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ABSTRACT

We introduce ReALLM, a novel approach for compression and memory-efficient
adaptation of pre-trained language models that encompasses most of the post-
training quantization and fine-tuning methods for a budget of < 4 bits. Pre-
trained matrices are decomposed into a high-precision low-rank component and
a vector-quantized latent representation (using an autoencoder). During the fine-
tuning step, only the low-rank components are updated. Our results show that
pre-trained matrices exhibit different patterns. ReALLM adapts the shape of the
encoder (small/large embedding, high/low bit VQ, etc.) to each matrix. ReALLM
proposes to represent each matrix with a small embedding on b bits and a neural
decoder model Dϕ with its weights on bϕ bits. The decompression of a matrix
requires only one embedding and a single forward pass with the decoder. Our
weight-only quantization algorithm yields the best results on both commonsense
reasoning tasks (C4, WikiText-2) for a budget of 3 bits without any training. With
a budget of 2 bits, ReALLM achieves state-of-the-art performance on understanding
tasks (ARC, PiQA, Winogrande, MMLU) as well as generation tasks (TruthfulQA)
after fine-tuning on a single partition of C4 dataset. Additionally, ReALLM is
practical in terms of inference latency and memory.

1 INTRODUCTION

Large Language Models (LLMs) based on transformer architectures (Vaswani et al., 2017) have
gained significant interest, particularly with open-source models like LLaMA (Touvron et al., 2023),
Falcon (Almazrouei et al., 2023), and Gemma (Team et al., 2024). These models can be used for
inference or local fine-tuning, but full fine-tuning is expensive due to high GPU memory requirements.
For instance, fine-tuning LLaMA-65B needs over 780 GB of memory (Dettmers et al., 2023a).

To address memory constraints, quantization of model weights, activations, and gradients is used.
Quantization-Aware Training (QAT) is common in computer vision (Courbariaux et al., 2015; Liu
et al., 2020; Gholami et al., 2022), but training LLMs from scratch is impractical. Post-training
quantization (PTQ) is a viable alternative (Dettmers et al., 2022; Frantar et al., 2022), with recent
studies focusing on scalar quantization (SQ) and some exploring vector quantization (VQ) (Tseng
et al., 2024; Egiazarian et al., 2024).

Combining quantization with Parameter Efficient Fine-Tuning (PEFT) methods like LoRA (Hu et al.,
2021) improves efficiency (Dettmers et al., 2023a). However, PTQ faces challenges due to outliers in
LLM weights, leading to quantization errors (Kim et al., 2023; Dettmers et al., 2023b).

This paper introduces ReALLM - for Residual Autoencoder LLM - a method for LLM PTQ and
fine-tuning. Pre-trained LLM matrices are decomposed into a 16-bit remainder and a compressed part
using a VQ autoencoder (Van Den Oord et al., 2017). Only low-rank components are fine-tuned, while
quantized elements remain static. Our approach adapts to matrix patterns, leveraging computer vision
techniques to exploit structured patterns in pre-trained weight matrices, as illustrated in Figure 2 and
Figure 3. This exploitation of patterns aligns with findings from Dettmers et al. (2023b); Heo et al.
(2024), where matrix sensitivity patterns are analogous to our Figure 2. Our contributions are the
following:

• We introduce ReALLM, a method that employs a novel autoencoder and a residual pipeline to
efficiently compress pre-trained LLM matrices.
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Figure 1: ReALLM; during the fine-tuning step only low-rank and scales are updated

• We demonstrate that state-of-the-art PTQ approaches (Lin et al., 2023; Shao et al., 2023;
Tseng et al., 2024; Egiazarian et al., 2024) and fine-tuning methods (Hu et al., 2021; Dettmers
et al., 2023a; Guo et al., 2023; Li et al., 2023; Liao and Monz, 2024) are special cases of
ReALLM.

• We propose a preprocessing step involving scaling and column permutations of matrices
to mitigate quantization errors from outliers, adapting the autoencoder scheme to matrix
patterns.

• Our approach achieves the best reported results for 3 and 2-bit Post-Training Quantization
(PTQ) by fine-tuning end-to-end with block-wise error reduction.

2 RELATED WORK

LLMs adapters With the advent of high-performance open-source LLMs, full fine-tuning has
become impractical, leading to the development of parameter-efficient fine-tuning (PEFT) methods.
Notable techniques include prefix tuning (Li and Liang, 2021), selective fine-tuning (Guo et al., 2021),
and Low Rank Adapter (LoRA) (Hu et al., 2021). LoRA retains pre-trained matrices while adding a
low-rank component, significantly reducing the number of tunable parameters. Our work employs
DoRA (Liu et al., 2024), which enhances fine-tuning by decomposing weights into magnitude and
direction, leading to improved performance with minimal computational effort.

Quantization LLM compression primarily uses quantization techniques. Early methods like Zero-
Quant (Yao et al., 2022) and nuQmm (Park et al., 2022) rounded weights to the nearest quantization
level. Later developments handled outliers through higher bitwidth quantization (Xiao et al., 2023;
Dettmers et al., 2022; Kim et al., 2023; Dettmers et al., 2023b). Methods similar to ReALLM combine
quantization with low-rank decomposition (Dettmers et al., 2023a; Guo et al., 2023; Li et al., 2023;
Liao and Monz, 2024). QLoRA (Dettmers et al., 2023a) integrates PEFT and quantization, while
LoftQ (Li et al., 2023) and LQ-LoRA (Guo et al., 2023) minimize quantization errors using SVD of
pre-trained weights. ApiQ (Liao and Monz, 2024) optimizes both LoRA components and quantization
parameters for the entire model. Recent studies combine weight and activation quantization for
enhanced efficiency (Liu et al., 2023; Nrusimha et al., 2024).

Block/layer-wise tuning PTQ (Frantar et al., 2022) introduced a strategy using a large-scale solver
to minimize layer-wise quadratic error, crucial for low bit-width quantization (Tseng et al., 2024;
Egiazarian et al., 2024). QuIP# (Tseng et al., 2024) applies random rotations and optimal lattice
quantizers to pre-trained matrices, while AQLM (Egiazarian et al., 2024) uses adaptive codebooks
and blockwise fine-tuning. Both methods achieve stable results in compressing LLMs to 2 bits per
parameter.

3 METHOD

Low-rank/sparse decomposition Starting from a pre-trained LLM matrix W ∈ Rp×q, W is
decomposed into a residual component R ∈ Rp×q and a quantized matrix Q (represented with b bits
per coordinate). Only the residual matrix is retained with high bit accuracy and further optimized in

2
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the fine-tuning phase using a small calibration dataset. Any efficient matrix decomposition can fit
into the residual part: butterfly (Dao et al., 2019), sparse outliers (Dettmers et al., 2023b; Lin et al.,
2023), etc. We use a low-rank component R = L1(L2)

t, analogous to the data-free method in Guo
et al. (2023). The aim is to identify Q, L1, and L2 that solve:

min
Q,L1,L2

∥W − (Q+ L1(L2)
t)∥.

QLoRA Dettmers et al. (2023a) provides a suboptimal solution by setting L1 = 0.

Mixed-autoencoder configuration An autoencoder in ReALLM is parameterized by neural networks
ψ and ϕ, with Eψ : Rp×q −→ Re0×e1×e2 and Dϕ : Re0×e1×e2 −→ Rp×q, where e0e1e2 ≪ pq.
Previous works focused on applying the same quantization strategy directly to the pre-trained matrix.
ReALLM adapts the autoencoder to the type and shape of the matrix, using HNeRV (Chen et al., 2023)
for efficient training (see Figure 1).

Vector Quantization (VQ) ReALLM uses a data-free vector quantization method based on k-means
to store the embedding Eψ(W ) with few bits. The embedding is divided into buckets of dimension
d, and codewords are optimized using k-means clustering. The total number of bits required is
bd · e0e1e2d , with additional memory for the codebook.

Quantization pre-processing Before quantization, appropriate scaling is performed to handle
outliers. ReALLM uses column permutations to create spatial regularity, clustering outliers to improve
compression (see Algorithm 2). The memory overhead for storing permutations is negligible (see
Figures 2 and 3).

ReALLM: a new LLM format ReALLM represents each matrix of size p× q with a small embedding
of size e0×e1×e2 on b bits and a neural decoder modelDϕ with c parameters on bϕ bits. This format
speeds up the decoding step compared to diffusion-based approaches. The set of hyper-parameters for
ReALLM includes the rank r, the shape of the latent representation (e0, e1, e2), the number of bits and
the bucket dimension in the VQ (b, d), and the number of parameters and bits of the decoder (c, bϕ).

4 EXPERIMENTAL VALIDATION

We conducted thorough ablation studies on LLaMA-2-7b (Touvron et al., 2023) and Mistral-2-7b
(Jiang et al., 2023), testing ReALLM on LLaMA-2 and LLaMA-3 models (7B and 13B parameters)
across various language generation tasks. We compared ReALLM with other quantization methods for
3 and 2 bits per coordinate. On an Nvidia A40 GPU (with 46GB memory), the entire computation
(PTQ + fine-tuning) takes 90 hours for a LLaMA2-7B model.

Memory and Latency Analysis Our primary objective is to maximize accuracy for a given
model size. We report in Appendix D the memory used by the quantized model and the on-the-fly
dequantization memory overhead, the prefilling and the generation acceleration at constant GPU
RAM on A40 GPU.

Language Generation Tasks For continual language modeling, we train on a single partition of the
C4 (Raffel et al., 2020) dataset for half an epoch and use a sequence length of 4096 for training only.
We use a sequence length of 2048 for both WikiText-2 (Merity et al., 2016) and C4 evaluation. Our
main baselines are LQ-LoRA (Guo et al., 2023), QuIP# (Tseng et al., 2024), and AQLM (Egiazarian
et al., 2024). In Table 1, we evaluate the perplexity of ReALLM on the respective validation datasets of
C4 and WikiText-2 for a single run. Our data-free version of ReALLM achieves state-of-the-art metrics
for 3 bit quantization. However, for a budget of 2 bits, quantization errors are larger, and our results
show that fine-tuning (both block-wise and end-to-end) is needed to further improve performance.

Few-Shot Tasks Following HuggingFace’s Open LLM Leaderboard1, we measure zero-shot accu-
racy on ARC (Clark et al., 2018), PiQA (Tata and Patel, 2003), and Winogrande (Sakaguchi et al.,
2021), via the LM Evaluation Harness (Gao et al., 2021). We report results in Table 2 and compute

1https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Table 1: Perplexity (↓) on the validation dataset for LLaMA2-7B and LLaMA2-13B, with a sequence length of
2048.

Method Calib. #seq. #bits C4 WikiText-2
7B 13B 7B 13B

LLaMA2 16 6.97 6.46 5.47 4.48

GPTQ C4 128 3 7.89 7.00 6.29 5.42
AWQ Pile 192 3 7.84 6.94 6.24 5.32

Omniquant Wiki. 128 3 7.75 6.98 6.03 5.28
LQ-LoRA Wiki.+C4 10k 3 7.88 − 6.48 −

LoftQ Wiki. 128 3 − − 5.63 5.13
ApiQ[PTQ] Wiki. 128 3 7.84 6.88 6.19 5.18

QuaRot[A16W3] Wiki. 128 3 − − 6.09 5.37
QuIP# (no ft) NA NA 3 7.85 6.98 6.19 5.34

QuIP# RedP. 6k 3 7.32 6.72 5.79 5.10
ReALLM (no ft) NA NA 3 7.72 6.91 6.10 5.27

ReALLM C4 1024 3 7.27 6.69 5.77 5.14

LoftQ Wiki. 128 2 − − 7.85 7.69
ApiQ Wiki. 128 2 − − 7.46 6.29
QuIP# RedP. 6k 2 8.35 7.45 6.66 5.74
AQLM RedP. 4096 2 8.56 7.51 6.64 5.65
ReALLM C4 1024 2 8.28 7.50 6.69 5.72

Table 2: Accuracy (↑) in LM Eval (acc, not acc_norm) for LLaMA-2.

LLaMA-2-7B LLaMA-2-13B
Task LLaMA-2 AQLM QuIP# ReALLM LLaMA-2 AQLM QuIP# ReALLM

16-bits 2-bits 2-bits 2-bits 16-bits 3-bits 3-bits 3-bits

ARC-challenge 43.52 33.55 34.63 35.15 48.32 43.63 44.02 47.01
ARC-easy 76.26 62.79 64.60 68.56 78.48 73.51 72.45 75.96

PiQA 78.07 73.54 75.12 75.73 80.01 77.78 78.40 78.67
Winogrande 69.22 64.61 64.89 66.46 72.13 67.56 69.13 70.96

Average 66.77 58.62 59.81 61.47 69.74 65.62 66.00 68.15

Table 3: Accuracy (↑) in LM Eval (acc, not acc_norm) for 2bits quantization of Llama3-8B.

Task Llama3-8B ReALLM Quip# QuaROT LoftQ RTN GPTQ AWQ QuIP DB-LLM PB-LLM BiLLM OmniQuant SmoothQuant

ARC-c 50.4 38.2 ± 1.4 30.8 24.6 20.4 21.9 20.5 21.3 21.3 28.2 17.5 17.7 19.3 20.0
ARC-e 80.1 74.9 ± 0.8 57.1 57.9 26.1 24.7 25.0 29.0 29.0 59.1 31.7 36.0 36.1 26.3

Piqa 79.9 76.3 ± 0.9 67.5 65.5 53.8 53.1 52.8 52.9 52.9 68.9 52.5 56.1 59.0 54.6
Winogrande 72.8 65.8 ± 1.6 62.4 60.6 47.8 51.1 49.6 51.7 51.7 60.4 50.4 51.0 51.9 50.3

Table 4: 5-shot evaluation on MMLU.

ReALLM ReALLM AWQ RTN QA-LORA ReALLM AWQ QA-LORA
Base-model Llama3-8b Llama3-8b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b

#bits 16 16 2 3 3 3 3 2 2 2
MMLU 66.6 45.3 46.5±0.6 44.8±0.6 44.7 42.33 41.11 35.1±0.6 27.4 33.2

the average on the 4 mentioned tasks. For all LLM sizes, ReALLM provides a notable advantage with
respect to AQLM (Egiazarian et al., 2024) and QuIP# (Tseng et al., 2024). We include evaluations
on 5-shots MMLU and ThruthfulQA to better demonstrate the performance of our compressed
LLM on both Llama2-7b and Llama3-8b in Tables 3, 4 and 10. ReALLM outperforms all other tested
quantization methods.

5 CONCLUSION

We present ReALLM, a weight-only PTQ method that achieves state-of-the-art results on LLMs at 2,
and 3 bits budget. Our (low-rank) fine-tuning approach enables one to fine-tune language models
with 13 billions parameters on a single GPU with less than 40 GB of RAM.

Large context sequence lengths result in large KV -cache memory consumption during inference, and
PTQ is a promising approach for compressing KV -cache activations (Hooper et al., 2024; Ashkboos
et al., 2024). Concurrently to our work, Trukhanov and Soloveychik (2024) propose a quantization
method based on permutations of rows from K and V matrices. We are currently studying how to
adapt ReALLM to KV -cache quantization, and how to combine it with activation quantization.
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A METHODOLOGY DETAILS
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(a) Mistral-7B (Jiang et al., 2023)
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(b) Gemma-2B (Team et al., 2024)

Figure 2: Pre-trained matrix from the first layer ‘q’ (left; with “structures”), and from the last layer ‘q’ (right)
for Mistral-7B (Jiang et al., 2023). Stronger vertical patterns appear in the first blocks.

Table 5: Quantization and fine-tuning approaches as particular case of ReALLM (with a rank r, and a
budget of b bits for VQ in dimension d) for a matrix of size p× q.

Method rank r AE Latent VQ dim. (d) #bits

LoRA (Hu et al., 2021) 64 - (p, q, 1) 1 16
GPTQ (Frantar et al., 2022) 0 - (p, q, 1) 1 4

QLoRA (Dettmers et al., 2023a) 64 - (p, q, 1) 1 4
LQ-LoRA (Guo et al., 2023) 64 - (p, q, 1) 1 3
QuIP# (Tseng et al., 2024) 0 Rotation (p, q, 1) 8 2

AQLM (Egiazarian et al., 2024) 0 - (p, q, 1) 8 2

ReALLM 64 Trainable (e0, e1, e2) 4 2

Table 6: Comparison of several LLM format for m matrices of size p× q, and a budget of b bits per
coordinate. ReALLM uses a decoder model with c parameters trained on bϕ bits, and a rank r.

Method LoRA VQ only (like AQLM) ReALLM

Matrix representation (p× q) · 16 (p× q
d ) · b · d (e0 × e1

d × e2) · b · d
Codebook − 2bd · d · 16 2bd · d · 16
Decoder − − cbϕ

Low-rank (2× r ×min(p, q)) · 16 − (2× r ×min(p, q)) · 16
Total bit cost 16(pq + 2rmin(p, q)) ·m (bpq + 2bd+4d) ·m cbϕ + 32rmin(p, q) +m(16d2bd + e0e1e2b)

ReALLM(3bits)
ReALLM(2bits)

(a) Mistral-7B (Jiang et al., 2023)

ReALLM(3bits)
ReALLM(2bits)

(b) Llama2-7B (Touvron et al., 2023)

Figure 3: Reconstruction (Frobenius norm) error for layer of type “q” for all blocks for Mistral-7B
(Jiang et al., 2023). QuIP# (Tseng et al., 2024) does not take advantage of the structures in the first
blocks.
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B ALGORITHM DESCRIPTION

Algorithm 1: Pseudo-code for ReALLM with block-wise and end-to-end fine-tuning
Input :Number of end-to-end fine-tuning steps T , Number of block-wise fine-tuning steps K,

Number of blocks n, Shape of the latent space (e0, e1, e2), Number of weights in the
decoder c, Number of bits for the decoder weights bϕ, Number of VQ bits per
dimension b, VQ dimension d, Rank r ;

1 Initialize
2 Get pre-trained matrices {W q,W k,W v,W o,W gate,Wup,W down} for all n blocks ;
3 end
/* Block-wise fine-tuning */

4 for j = 0, . . . , n− 1 do
5 Bj = {W q,W k,W v,W o,W gate,Wup,W down}[block = j];
6 outputj = forward_pass(Bj) /* get non-quantized output */
7 for l ∈ {q, k, v, o, gate, up, down} do
8 L1lj , L2

l
j = svd_decomposition(W l

j , rank = r) ;
9 W l

j =W l
j − L1lj(L2lj)t ;

10 Eψ(W l
j),Dϕ

l
j = autoencoder(W l

j , e0, e1, e2, c, bϕ) /* latent representation and

decoder */

11 Eψ(W l
j), inv_permutlj = permute(Eψ(W l

j)) /* with Algorithm 2 */

12 Eψ(W l
j) = normalize(Eψ(W l

j)) /* with NF-normalization (Dettmers et al.,

2023a; Guo et al., 2023) */

13 codebooklj = K-means(Eψ(W l
j), b, d);

14 codeslj = get_index_nn(Eψ(W l
j), codebook

l
j) /* get nearest neighbor index in

codebooklj */

15 W l
j ← {codeslj , codebooklj ,Dϕ

l
j , inv_permutlj , L1

l
j , L2

l
j};

16 doralj = DoRA(W l
j , L1

l
j , L2

l
j) /* get DoRA scale */

17 end
18 dora_quantized_outputj = forward_pass_quantized({doralj , L1lj , L2lj ,W l

j}l≥0)

/* get output after quantization and DoRA */
19 Lj = ∥outputj − dora_quantized_outputj∥2 ;
20 for k = 0, . . . ,K − 1 do
21 Optimize {doralj , L1lj , L2lj}l≥0 with gradient descent to minimize Lj ;
22 end
23 end

/* End-to-end fine-tuning */
24 for t = 0, . . . , T − 1 do
25 Optimize {doralj , L1lj , L2lj}l,j≥0 with gradient descent ;
26 end

Algorithm 2: permutation function
Input :Matrix w of size 128× q ;

1 for j = 0, . . . , q − 1 do
2 columnj = w[:, j] ;
3 indxj = get_index_nn(columnj , w[:, j + 1 : q]) /* get the nearest neighbor

index of current columnj, among the rest of un-permuted columns
w[:, j + 1 : q] */

4 Permute w[:, j + 1] and w[:, indxj ];
5 Save the inverse of the permutation index in inv_permut ;
6 end

Output :w, inv_permut
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C ABBLATION STUDIES

Decoder’s Weight Ablation In Table 7, we present ablation experiment results on the type of
decoder weight quantization. For a decoder parameter c = 7.2× 106, we performed a quantization-
aware training approach, optimizing weights quantized to bϕ = 6 bits using the straight-through
estimator (Bengio, 2013). We also tested a post-training quantization method where the decoder
weights are quantized with a round-to-nearest (RTN) approach at the end of the training steps. This
experiment shows that under the same parameters, QAT gives better performance than the respective
PTQ approach. Furthermore, for a reduced number of bits (2.82 vs 3), ReALLM yields a smaller
quantization error compared to the scalar quantization NF3 (Dettmers et al., 2023a; Guo et al., 2023)
on the layer “q0” of Mistral-7b.

Table 7: Reconstruction (Frobenius norm) error for layer of type “Q” inside the first block of Mistral-
7b model, for patches of size 512×512 using a constant embedding size of (e0, e1, e2) = (16, 16, 16),
and a varying quantization strategy (during the decoder training, i.e. QAT, or after the training, i.e.
PTQ).

Method # parameters c (×106) bϕ bit budget Error

NF3(Guo et al., 2023) − − 3 0.84

PTQ 7.2 6 2.82 1.78
QAT 7.2 6 2.82 0.69

Table 8: Reconstruction (Frobenius norm) error and computational overheads for layers of type “q”
and “o” inside blocks 30 and 20 of the Lamma-7b model, for patches of size 512 × 512 using a
constant embedding size of (e0, e1, e2) = (16, 16, 16), and a varying encoder quantization bϕ and
#parameters c for a total budget of #bits = 2.

Weights quantization bϕ 4 5 6 32
#params c, ×106 7.3 6 5 0.95

Error for q30 (↓) 27.42 24.82 25.8 43.56
Error for o20 (↓) 20.04 18.18 18.93 31.81

Training time 1h15’ 1h13’ 1h11’ 1h05
Decoding time (ms) 11± 12 11± 10 11± 8.7 8.9± 3.8

Permutation Ablation We experimentally observed that permutations are indispensable for both
AE and VQ components of ReALLM. In Figure 4, we report the Frobenius error and the learning rate
during the autoencoder’s training for layer “q” of Llama2-7b. The figure demonstrates that without
permutation, the training is unstable, even with smaller learning rates. In Figure 5, we report the
Frobenius error between the quantized layer “up” with the VQ component, both with and without
column permutations. Permutations show a clear improvement in the quantization in both Llama2-7B
and Llama2-13B.

Figure 4: ReALLM’s decoder training curves on Llama2-7B (Touvron et al., 2023) layer “q5” for different pre-
processings and learning rates for a 2-bits budget. Blue / purple: no permutation, max-lr=0.0001 / max-lr=0.001.
Gray / brown: column / line permutation, max-lr=0.001.
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Figure 5: Reconstruction (Frobenius norm) error for layer type “up” for all blocks, with ReALLM’s VQ both
with and without column permutation.

D LATENCY AND MEMORY OVERHEAD ANALYSIS

Our primary objective is to maximize accuracy for a given model size. Indeed, pushing the limits of
LLM quantization is a crucial subject as it suggests that the architecture of LLMs could be further
refined to be lighter while remaining efficient, providing an important guideline for research teams
and startups with fewer computational resources.

That being said, we provide latency and memory overhead analysis. We report the memory used
by the quantized model and the on-the-fly dequantization memory overhead, the prefilling and the
generation acceleration at constant GPU memory (see Table 9)

We measure acceleration relative to a full-precision model for encoding and generating 2k tokens, we
compare a model quantized using ReALLM with a model in FP16. To do this, we use the largest batch
size that fits on the GPU for both the quantized model and the non-quantized model. This analysis is
conducted using an A100 GPU.

Table 9: Latency and memory overhead analysis on A100 GPU.

LLaMA-2-7b LLaMA-2-13b
#bits 2 3 2 3

Memory usage (GB) 1.8 2.4 3.1 4.7
Dequant. overhead (GB) 0.9 0.7 1.3 1.1
Prefiling speedup 1.42x 1.35x 1.42x 1.37x
Generation speedup 1.23x 1.15x 1.24x 1.15x

E FEW-SHOTS TASKS

We include evaluations on 5-shots MMLU and ThruthfulQA to better demonstrate the performance of
our compressed LLM on both Llama2-7b and Llama3-8b in Tables 3, 4 and 10. ReALLM outperforms
all other tested quantization methods.

Table 10: 0-shot evaluation on TruthfulQA, multiple choices and generation (acc).

ReALLM (2-bits) ReALLM (3-bits)
Base-model Llama2-7B Llama2-7B

mc1 24.2 ± 1.5 27.2 ± 1.6
mc2 38.3 ± 1.4 41.6 ± 1.4

BLEU 34.5 ± 1.7 35.0 ± 1.7
ROUGE-1 34.4 ± 1.7 35.3 ± 1.7
ROUGE-2 30.1 ± 1.6 31.1 ± 1.6
ROUGE-L 33.7 ± 1.7 35.0 ± 1.7
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