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Abstract
Variational regularisation is the primary method
for solving inverse problems, and recently there
has been considerable work leveraging deeply
learned regularisation for enhanced performance.
However, few results exist addressing the conver-
gence of such regularisation, particularly within
the context of critical points as opposed to global
minimisers. In this paper, we present a gener-
alised formulation of convergent regularisation
in terms of critical points, and show that this is
achieved by a class of weakly convex regularis-
ers. We prove convergence of the primal-dual hy-
brid gradient method for the associated variational
problem, and, given a Kurdyka–Łojasiewicz con-
dition, an O(log k/k) ergodic convergence rate.
Finally, applying this theory to learned regularisa-
tion, we prove universal approximation for input
weakly convex neural networks (IWCNN), and
show empirically that IWCNNs can lead to im-
proved performance of learned adversarial reg-
ularisers for computed tomography (CT) recon-
struction.

1. Introduction
In an inverse problem, one seeks to recover an unknown pa-
rameter (e.g., an image) that has undergone some, typically
lossy and noisy, transformation (e.g., during measurement).
Such problems arise frequently in science, e.g. in medical
imaging such as in MRI, CT, and PET, and also beyond
science, e.g. in art restoration (Natterer, 2001; Scherzer
et al., 2009; Calatroni et al., 2018).

Mathematically, one seeks to estimate an unknown parame-
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Figure 1: Contour plots comparing the distance function to a data
manifold (top-left) with learned regularisers for denoising this data,
via convex (bottom-left), standard (top-right), and weakly convex
(bottom-right) adversarial regularisation. The convex regulariser
lacks an interpretation as a distance function, whilst the weakly
convex regulariser, introduced in this work, retains this feature and
shows improved generalisation.

ter x∗ ∈ X from a transformed and noisy measurement

yδ = Ax∗ + η ∈ Y, (1.1)

see (Engl et al., 1996). Here X and Y are Banach spaces;
A : X → Y is the forward model, assumed to be linear and
bounded, e.g. representing imaging physics; and η ∈ Y ,
with ∥η∥Y ⩽ δ, describes measurement noise. However,
(1.1) is usually ill-posed, i.e. x ∈ X with Ax = yδ may
not exist, be unique, or be continuous in yδ .

An influential technique to overcome this ill-posedness
has been the variational approach pioneered by (Tikhonov,
1963) and (Phillips, 1962):

xα(yδ) ∈ argmin
x∈X

{
αR(x) +D

(
Ax, yδ

)
=: Jα,yδ(x)

}
.

(1.2)

Here: R : X → [0,∞) is the regulariser, which aims to
incorporate prior knowledge about x∗ and penalise x if it is
not ‘realistic’; D : Y ×Y → [0,∞) is the data-fidelity term,
which quantifies the distance between yδ and Ax and comes
from the distribution of the noise η; and α > 0 balances
the relative importance of the two terms. A regularisation
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method is well-defined if xα(yδ) is stable with respect to
data perturbations and converges, as δ ↓ 0, to a solution of
the noiseless operator equation Ax = y0 := Ax∗.

A good choice of regulariser R is important for achieving
accurate results. Traditional regularisation was knowledge-
driven: the regulariser was a hand-crafted functional de-
signed to encourage the reconstruction x to have structures
known to be realistic. Over the past decades, a whole zoo of
such regularisers have been proposed, see e.g. (Rudin et al.,
1992; Bredies et al., 2010; Gilboa & Osher, 2009; Mallat,
2009; Kutyniok & Labate, 2012; Lassas et al., 2009; Davoli
et al., 2023) and see (Benning & Burger, 2018) for a detailed
overview. However, there is a limit to the complexity of
patterns that can be described by a hand-crafted functional.

Seeking to overcome this limitation, there has been con-
siderable recent interest in data-driven approaches to in-
verse problems, see (Arridge et al., 2019) for a detailed
overview. A key data-driven technique is to learn the regu-
lariser from data. Such methods include: dictionary learning
(see (Chen & Needell, 2016) for an overview), plug-and-
play priors (Venkatakrishnan et al., 2013; Kamilov et al.,
2023), regularisation by denoising (Romano et al., 2017),
deep image priors (Lempitsky et al., 2018; Dittmer et al.,
2019), network Tikhonov (NETT) (Li et al., 2020), total
deep variation (Kobler et al., 2020), generative regularisa-
tion (see (Dimakis, 2022) for an overview), and adversarial
regularisation (Lunz et al., 2018). These methods typically
outperform knowledge-driven regularisation in practice.

One of the major advantages of the learned regularisation
paradigm compared to end-to-end learning methods for solv-
ing inverse problems, e.g. (Jin et al., 2017; Zhu et al., 2018;
Adler & Öktem, 2018), is that it can operate in the weakly
supervised setting, i.e. when one has data of ground truths
(and measurements) but not of ground-truth-measurement
pairs. This setting is often more realistic, especially in
medical imaging where paired data can be hard to acquire.
Furthermore, because they do not required paired training
data, learned regularisation methods can adapt to other for-
ward models without requiring retraining (see e.g. (Sun
et al., 2020; Lunz, 2021)).

1.1. Motivation and contributions

A key challenge in the data-driven paradigm is proving guar-
antees about the behaviour of the learned models, both for
the inverse problem and for optimisation methods for solv-
ing it. In (Mukherjee et al., 2023) the role of convexity, via
the input convex neural network architecture (Amos et al.,
2017), was emphasised as a method for achieving such guar-
antees, e.g. in the case of the adversarial convex regulariser
(ACR) (Mukherjee et al., 2021). But convexity is quite a
restrictive condition, and the ACR sacrifices the adversarial
regulariser’s interpretability as a distance function to the

data manifold (see Figure 1), contributing to worse perfor-
mance. It has been observed in the literature that non-convex
regularisers often have better performance (Mohimani et al.,
2009; Roth & Black, 2009; Pieper & Petrosyan, 2022). Of
particular interest is recent work on ‘optimal’ regularisation
(Alberti et al., 2021; Leong et al., 2023), as such optimal
regularisers are typically non-convex. This non-convexity
returns us to a setting in which provable guarantees are
challenging to achieve. However, the optimal regulariser of
(Alberti et al., 2021) is often weakly convex, and weak con-
vexity offers a more structured setting for reasoning about
the non-convex case, see e.g. (Pinilla et al., 2022).

Optimisation methods in the context of weak convexity can
be split into either subgradient or proximal based methods;
see (Drusvyatskiy & Davis, 2020) for an introductory review.
Subgradient methods admit strong iteration complexity guar-
antees (Davis et al., 2018; Davis & Drusvyatskiy, 2018;
Goujon et al., 2024). However, the convergence settings
for these methods are somewhat narrow. Proximal methods
admit significantly improved complexity bounds, as well as
objective convergence rates (Hurault et al., 2022). These
rates can be further improved through prox-linearisation
(Drusvyatskiy & Paquette, 2019; Davis & Drusvyatskiy,
2022) or adaptive steps (Böhm & Wright, 2021).

Of particular interest for optimising (1.2) is the proximal
primal-dual method, first analysed for convex functions
in (Chambolle & Pock, 2011). The first guarantees for
primal-dual in the context of weak convexity were shown
in (Möllenhoff et al., 2015), which assumed the (1.2) to be
convex, with a unique minimiser. In the non-convex case,
however, rather stringent assumptions had to be made. This
was overcome in the Arrow–Hurwicz (Arrow et al., 1958)
special case in (Sun et al., 2018), via a Kurdyka–Łojasiewicz
assumption. In (Guo et al., 2023) a preconditioned primal-
dual method was proposed for smooth primal functions, and
convergence achieved under operator surjectivity. But for
general weakly convex functions, no such convergence was
shown. We are therefore motivated to fill this gap.

Inspired by the optimisation literature, there has been re-
cent interest in learning weakly convex regularisers (Hu-
rault et al., 2022; Goujon et al., 2024; Shumaylov et al.,
2023). In (Shumaylov et al., 2023), an input weakly convex
neural network (IWCNN) architecture was introduced, and
incorporated into the adversarial regularisation framework
to learn a convex-nonconvex regulariser (see (Lanza et al.,
2022)) with provable guarantees. However, existing con-
vergent regularisation guarantees focus on the convergence
of global minimisers. In practice, optimisation schemes
for (1.2) do not converge to global minimisers, but only to
critical points, and as such one should consider convergence
of critical points.

There exist only a few works focused on stability and con-
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vergence of regularisation in the sense of critical points.
Under injectivity of A, (Durand & Nikolova, 2006) prove
stability guarantees in the finite dimensional setting. In (Ob-
mann & Haltmeier, 2022) stability and convergence was
shown for so-called ϕ-critical points, defined in terms of
ϕ-subgradients. But these ϕ-critical points are not true crit-
ical points of Jα,yδ . They can be interpreted as bounded
points, with bound quality depending critically on choice of
ϕ, motivating a return to the usual notions of subgradients.
For exact definitions and further discussion, the interested
reader is referred to (Obmann & Haltmeier, 2022; 2024).
The setting of critical points of Jα,yδ is a special case of
(Obmann & Haltmeier, 2023), which showed stability and
convergence assuming weak-to-weak continuity and appro-
priate coercivity of the gradient of the regulariser. But in
the context of learned regularisation, differentiability has
empirically been observed to worsen performance.

In this study, we show that imposing weak convexity on the
regulariser achieves the best of both worlds. It yields guar-
antees for both inverse problems and optimisation, whilst
also leading to robust numerical performance. We illustrate
this from three sides. On the inverse problem front we:

i. Prove guarantees about existence, in Theorem 3.2, and
stability, in Theorem 3.3, of solutions to (1.2).

ii. Formulate convergent regularisation in terms of criti-
cal points in a generalised way in Definition 2.4, and
prove that it is achieved by a class of weakly convex
regularisers in Theorem 3.4.

On the optimisation front we:

iii. Prove convergence guarantees of primal-dual methods
for solving (1.2) under weak convexity in Theorem 4.2.

iv. Prove an O(log k/k) ergodic convergence rate for the
primal dual scheme under KŁ in Theorem 4.6.

On the learned regularisation front we:

v. Prove a universal approximation theorem for IWCNNs
in Theorem 5.2.

vi. Define an adversarial weak convex regulariser (AWCR)
in Definition 5.5 and corroborate the theoretical results
via numerical experiments with AWCRs for CT recon-
struction, shown in Table 1 and Figure 2.

2. Groundwork
Throughout this paper, X and Y denote Banach spaces.

Definition 2.1 (ρ-convexity). Let f : X → R. Then f is
said to be ρ-convex if there exists some ρ ∈ R such that

f − 1
2ρ∥ · ∥2X is convex. Then f is said to be ρ-strongly

convex if ρ > 0, convex if ρ = 0, and (−ρ)-weakly convex
if ρ < 0. Hence, strongly convex entails convex, which
entails weakly convex.

Definition 2.2 (Subdifferential; see e.g. (Kruger, 2003)).
Let f : X → R ∪ {∞}. Then the (Frechét) subdifferential
of f at x is the empty set if f(x) = ∞, and if f(x) <∞ is

∂f(x) := {ψ ∈ X ∗ :

f(x′) ⩾ f(x) + ψ(x′ − x) + o(∥x′ − x∥X ) as x′ → x},

where X ∗ denotes the dual space of X , i.e. the space of all
continuous linear functionals on X .

Note 2.3. If x is a local minimiser of f , then 0 ∈ ∂f(x). If
f is (Frechét) differentiable at x, then ∂f(x) = {∇f(x)}.

In what follows we are going to be interested in critical
points of the objective function Jα,yδ . For this we define
the set of critical points of f : X → R ∪ {∞} as:

crit
x∈X

f := {x ∈ X : 0 ∈ ∂f (x)} .

For further details on convex analysis, see Appendix A.

2.1. Convergent regularisation

The idea behind convergent regularisation is that we do not
want to over-regularise or regularise in the wrong way. We
want to guarantee that as we tune the noise level δ down,
we can also tune down the regularisation parameter α at an
appropriate rate such that all limit points of the resulting
reconstructions xα(yδ) are regular and data-consistent. To
make this precise, we make the following definitions.

Definition 2.4 (R-minimising and R-criticising solutions).
Let y0 := Ax∗ be the clean measurement. If

x† ∈ argmin
x∈X

R(x) subject to Ax = y0,

then following (Pöschl, 2008) we call x† an R-minimising
solution, and considering critical points if

x† ∈ crit
x∈X

R(x) + ι{0}(Ax− y0)

then we call x† an R-criticising solution, where the indica-
tor function

ι{0}(z) :=

{
0, if z = 0,

∞, otherwise,

imposes the condition Ax = y0. In particular, if x† is
R-minimising, then it is also R-criticising.

Traditionally in inverse problems, convergence of regularisa-
tion has been studied in the sense of conditions under which,
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as δ → 0, there exist α(δ) → 0 such that the limit points
of the global minimisers of Jα(δ),yδ are R-minimising so-
lutions. I.e., convergence of the minimisers. But in practice
optimisation methods rarely converge to global minimisers
when Jα,yδ is non-convex, converging instead to other criti-
cal points. Thus, in this work we will instead ask whether
the limit points of the critical points of Jα(δ),yδ are R-
criticising solutions.

Well-defined regularisation via global minimisers is typi-
cally shown by assuming the following pre-compactness
condition (Grasmair, 2010; Pöschl, 2008): For all α > 0,
y ∈ Y , and t ∈ R, the set {x ∈ X : Jα,y(x) ⩽ t} is sequen-
tially pre-compact. In particular, this is satisfied by coercive
R, though coercivity may not be necessary, see (Lorenz &
Worliczek, 2013). But this is insufficient for well-defined
regularisation via critical points, as we now illustrate.
Example 2.5. Inspired by the example in (Obmann & Halt-
meier, 2022), we consider R(x) = |x| + cos(x), A = 0,
α > 0, and a sequence of measurements yk = 0. In this case
the sequence xk = 2πk+ π

2 is such that each xk is a critical
point of Jα,yk(x) := αR(x) + D (Ax, yk), but (xk) has
no convergent subsequence. Yet |x| + cos(x) is coercive,
and can be checked to be weakly convex. Therefore, unlike
in the global minimisers setting, regulariser coercivity does
not guarantee stability or convergence.

2.2. Set-up and bounding the critical points

We are interested in Tikhonov functionals Jα,yδ : X →
[0,∞). Instead of working with global minimisers of Jα,yδ ,
we consider regularised solutions xδα ∈ critJα,yδ as critical
points of Jα,yδ We wish to construct non-convex regularis-
ers which still achieve convergent regularisation in terms
of critical points. By the discussion above, we will need
to make assumptions on R which bound the set of critical
points.

Theorem 2.6 (Bounded critical points). Let R = Rwc +
Rsc where Rwc : X → [0,∞) is γ-weak convex and Rsc is
µ-strongly convex. For any x̂ a critical point of R, we have
that for all z ∈ X : If γ < 2µ,

∥x̂− z∥X ⩽
1

(µ− γ
2 )

∥∂Rsc(z)∥+
√

1

(µ− γ
2 )
Rwc(z),

or if Rwc is LR-Lipschitz continuous,

∥x̂− z∥X ⩽
1

µ
(LR + ∥∂Rsc(z)∥) .

Here ∥∂Rsc(z)∥ := sup{∥ψ∥X∗ : ψ ∈ ∂Rsc(z)}.

Proof. Proven in Appendix B.

Note 2.7. Note that R is (µ − γ)-convex. Thus, R can
posses multiple minimisers when µ ⩽ γ < 2µ. This con-
vexity bound is optimal, up to equality, and we provide an

intuitive explanation for it, constructing an example with
infinitely many unbounded minimisers in Appendix C.

3. Inverse problem guarantees
In this section, we show that weakly convex regularisation
is well-defined, under the following assumptions, which
are standard in the literature (see (Obmann & Haltmeier,
2022; Grasmair, 2010; Pöschl, 2008)), except for Assump-
tion 3.1(3b), which is imposed to avoid a counterexample
(see Appendix D.3) that arises in the infinite-dimensional
setting.

Assumption 3.1. (1) X is a reflexive Banach space.

(2) R is weakly sequentially l.s.c.

(3) R = Rwc +Rsc, where Rwc : X → [0,∞) is γ-weak
convex, Rsc is µ-strongly convex, and either

(a) γ ⩽ µ (i.e., R is convex), or

(b) µ < γ < 2µ, and Rsc − 1
2µ∥ · ∥2X is weakly

sequentially l.s.c.

This, in particular, means that R is coercive, and there-
fore so is Jα,yδ , since D is non-negative.

(4) D is weakly sequentially l.s.c., convex in its first
argument, continuous in its second argument, and
D(y1, y2) = 0 if and only if y1 = y2.

(5) There exist C > 0 and p ⩾ 1 s.t. for all y1, y2, y3 ∈ Y ,
D(y1, y2) ⩽ C

(
D (y1, y3) + ∥y2 − y3∥pY

)
.

3.1. Existence and stability of solutions

Theorem 3.2 (Existence). Under Assumption 3.1 solutions
exist, i.e. for all α > 0 and yδ ∈ Y , critJα,yδ is non-empty.

Proof. Existence of minimisers of Jα,yδ follows from the
coercivity and the continuity assumptions on Jα,yδ .

Theorem 3.3 (Stability). Let yk, yδ ∈ Y , α > 0, and yk →
yδ (in norm), and assume that xk ∈ X is such that xk ∈
crit Jα,yk . Then under Assumption 3.1 the sequence (xk)
has a weakly convergent subsequence and the weak limit x+
of any such subsequence is a critical point of Jα,yδ .

Proof. Proven in Appendix D.1.

In words: the reconstruction from a measurement at a given
noise level (i.e., a critical point of the variational energy)
is (weakly) continuous with respect to perturbations of the
measurement (up to subsequences).
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3.2. Convergent regularisation

Theorem 3.4. Let Assumption 3.1 hold. Let y0 ∈ Y and as-
sume that y0 = Au for some u ∈ X . Let δk ↓ 0, and
choose α = α(δ) such that for αk = α (δk) we have
limk αk = limk δ

p
k/αk = 0, where p is the same p from

Assumption 3.1(5). Let yδk ∈ Y be any sequence of mea-
surements with ∥yδk − y0∥Y ⩽ δk, and let xk ∈ X satisfy
xk ∈ crit Jαk,y

δk . Then the sequence (xk) has a weakly
convergent subsequence and the weak limit x+ of any such
subsequence is an R-criticising solution. If there is a unique
u ∈ X such that Au = y0, then xk ⇀ u.
Proof. Proven in Appendix D.2.

In words: in the limit as the noise level vanishes, there is
a regularisation parameter selection strategy under which
reconstructions from measurements at each noise level con-
verge to a solution of the noiseless operator equation, up to
a subsequence unless such a solution is unique.
Note 3.5. Theorems 3.3 and 3.4 do not hold in the gen-
eral setting where R is weakly convex without Assump-
tion 3.1(2,3), even assuming that R is globally Lipschitz;
for a counterexample see Appendix D.3.
Note 3.6. If X is a separable reflexive Banach space, then
the subsequences in Theorems 3.3 and 3.4 can be explicitly
constructed, as the Banach–Alaoglu theorem has a construc-
tive proof in this special case. We omit the details.
Note 3.7. If we make the further assumption that X is a
finite-dimensional Hilbert space then Theorems 3.3 and 3.4
hold with strong convergence of the iterates, with Assump-
tion 3.1(3) replaced with that Rwc is globally Lipschitz or
that γ < 2µ. In the remainder of this paper, we will assume
that X and Y are finite-dimensional real Hilbert spaces.

4. Optimisation guarantees
In this section, we analyse the primal-dual algorithm in
the weakly convex setting. All results are in the setting of
Assumption 3.1 with the modification described in Note 3.7.

4.1. Primal-dual optimisation

The idea of primal-dual optimisation is to reformulate (1.2)
as a minimax problem. First, we rewrite (1.2) as

min
x∈X

R(x) + F (Ax), (4.1)

where F (y) := D(y, yδ). By Assumption 3.1(4), F is
convex and l.s.c., so by Theorem A.2 we can rewrite (4.1)
as the minimax problem:

min
x∈X

max
y∈Y

L(x, y) := R(x) + ⟨Ax, y⟩Y − F ∗(y).

This can then be solved via the modified primal-dual hybrid
gradient method (PDHGM) due to (Chambolle & Pock,

2011). The method consists of the following updates for
step sizes τ, σ > 0:

xk+1 := argmin
x∈X

{
R(x) +

〈
yk,Ax

〉
Y
+

1

2τ

∥∥∥x− xk
∥∥∥2

X

}
,

xk+1
ϑ := xk+1 + ϑ

(
xk+1 − xk

)
, (4.2)

yk+1 := argmin
y∈Y

{
F ∗(y)−

〈
y,Axk+1

ϑ

〉
Y
+

1

2σ

∥∥∥y − yk
∥∥∥2

Y

}
.

Note that for non-convex R, the first update may not be
unique for all choices of τ . However for ρ-weakly convex
R it is unique for τ < 1/ρ, as shown in Theorem A.4.
This method, in the case of non-convexity and KŁ (see
Appendix E.3) was analysed for ϑ = 0 in (Sun et al., 2018).
Here, we are interested in ϑ = 1 similar to (Chambolle
& Pock, 2011), due to connections to the proximal point
method and the alternating direction method of multipliers
(Lu & Yang, 2023). We will use weak convexity of R and
µ-strong convexity of F ∗, satisfied, e.g., when F is convex
and 1/µ-smooth.

4.2. Convergence of PDHGM

First we rewrite our problem in a nice form in analogy with
(Lu & Yang, 2023). Let z := (x, y) and define

T (z) :=

(
∂xL(x, y)
−∂yL(x, y)

)
=

(
∂R(x) +A∗ y
∂F ∗(y)−Ax

)
,

where A∗ : Y → X is the adjoint of A, i.e. for all x ∈
X and y ∈ Y , ⟨Ax, y⟩Y = ⟨x,A∗ y⟩X . Setting zk :=
(xk, yk), the update rule of PDHGM can be written as

M
(
zk − zk+1

)
∈ T

(
zk+1

)
, for M :=

(
1
τ I −A∗

−ϑA 1
σ I

)
.

For ϑ = 1, M is a self-adjoint positive semi-definite opera-
tor if τσ∥A∥2 < 1. Henceforth, we only consider ϑ = 1.
We define the following Lyapunov function, whose critical
points coincide with those of L:

L(z, z′) := L(z) +
1

2
∥z′ − z∥2M , (4.3)

where

∥z∥2M := ⟨z,Mz⟩X ×Y =
1

τ
∥x∥2X −2⟨Ax, y⟩Y+

1

σ
∥y∥2Y .

For x ∈ X and y ∈ Y , we denote ∥y∥M := ∥ (0, y) ∥M =
1√
σ
∥y∥Y , and similarly ∥x∥M := ∥ (x, 0) ∥M = 1√

τ
∥x∥X .

Theorem 4.1 (Strict descent). For (xk, yk) satisfying the
PDHGM updates (4.2) with ϑ = 1, R ρ-weak convex, F ∗

µ-strong convex, and step sizes satisfying τσ∥A∥2 < 1,
τρ < 1, and µσ > 3, the following descent holds for the
Lyapunov function (4.3):

L(zk, zk−1)− L(zk+1, zk) ⩾

1

2
(µσ − 3)

∥∥yk − yk+1
∥∥2
M

+
1

2
(1− ρτ)

∥∥xk − xk+1
∥∥2
M
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Proof. Proven in Appendix E.1.

Using this, we can prove the following under iterate bound-
edness, which is a standard assumption in analysis of non-
convex optimisation (Sun et al., 2018; Bolte et al., 2014).

Theorem 4.2. Assume that infx∈X L(x, y) > −∞ for all
y ∈ Y , the zk = (xk, yk) are bounded, R is ρ-weak convex,
F ∗ is µ-strong convex, τσ∥A∥2 < 1, τρ < 1, and µσ > 3.
Let ν := min{µσ − 3, 1− ρτ}, then

min
k⩽K

dist
(
0, ∂L(zk)

)
⩽

2√
νK

√
L(z1, z0)− L(zK+1, zK).

Furthermore, the iterates are square-summable:

∞∑
k=1

∥∥xk+1 − xk
∥∥2
X <∞,

∞∑
k=1

∥∥yk+1 − yk
∥∥2
Y <∞.

Letting C denote the set of cluster points of zk, we have that
C is a nonempty compact set and

lim
k→∞

dist
((
xk, yk

)
, C

)
= 0,

with C ⊆ critL and L is finite and constant on C.
Proof. Proven in Appendix E.2.

Note 4.3. It is important to note that parameter bounds
τσ∥A∥2 < 1, τρ < 1, and µσ > 3 are likely not optimal.
It is, however, always possible to choose step sizes to satisfy
these, taking τ < min

{
1
ρ ,

µ
3∥A∥2

}
and σ ∈

(
3
µ ,

1
τ∥A∥2

)
.

4.3. Ergodic convergence rate

We now prove ergodic convergence rates, bounding the
primal-dual gap for the PDHGM. To derive these, we will
need bounds on iterate distance from a general point. These
are not entailed by weak convexity, so we make the further
assumption that the Lyapunov function L has the Kurdyka–
Łojasiewicz property (see Appendix E.3 for details). By the
following note, this assumption is not too restrictive.

Note 4.4. By Theorem E.3, if R is a deep neural network
with continuous, piecewise analytic activations with finitely
many pieces (e.g., ReLU), then R is subanalytic. If F (y) :=
1
2α∥y− yδ∥2Y then all the remaining terms in L are analytic.
It follows that L is subanalytic (by e.g. Lemma 7.4 of (Budd
et al., 2023)) and therefore is KŁ with KŁ exponent in [0, 1)
on all of its domain (Bolte et al., 2007).

The following results are standard in the literature, but will
prove useful for proving ergodic convergence rates.

Theorem 4.5. Suppose that L is KŁ and the zk are
bounded, then zk converges to a critical point ẑ of L and

∞∑
k=1

∥∥zk+1 − zk
∥∥
M
<∞.

Furthermore, if L has KŁ exponent θ ∈ [0, 1) at ẑ, we have
that there exist constants ν1, ν2 > 0 and τ ∈ (0, 1), s.t.:
If θ = 0, the sequence zk converges in finite steps.
If θ ∈

(
0, 12

]
,
∥∥zk − ẑ

∥∥
M

⩽ ν1τ
k.

If θ ∈
(
1
2 , 1

)
,
∥∥zk − ẑ

∥∥
M

⩽ ν2k
− 1−θ

2θ−1 .

Proof. See (Guo et al., 2023; Sun et al., 2018).

This lets us derive the corresponding ergodic rate.

Theorem 4.6. Assume that the bounded sequence zk =
(xk, yk) are PDHGM iterates from (4.2) with ϑ = 1,
R ρ-weak convex and F ∗ µ-strong convex, satisfying
τσ∥A∥2 < 1, τρ < 1, and µσ > 3. Assume that L is
KŁ, with KŁ exponent θ ∈ [0, 1) at ẑ, denoting the limit
zk → ẑ = (x̂, ŷ), and let x̄k and ȳk denote the means of
(xi)ki=1 and of (yi)ki=1, respectively. Then, for all x ∈ X
and y ∈ Y:

L
(
x̄k, y

)
− L

(
x, ȳk

)
⩽

1

2

(
ρ∥x− x̂∥2X − µ∥y − ŷ∥2Y

)
+O

(
log k

k

)
.

Proof. Proven in Appendix E.4.

Note 4.7. In the case of ρ = µ = 0 we recover the usual
convex ergodic rates (Lu & Yang, 2023). Unlike the convex
case, here there is a non-k dependent term, which does not
tend to zero. This arises due to non-convexity, and hence
non-uniqueness of critical points of the original problem.

Note 4.8. We have here only shown iterate convergence in
the case of R ρ-weak convex and F ∗ µ-strong convex, but
the proof of this result naturally extends to the case of F ∗

being weak convex, as long as convergence can be shown.

5. Learning a weakly convex regulariser
Input weakly convex neural networks (IWCNNs) were in-
troduced in (Shumaylov et al., 2023) with the following
idea. As discussed in Section 1.1, non-convex regularisers
have been observed to result in better performance than
convex regularisers, and ‘optimal’ regularisers are typically
non-convex yet often weakly convex. We therefore want a
neural network which is weakly convex but not convex. A
smooth neural network achieves this, but these are usually
undesirable (Krizhevsky et al., 2017). But a neural network
with all ReLU activations is weakly convex if and only if it
is convex (Shumaylov et al., 2023). To get the best of both
worlds, the IWCNN architecture uses the following result:
if f = gc ◦ gsm for gc : Rn → R convex and L-Lipschitz
and gsm : Rk → Rn C1 with β-Lipschitz gradient, then
f is Lβ-weakly convex (Davis et al., 2018). (Shumaylov
et al., 2023) utilises an input convex neural network (ICNN)
(Amos et al., 2017) to define an IWCNN.
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Definition 5.1 (IWCNN; Definition 4.1 in (Shumaylov et al.,
2023)). An IWCNN f IWCNN

θ is defined by

f IWCNN
θ := gICNN

θ1 ◦ gsm
θ2 ,

where gICNN
θ1

is an input convex neural network and gsm
θ2

is a
neural network with Lipschitz smooth activations.

We now prove that IWCNNs can universally approximate
continuous functions. We will use the fact (see (Sun & Yu,
2019) Theorem 6) that the weakly convex functions (on an
open or closed convex domain) are dense in the continuous
functions (on that domain) with respect to ∥ · ∥∞. Therefore,
as long as IWCNNs can approximate any weakly convex
function, they can approximate any continuous function.

Theorem 5.2 (Universal Approximation of IWCNN). Con-
sider an IWCNN as in Definition 5.1, with intermediate
dimension m ∈ N. For any m, IWCNNs can uniformly
approximate any continuous function on a compact domain.
Proof. Proof provided in Appendix F.

5.1. Adversarial regularisation

Adversarial learning operates within the weakly supervised
setting described in Section 1. We have datasets (xi) ∈ X
and (yj) ∈ Y each i.i.d. sampled from the distributions
of ground truth images Pr and measurements PY , respec-
tively. To get these two distributions into the same space, we
push-forward PY from the measurement space Y to the im-
age space X using some pseudo-inverse A† of the forward
model, giving Pn := (A†)#PY , a distribution of images
with reconstruction artefacts.

The key idea is that regularisation is really a type of clas-
sification problem. We want R to be small on the ground
truth images (i.e., Pr) and large on artificial images (i.e.,
Pn). Therefore, (Lunz et al., 2018) learned a neural network
regulariser Rθ by minimising the following loss functional:

EX∼Pr
[Rθ(X)]− EX∼Pn

[Rθ(X)]

+ λ · E
[
(∥∂xRθ(X)∥ − 1)

2
+

]
.

(5.1)

The final term pushes Rθ to be 1-Lipschitz, inspired by the
Wasserstein GAN (WGAN) loss (Arjovsky et al., 2017),
and the expectation is taken over all lines connecting sam-
ples in Pn and Pr. This Rθ has a key interpretation, given
two assumptions. First, assume that the measure Pr is sup-
ported on the weakly compact set M. This captures the
intuition that real image data lies in a lower-dimensional
non-linear subspace of the original space. Let PM be the
projection function onto M, assumed to be defined Pn-a.e.
Then second, assume that the measures Pr and Pn satisfy
(PM)# (Pn) = Pr. This essentially means that the recon-
struction artefacts are small enough to allow recovery of the
real distribution by simply projecting the noisy distribution
onto M. Of the two assumptions, the latter is stronger.

Theorem 5.3 (Optimal AR (Lunz et al., 2018)). Under
these assumptions, the distance function to M, dM(x) :=
minz∈M ∥x− z∥X is a maximiser of

sup
f∈1-Lip

EX∼Pn
[f(X)]− EX∼Pr

[f(X)].

Note 5.4 (Non-uniqueness). The functional in Theorem 5.3
does not necessarily have a unique maximiser. For a more
in-depth discussion of when potentials and transports can
be unique, see (Staudt et al., 2022; Milne et al., 2022).

In (Mukherjee et al., 2021) this approach was modified
by parameterising Rθ(x) = RICNN

θ (x) + µ0

2 ∥x∥2X , where
RICNN
θ is an ICNN, and then minimising (5.1) to learn an

adversarial convex regulariser (ACR). In order to retain the
interpretation of Theorem 5.3, we would have to assume that
dM is convex (so that it can be approximated by an ICNN),
which is true if and only if M is a convex set. However, real
data rarely lives on a convex set. This breakdown can lead
to performance issues, as illustrated on Figure 1, where an
ICNN completely fails to approximate the distance function.

5.2. Adversarial weakly convex and convex-nonconvex
regularisation

In (Shumaylov et al., 2023), an adversarial convex-
nonconvex regulariser (ACNCR) was defined by Rθ(x) :=
Rc
θ1(x) + Rwc

θ2 (Ax), for Rc
θ1 parameterised the same as

the ACR, and Rwc
θ2 parameterised with an IWCNN. Then

Rc
θ1 and Rwc

θ2 are trained in a decoupled way, with Rc
θ1 min-

imising (5.1) and Rwc
θ2 minimising a similar loss but with

Pn replaced by PY and Pr replaced by PYr := (A)# Pr,
the push-forward of the ground truth distribution under
the forward model. This was an important step towards
greater interpretability, since, by Theorem 5.3, the optimal
Rwc
θ2 (y) ≈ dA[M](y), but it is still unclear how to interpret

Rc
θ1 . In this work, we define a more directly weak convex

parameterisation, following the ACR.

Definition 5.5 (Adversarial weak convex regulariser). The
adversarial weak convex regulariser (AWCR) is parame-
terised by Rθ(x) = RIWCNN

θ (x)+ µ0

2 ∥x∥2X , where RIWCNN
θ

is an IWCNN. It is learned by minimising (5.1). This sat-
isfies Assumption 3.1 with the modification described in
Note 3.7, as an IWCNN is Lipschitz by construction, and
so µ can be chosen to be arbitrarily small.

Note 5.6. Theorem 5.2 allows this AWCR to overcome
the ACR’s issue of ICNNs not being able to approximate a
distance function to non-convex sets. An IWCNN is able to
approximate the distance function to any compact set, since
any such distance function is 1-Lipschitz continuous.
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Ground-truth FBP: 21.303 dB, 0.195 TV: 31.690 dB, 0.889 U-Net: 36.712 dB, 0.920 LPD: 36.810 dB, 0.912

AR: 36.694 dB, 0.907 ACR: 35.708 dB, 0.897 ACNCR: 36.533 dB, 0.921 AWCR: 37.603 dB, 0.918 AWCR-PD: 37.941 dB, 0.924

Figure 2: Reconstructed images obtained using different methods, along with the associated PSNR and SSIM, for sparse view CT. In this
case the AWCR and AWCR-PD achieve the highest PSNR and SSIM. Furthermore, both AWCR methods retain the fine-structure in the
reconstruction, unlike the ACNCR and ACR, the only other methods which possess convergence guarantees.

6. Numerical results
6.1. Distance function approximations

To illustrate the importance of proper neural network struc-
ture, we first discuss a toy example. We consider data lying
on a product manifold M of two separate spirals embedded
into R2 in the form of a double spiral, as shown in Figure 1.
We then train an AR, an ACR (i.e., an ICNN), and an AWCR
(i.e., an IWCNN) on the denoising problem for this data,
and compare the learned regularisers with the true dM. As
is clear from Figure 1, the ICNN entirely fails to approxi-
mate this non-convex dM. This limitation is overcome by
the IWCNN, which despite the imposed constraints can ap-
proximate the true function well, and even shows improved
extrapolation. Despite the simplicity of this example, the
overall hierarchy of methods persists in the experiments
explored in Section 6.2 on higher dimensional real data.

6.2. Computed Tomography (CT)

For evaluation of the proposed methodology, we consider
two applications: CT reconstruction with (i) sparse-view and
(ii) limited-angle projection. Supervised methods require
access to large high-quality datasets for training, but outside
of curated datasets, obtaining large amounts of high-quality
paired data is unrealistic. For this reason weakly supervised
methods, requiring access only to unpaired data, are of
significant interest for this problem.

We consider two versions of the AWCR method, one using
the subgradient method to solve (1.2) as in (Lunz et al.,

2018; Mukherjee et al., 2021; 2024), and one using PDHGM,
denoted AWCR-PD. These are compared with:

• two standard knowledge-driven techniques: filtered
back-projection (FBP) and total variation (TV) regular-
isation, which act as the baseline;

• two supervised data-driven methods: the learned
primal-dual (LPD) method (Adler & Öktem, 2018) and
U-Net-based post-processing of FBP (Jin et al., 2017),
considered to be state of the art methods in end-to-end
learned reconstruction from the two main paradigms:
algorithm unrolling and learned post-processing;

• three weakly supervised methods: the AR, ACR, and
the ACNCR. Adversarial regularisation methods were
chosen as the currently best performing, to the authors’
knowledge, weakly supervised methods for CT.

These comparisons illustrate the trade-offs in levels of con-
straints and supervision versus stability and performance.
For details of the experimental set-up, see Appendix G.1.
We measure the performance in terms of the peak signal-
to-noise ratio (PSNR) and the structural similarity index
(SSIM) (Wang et al., 2004). We report average test dataset
results in Table 1, with further visual examples in Figure 2.

Sparse view CT As in (Lunz et al., 2018) performance
of AR during reconstruction begins to deteriorate if the net-
work is over-trained, so early stopping must be employed in
training. For the ACR, ACNCR, and both AWCR methods

8
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Table 1: Average test PSNR and SSIM in CT experiments.

Limited Sparse

Methods PSNR (dB) SSIM PSNR (dB) SSIM

Knowledge-driven
FBP 17.1949 0.1852 21.0157 0.1877
TV 25.6778 0.7934 31.7619 0.8883

Supervised
LPD 28.9480 0.8394 37.4868 0.9217
U-Net 29.1103 0.8067 37.1075 0.9265

Weakly Supervised
AR 23.6475 0.6257 36.4079 0.9101
ACR 26.4459 0.8184 34.5844 0.8765
ACNCR 26.5420 0.8161 35.6476 0.9094
AWCR 26.7233 0.8105 36.5323 0.9046
AWCR-PD 24.3254 0.7650 36.9993 0.9108

this does not occur due to reduced expressivity, yet both
AWCR methods surpass the performance of AR. Further-
more, the AWCR methods perform qualitatively better than
the AR, ACR, and ACNCR (especially the latter two) at
reconstructing fine details, which in the medical setting can
be more important than PSNR/SSIM accuracy. Indeed, the
AWCR-PD method approaches the PSNR accuracy of the
strongly supervised U-Net post-processing method.

Limited view CT In this setting a specific angular region
contains no measurement, turning this into a severely ill-
posed inverse problem, and a good image prior is crucial
for reconstruction. As shown in (Mukherjee et al., 2021),
the AR begins introducing artifacts during reconstruction,
which is overcome for both the ACNCR and ACR due to the
imposed convexity. The AWCR, on the other hand, is able to
remain non-convex without experiencing deterioration, and
slightly outperforms both the ACR and ACNCR in PSNR,
but not SSIM. However, the AWCR-PD method performs
worse in this setting, though still outperforming AR. This
occurs due to the forward and the adjoint operator being
severely ill-posed. For a visual comparison of the AWCR
and AWCR-PD methods in this setting, see Appendix G.2.

7. Conclusions
In this work, we have shown that the framework of weak
convexity is fertile ground for proving theoretical guaran-
tees. We proved that weakly convex regularisation can yield
existence, stability, and convergence in the sense of critical
points. Furthermore, we filled a gap in the literature by
proving convergence (with an ergodic rate) for the PDHGM
optimisation method (with ϑ = 1) in the weakly convex
setting. All of these results hold when R is a weakly convex
neural network. We showed that the IWCNN architecture
can universally approximate continuous functions, allowing

the AWCR to retain interpretability as a distance function
(empirically illustrated in Figure 1) whilst also benefiting
from all of the provable guarantees from weak convexity.
Finally, for the problem of CT reconstruction we showed
that the AWCR can compete with or outperform the state-
of-the-art in adversarial regularisation, and approach the
lower bound performance of state-of-the-art supervised ap-
proaches for CT, despite being merely weakly supervised.

Although we have focused on adversarial regularisation
in this work, we emphasise that other learned regularisa-
tion methods can be put into this weakly convex setting.
For example, in (Hurault et al., 2023) it was shown that
plug-and-play proximal gradient descent approaches (using
sufficiently smooth gradient step denoisers) correspond to
criticising an energy with a weakly convex regulariser. The
total deep variation regulariser (Kobler et al., 2020)

R(x) :=

n∑
i=1

ℓ∑
j=1

Nij(Kx)wj

is weakly convex so long as wj ⩾ 0 for all j and the Nij

are weakly convex for all i, j, which is achieved if the U-
Net N : Rd → Rnℓ has the form of an IWCNN, using a
uniformly convex U-Net as in (Bianchi et al., 2023). The
NETT ℓq regulariser (Li et al., 2020) has the form:

R(x) :=
∑
λ∈Λ

∥Φλ,θ(x)∥qq,

where q ⩾ 1 and Λ is a finite set. For q = 2 and |Λ| = 1, this
is also the form of the learned noise reduction regulariser
used in (Liu et al., 2022). A sufficient condition for this
R to be weakly convex is, for all λ, Φλ,θ is at least one
of: bounded and C1 with Lipschitz gradient (by (Davis
et al., 2018)), or weakly convex (e.g., an IWCNN) with
(Φλ,θ(x))i ∈ [0, Bi] for all x and i (by Proposition A.1).

A number of open questions remain. Expressivity questions
about IWCNNs beyond universal approximation, e.g. ef-
ficiency of representation, remain unanswered. It remains
open whether the PDHGM algorithm can be shown to be
convergent for a generic weak-weak splitting; or whether
the boundedness assumption can be dropped in certain cases.
Alternatively, given the structure of the regulariser, it may
be beneficial to turn to prox-linear schemes instead, analy-
sis of which is currently missing in the primal-dual setting.
Also, the problem of extracting proximal operators directly
from learned networks remains open. Finally, there is the
broader question of comparing the effectiveness of different
approaches for learned regularisation, especially (as noted
by an anonymous reviewer) quantifying how this effective-
ness depends on the ill-posedness of the inverse problem.
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A. Weakly convex analysis review
For a locally Lipschitz f : X → R, the following are equivalent to ρ-convexity (Ambrosio et al., 2005):

1. For all x1, x2 ∈ X and λ ∈ [0, 1],

f (λx1 + (1− λ)x2) ⩽ λf (x1) + (1− λ)f (x2)−
ρλ(1− λ)

2
∥x1 − x2∥2X .

2. For any x, x̂ ∈ X and ψ ∈ ∂f(x), we have the following inequality: f(x̂) ⩾ f(x) + ψ(x̂− x) + ρ
2∥x̂− x∥2X .

Proposition A.1. Let f : X → [0, B] be ρ-weakly convex and q ⩾ 1. Then f(x)q is qBq−1ρ-weakly convex.

Proof. Note that by Taylor’s theorem, for all y, h ⩾ 0, (y + h)q = yq + qξq−1h for some ξ ∈ [y, y + h]. We have that for
all x1, x2 ∈ X and λ ∈ [0, 1], 0 ⩽ λf (x1) + (1− λ)f (x2) ⩽ B and

0 ⩽ f (λx1 + (1− λ)x2) ⩽ min

{
λf (x1) + (1− λ)f (x2) +

ρλ(1− λ)

2
∥x1 − x2∥2X , B

}
.

Hence, since y 7→ yq is monotonic on [0,∞),

f(λx1 + (1− λ)x2)
q

⩽

(
min

{
λf (x1) + (1− λ)f (x2) +

ρλ(1− λ)

2
∥x1 − x2∥2X , B

})q
⩽

(
λf (x1) + (1− λ)f (x2) + min

{
ρλ(1− λ)

2
∥x1 − x2∥2X , B − λf (x1)− (1− λ)f (x2)

})q
= (λf (x1) + (1− λ)f (x2))

q
+ qξq−1 min

{
ρλ(1− λ)

2
∥x1 − x2∥2X , B − λf (x1)− (1− λ)f (x2)

}
⩽ λf(x1)

q + (1− λ)f(x2)
q + qBq−1 ρλ(1− λ)

2
∥x1 − x2∥2X ,

since ξ ∈ [λf (x1) + (1− λ)f (x2) , B] and y 7→ yq is convex.

For an extended real-valued function f : X → (−∞,+∞], let dom f := {x ∈ X : f(x) < +∞} be its domain and

f∗(ψ) := sup
x∈X

{ψ(x)− f(x)}, ψ ∈ X ∗,

be its conjugate function, which is always closed, convex, and lower semi-continuous (l.s.c.), see Theorem 4.3 in (Beck,
2017).

Theorem A.2 (Fenchel–Moreau theorem; Theorem 4.2.1 in (Borwein & Lewis, 2006)). Let X be a locally convex Hausdorff
space, let f : X → (−∞,+∞] be convex and l.s.c., and let ϕ : X → X ∗∗ be the canonical embedding which sends x to the
pointwise evaluation map δx : ψ 7→ ψ(x). Then f = f∗∗ ◦ ϕ, i.e., for all x ∈ X

f(x) = max
ψ∈X∗

{ψ(x)− f∗(ψ)}.

If X is a Hilbert space, then by the Riesz representation theorem it follows that

f(x) = max
x′∈X

{⟨x, x′⟩X − f∗(x′)}.

Definition A.3 (Moreau envelope and Proximal operator). For any f : X → (−∞,+∞] and ν > 0, the Moreau envelope
and the proximal mapping are defined for all x ∈ X by

fν(x) := inf
z∈X

{
f(z) +

1

2ν
∥z − x∥2X

}
,

proxνf (x) := argmin
z∈X

{
f(z) +

1

2ν
∥z − x∥2X

}
.
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The Moreau envelope of the function has some rather nice properties with relation to the original function:

Theorem A.4 (Moreau envelope and the proximal point map; Lemma 2.5 in (Davis & Drusvyatskiy, 2022)). Consider a
ρ-weakly convex function f : Rd → R ∪ {∞} and fix a parameter µ < ρ−1. Then, the following are true:

• The envelope fµ is C1-smooth with its gradient given by

∇fµ(x) = µ−1
(
x− proxµf (x)

)
.

• The envelope fµ(·) is µ−1-smooth and ρ
1−µρ -weakly convex meaning:

− ρ

2(1− µρ)
∥x′ − x∥2 ⩽ fµ (x

′)− fµ(x)− ⟨∇fµ(x), x′ − x⟩ ⩽ 1

2µ
∥x′ − x∥2 ,

for all x, x′ ∈ Rd.

• The proximal map proxµf (·) is 1
1−µρ -Lipschitz continuous and the gradient map ∇fµ is Lipschitz continuous with

constant max
{
µ−1, ρ

1−µρ

}
.

B. Proof of Theorem 2.6
First, we introduce some useful notation. For ψ ∈ X ∗ and x ∈ X , we define the pairing ⟨ψ, x⟩X∗ ×X := ψ(x). For
B ⊆ X ∗ and x ∈ X , we define ⟨B, x⟩X∗ ×X := {ψ(x) : ψ ∈ B}. For sets A,B, we write A ⩽ B if for all a ∈ A and
b ∈ B, a ⩽ b. We start with a lemma which will also prove useful in other proofs.

Lemma B.1. Let f : X → (−∞,+∞] be µ-strongly convex. Then for all x, z ∈ X

⟨∂f(x)− ∂f(z), x− z⟩X∗ ×X ⩾ µ∥x− z∥2X ,

i.e., for all ψ ∈ ∂f(x) and ξ ∈ ∂f(z),

⟨ψ − ξ, x− z⟩X∗ ×X ⩾ µ∥x− z∥2X .

Proof. Because f is µ-strongly convex, it follows that for all x, x′ ∈ X and ψ ∈ ∂f(x),

f(x′) ⩾ f(x) + ⟨ψ, x′ − x⟩X∗ ×X +
1

2
µ∥x′ − x∥2X ,

and therefore
⟨ψ, x− z⟩X∗ ×X ⩾ f(x)− f(z) +

1

2
µ∥x− z∥2X .

By the same argument,

⟨ξ, z − x⟩X∗ ×X ⩾ f(z)− f(x) +
1

2
µ∥x− z∥2X ,

and the result follows.

Lemma B.2. Let f : X → (−∞,+∞] be weakly convex and L-Lipschitz. Then for all x, z ∈ X and ψ ∈ ∂f(x),
⟨ψ, z − x⟩X∗ ×X ⩽ L∥x− z∥X .

Proof. Let x′t := tz + (1− t)x. Then as t→ 0, x′t → x and so

f(x′t) ⩾ f(x) + ⟨ψ, x′t − x⟩X∗ ×X + o(∥x′t − x∥X )

and therefore, since x′t − x = t(z − x),

t⟨ψ, z − x⟩X∗ ×X + o(t) ⩽ f(x′t)− f(x) ⩽ L∥x′t − x∥X = tL∥z − x∥X .

Dividing both sides by t and taking t→ 0 completes the proof.
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Proof of Theorem 2.6. For any x, z ∈ X , by Lemma B.1,

⟨∂Rsc(x)− ∂Rsc(z), x− z⟩X ⩾ µ∥x− z∥2X .

Therefore, in the Lipschitz case, for R = Rwc +Rsc, we have:

⟨(∂Rwc(x) + ∂Rsc(x)) , z − x⟩X∗ ×X ⊆ −⟨∂Rsc(x)− ∂Rsc(z), x− z⟩X∗ ×X + ⟨∂Rwc(x) + ∂Rsc(z), z − x⟩X∗ ×X

⩽ −µ∥x− z∥2X + (LR + ∥∂Rsc(z)∥) ∥x− z∥X ,

where the first half of the inequality follows from the above, and the second half since, for all ψ ∈ ∂Rwc(x) and ξ ∈ ∂Rsc(z)

⟨ψ, z − x⟩X∗ ×X ⩽ LR∥x− z∥X by Lemma B.2, and
⟨ξ, z − x⟩X∗ ×X ⩽ ∥ξ∥X∗∥x− z∥X ⩽ ∥∂Rsc(z)∥ ∥x− z∥X .

Then, for any x̂ a stationary point we have that 0 ∈ ∂Rwc(x̂) + ∂Rsc(x̂) and so

0 ⩽ −µ∥x− z∥2X + (LR + ∥∂Rsc(z)∥) ∥x− z∥X

which gives

∥x̂− z∥X ⩽
1

µ
(LR + ∥∂Rsc(z)∥) .

In the bounded weak convex case, using weak convexity instead:

Rwc(z) ⩾ Rwc(x) + ⟨∂Rwc(x), z − x⟩X∗ ×X − γ

2
∥z − x∥2X .

Then we get the following:

⟨(∂Rwc(x) + ∂Rsc(x)) , z − x⟩X∗ ×X ⊆ −⟨∂Rsc(x)− ∂Rsc(z), x− z⟩X∗ ×X + ⟨∂Rwc(x) + ∂Rsc(z), z − x⟩X∗ ×X

⩽ −µ∥x− z∥2X +
γ

2
∥x− z∥2X + (∥∂Rsc(z)∥) ∥x− z∥X +Rwc(z).

Taking x̂ to be any stationary point and completing the square, this implies that(
∥x̂− z∥X − 1

2(µ− γ
2 )

(∥∂Rsc(z)∥)
)2

⩽
1

4(µ− γ
2 )

2
(∥∂Rsc(z)∥)2 +

1

(µ− γ
2 )
Rwc(z),

or rearranging and using the triangle inequality:

∥x̂− z∥X ⩽
1

(µ− γ
2 )

∥∂Rsc(z)∥+
√

1

(µ− γ
2 )
Rwc(z).

C. Unbounded critical points
Example construction of how to get infinitely many minimisers for the weak convex case.

Note C.1. It may not be immediately clear why the condition is γ < 2µ and not simply γ < µ, thus requiring strong
convexity of the overall functions. The idea for why arises from the lower boundedness of the weak convex function. As an
example, one can consider the 1D case. The overall value of the function can not decrease arbitrarily, thus the derivative
cannot be strictly negative. And thus heuristically, as the gradient of a strong convex function simply increases, the weak
convex one has to decrease and then increase, overall resulting in the factor of 2, since it has to go up and then back down.
Based on this heuristic understanding we can answer the question of whether it is necessary to have γ < 2µ to have bounded
stationary points, or if it can be made larger. As it turns out, we can construct functions with γ > 2µ with unbounded
stationary points. Assuming we are working in 1D on a positive real line, and letting Rsc = 1

2x
2, assume we start with a

stationary point at x = x0 = 1, with value Rwc = 0, i.e. derivative intersects y = −x. Now, we require that the function is

17
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bounded from below by 0 and thus gradient has to now become positive in such a way to increase and decrease quickly
enough to once again cross y = −x. The largest area is found by taking the gradient to be −γx. With this, we can find that
the next intersection, and thus stationary point would be at x1 = γ

γ−2x0. And continuing in such an iterative way, we can
construct a positive weakly convex function that has unboundedly many stationary points. For concreteness, we can write
the following exact form for the gradient of the function, if we let m = γ

γ−2 :

R′
wc = (m+ γ)mn − γx, for x ∈ [mn,mn+1), n ∈ Z

Figure 3 illustrates what the resulting functions looks like, and in particular, we can see that for any γ > 2, we have infinitely
many stationary points.

Figure 3: Example of a positive weakly convex function with γ > 2µ and unbounded stationary points.

D. Proofs and a counterexample for Section 3
D.1. Proof of Theorem 3.3

Proof. One of the main limitations in achieving provable stability and convergence guarantees lies in the ability of proving
boundedness of iterates xk. However, thanks to the form of the regulariser, this is achieved almost immediately. By
Lemma B.1, for all u ∈ X ,

⟨∂Rsc(xk)− ∂Rsc(u), xk − u⟩X∗ ×X ⩾ µ∥xk − u∥2X
and for D convex: for all x, z ∈ X and y ∈ Y ,

D(A z, y) ⩾ D(A z, y)−D(Ax, y) ⩾ ⟨∂xD(Ax, y), z − x⟩X∗ ×X

For any critical point xk and z ∈ X , we have:

0 ∈ ⟨∂xD(Axk, yk) + α (∂Rwc(xk) + ∂Rsc(xk)) , z − xk⟩X∗ ×X

⊆ ⟨∂xD(Axk, yk), z − x⟩X∗ ×X − α ⟨∂Rsc(xk)− ∂Rsc(z), xk − z⟩X∗ ×X + α ⟨∂Rwc(xk) + ∂Rsc(z), z − xk⟩X∗ ×X

⩽ D(A z, yk)− α ⟨∂Rsc(xk)− ∂Rsc(z), xk − z⟩×X + α ⟨∂Rwc(xk) + ∂Rsc(z), z − xk⟩X .

Therefore, since γ < 2µ, by Theorem 2.6 and by rearranging and completing the square, we get:(
∥xk − z∥X − 1

2(µ− γ
2 )

(∥∂Rsc(z)∥)
)2

⩽
1

α(µ− γ
2 )

D(A z, yk) +
1

4(µ− γ
2 )

2
(∥∂Rsc(z)∥)2 +

1

(µ− γ
2 )

Rwc(z),

(D.1)
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which together with convergence of yk and continuity of D implies that the (xk) are bounded, and hence have a weak
convergent subsequence since X is reflexive, via the Banach–Alaoglu theorem. All that remains is to show that all cluster
points x+ must be critical points. Passing to a subsequence, let xk ⇀ x+. Then in the case of γ ⩽ µ:

D(Ax+, y
δ) + αR(x+) ⩽ lim inf

k
D(Axk, yk) + αR(xk) since R and D are weakly sequentially l.s.c.

⩽ lim inf
k

D(Au, yk) + αR(u) +
α

2
(γ − µ)∥xk − u∥2X ∀u ∈ X , by weak convexity

⩽ D(Au, yδ) + αR(u) +
α

2
(γ − µ)∥x+ − u∥2X ∀u ∈ X ,,

where the last line follows since xk ⇀ x+ and ∥ · ∥X is weakly sequentially l.s.c., and therefore 0 ∈ ∂Jα,yδ(x+) by
definition of weak convexity.

In the case of µ < γ < 2µ, Rsc − 1
2µ∥ · ∥

2
X weakly sequentially l.s.c.,

D(Ax+, y
δ) + αR(x+)−

α

2
(γ − µ)∥x+ − u∥2X

= D(Ax+, y
δ) + αR(x+)−

α

2
(γ − µ)∥x+∥2X + α(γ − µ)⟨x+, u⟩X − α

2
(γ − µ)∥u∥2X

= D(Ax+, y
δ) + α

(
R(x+)−

µ

2
∥x+∥2X

)
+
α

2
(2µ− γ)∥x+∥2X + α(γ − µ)⟨x+, u⟩X − α

2
(γ − µ)∥u∥2X

⩽ lim inf
k

D(Axk, yk) + α
(
R(xk)−

µ

2
∥xk∥2X

)
+
α

2
(2µ− γ)∥xk∥2X + α(γ − µ)⟨xk, u⟩X − α

2
(γ − µ)∥u∥2X

since R−µ
2
∥ · ∥2X , ∥ · ∥X , and D are weakly sequentially l.s.c., and inner product is weakly continuous

= lim inf
k

D(Axk, yk) + αR(xk)−
α

2
(γ − µ)∥xk − u∥2X

⩽ lim inf
k

D(Au, yk) + αR(u) ∀u ∈ X , by weak convexity and the criticality of xk

= D(Au, yδ) + αR(u) ∀u ∈ X , since yk → yδ and D is continuous in its second argument.

D.2. Proof of Theorem 3.4

Proof. Similar to the theorem above, we first want to show boundedness of iterates xk. To achieve this, we use the fact that
y0 = Au, and therefore by Assumption 3.1(5)

D(Au, yδk) = D(y0, yδk) ⩽ C
(
D(y0, y0) + ∥yδk − y0∥p

)
= Cδpk.

Hence, by (D.1):(
∥xk − u∥X − 1

2(µ− γ
2 )

(∥∂Rsc(u)∥)
)2

⩽
C

αk(µ− γ
2 )
δpk +

1

4(µ− γ
2 )

2
(∥∂Rsc(u)∥)2 +

1

(µ− γ
2 )

Rwc(u),

Therefore, as in the previous theorem, (xk) weakly has convergent subsequences (due to reflexivity and the Banach–Alaoglu
theorem) since δpk/αk is assumed to converge. Passing to such a subsequence, let xk ⇀ x+. We wish to show that x+ is
R-criticising. We first show that Ax+ = y0:

0 ⩽ D(Ax+, y
0) ⩽ lim inf

k
D(Axk, y

δk) as D is weakly sequentially l.s.c.

⩽ lim inf
k

D(Axk, y
δk) + αkR(xk) as αkR(xk) ⩾ 0

⩽ lim inf
k

D(Au, yδk) + αkR(u) +
1

2
αk(γ − µ)∥xk − u∥2X since xk ∈ critJαk,y

δk , where Au = y0

⩽ lim inf
k

Cδpk + αkR(u) +
1

2
αk(γ − µ)∥xk − u∥2X by Assumption 3.1(5)

= 0,
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hence Ax+ = y0. It remains to prove that, for all u ∈ X such that Au = y0,

R(u) ⩾ R(x+) +
1

2
(µ− γ)∥u− x+∥2X .

By the criticality of xk, the non-negativity of D, and Assumption 3.1(5):

αkR(xk) ⩽ D(Axk, y
δk) + αkR(xk) ⩽ Cδpk + αkR(u) +

1

2
αk(γ − µ)∥xk − u∥2X ,

and so

R(xk) ⩽ C
δpk
αk

+R(u) +
1

2
(γ − µ)∥xk − u∥2X . (D.2)

Therefore, if γ ⩽ µ,

R(x+) ⩽ lim inf
k

R(xk) as R is weakly sequentially l.s.c.

⩽ lim inf
k

C
δpk
αk

+R(u) +
1

2
(γ − µ)∥xk − u∥2X by (D.2)

⩽ R(u) +
1

2
(γ − µ)∥x+ − u∥2X , since ∥ · ∥X is weakly sequentially l.s.c.,

as desired. In the case µ < γ < 2µ, Rsc − 1
2µ∥ · ∥

2
X is weakly sequentially l.s.c., the proof runs:

R(x+)−
1

2
µ∥x+ − u∥2X = R(x+)−

1

2
µ∥x+∥+ µ⟨x+, u⟩ −

1

2
µ∥u∥2X

⩽ lim inf
k

R(xk)−
1

2
µ∥xk∥2X + µ⟨xk, u⟩ −

1

2
µ∥u∥2X

= lim inf
k

R(xk)−
1

2
µ∥xk − u∥2X

⩽ lim inf
k

C
δpk
αk

+R(u) +
1

2
(γ − 2µ)∥xk − u∥2X

⩽ R(u) +
1

2
(γ − 2µ)∥x+ − u∥2X .

Finally, whenever the solution to Au = y0 is unique, then by the above every subsequence of xk has a subsubsequence
converging weakly to that u. It follows that xk converges weakly to u, as if xk did not converge weakly to u, then there
would be a neighbourhood N of u (in the weak topology) and a subsequence x′ℓ of xk such that x′ℓ /∈ N for all ℓ. This
subsequence would have no subsubsequence converging weakly to u, contradicting the above.

D.3. Counterexample to Theorems 3.3 and 3.4 in the general weakly convex setting

Example D.1. Let:

• X := ℓ2(N), i.e. X := {(an)n∈N :
∑∞
n=1 a

2
n <∞} with ⟨(an), (bn)⟩X :=

∑∞
n=1 anbn,

• Y = R,

• A = 0,

• D(y, z) := (y − z)2 (which can be checked to satisfy Assumption 3.1(4-5)) and so D(Ax, y) = y2,

• yk = yδ = y0 = 0, and

• R(x) :=

{
f(x), ∥x∥X ⩽ 1

2 ,(
∥x∥2X − 1

)2
, ∥x∥X > 1

2 ,
where f is any smooth weakly convex function for which 0 is not a critical

point and for which every derivative (including the 0th) of f at any x with ∥x∥X = 1
2 agrees with that of

(
∥x∥2X − 1

)2
.
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It follows that R is weakly convex because there exists ρ ⩾ 0 such that f +ρ∥x∥2X is convex, and
(
∥x∥2X − 1

)2
+2∥x∥2X =

∥x∥4X +1 is convex since it is the composition of t 7→ t4 +1 (which is a convex and monotone on [0,∞)) with ∥ · ∥X which
is convex and has range [0,∞). Hence R(x) + max{ρ, 2}∥x∥X is convex.

Then for all α > 0 and y ∈ Y , ∂Jα,y(x) = α∂R(x). Hence, for all α > 0, xk ∈ critx∈X Jα,yk if and only if
xk ∈ critx∈X R. But by construction {∥x∥X = 1} ⊆ critx∈X R and 0 /∈ critx∈X R. Therefore, we can choose xk = ek,
i.e. the sequence which is 1 when n = k and 0 otherwise. Then it is a well-known fact that ek ⇀ 0, which by construction
is not a critical point of Jα,yδ . Hence Theorem 3.3 does not hold.

For Theorem 3.4, every x ∈ X has Ax = y0. It follows that x+ is an R-criticising solution if and only if x+ is a critical
point of R. We can once again take xk = ek ∈ critx∈X Jαk,yk , with weak limit 0, which is not a critical point of R. Hence,
Example D.1 is also a counterexample to Theorem 3.4 in the general setting of R weak convex.
Note D.2. The problematic critical points here can be chosen to indeed be global minimisers of R, so this issue is not
caused by the fact that we are in the setting of critical points.
Note D.3. We could modify R to also be globally Lipschitz by setting R(x) = g(x) for ∥x∥X > 2 where g is any smooth,
globally Lipschitz, weakly convex function whose derivatives all agree with those of

(
∥x∥2X − 1

)2
at ∥x∥X = 2.

Note D.4. This counterexample does not work in the finite-dimensional setting, as in that case the weak and norm topologies
coincide, and hence {∥x∥X = 1} contains all its limit points, and so does not have 0 as a limit point.

E. Proofs and definitions for Section 4
E.1. Proof of Theorem 4.1

Proof. Written this way, we have by weak convexity-concavity of L(x, y), assuming that F ∗ is µ-strongly convex, that

L
(
xk+1, y

)
− L

(
x, yk+1

)
= L

(
xk+1, y

)
− L

(
xk+1, yk+1

)
+ L

(
xk+1, yk+1

)
− L

(
x, yk+1

)
⩽

〈
Tzk+1, zk+1 − z

〉
X ×Y +

ρ

2
∥xk+1 − x∥2X − µ

2
∥yk+1 − y∥2Y

=
〈
zk − zk+1, zk+1 − z

〉
M

+
ρ

2
∥xk+1 − x∥2X − µ

2
∥yk+1 − y∥2Y (E.1)

=
1

2

∥∥zk − z
∥∥2
M

− 1

2

∥∥zk+1 − z
∥∥2
M

− 1

2

∥∥zk − zk+1
∥∥2
M

+
ρ

2
∥xk+1 − x∥2X − µ

2
∥yk+1 − y∥2Y .

But then adding together the inequality above for k and k + 1 evaluated at z = (xk, yk+1)

L
(
xk+1, yk+1

)
− L

(
xk, yk

)
= L

(
xk+1, yk+1

)
− L

(
xk, yk+1

)
+ L

(
xk, yk+1

)
− L

(
xk, yk

)
⩽

1

2

∥∥yk − yk+1
∥∥2
M

− 1

2

∥∥xk+1 − xk
∥∥2
M

− 1

2

∥∥zk − zk+1
∥∥2
M

+

− 1

2

∥∥zk−1 − zk
∥∥2
M

+
ρ

2
∥xk+1 − xk∥2X − µ

2
∥yk+1 − yk∥2Y +

1

2

∥∥∥∥( xk−1 − xk

yk−1 − yk+1

)∥∥∥∥2
M

=
∥∥yk − yk+1

∥∥2
M

− 1

2

∥∥xk − xk+1
∥∥2
M

− 1

2

∥∥zk − zk+1
∥∥2
M

+
ρ

2
∥xk − xk+1∥2X

− µ

2
∥yk+1 − yk∥2Y +

〈(
xk−1 − xk

yk−1 − yk

)
,

(
0

yk − yk+1

)〉
M

⩽
3

2

∥∥yk − yk+1
∥∥2
M

− 1

2

∥∥xk+1 − xk
∥∥2
M

− 1

2

∥∥zk − zk+1
∥∥2
M

+

+
1

2

∥∥zk−1 − zk
∥∥2
M

+
ρ

2
∥xk+1 − xk∥2X − µ

2
∥yk+1 − yk∥2Y .

We can write this illustrating descent:

L
(
xk, yk

)
+

1

2

∥∥zk−1 − zk
∥∥2
M

⩾ L
(
xk+1, yk+1

)
+

1

2

∥∥zk − zk+1
∥∥2
M

+

[
1

2
(µσ − 3)

∥∥yk − yk+1
∥∥2
M

+
1

2
(1− ρτ)

∥∥xk+1 − xk
∥∥2
M

]
.
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This becomes descent for the following restrictions on the parameters:
τσ < 1

∥A∥2 ,

τρ < 1,

µσ > 3.

E.2. Proof of Theorem 4.2

Proof. In analogy with (Bolte et al., 2014), we shall show require two results - one on descent, as in Theorem 4.1, and one
on subgradient boundedness, which arises from the following:

∥∥∂L(zk+1, zk)
∥∥ =

∥∥∥∥∥∥
 (

∂xL(z
k+1)

∂yL(z
k+1)

)
+M [zk+1 − zk]

−M [zk+1 − zk]

∥∥∥∥∥∥
⩽

∥∥∥∥∥∥
 (

∂xL(z
k+1)

∂yL(z
k+1)

)
0

∥∥∥∥∥∥+

∥∥∥∥( M [zk+1 − zk]
−M [zk+1 − zk]

)∥∥∥∥
= 3∥M(zk+1 − zk)∥.

Overall, the proof is similar to that of (Guo et al., 2023) and (Bolte et al., 2014), and only the first part will be shown here,
for compactness. Now, from Theorem 4.1:

K∑
k=1

[
1

2
(µσ − 3)

∥∥yk − yk+1
∥∥2
M

+
1

2
(1− ρτ)

∥∥xk+1 − xk
∥∥2
M

]
⩽ L(z1, z0)− L(zK+1, zK).

But by assumptions above infk L(xk, yk) > −∞ and by boundedness Lk > −∞, we have Lk is non-increasing and thus
converges to L∗. Thus, taking K → ∞:

∞∑
k=1

[
1

2
(µσ − 3)

∥∥yk − yk+1
∥∥2
M

+
1

2
(1− ρτ)

∥∥xk+1 − xk
∥∥2
M

]
⩽ L0 − L∗.

This, in particular, implies that the series is square-summable and furthermore that

lim
k→∞

∥∥xk+1 − xk
∥∥
X = 0 and lim

k→∞

∥∥yk+1 − yk
∥∥
Y = 0.

Recalling that dist (0, ∂L(zk)) = dist (0, T (zk)) =
∥∥zk+1 − zk

∥∥
M

⩽
∥∥yk+1 − yk

∥∥
M

+
∥∥xk+1 − xk

∥∥
M

→ 0 as k → ∞,
and for ν = min{µσ − 3, 1− ρτ}:

ν

4

∥∥zk+1 − zk
∥∥2
M

⩽

[
1

2
(µσ − 3)

∥∥yk − yk+1
∥∥2
M

+
1

2
(1− ρτ)

∥∥xk+1 − xk
∥∥2
M

]
.

But also from above we find that

min
k

[
1

2
(µσ − 3)

∥∥yk − yk+1
∥∥2
M

+
1

2
(1− ρτ)

∥∥xk+1 − xk
∥∥2
M

]
⩽

1

K

(
L(z1, z0)− L(zK+1, zK)

)
.

Which we can combine to find:

min
k

dist
(
0, ∂L(zk)

)
⩽

2

(νK)1/2

√
L(z1, z0)− L(zK+1, zK).
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E.3. The Kurdyka–Łojasiewicz inequality

In (Kurdyka, 1998) Kurdyka provided a generalisation of the Łojasiewicz inequality, with extensions to the nonsmooth
setting in (Bolte et al., 2007).

Definition E.1. Let η ∈ (0,+∞]. Denote with Φη the set of all concave and continuous functions φ : [0, η) → [0,+∞)
which satisfy: φ(0) = 0; φ is C1 on (0, η) and continuous at 0; and for all s ∈ (0, η), φ′(s) > 0.

Definition E.2. Let Ψ : Rd → R ∪ {+∞} be proper and lower semicontinuous (l.s.c.). Then Ψ is said to have the
Kurdyka–Łojasiewicz (KŁ) property at a point v̂ ∈ dom ∂Ψ :=

{
v ∈ Rd : ∂Ψ(v) ̸= ∅

}
, if there exists η ∈ (0,+∞], a

neighborhood V of v̂, and a function φ ∈ Φη such that for any

v ∈ V ∩ {v ∈ X : Ψ(v̂) < Ψ(v) < Ψ(v̂) + η}

the Kurdyka–Łojasiewicz inequality holds

φ′(Ψ(v)−Ψ(v̂)) · dist(0, ∂Ψ(v)) ⩾ 1.

If φ(s) = cs1−θ for c > 0 and θ ∈ [0, 1), then θ is called the KŁ exponent of Ψ at v̂. If Ψ has the KŁ property at each point
of dom ∂Ψ, then Ψ is called a KŁ function (or just, KŁ).

Examples of KŁ functions include semialgebraic, subanalytic, uniformly convex functions (see (Attouch et al., 2010) and
the references therein) and all typical neural networks.

Theorem E.3. Let Ψ : Rd → R be a deep neural network with every activation function a continuous piecewise analytic
function with finitely many pieces (e.g., ReLU, sigmoid). Then Ψ is a KŁ function and for all v̂ ∈ dom ∂Ψ, there exists
θ ∈ [0, 1) such that Ψ has KŁ exponent θ at v̂.

Proof. The network Ψ is a finite composition of continuous piecewise analytic functions with finitely many pieces, and
hence is a continuous piecewise analytic function with finitely many pieces. It follows that Ψ is subanalytic and so the result
follows by Theorem 3.1 of (Bolte et al., 2007).

E.4. Proof of Theorem 4.6

Before providing the proof, we are first going to provide two lemmas:

Lemma E.4. For f : X → R ρ-convex, (xi) ∈ X , x̄i := 1
i

∑i
j=1 x

j , and all N ∈ N,

f(x̄N ) ⩽ f̄ − ρ

2N

N∑
i=1

i− 1

i
∥xi − x̄i−1∥2X ,

and furthermore emphasising the weak convex case, for any x ∈ X :

f(x̄N ) ⩽ f̄ +max (0,−ρ) ·

 1

N

N∑
i=1

∥xi − x∥2X +
1

N

N∑
i=1

1

i

i−1∑
j=1

∥xj − x∥2X

 .
Proof. This arises from the following fact for ρ-convex functions:

f

(
1

N
(x1 + · · ·+ xN )

)
⩽

1

N
f(xN )− ρ

2

1

N

(
1− 1

N

)
∥xn − x̄n−1∥2X

+
N − 1

N
f

(
1

N − 1
(x1 + · · ·+ xN−1)

)
⩽ · · · ⩽ f̄ − ρ

2N

k∑
i=1

i− 1

i
∥xi − x̄i−1∥2X .

(E.2)

23



Weakly Convex Regularisers for Inverse Problems

To arrive at the second result we wish to expand the last term in terms of iterate lengths:

N∑
i=1

i− 1

i
∥xi − x̄i−1∥2X ⩽ 2

N∑
i=1

i− 1

i

(
∥xi − x∥2X + ∥x− x̄i−1∥2X

)

⩽ 2

N∑
i=1

i− 1

i

∥xi − x∥2X +

∥∥∥∥∥∥ 1

i− 1

i−1∑
j=1

(xj − x)

∥∥∥∥∥∥
2

X


By Jensen’s inequality: ⩽ 2

N∑
i=1

i− 1

i

∥xi − x∥2X +
1

i− 1

i−1∑
j=1

∥xj − x∥2X

 .

Plugging this into (E.2) yields the desired result.

And now by application of Lemma E.4 to L:

Lemma E.5. Let z̄k :=
(
x̄k, ȳk

)
:= 1

k

∑k
i=1 z

i be the average iterate. Assuming that L(x, y) is ρ-convex in the first
argument and µ-concave in the second, for any k ⩾ 1 and z:

L
(
x̄k, y

)
− L

(
x, ȳk

)
⩽

∥∥z − z0
∥∥2
M

2k
− 1

2k

k∑
i=1

∥zi−1 − zi∥2M

− ρ

2k

k∑
i=1

∥xi − x∥2X − ρ

2k

k∑
i=1

i− 1

i
∥xi − x̄i−1∥2X

− µ

2k

k∑
i=1

∥yi − y∥2Y − µ

2k

k∑
i=1

i− 1

i
∥yi − ȳi−1∥2Y .

Further, setting D = diag (max (0,−ρ),max (0,−µ)):

L
(
x̄k, y

)
− L

(
x, ȳk

)
⩽

∥∥z − z0
∥∥2
M

2k
+

3

2k

k∑
i=1

∥zi − z∥2D +
1

k

k∑
i=1

1

i

i−1∑
j=1

∥zj − z∥2D.

Proof. We can expand the original as:

L
(
x̄k, y

)
− L

(
x, ȳk

)
=

(
L
(
x̄k, y

)
− L (x, y)

)
+

(
L (x, y)− L

(
x, ȳk

))
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Noting that the first bracket is convex in x̄k and second is convex in ȳk, we can use Lemma E.4 to bound:

L
(
x̄k, y

)
− L

(
x, ȳk

)
=

(
L
(
x̄k, y

)
− L (x, y)

)
+

(
L (x, y)− L

(
x, ȳk

))
⩽

1

k

k∑
i=1

L
(
xi, y

)
− L

(
x, yi

)
− ρ

2k

k∑
i=1

∥xi − x∥2X − ρ

2k

k∑
i=1

i− 1

i
∥xi − x̄i−1∥2X

− µ

2k

k∑
i=1

∥yi − y∥2Y − µ

2k

k∑
i=1

i− 1

i
∥yi − ȳi−1∥2Y

by (E.1) ⩽

∥∥z − z0
∥∥2
M

2k
− 1

2k

k∑
i=1

∥zi−1 − zi∥2M

− ρ

2k

k∑
i=1

∥xi − x∥2X − ρ

2k

k∑
i=1

i− 1

i
∥xi − x̄i−1∥2X

− µ

2k

k∑
i=1

∥yi − y∥2Y − µ

2k

k∑
i=1

i− 1

i
∥yi − ȳi−1∥2Y

Using the second part of Lemma E.4, we can arrive at the second result:

L
(
x̄k, y

)
− L

(
x, ȳk

)
⩽

∥∥z − z0
∥∥2
M

2k
− ρ

2k

k∑
i=1

∥xi − x∥2X − µ

2k

k∑
i=1

∥yi − y∥2Y

+max (0,−ρ) ·

1

k

k∑
i=1

∥xi − x∥2X +
1

k

k∑
i=1

1

i

i−1∑
j=1

∥xj − x∥2X


+max (0,−µ) ·

1

k

k∑
i=1

∥yi − y∥2Y +
1

k

k∑
i=1

1

i

i−1∑
j=1

∥yj − y∥2Y


Yielding the desired result.

Now, with the lemmas above we can prove Theorem 4.6.

Proof of Theorem 4.6. Using µ-strong concavity in the second argument and ρ-weak convexity in the first, and using that ẑ
is a stationary point of L, we can bound:

L
(
x̄k, y

)
− L

(
x, ȳk

)
⩽ −µ

2
∥y − ŷ∥2Y +

ρ

2
∥x− x̂∥2X + L

(
x̄k, ŷ

)
− L

(
x̂, ȳk

)
.

Now, from the second part of Lemma E.5 we have

L
(
x̄k, ŷ

)
− L

(
x̂, ȳk

)
⩽

∥∥ẑ − z0
∥∥2
M

2k
+

3

2k

k∑
i=1

∥zi − ẑ∥2D +
1

k

k∑
i=1

1

i

i−1∑
j=1

∥zj − ẑ∥2D,

while from Theorem 4.5 (by redefining the constants appropriately), then we have constants ν > 0, 0 < τ < 1, such that∥∥zk − ẑ
∥∥
D

⩽ ντk,

which in turn implies the following two bounds:

1

k

k∑
i=1

∥zi − ẑ∥2D ⩽
1

k
ν2

k∑
i=1

τ2k =
1

k
ν2τ2

1− τ2k

1− τ2
= O

(
1

k

)
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and

1

k

k∑
i=1

1

i

i−1∑
j=1

∥zj − ẑ∥2D ⩽
1

k
ν2τ2

k∑
i=1

1

i
· 1− τ2(i−1)

1− τ2

⩽
1

k

ν2τ2

1− τ2

k∑
i=1

1

i
⩽

ν2τ2

1− τ2
log k + 1

k
= O

(
log k

k

)
,

by a standard inequality bounding harmonic series.

If instead θ ∈
(
1
2 , 1

)
, then there exist a constant µ > 0,∥∥zk − ẑ

∥∥
D

⩽ µk−
1−θ
2θ−1 .

But this implies the following two bounds:

1

k

k∑
i=1

∥zi − ẑ∥2D ⩽
1

k
µ2

k∑
i=1

i−2 1−θ
2θ−1 ⩽

1

k
µ2ζ

(
2
1− θ

2θ − 1

)
= O

(
1

k

)
and

1

k

k∑
i=1

1

i

i−1∑
j=1

∥zj − ẑ∥2D ⩽
1

k

k∑
i=1

1

i
µ2ζ

(
2
1− θ

2θ − 1

)

⩽
1

k
µ2ζ

(
2
1− θ

2θ − 1

)
(log k + 1) = O

(
log k

k

)
,

where ζ denotes the Riemann zeta function.

Now, if θ = 0, denoting
∑∞
i=1 ∥zi − ẑ∥2D as d, which is guarranteed to be finite, since we converge in a finite number of

steps by Theorem 4.5, we have:
1

k

k∑
i=1

∥zi − ẑ∥2D ⩽
d

k
= O

(
1

k

)
and

1

k

k∑
i=1

1

i

i−1∑
j=1

∥zj − ẑ∥2D ⩽
1

k

k∑
i=1

1

i
d ⩽ d

log k + 1

k
= O

(
log k

k

)
.

Therefore, in all three cases we achieve the following bound:

L
(
x̄k, y

)
− L

(
x, ȳk

)
⩽

1

2
∥z − ẑ∥2D +O

(
log k

k

)
.

F. Proof of Theorem 5.2
Before we can move onto proof of Theorem 5.2, we are going to need to establish a number of results relating to both
universal approximation properties of standard neural networks, as well as approximation properties of Moreau envelopes.

Lemma F.1 (Lemma 3 in (Strömberg, 1996)). Let f be a proper extended-real-valued l.s.c. bounded below function on X .

For any t > 0 it holds that

(i) ft is a real-valued minorant of f ;

(ii) inf ft = inf f ;
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(iii) argmin ft = argmin f .

Furthermore, when t ↓ 0:

(iv) ft → f pointwise;

(v) ft → f with respect to the epi-distance topology provided ∥ · ∥X is uniformly rotund;

(vi) ft → f uniformly on bounded sets when f is uniformly continuous on bounded sets and ∥ · ∥X is uniformly rotund.

Note, that e.g. the Euclidean norm is uniformly rotund. In what follows we use point (vi) in order to approximate the desired
function with a weak convex smooth approximant.

Theorem F.2 (Representation power of ICNN; Theorem 1 in (Chen et al., 2019)). For any Lipschitz convex function over a
compact domain, there exists a neural network with nonnegative weights and ReLU activation functions (i.e., an ICNN) that
approximates it uniformly within ε, i.e. in the ∥ · ∥∞ norm.

A further summary can be found in (Hanin, 2019). The last piece for the proof of universal approximation of IWCNNs is a
universal approximation results for a neural network with smooth activations:

Theorem F.3 (Theorem 3.2 in (Kidger & Lyons, 2020)). Let ρ : R → R be any nonaffine continuous function which is
continuously differentiable at at least one point, with nonzero derivative at that point. Let K ⊆ Rn be compact. Then
NN ρ

n,m,n+m+2 is dense in C (K;Rm) with respect to the uniform norm.

Here NN ρ
n,m,n+m+2 represents the class of functions Rn → Rm described by feedforward neural networks with n neurons

in the input layer, m neurons in the output layer, and an arbitrary number of hidden layers, each with n+m+ 2 neurons
and activation function ρ as in (Kidger & Lyons, 2020).

With these results, we can now prove Theorem 5.2.

Proof of Theorem 5.2. Fix ε > 0. Consider some target proper extended-real-valued l.s.c. function f ∈ C0(X), with X
compact. Then, by (Sun & Yu, 2019) Theorem 6, there exists fwc ∈ WC(X) ∩ C0(X) with ∥f − fwc∥∞ < ε

2 . In fact, we
know exactly how to find such approximation using the Moreau envelope: fwc = ft for some t > 0 by Lemma F.1, which
furthermore is Lipschitz smooth by Theorem A.4. As a result, we can write fwc = Id ◦ ft. Now, more generically form ̸= 1,
we can e.g. consider just the first element, i.e. gconv : x→ x1 and gsm : x→ (etf, 0, · · · , 0)⊤, with fwc = gconv ◦ gsm.

By Theorem F.3 there exists a neural network such that ∥gsm
θ2
−gsm∥∞ < ε

2 . Since gsm
θ2

is continuous andX is compact, gsm
θ2
(X)

is compact. Therefore, by Theorem F.2, as gconv is Lipschitz convex, there exists an ICNN such that ∥gICNN
θ1

− gconv∥∞ < ε
2

on Im gsm
θ2

1. Therefore,

∥gICNN
θ1 ◦ gsm

θ2 − gconv ◦ gsm∥∞ ⩽ ∥gICNN
θ1 ◦ gsm

θ2 − gconv ◦ gsm
θ2 ∥∞ + ∥gconv ◦ gsm

θ2 − gconv ◦ gsm∥∞
⩽ ∥gICNN

θ1 − gconv∥∞ + ∥gsm
θ2 − gsm∥∞

< ε,

by 1-Lipschitzness of gconv. Therefore, IWCNNs are dense in the space of continuous functions.

G. Experimental set-up and additional data visualisations for Section 6
G.1. Experimental set-up

We use human abdominal CT scans for 10 patients provided by Mayo Clinic for the low-dose CT grand challenge
(McCollough, 2014). The training dataset for CT experiments consists of a total of 2250 2D slices, each of dimension
512 × 512, corresponding to 9 patients. The remaining 128 slices corresponding to one patient are used to evaluate the
reconstruction performance.

Projection data is simulated in ODL (Adler et al., 2017) with a GPU-accelerated astra back-end, using a parallel-beam
acquisition geometry with 350 angles and 700 rays/angle, using additive Gaussian noise with σ = 3.2. The pseudoinverse

1Technically in this we are approximating the identity map, which can be exact with ReLU/Leaky ReLU activations.
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reconstruction is taken to be images obtained using FBP. For limited angle experiments, data is simulated with a missing
angular wedge of 60◦. The native odl power method is used to approximate the norm of the operator.

The TV method was computed by employing the ADMM-based solver in ODL.

All of the methods are implemented in PyTorch (Paszke et al., 2017). The LPD method is trained on pairs of target images
and projected data, while the U-Net post-processor is trained on pairs of true images and the corresponding reconstructed
FBPs. AR, ACR, ACNCR, and AWCR, in contrast, require ground-truth and FBP images drawn from their marginal
distributions (and hence not necessarily paired). The hyperparameter µ0 from Definition 5.5 is chosen to be the same as in
(Mukherjee et al., 2021): µ0 = log (1 + exp(−9.0)), and during training diverges from this value minimally, having almost
no effect on the convexity constant of the regulariser. To aid with training, λ from (5.1) is first chosen to be small (0.1) and
once the network is trained is increased to a larger value (10) as in (Mukherjee et al., 2021; Lunz et al., 2018)), and the
network is fine-tuned. The RMSprop optimizer, following the recommendation in (Lunz et al., 2018; Mukherjee et al., 2021)
with a learning rate of 5× 10−5 is used for training for a total of 50 epochs. For fine-tuning, the learning rate is reduced to
10−6. The AWCR architecture differed for the two experiments in the following way:

Sparse view CT The ICNN component of the AWCR is constructed with 5 convolutional layers, using LeakyReLU
activations and 5× 5 kernels with 16 channels. The smooth component of the AWCR is constructed using 6 convolutional
layers, using nn.SiLU activations and 5× 5 kernels with a doubling number of channels from 16 and stride of 2, similar to
that of (Lunz et al., 2018), with the last layer containing 128 channels

Limited view CT The ICNN component of the AWCR is constructed with 5 convolutional layers, using LeakyReLU
activations and 5× 5 kernels with 16 channels. Guided by the observations of (Mukherjee et al., 2021), that reducing the
total number of layers and the number of feature channels helps avoid overfitting in the limited angle setting, the smooth
component of the AWCR is constructed using a single convolutional layers, using a SiLU activation, 7× 7 with 32 channels.
To remain close to the ACR formulation, a residual structure is further employed.

The reconstruction in all adversarial regularisation cases is performed by solving the variational problem via gradient-descent
for 1000 iterations with a step size of 10−6. For the AWCR-PD, the primal-dual algorithm is used for solving the variational
problem. The proximal operator of the network is approximated by performing gradient descent with backtracking on the
objective in (4.2). The step sizes are chosen to be equal to 0.1/∥A∥ in the sparse case, and in the limited angle are chosen
to be equal to 10/∥A∥ and 0.1/∥A∥ to ensure that iterates do not diverge and that steps are large enough to provide good
results. Akin to AR, reconstruction performance of AWCR can sometimes deteriorate if early stopping is not applied. For a
fair comparison, we report the highest PSNR achieved by all methods during reconstruction. The regularisation parameter α
is chosen according to (Lunz et al., 2018) and is not tuned.

G.2. Additional data visualisations
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Ground-truth FBP: 18.232 dB, 0.223 TV: 23.694 dB, 0.749 U-Net: 27.943 dB, 0.825 LPD: 28.150 dB, 0.821

AR: 24.959 dB, 0.648 ACR: 24.278 dB, 0.779 ACNCR: 26.117 dB, 0.796 AWCR: 26.213 dB, 0.766 AWCR-PD: 24.593 dB, 0.751

Figure 4: Reconstructed images obtained using different methods, along with the associated PSNR and SSIM, for limited view CT.
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