
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ReALLM: A GENERAL FRAMEWORK FOR LLM COMPRES-
SION AND FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce ReALLM, a novel approach for compression and memory-efficient
adaptation of pre-trained language models that encompasses most of the post-
training quantization and fine-tuning methods for a budget of < 4 bits. Pre-
trained matrices are decomposed into a high-precision low-rank component and
a vector-quantized latent representation (using an autoencoder). During the fine-
tuning step, only the low-rank components are updated. Our results show that
pre-trained matrices exhibit different patterns. ReALLM adapts the shape of the
encoder (small/large embedding, high/low bit VQ, etc.) to each matrix. ReALLM
proposes to represent each matrix with a small embedding on b bits and a neural
decoder model Dϕ with its weights on bϕ bits. The decompression of a matrix
requires only one embedding and a single forward pass with the decoder. Our
weight-only quantization algorithm yields the best results on both commonsense
reasoning tasks (C4, WikiText-2) for a budget of 3 bits without any training. With
a budget of 2 bits, ReALLM achieves state-of-the-art performance on understanding
tasks (ARC, PiQA, Winogrande, MMLU) as well as generation tasks (TruthfulQA)
after fine-tuning on a single partition of C4 dataset. Additionally, ReALLM is
practical in terms of inference latency and memory.

1 INTRODUCTION

Large Language Models (LLMs) based on transformer architectures (Vaswani et al., 2017) have
gained significant interest, particularly with open-source models like LLaMA (Touvron et al., 2023),
Falcon (Almazrouei et al., 2023), and Gemma (Team et al., 2024). These models can be used for
inference or local fine-tuning, but full fine-tuning is expensive due to high GPU memory requirements.
For instance, fine-tuning LLaMA-65B needs over 780 GB of memory (Dettmers et al., 2023a).

To address memory constraints, quantization of model weights, activations, and gradients is used.
Quantization-Aware Training (QAT) is common in computer vision (Courbariaux et al., 2015; Liu
et al., 2020; Gholami et al., 2022), but training LLMs from scratch is impractical. Post-training
quantization (PTQ) is a viable alternative (Dettmers et al., 2022; Frantar et al., 2022), with recent
studies focusing on scalar quantization (SQ) and some exploring vector quantization (VQ) (Tseng
et al., 2024; Egiazarian et al., 2024).

Combining quantization with Parameter Efficient Fine-Tuning (PEFT) methods like LoRA (Hu et al.,
2021) improves efficiency (Dettmers et al., 2023a). However, PTQ faces challenges due to outliers in
LLM weights, leading to quantization errors (Kim et al., 2023; Dettmers et al., 2023b).

This paper introduces ReALLM - for Residual Autoencoder LLM - a method for LLM PTQ and
fine-tuning. Pre-trained LLM matrices are decomposed into a 16-bit remainder and a compressed part
using a VQ autoencoder (Van Den Oord et al., 2017). Only low-rank components are fine-tuned, while
quantized elements remain static. Our approach adapts to matrix patterns, leveraging computer vision
techniques to exploit structured patterns in pre-trained weight matrices, as illustrated in Figure 2 and
Figure 3. This exploitation of patterns aligns with findings from Dettmers et al. (2023b); Heo et al.
(2024), where matrix sensitivity patterns are analogous to our Figure 2. Our contributions are the
following:

• We introduce ReALLM, a method that employs a novel autoencoder and a residual pipeline to
efficiently compress pre-trained LLM matrices.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: ReALLM; during the fine-tuning step only low-rank and scales are updated

• We demonstrate that state-of-the-art PTQ approaches (Lin et al., 2023; Shao et al., 2023;
Tseng et al., 2024; Egiazarian et al., 2024) and fine-tuning methods (Hu et al., 2021; Dettmers
et al., 2023a; Guo et al., 2023; Li et al., 2023; Liao and Monz, 2024) are special cases of
ReALLM.

• We propose a preprocessing step involving scaling and column permutations of matrices
to mitigate quantization errors from outliers, adapting the autoencoder scheme to matrix
patterns.

• Our approach achieves the best reported results for 3 and 2-bit Post-Training Quantization
(PTQ) by fine-tuning end-to-end with block-wise error reduction.

2 RELATED WORK

LLMs adapters With the advent of high-performance open-source LLMs, full fine-tuning has
become impractical, leading to the development of parameter-efficient fine-tuning (PEFT) methods.
Notable techniques include prefix tuning (Li and Liang, 2021), selective fine-tuning (Guo et al., 2021),
and Low Rank Adapter (LoRA) (Hu et al., 2021). LoRA retains pre-trained matrices while adding a
low-rank component, significantly reducing the number of tunable parameters. Our work employs
DoRA (Liu et al., 2024), which enhances fine-tuning by decomposing weights into magnitude and
direction, leading to improved performance with minimal computational effort.

Quantization LLM compression primarily uses quantization techniques. Early methods like Zero-
Quant (Yao et al., 2022) and nuQmm (Park et al., 2022) rounded weights to the nearest quantization
level. Later developments handled outliers through higher bitwidth quantization (Xiao et al., 2023;
Dettmers et al., 2022; Kim et al., 2023; Dettmers et al., 2023b). Methods similar to ReALLM combine
quantization with low-rank decomposition (Dettmers et al., 2023a; Guo et al., 2023; Li et al., 2023;
Liao and Monz, 2024). QLoRA (Dettmers et al., 2023a) integrates PEFT and quantization, while
LoftQ (Li et al., 2023) and LQ-LoRA (Guo et al., 2023) minimize quantization errors using SVD of
pre-trained weights. ApiQ (Liao and Monz, 2024) optimizes both LoRA components and quantization
parameters for the entire model. Recent studies combine weight and activation quantization for
enhanced efficiency (Liu et al., 2023; Nrusimha et al., 2024).

Block/layer-wise tuning PTQ (Frantar et al., 2022) introduced a strategy using a large-scale solver
to minimize layer-wise quadratic error, crucial for low bit-width quantization (Tseng et al., 2024;
Egiazarian et al., 2024). QuIP# (Tseng et al., 2024) applies random rotations and optimal lattice
quantizers to pre-trained matrices, while AQLM (Egiazarian et al., 2024) uses adaptive codebooks
and blockwise fine-tuning. Both methods achieve stable results in compressing LLMs to 2 bits per
parameter.

3 METHOD

Low-rank/sparse decomposition Starting from a pre-trained LLM matrix W ∈ Rp×q, W is
decomposed into a residual component R ∈ Rp×q and a quantized matrix Q (represented with b bits
per coordinate). Only the residual matrix is retained with high bit accuracy and further optimized in

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the fine-tuning phase using a small calibration dataset. Any efficient matrix decomposition can fit
into the residual part: butterfly (Dao et al., 2019), sparse outliers (Dettmers et al., 2023b; Lin et al.,
2023), etc. We use a low-rank component R = L1(L2)

t, analogous to the data-free method in Guo
et al. (2023). The aim is to identify Q, L1, and L2 that solve:

min
Q,L1,L2

∥W − (Q+ L1(L2)
t)∥.

QLoRA Dettmers et al. (2023a) provides a suboptimal solution by setting L1 = 0.

Mixed-autoencoder configuration An autoencoder in ReALLM is parameterized by neural networks
ψ and ϕ, with Eψ : Rp×q −→ Re0×e1×e2 and Dϕ : Re0×e1×e2 −→ Rp×q, where e0e1e2 ≪ pq.
Previous works focused on applying the same quantization strategy directly to the pre-trained matrix.
ReALLM adapts the autoencoder to the type and shape of the matrix, using HNeRV (Chen et al., 2023)
for efficient training (see Figure 1).

Vector Quantization (VQ) ReALLM uses a data-free vector quantization method based on k-means
to store the embedding Eψ(W ) with few bits. The embedding is divided into buckets of dimension
d, and codewords are optimized using k-means clustering. The total number of bits required is
bd · e0e1e2d , with additional memory for the codebook.

Quantization pre-processing Before quantization, appropriate scaling is performed to handle
outliers. ReALLM uses column permutations to create spatial regularity, clustering outliers to improve
compression (see Algorithm 2). The memory overhead for storing permutations is negligible (see
Figures 2 and 3).

ReALLM: a new LLM format ReALLM represents each matrix of size p× q with a small embedding
of size e0×e1×e2 on b bits and a neural decoder modelDϕ with c parameters on bϕ bits. This format
speeds up the decoding step compared to diffusion-based approaches. The set of hyper-parameters for
ReALLM includes the rank r, the shape of the latent representation (e0, e1, e2), the number of bits and
the bucket dimension in the VQ (b, d), and the number of parameters and bits of the decoder (c, bϕ).

4 EXPERIMENTAL VALIDATION

We conducted thorough ablation studies on LLaMA-2-7b (Touvron et al., 2023) and Mistral-2-7b
(Jiang et al., 2023), testing ReALLM on LLaMA-2 and LLaMA-3 models (7B and 13B parameters)
across various language generation tasks. We compared ReALLM with other quantization methods for
3 and 2 bits per coordinate. On an Nvidia A40 GPU (with 46GB memory), the entire computation
(PTQ + fine-tuning) takes 90 hours for a LLaMA2-7B model.

Memory and Latency Analysis Our primary objective is to maximize accuracy for a given
model size. We report in Appendix D the memory used by the quantized model and the on-the-fly
dequantization memory overhead, the prefilling and the generation acceleration at constant GPU
RAM on A40 GPU.

Language Generation Tasks For continual language modeling, we train on a single partition of the
C4 (Raffel et al., 2020) dataset for half an epoch and use a sequence length of 4096 for training only.
We use a sequence length of 2048 for both WikiText-2 (Merity et al., 2016) and C4 evaluation. Our
main baselines are LQ-LoRA (Guo et al., 2023), QuIP# (Tseng et al., 2024), and AQLM (Egiazarian
et al., 2024). In Table 1, we evaluate the perplexity of ReALLM on the respective validation datasets of
C4 and WikiText-2 for a single run. Our data-free version of ReALLM achieves state-of-the-art metrics
for 3 bit quantization. However, for a budget of 2 bits, quantization errors are larger, and our results
show that fine-tuning (both block-wise and end-to-end) is needed to further improve performance.

Few-Shot Tasks Following HuggingFace’s Open LLM Leaderboard1, we measure zero-shot accu-
racy on ARC (Clark et al., 2018), PiQA (Tata and Patel, 2003), and Winogrande (Sakaguchi et al.,
2021), via the LM Evaluation Harness (Gao et al., 2021). We report results in Table 2 and compute

1https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

3

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Perplexity (↓) on the validation dataset for LLaMA2-7B and LLaMA2-13B, with a sequence length of
2048.

Method Calib. #seq. #bits C4 WikiText-2
7B 13B 7B 13B

LLaMA2 16 6.97 6.46 5.47 4.48

GPTQ C4 128 3 7.89 7.00 6.29 5.42
AWQ Pile 192 3 7.84 6.94 6.24 5.32

Omniquant Wiki. 128 3 7.75 6.98 6.03 5.28
LQ-LoRA Wiki.+C4 10k 3 7.88 − 6.48 −

LoftQ Wiki. 128 3 − − 5.63 5.13
ApiQ[PTQ] Wiki. 128 3 7.84 6.88 6.19 5.18

QuaRot[A16W3] Wiki. 128 3 − − 6.09 5.37
QuIP# (no ft) NA NA 3 7.85 6.98 6.19 5.34

QuIP# RedP. 6k 3 7.32 6.72 5.79 5.10
ReALLM (no ft) NA NA 3 7.72 6.91 6.10 5.27

ReALLM C4 1024 3 7.27 6.69 5.77 5.14

LoftQ Wiki. 128 2 − − 7.85 7.69
ApiQ Wiki. 128 2 − − 7.46 6.29
QuIP# RedP. 6k 2 8.35 7.45 6.66 5.74
AQLM RedP. 4096 2 8.56 7.51 6.64 5.65
ReALLM C4 1024 2 8.28 7.50 6.69 5.72

Table 2: Accuracy (↑) in LM Eval (acc, not acc_norm) for LLaMA-2.

LLaMA-2-7B LLaMA-2-13B
Task LLaMA-2 AQLM QuIP# ReALLM LLaMA-2 AQLM QuIP# ReALLM

16-bits 2-bits 2-bits 2-bits 16-bits 3-bits 3-bits 3-bits

ARC-challenge 43.52 33.55 34.63 35.15 48.32 43.63 44.02 47.01
ARC-easy 76.26 62.79 64.60 68.56 78.48 73.51 72.45 75.96

PiQA 78.07 73.54 75.12 75.73 80.01 77.78 78.40 78.67
Winogrande 69.22 64.61 64.89 66.46 72.13 67.56 69.13 70.96

Average 66.77 58.62 59.81 61.47 69.74 65.62 66.00 68.15

Table 3: Accuracy (↑) in LM Eval (acc, not acc_norm) for 2bits quantization of Llama3-8B.

Task Llama3-8B ReALLM Quip# QuaROT LoftQ RTN GPTQ AWQ QuIP DB-LLM PB-LLM BiLLM OmniQuant SmoothQuant

ARC-c 50.4 38.2 ± 1.4 30.8 24.6 20.4 21.9 20.5 21.3 21.3 28.2 17.5 17.7 19.3 20.0
ARC-e 80.1 74.9 ± 0.8 57.1 57.9 26.1 24.7 25.0 29.0 29.0 59.1 31.7 36.0 36.1 26.3

Piqa 79.9 76.3 ± 0.9 67.5 65.5 53.8 53.1 52.8 52.9 52.9 68.9 52.5 56.1 59.0 54.6
Winogrande 72.8 65.8 ± 1.6 62.4 60.6 47.8 51.1 49.6 51.7 51.7 60.4 50.4 51.0 51.9 50.3

Table 4: 5-shot evaluation on MMLU.

ReALLM ReALLM AWQ RTN QA-LORA ReALLM AWQ QA-LORA
Base-model Llama3-8b Llama3-8b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b Llama2-7b

#bits 16 16 2 3 3 3 3 2 2 2
MMLU 66.6 45.3 46.5±0.6 44.8±0.6 44.7 42.33 41.11 35.1±0.6 27.4 33.2

the average on the 4 mentioned tasks. For all LLM sizes, ReALLM provides a notable advantage with
respect to AQLM (Egiazarian et al., 2024) and QuIP# (Tseng et al., 2024). We include evaluations
on 5-shots MMLU and ThruthfulQA to better demonstrate the performance of our compressed
LLM on both Llama2-7b and Llama3-8b in Tables 3, 4 and 10. ReALLM outperforms all other tested
quantization methods.

5 CONCLUSION

We present ReALLM, a weight-only PTQ method that achieves state-of-the-art results on LLMs at 2,
and 3 bits budget. Our (low-rank) fine-tuning approach enables one to fine-tune language models
with 13 billions parameters on a single GPU with less than 40 GB of RAM.

Large context sequence lengths result in large KV -cache memory consumption during inference, and
PTQ is a promising approach for compressing KV -cache activations (Hooper et al., 2024; Ashkboos
et al., 2024). Concurrently to our work, Trukhanov and Soloveychik (2024) propose a quantization
method based on permutations of rows from K and V matrices. We are currently studying how to
adapt ReALLM to KV -cache quantization, and how to combine it with activation quantization.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

REFERENCES

Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A., Cojocaru, R., et al. (2023). The falcon
series of open language models. arXiv preprint.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Jaggi, M., et al. (2024). Quarot: Outlier-free
4-bit inference in rotated llms. arXiv preprint.

Bengio, Y. (2013). Estimating or propagating gradients through stochastic neurons. arXiv preprint.

Chen, H., Gwilliam, M., Lim, S.-N., and Shrivastava, A. (2023). Hnerv: A hybrid neural representa-
tion for videos. In Conf. on Computer Vision and Pattern Recognition.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., et al. (2018). Think you have solved
question answering? try arc, the ai2 reasoning challenge. arXiv preprint.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect: Training deep neural networks
with binary weights during propagations. Advances in neural information processing systems.

Dao, T., Gu, A., Eichhorn, M., Rudra, A., and Ré, C. (2019). Learning fast algorithms for linear
transforms using butterfly factorizations. In International Conf. on machine learning.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L. (2022). Gpt3. int8: 8-bit matrix multiplica-
tion for transformers at scale. Advances in Neural Information Processing Systems.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023a). Qlora: Efficient finetuning of
quantized llms. Advances in Neural Information Processing Systems.

Dettmers, T., Svirschevski, R. A., Egiazarian, V., Kuznedelev, D., Frantar, E., et al. (2023b). Spqr: A
sparse-quantized representation for near-lossless llm weight compression. In International Conf.
on Learning Representations.

Egiazarian, V., Panferov, A., Kuznedelev, D., Frantar, E., Babenko, A., et al. (2024). Extreme
compression of large language models via additive quantization. arXiv preprint.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. (2022). Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., et al. (2021). A framework for few-shot
language model evaluation.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., et al. (2022). A survey of quantization
methods for efficient neural network inference. In Low-Power Computer Vision. Chapman and
Hall/CRC.

Guo, D., Rush, A. M., and Kim, Y. (2021). Parameter-efficient transfer learning with diff pruning. In
Annual Meeting of the Association for Computational Linguistics and the International Joint Conf.
on Natural Language Processing.

Guo, H., Greengard, P., Xing, E., and Kim, Y. (2023). Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In International Conf. on Learning
Representations.

Heo, J. H., Kim, J., Kwon, B., Kim, B., Kwon, S. J., et al. (2024). Rethinking channel dimensions to
isolate outliers for low-bit weight quantization of large language models.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney, M. W., Shao, Y. S., et al. (2024). Kvquant:
Towards 10 million context length llm inference with kv cache quantization. arXiv preprint.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., et al. (2021). Lora: Low-rank adaptation of large
language models. In International Conf. on Learning Representations.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., et al. (2023). Mistral 7b.
arXiv preprint.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li, X., et al. (2023). Squeezellm: Dense-and-sparse
quantization. arXiv preprint.

Li, X. L. and Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. In
Annual Meeting of the Association for Computational Linguistics and the International Joint Conf.
on Natural Language Processing.

Li, Y., Yu, Y., Liang, C., Karampatziakis, N., He, P., et al. (2023). Loftq: Lora-fine-tuning-aware
quantization for large language models. In International Conf. on Learning Representations.

Liao, B. and Monz, C. (2024). Apiq: Finetuning of 2-bit quantized large language model. arXiv
preprint.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., et al. (2023). Awq: Activation-aware weight
quantization for llm compression and acceleration. arXiv preprint.

Liu, J., Gong, R., Wei, X., Dong, Z., Cai, J., et al. (2023). Qllm: Accurate and efficient low-bitwidth
quantization for large language models. In International Conf. on Learning Representations.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang, Y.-C. F., et al. (2024). Dora: Weight-
decomposed low-rank adaptation. arXiv preprint.

Liu, Z., Shen, Z., Savvides, M., and Cheng, K.-T. (2020). Reactnet: Towards precise binary neural
network with generalized activation functions. In European Conf. in Computer Vision.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer sentinel mixture models. In
International Conf. on Learning Representations.

Nrusimha, A., Mishra, M., Wang, N., Alistarh, D., Panda, R., et al. (2024). Mitigating the impact of
outlier channels for language model quantization with activation regularization. arXiv preprint.

Park, G., Park, B., Kim, M., Lee, S., Kim, J., et al. (2022). Lut-gemm: Quantized matrix multiplication
based on luts for efficient inference in large-scale generative language models. arXiv preprint.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., et al. (2020). Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal of machine learning research.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y. (2021). Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM.

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., et al. (2023). Omniquant: Omnidirectionally cali-
brated quantization for large language models. In International Conf. on Learning Representations.

Tata, S. and Patel, J. M. (2003). Piqa: An algebra for querying protein data sets. In Conf. on Scientific
and Statistical Database Management.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., et al. (2024). Gemma: Open models
based on gemini research and technology. arXiv preprint.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., et al. (2023). Llama: Open and
efficient foundation language models. arXiv preprint.

Trukhanov, N. and Soloveychik, I. (2024). Accurate block quantization in llms with outliers. arXiv
preprint.

Tseng, A., Chee, J., Sun, Q., Kuleshov, V., and De Sa, C. (2024). Quip#: Even better llm quantization
with hadamard incoherence and lattice codebooks. arXiv preprint.

Van Den Oord, A., Vinyals, O., et al. (2017). Neural discrete representation learning. Advances in
neural information processing systems.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., et al. (2017). Attention is all you need.
Advances in neural information processing systems.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., et al. (2023). Smoothquant: Accurate and efficient
post-training quantization for large language models. In International Conf. on Machine Learning.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li, C., et al. (2022). Zeroquant: Efficient and
affordable post-training quantization for large-scale transformers. Advances in Neural Information
Processing Systems.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

A METHODOLOGY DETAILS

0 50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

0
500

1000
1500
2000
2500
3000
3500
4000

0 50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

0
500

1000
1500
2000
2500
3000
3500
4000

(a) Mistral-7B (Jiang et al., 2023)

0 50
0

10
00

15
00

20
00

0

500

1000

1500

2000

0 50
0

10
00

15
00

20
00

0

500

1000

1500

2000

(b) Gemma-2B (Team et al., 2024)

Figure 2: Pre-trained matrix from the first layer ‘q’ (left; with “structures”), and from the last layer ‘q’ (right)
for Mistral-7B (Jiang et al., 2023). Stronger vertical patterns appear in the first blocks.

Table 5: Quantization and fine-tuning approaches as particular case of ReALLM (with a rank r, and a
budget of b bits for VQ in dimension d) for a matrix of size p× q.

Method rank r AE Latent VQ dim. (d) #bits

LoRA (Hu et al., 2021) 64 - (p, q, 1) 1 16
GPTQ (Frantar et al., 2022) 0 - (p, q, 1) 1 4

QLoRA (Dettmers et al., 2023a) 64 - (p, q, 1) 1 4
LQ-LoRA (Guo et al., 2023) 64 - (p, q, 1) 1 3
QuIP# (Tseng et al., 2024) 0 Rotation (p, q, 1) 8 2

AQLM (Egiazarian et al., 2024) 0 - (p, q, 1) 8 2

ReALLM 64 Trainable (e0, e1, e2) 4 2

Table 6: Comparison of several LLM format for m matrices of size p× q, and a budget of b bits per
coordinate. ReALLM uses a decoder model with c parameters trained on bϕ bits, and a rank r.

Method LoRA VQ only (like AQLM) ReALLM

Matrix representation (p× q) · 16 (p× q
d ) · b · d (e0 × e1

d × e2) · b · d
Codebook − 2bd · d · 16 2bd · d · 16
Decoder − − cbϕ

Low-rank (2× r ×min(p, q)) · 16 − (2× r ×min(p, q)) · 16
Total bit cost 16(pq + 2rmin(p, q)) ·m (bpq + 2bd+4d) ·m cbϕ + 32rmin(p, q) +m(16d2bd + e0e1e2b)

ReALLM(3bits)
ReALLM(2bits)

(a) Mistral-7B (Jiang et al., 2023)

ReALLM(3bits)
ReALLM(2bits)

(b) Llama2-7B (Touvron et al., 2023)

Figure 3: Reconstruction (Frobenius norm) error for layer of type “q” for all blocks for Mistral-7B
(Jiang et al., 2023). QuIP# (Tseng et al., 2024) does not take advantage of the structures in the first
blocks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

B ALGORITHM DESCRIPTION

Algorithm 1: Pseudo-code for ReALLM with block-wise and end-to-end fine-tuning
Input :Number of end-to-end fine-tuning steps T , Number of block-wise fine-tuning steps K,

Number of blocks n, Shape of the latent space (e0, e1, e2), Number of weights in the
decoder c, Number of bits for the decoder weights bϕ, Number of VQ bits per
dimension b, VQ dimension d, Rank r ;

1 Initialize
2 Get pre-trained matrices {W q,W k,W v,W o,W gate,Wup,W down} for all n blocks ;
3 end
/* Block-wise fine-tuning */

4 for j = 0, . . . , n− 1 do
5 Bj = {W q,W k,W v,W o,W gate,Wup,W down}[block = j];
6 outputj = forward_pass(Bj) /* get non-quantized output */
7 for l ∈ {q, k, v, o, gate, up, down} do
8 L1lj , L2

l
j = svd_decomposition(W l

j , rank = r) ;
9 W l

j =W l
j − L1lj(L2lj)t ;

10 Eψ(W l
j),Dϕ

l
j = autoencoder(W l

j , e0, e1, e2, c, bϕ) /* latent representation and

decoder */

11 Eψ(W l
j), inv_permutlj = permute(Eψ(W l

j)) /* with Algorithm 2 */

12 Eψ(W l
j) = normalize(Eψ(W l

j)) /* with NF-normalization (Dettmers et al.,

2023a; Guo et al., 2023) */

13 codebooklj = K-means(Eψ(W l
j), b, d);

14 codeslj = get_index_nn(Eψ(W l
j), codebook

l
j) /* get nearest neighbor index in

codebooklj */

15 W l
j ← {codeslj , codebooklj ,Dϕ

l
j , inv_permutlj , L1

l
j , L2

l
j};

16 doralj = DoRA(W l
j , L1

l
j , L2

l
j) /* get DoRA scale */

17 end
18 dora_quantized_outputj = forward_pass_quantized({doralj , L1lj , L2lj ,W l

j}l≥0)

/* get output after quantization and DoRA */
19 Lj = ∥outputj − dora_quantized_outputj∥2 ;
20 for k = 0, . . . ,K − 1 do
21 Optimize {doralj , L1lj , L2lj}l≥0 with gradient descent to minimize Lj ;
22 end
23 end

/* End-to-end fine-tuning */
24 for t = 0, . . . , T − 1 do
25 Optimize {doralj , L1lj , L2lj}l,j≥0 with gradient descent ;
26 end

Algorithm 2: permutation function
Input :Matrix w of size 128× q ;

1 for j = 0, . . . , q − 1 do
2 columnj = w[:, j] ;
3 indxj = get_index_nn(columnj , w[:, j + 1 : q]) /* get the nearest neighbor

index of current columnj, among the rest of un-permuted columns
w[:, j + 1 : q] */

4 Permute w[:, j + 1] and w[:, indxj ];
5 Save the inverse of the permutation index in inv_permut ;
6 end

Output :w, inv_permut

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

C ABBLATION STUDIES

Decoder’s Weight Ablation In Table 7, we present ablation experiment results on the type of
decoder weight quantization. For a decoder parameter c = 7.2× 106, we performed a quantization-
aware training approach, optimizing weights quantized to bϕ = 6 bits using the straight-through
estimator (Bengio, 2013). We also tested a post-training quantization method where the decoder
weights are quantized with a round-to-nearest (RTN) approach at the end of the training steps. This
experiment shows that under the same parameters, QAT gives better performance than the respective
PTQ approach. Furthermore, for a reduced number of bits (2.82 vs 3), ReALLM yields a smaller
quantization error compared to the scalar quantization NF3 (Dettmers et al., 2023a; Guo et al., 2023)
on the layer “q0” of Mistral-7b.

Table 7: Reconstruction (Frobenius norm) error for layer of type “Q” inside the first block of Mistral-
7b model, for patches of size 512×512 using a constant embedding size of (e0, e1, e2) = (16, 16, 16),
and a varying quantization strategy (during the decoder training, i.e. QAT, or after the training, i.e.
PTQ).

Method # parameters c (×106) bϕ bit budget Error

NF3(Guo et al., 2023) − − 3 0.84

PTQ 7.2 6 2.82 1.78
QAT 7.2 6 2.82 0.69

Table 8: Reconstruction (Frobenius norm) error and computational overheads for layers of type “q”
and “o” inside blocks 30 and 20 of the Lamma-7b model, for patches of size 512 × 512 using a
constant embedding size of (e0, e1, e2) = (16, 16, 16), and a varying encoder quantization bϕ and
#parameters c for a total budget of #bits = 2.

Weights quantization bϕ 4 5 6 32
#params c, ×106 7.3 6 5 0.95

Error for q30 (↓) 27.42 24.82 25.8 43.56
Error for o20 (↓) 20.04 18.18 18.93 31.81

Training time 1h15’ 1h13’ 1h11’ 1h05
Decoding time (ms) 11± 12 11± 10 11± 8.7 8.9± 3.8

Permutation Ablation We experimentally observed that permutations are indispensable for both
AE and VQ components of ReALLM. In Figure 4, we report the Frobenius error and the learning rate
during the autoencoder’s training for layer “q” of Llama2-7b. The figure demonstrates that without
permutation, the training is unstable, even with smaller learning rates. In Figure 5, we report the
Frobenius error between the quantized layer “up” with the VQ component, both with and without
column permutations. Permutations show a clear improvement in the quantization in both Llama2-7B
and Llama2-13B.

Figure 4: ReALLM’s decoder training curves on Llama2-7B (Touvron et al., 2023) layer “q5” for different pre-
processings and learning rates for a 2-bits budget. Blue / purple: no permutation, max-lr=0.0001 / max-lr=0.001.
Gray / brown: column / line permutation, max-lr=0.001.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

0 10 20 30
Block index

30

40

50

60

70

ER
RO

R 
(fr

ob
en

iu
s n

or
m

)

No perm
Perm

(a) Llama2-7B

0 10 20 30 40
Block index

20

22

24

26

28

30

ER
RO

R 
(fr

ob
en

iu
s n

or
m

)

No perm
Perm

(b) Llama2-13B

Figure 5: Reconstruction (Frobenius norm) error for layer type “up” for all blocks, with ReALLM’s VQ both
with and without column permutation.

D LATENCY AND MEMORY OVERHEAD ANALYSIS

Our primary objective is to maximize accuracy for a given model size. Indeed, pushing the limits of
LLM quantization is a crucial subject as it suggests that the architecture of LLMs could be further
refined to be lighter while remaining efficient, providing an important guideline for research teams
and startups with fewer computational resources.

That being said, we provide latency and memory overhead analysis. We report the memory used
by the quantized model and the on-the-fly dequantization memory overhead, the prefilling and the
generation acceleration at constant GPU memory (see Table 9)

We measure acceleration relative to a full-precision model for encoding and generating 2k tokens, we
compare a model quantized using ReALLM with a model in FP16. To do this, we use the largest batch
size that fits on the GPU for both the quantized model and the non-quantized model. This analysis is
conducted using an A100 GPU.

Table 9: Latency and memory overhead analysis on A100 GPU.

LLaMA-2-7b LLaMA-2-13b
#bits 2 3 2 3

Memory usage (GB) 1.8 2.4 3.1 4.7
Dequant. overhead (GB) 0.9 0.7 1.3 1.1
Prefiling speedup 1.42x 1.35x 1.42x 1.37x
Generation speedup 1.23x 1.15x 1.24x 1.15x

E FEW-SHOTS TASKS

We include evaluations on 5-shots MMLU and ThruthfulQA to better demonstrate the performance of
our compressed LLM on both Llama2-7b and Llama3-8b in Tables 3, 4 and 10. ReALLM outperforms
all other tested quantization methods.

Table 10: 0-shot evaluation on TruthfulQA, multiple choices and generation (acc).

ReALLM (2-bits) ReALLM (3-bits)
Base-model Llama2-7B Llama2-7B

mc1 24.2 ± 1.5 27.2 ± 1.6
mc2 38.3 ± 1.4 41.6 ± 1.4

BLEU 34.5 ± 1.7 35.0 ± 1.7
ROUGE-1 34.4 ± 1.7 35.3 ± 1.7
ROUGE-2 30.1 ± 1.6 31.1 ± 1.6
ROUGE-L 33.7 ± 1.7 35.0 ± 1.7

11


	Introduction
	Related work
	Method
	Experimental Validation
	Conclusion
	Methodology details
	Algorithm description
	Abblation studies
	Latency and memory overhead analysis
	Few-shots tasks

