.



Model accuracy
DISCO-GCN[16] 70.0%

HGNN[17] 70.6%
IMGCN-LPE[3] 73.1%

ShapeGNN (Ours) 80.4%

Table 1. Test accuracies on CIFAR-10 for ShapeGNN compared
to other segmentation-based GNNs for image classification.

4.2. CIFAR-10

We test our model on CIFAR-10 with nclasses = 10
to compare our method with previous segmentation-based
GNNs for image classification [16, 17, 3]. The default setup
of ShapeGNN has 862k learnable parameters which roughly
matches DISCO-GCN with 881k parameters [16], the only
other model we compare to where this number is specified.
The median time for training one epoch is 19.4 seconds.
The obtained accuracies are shown in Table 1. ShapeGNN
outperforms all previous models by 7.35%-10.43%.

The model achieves a training accuracy of 99.9%, which
indicates strong overfitting. Further regularization might
help in achieving even better performance on the test set.
Next, we will investigate which components of ShapeGNN
are the most important for the increase in performance.

4.3. Ablation study

ablation accuracy median time
per epoch

ShapeGNN 80.4% 19.4s
no shapes 77.9% 12.0s
no shapes 78.4% 12.4s

dg−hidden = 310
no colour std. dev. 78.1% 19.7s

no size 80.0% 19.7s
SLIC 79.3% 18.2s

SLIC no shapes 77.6% 10.7s

Table 2. Test accuracies for different ablations of ShapeGNN.

We first examine to what extent the added information
about shape, appearance, and pose affect the final test per-
formance (see Table 2).

Shapes improve performance Removing the shape in-
formation reduces the performance by 2.5% while also de-
creasing the time per epoch by 7.4s. Because this also
reduces the number of parameters, we run another variant
with dg−hidden = 310. This variation has roughly 17k more
parameters than ShapeGNN but still underperforms by 2%.
This shows that shape information is beneficial for predict-
ing classes albeit at a computational cost. The performance
gain might even be higher with less pixelated shapes on

higher-resolution images, which is explored in the experi-
ments based on the ImageNet-1k dataset in Section 4.4.

Encoding colour variance helps Incorporating more
colour information by using its standard deviation increases
the performance by 2.3%. This illustrates that even simple
additions enriching appearance information aid prediction.
Examining more sophisticated ways of adding further ap-
pearance information is a clear avenue for future research.

Superpixel sizes provide little benefit Utilising the size
of a patch as additional information about its pose improves
performance by only 0.4%. This small difference does not
allow for a final assessment of this component, but it was
included due to its negligible impact on efficiency and small
improvement in accuracy.

Felzenszwalb outperforms SLIC When using the SLIC
segmentation method instead of Felzenszwalb, the accuracy
decreases by 1.1%. The performance gain provided by the
shapes is also reduced by 0.8%. This is in line with our
assumptions about the SLIC superpixels, although the mag-
nitude of the effect is weaker than expected. This is perhaps
due to the pixelated shapes on CIFAR-10 being in general
of limited use as compared to a larger resolution dataset, as
will be seen in Section 4.4.

Dynamic edges harm performance To see whether the
dynamic construction of edges provides a better basis than
the adjacency of superpixels, we employ the dynamic ver-
sion of EdgeConv which constructs edges using KNN based
on node features. We use K = 20 following previous
work [16]. The model, having the same number of parame-
ters, obtains an accuracy of 74.8% while taking 355 seconds
per epoch. Although over-smoothing can also be a problem
with the high K used in the previous papers, this might in-
dicate that superpixel adjacency is more informative, sup-
porting our initial intuition.

Attention pooling and bigger models work best Our
ablations for attention pooling and residual connections us-
ing addition show that the latter outperforms the variant us-
ing concatenation by 1.4%. The former improves the ac-
curacy by 0.7%-1.6% as compared to mean, max, and sum
pooling. Both results indicate the benefit of these new ad-
ditions of ShapeGNN. As another ablation, we vary the ca-
pacity of the local and global GNN. Drastically increasing
the model size to 3.5M parameters only improves the ac-
curacy marginally by 0.3%. By contrast, reducing the num-
ber of parameters by two-thirds reduces the performance by
only 0.5%. While we chose the presented configuration of
ShapeGNN because preliminary results illustrated its supe-
riority on ImageNet-1k, the smaller variant might be an in-
teresting trade-off between performance and efficiency on
CIFAR-10. Changes to the local GNN’s capacity reduces
the performance by 0.4%-0.5%. This suggests that while a
small local GNN cannot extract useful shape information, a
model that is too big overfits to the different shapes.



Rotationally equivariant representations are worse
One advantage of GNNs is the easy incorporation of dif-
ferent equi- and invariances. As an example, we test the
rotation information described in Section 3.1, where the su-
perpixel rotation angles are separately added to the global
graph. This could enable the local GNN to generalize better
to shapes of different rotations. However, our results show
a performance reduction by 1.8%. Apparently, incorporat-
ing the different rotations in the shape encoding is benefi-
cial. Considering the previous ablation results, the incorpo-
ration of rotation information in the local GNN could also
have a regularising effect, mitigating the problem of over-
fitting. As an alternative, we experiment with using EGNN
layers [26], which are rotationally equivariant graph convo-
lutions. Using coordinates in the local and global graph by-
passes the equivariant architecture of this layer. Therefore,
we use distances to the superpixel center as node features
in the local graph and exclude superpixel centroid coordi-
nates in the global graph. In addition, the MLPBlock used
in the InteractionBlock is now applied node-wise before the
EGNN. Our results show a severe drop in performance by
21.7%. This can be partly explained by the importance of
the centroid coordinates, whose removal decreases the ac-
curacy by 9.1%. However, this result still indicates that lim-
iting the model by explicitly using rotationally equivariant
graph convolutions drastically reduces performance.

More detailed results of the performed ablations are pre-
sented in the Supplementary Material.

4.4. ImageNet-1k

To evaluate our approach on a high-resolution image
dataset, we perform experiments using the ImageNet-1k
dataset with nclasses = 1000. The training procedure and
ShapeGNN architecture on this dataset are equivalent to the
one on CIFAR-10, with the exception being the different
hyperparameters for the preprocessing, as described in Sec-
tion 4.1. We also report results when adding one more In-
teractionBlock and when removing shapes. These analy-
ses should give an indication about the scaling potential of
ShapeGNN and the relevance of shapes.

accuracy median time batch
per epoch size

ShapeGNN 46.8% 1045s 480
no shapes 40.1% 706s 640

numg−blocks = 2 50.4% 1430s 320

Table 3. Accuracies on the ImageNet-1k held-out validation set.

The accuracy obtained by ShapeGNN is 46.8%, which is
relatively low compared to modern, efficient CNN and ViT
architectures such as EdgeNeXt-S with 79.4% [21]. This
suggests that the appearance aspect is still most likely un-

derrepresented for ImageNet-1k. However, this accuracy
and the efficiency with which it was obtained proves the fea-
sibility of our approach for more complex datasets. Train-
ing on ImageNet-1k takes a comparable amount of time as
EdgeNeXt-S, while only requiring a single GPU, an RTX
Titan, as compared to 8 stronger A100 GPUs [21].

Considering that only two InteractionBlock were used,
resulting in nodes passing information exclusively to very
closely connected nodes, the result indicates that the graph
representation of the images has meaningful component
parts that can be used by a model with little depth. The
positive effects of depth, however, are still present. Adding
one more InteractionBlock to the network increased the ac-
curacy to 50.4% while increasing the epoch time by 40%.

Crucially, the results show that incorporating shape in-
formation has a much bigger effect than in the previous ex-
periments, increasing the accuracy by 6.7%. This shows
that, as hypothesised before, higher resolution images might
feature more representative shapes, whose encoding is espe-
cially useful in more complex classification tasks.

5. Conclusion
The models and techniques explored in this paper have

managed to surpass the previously established SOTA in
segmentation-based image classification on CIFAR-10 by
a significant amount. Furthermore, they prove promis-
ing for training on high-resolution image datasets such as
ImageNet-1k in a very efficient manner.

An important component that helped achieve this result
was the shift to a superpixel segmentation algorithm where
superpixels are globally informed and do not have the same
size and shape. These superpixels seem more representative
of the underlying image for the task of image classification.

Incorporating the shape and the colour standard devia-
tion into the prior does seem to provide decent accuracy
improvements on CIFAR-10. More complex representa-
tions of the appearance might be a promising future research
path. While the inclusion of standard deviation comes at al-
most no computational cost, the shape encoding setup does
come with a relevant performance trade-off. Although this
trade-off might not be worth making on CIFAR-10, it yields
significant gains on ImageNet-1k. This is most likely be-
cause, on images that were not intentionally downscaled,
the shapes are more representative of the objects in the
image and are not very fine-grained representations of the
pixel grid that cannot be utilised in a robust manner.

Thus, the combination of novel superpixel features and
a different segmentation algorithm has proven to be useful
additions to segmentation-based image classification. The
efficient training on large datasets and initial results sug-
gest that increasing the amount of information in the image
graph could further narrow the model’s performance gap to
CNNs and ViTs while maintaining its superior efficiency.
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